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Abstract Let N be an integer greater than 1 and Z/(N) the integer residue ring modulo
N . Extensive experiments seem to imply that primitive sequences of order n ≥ 2 over
Z/(N) are pairwise distinct modulo 2. However, efforts to obtain a formal proof have not
been successful except for the case when N is an odd prime power integer. Recent research
has mainly focussed on the case of square-free odd integers with several special condi-
tions. In this paper we study the problem over Z/(peq), where p and q are two distinct
odd primes, e is an integer greater than 1. We provide a sufficient condition to ensure that
primitive sequences generated by a primitive polynomial over Z/(peq) are pairwise distinct
modulo 2.
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1 Introduction

Throughout the paper, for any integer N ≥ 2, let Z/(N) be the integer residue ring modulo
N . We always choose {0, 1, ..., N − 1} as the representatives of the ring Z/(N). Thus a
sequence a over Z/(N) is usually viewed as an integer sequence over {0, 1, ..., N − 1}.
Moreover, for an integer a and a positive integer b ≥ 2, we denote the least nonnegative
residue of a modulo b by [a] mod b. Similarly, for an integer sequence a = (a(t))t≥0 , we
denote [a] mod b = ([a(t)] mod b)t≥0.

In September 2011, a set of two cryptographic algorithms was accepted by 3GPP SA3 as
a new inclusion in the LTE standards. It consists of a confidentiality algorithm named 128-
EEA3 and an integrity algorithm named 128-EIA3, both of which are based on a core stream
cipher algorithm named ZUC [1]. ZUC algorithm adopts primitive sequences over the prime
field Z/(231 − 1) as driving sequences. Cryptographic analyses [1, Section 12] show that
those driving sequences have a significant contribution to algorithm’s resistance against
bit-oriented cryptographic attacks, including fast correlation attacks, linear distinguishing
attacks and algebraic attacks. Note that we can derive 31 sequences totally from the 2-adic
expansion of a = a0+a1 ·2+· · ·+a30 ·230, called the 2-adic coordinate sequences of a. The
essential rationality for the application of primitive sequences over Z/(231 − 1) is that they
are pairwise distinct modulo 2 [3, Theorem 4.2] i.e. a = b iff [a] mod 2 = [b] mod 2, where
a and b are two primitive sequences over Z/(231 − 1) generated by a primitive polynomial.
Such “distinctness property” guarantees that the 31 binary sequences a0, . . . , a30 have the
following two important properties: (1) all of their periods are equal to the period of a;
(2) each ak uniquely determine the original primitive sequence a, see [1 Page18] and [2,
Corollary 1, Remark 1] for more details.

Generally, for an integer e ≥ 2, if primitive sequences (its definition is given in Sub-
section 2.1) over Z/(2e − 1) are pairwise distinct modulo 2, then their 2-adic coordinate
sequences also enjoy the two properties as mentioned above. We note that, however, prim-
itive sequences over Z/(2e − 1) are not always pairwise distinct modulo 2. For example,
a = (1, 5, 4, 20, 16, 17, . . .) and b = (11, 13, 2, 10, 8, 19, . . .) are two distinct primi-
tive sequences of order 1 generated by x − 5 over Z/(26 − 1), it is easy to verify that
[a] mod 2 = [b] mod 2. On the other hand, to the best of our knowledge, no counterex-
ample has been found until now if the order of primitive sequences is greater than 1.
It seems to imply that primitive sequences of order n ≥ 2 over Z/(2e − 1) are pair-
wise distinct modulo 2. Unfortunately, efforts to obtain a formal proof have not been
successful.

Recent study indicates that the problem of modulo-2 distinctness over Z/(2e − 1) seems
not easier than over Z/(N) except for some special e (see, for example, [2]), where N is
an odd integer. Additionally, since whether the property of modulo-2 distinctness holds for
Z/(N) is also of interest in mathematics, the study of modulo-2 distinctness over Z/(2e −1)
is generally turned to the case of Z/(N).

The known results for the problem over Z/(N) mainly rely on the factorization of N .
The case that N is an odd prime power integer has been completely solved in [3].

Theorem 1 ([3, Theorem 4.2]) Let pe be an odd prime power and f (x) a primitive poly-
nomial of degree n over Z/(pe). Then a = b iff [a] mod 2 = [b] mod 2, where a and b are
two primitive sequences generated by f (x) over Z/(pe).

Besides, several results for square-free N can be found in [4–8]. But there is no known
result in the case when N is neither square-free nor prime power.
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This paper studies the problem over Z/(peq), where p and q are two distinct odd primes,
e is an integer greater than 1. Utilizing the same technology of decimation proposed in our
previous work [9] and the Chinese Remainder Theorem, we provide a sufficient condition
to ensure that primitive sequences generated by a primitive polynomial f (x) over Z/(peq)

are pairwise distinct modulo 2, see Theorem 2 for details.
The rest of the paper is organized as follows. In Section 2 we present some necessary

preliminaries. In Section 3 we establish the main results of this paper.

2 Preliminaries

2.1 Primitive polynomials and primitive sequences

Let N be an integer greater than 1. If a sequence a over Z/(N) satisfies

a(i + n) = [cn−1a(i + n − 1) + . . . + c1a(i + 1) + c0a(i)] mod N

for any integer i ≥ 0, where n is a positive integer and c0, c1, . . . , cn−1 ∈ Z/(N)

are constant coefficients, then a is called a linear recurring sequence of order n over
Z/(N) generated by f (x) = xn − cn−1x

n−1 − . . . − c0 (or a is a sequence of order
n over Z/(N) for simplicity), and f (x) is called a characteristic polynomial of a. A
characteristic polynomial of a with the least degree is called a minimal polynomial.
Note that, generally speaking, a minimal polynomial of a sequence over Z/(N) is not
necessarily unique. For example, both x2 − x − 1 and x2 − 4x − 1 are the minimal
polynomials of the sequence (0, 3, 3, 6, 0, 6, 6, 3, ...) over Z/(9) whose period is equal
to 8. For convenience, the set of sequences generated by f (x) over Z/(N) is generally
denoted by G(f (x),N).

Let f (x) be a monic polynomial of degree n over Z/(N). If f (0) is an invertible ele-
ment in Z/(N), that is gcd(f (0),N) = 1, then there exists a positive integer T such that
xT − 1 is divisible by f (x) in Z/(N)[x]. The minimum of such T is called the period of
f (x) over Z/(N) and denoted by per (f (x) ,N). In the case when N is a prime power
integer, say N = pe, it is known that per (f (x) , pe) ≤ pe−1(pn − 1), see [10]. If
per (f (x) , pe) = pe−1(pn − 1), then f (x) is called a primitive polynomial of order n

over Z/(pe). A sequence a over Z/(pe) is called a primitive sequence of order n if a is
generated by a primitive polynomial of degree n over Z/(pe) and [a] mod p is not an all-
zero sequence. In the case when N is an arbitrary integer, assume N = p

e1
1 p

e2
2 · · · per

r

is the canonical factorization of N . A monic polynomial f (x) of degree n over Z/(N)

is called a primitive polynomial if for every i ∈ {1, 2, . . . , r}, f (x) (modpei

i ) is a primi-
tive polynomial of degree n over Z/(p

ei

i ). A sequence a over Z/(N) is called a primitive
sequence of order n if a is generated by a primitive polynomial of degree n over Z/(N)

and [a] mod pi
is not an all-zero sequence for every i ∈ {1, 2, . . . , r}, that is, [a] mod p

ei
i

is a primitive sequence of order n over Z/(p
ei

i ). For convenience, the set of primitive
sequences generated by a primitive polynomial f (x) over Z/(N) is generally denoted
by G′(f (x),N).

2.2 Element distribution properties of sequences over Z/(pe)

Let pe be a prime power integer. For a sequence a = (a(t))t≥0 over Z/(pe), if we write each
a(t) in its unique p-adic expansion as a(t) = a0(t)+a1(t) ·p + . . .+ae−1(t) ·pe−1, where
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ai(t) ∈ {0, 1, . . . , p − 1} for i ∈ {0, 1, . . . , e − 1}, then the p-ary sequence ai = (ai(t))t≥0
is called the i-th coordinate sequence of a.

It is clear that if f (x) is a polynomial over Z/(pe), then f (x) is also a polynomial over
Z/(pi) with its coefficients modulo pi for 1 ≤ i ≤ e − 1.

Definition 1 A monic polynomial f (x) of degree n over Z/(pe) is called a basic
irreducible polynomial if f (x) is an irreducible polynomial of degree n over Z/(p).

Remark 1 Basic irreducible polynomials are also called Galois polynomials, for example,
see [12].

If f (x) is a basic irreducible polynomial over Z/(pe), then it is clear that f (x) is also
a basic irreducible polynomial over Z/(pi) for 1 ≤ i ≤ e − 1. Moreover, any primitive
polynomial over Z/(pe) is a basic irreducible polynomial over Z/(pe), but the converse is
not true.

We first present an element distribution property for linear recurring sequences generated
by basic irreducible polynomials over Z/(pe).

Lemma 1 ([11, Proposition 1]) Let f (x) be a basic irreducible polynomial of degree n

over Z/(pe) and a ∈ G(f (x), pe) with a0 �= 0, where a0 is the 0-th coordinate sequence
of a. If

per (f (x) , p) ≥ (
pe − 1

)
pn/2+e−1,

then every element of Z/(pe) appears at least once in a.

For a sequence a = (a(t))t≥0 and a positive integer s, we denote by a(s) the s-fold
decimation of a, i.e. a(s) = (a(st))t≥0. Next we will show that if a is a primitive sequence
of order n over Z/(pe) and s is a positive integer satisfying pn−1

gcd(pn−1,s) > pn/2, then the

minimal polynomial of a(s) over Z/(pe) is unique and is a basic irreducible polynomial of
degree n.

Proposition 1 Let pe be a prime power and f (x) a primitive polynomial of degree n over
Z/(pe). Let a ∈ G′(f (x), pe) and s a positive integer. If

pn − 1

gcd (pn − 1, s)
> pn/2,

then the minimal polynomial of a(s) over Z/(pe) is unique and is a basic irreducible poly-
nomial of degree n only depending on f (x). Moreover, let g(x) be the minimal polynomial
of a(s) over Z/(pe). Then

per
(
g (x) , pe

) = pe−1(pn − 1)

gcd
(
pe−1(pn − 1), s

) and per (g (x) , p) = pn − 1

gcd (pn − 1, s)
.

Proof See Appendix A.

Combining Lemma 1 with Proposition 1, we can immediately obtain Lemma 2 as
follows.
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Lemma 2 Let f (x) be a primitive polynomial of degree n ≥ 2 over Z/(pe) and a ∈
G′(f (x), pe). Let s be a positive integer. If

pn − 1

gcd (pn − 1, s)
≥ (

pe − 1
)
p(n/2+e−1),

then every element of Z/(pe) appears at least once in a(s).

Let a = (a(t))t≥0 and b = (b(t))t≥0 be two sequences over Z/(pe). If there exists
u, v ∈ Z/(pe) , not both equal to 0, such that [u · a + v · b] mod pe = 0, that is [u · a(t) + v ·
b(t)] mod pe = 0 for any integer t ≥ 0, then we say that a and b are linearly dependent over
Z/(pe). Otherwise, we say that a and b are linearly independent over Z/(pe). For the case
when e = 1, if a and b are linearly dependent over Z/(p), and additionally b �= 0, then it
follows that a = [λ · b] mod p for some λ ∈ Z/(p). However, this is not true for the case
when e > 1. For instance, let a = (0, 1, 2, 3, . . .) and b = (3, 2, 1, 0, . . .) be two sequences
with period 4 over Z/(9), it is easy to verify that a and b are linearly dependent over Z/(9),
but there does not exist λ ∈ Z/(9) such that a = [λ · b] mod 9.

We now present an element distribution property for two linearly independent sequences
over Z/(pe).

Lemma 3 ([12, Corollary 5]) Let f (x) be a basic irreducible polynomial of degree n over
Z/(pe) and a, b ∈ G(f (x), pe). If a and b are linearly independent over Z/(pe) and

per (f (x) , p) ≥
(
p2e − 1

)
pn/2+e−1,

then for any u, v ∈ Z/(pe), there exists an integer t ≥ 0 such that a (t) = u, b (t) = v.

Combining Lemma 3 with Proposition 1, we can immediately obtain Lemma 4 as
follows.

Lemma 4 Let f (x) be a primitive polynomial of degree n over Z/(pe) and a, b ∈
G′(f (x), pe). Let s be a positive integer. If a(s) and b(s) are linearly independent over
Z/(pe) and

pn − 1

gcd (pn − 1, s)
≥

(
p2e − 1

)
p(n/2+e−1),

then for any u, v ∈ Z/(pe), there exists an integer t ≥ 0 such that a(s)(t) = u, b(s)(t) = v.

3 Distinctness of primitive sequences over Z/(peq) modulo 2

Throughout this section, we always assume that p and q are two fixed distinct odd primes,
e is an integer greater than 1.

We make our main result explicit in the following statement.

Theorem 2 Let f (x) be a primitive polynomial of degree n ≥ 2 over Z/(peq). If both of
the following two conditions hold:
(i)

pn−1
gcd(pn−1,qn−1) ≥ (pe − 1) p(n/2+e−1),

(ii)
qn−1

gcd(qn−1,pe−1(pn−1))
≥ (

q2 − 1
)
qn/2,

then for a, b ∈ G′(f (x), peq), a = b if and only if [a] mod 2 = [b] mod 2.
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Proof The necessary condition is trivial. It suffices to prove that, under the above two
conditions, [a] mod 2 = [b] mod 2 implies that a = b.

Let a, b ∈ G′(f (x), peq) be distinct primitive sequences with [a] mod 2 = [b] mod 2.
Then we will show a contradiction. Using the Chinese Remainder Theorem we have

a = [
q · ua + pe · va

]
mod peq

, (1)

b = [
q · ub + pe · vb

]
mod peq

, (2)

where ua, ub ∈ G′(f (x), pe) and va, vb ∈ G′(f (x), q).
Case 1: ua = ub and va �= vb

By Theorem 1, there exists an integer t ≥ 0 such that

[va (t)] mod 2 �= [vb (t)] mod 2. (3)

Let Ltua = (ua(t + s))s≥0 be the t-shift of ua . Then it is clear that Ltua ∈ G′(f (x), pe).
Let c be the (qn − 1)-fold decimation of Ltua , i.e.

c = (
ua

(
t + k · (

qn − 1
)))

k≥0 .

Then by Condition (i) and Lemma 2, there exists an integer k∗ ≥ 0 such that c (k∗) = 0,
which yields

ua

(
t + k∗ · (

qn − 1
)) = ub

(
t + k∗ · (

qn − 1
)) = 0.

Therefore, by (1) and (2) together with per(va) = per(vb) = qn − 1, we obtain that

a
(
t + k∗ · (

qn − 1
)) = pe · va

(
t + k∗ · (

qn − 1
)) = peva(t),

b
(
t + k∗ · (

qn − 1
)) = pe · vb(t + k∗ · (

qn − 1
) = pevb (t) .

Now (3) implies that

[
a

(
t + k∗ · (

qn − 1
))]

mod 2 �= [
b

(
t + k∗ · (

qn − 1
))]

mod 2 ,

a contradiction.
Case 2: ua �= ub and va = vb

By Theorem 1, there exists an integer t ≥ 0 such that

[ua (t)] mod 2 �= [ub (t)] mod 2. (4)

Set c = (va(t + k · pe−1(pn − 1)))k≥0. Then it is clear that c is the (pe−1(pn − 1))-fold
decimation of Ltva . Employing Condition (i) and Lemma 2, we know that there exists an
integer k∗ ≥ 0 such that c (k∗) = 0, which yields

va

(
t + k∗ · pe−1 (

pn − 1
)) = vb

(
t + k∗ · pe−1 (

pn − 1
)) = 0.

Similar to Case 1, we can deduce that

[
a(t + k∗ · pe−1 (

pn − 1
)]

mod 2
�=

[
b(t + k∗ · pe−1 (

pn − 1
)]

mod 2
,

which is a contradiction.
Case 3: ua �= ub and va �= vb
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By Theorem 1, there exists an integer t ≥ 0 such that

[ua (t)] mod 2 �= [ub (t)] mod 2. (5)

Set

c =
(
va

(
t + k ·

(
pe−1 (

pn − 1
))))

k≥0

and

d =
(
vb

(
t + k ·

(
pe−1 (

pn − 1
))))

k≥0
.

Then c and d are the
(
pe−1 (pn − 1)

)
-fold decimation of Ltva and Ltvb, respectively.

According to the proof of Case 1, it suffices to prove that there exists an integer k∗ ≥ 0 such
that c(k∗) = d(k∗) = 0. Consider the following two sub-cases.

(1) c and d are linearly independent over Z/(q).
By Condition (ii) and Lemma 4, there exists an integer k∗ ≥ 0 such that c(k∗) =

d(k∗) = 0.
(2) c and d are linearly dependent over Z/(q).
Combining Condition (ii) and Proposition 1 we have d �= 0, and

c = [λ · d] mod q

for some λ ∈ Z/(q). Then by Condition (ii) and Lemma 2, there exists an integer k∗ ≥ 0
such that d(k∗) = 0, and hence c(k∗) = 0.

Combining all the cases, we finish our proof.

Remark 2 Under the same conditions of Theorem 2, for a ∈ G′(f (x), peq), we have

per([a] mod 2) = per(a) = lcm
(
pe−1 · (pn − 1), qn − 1

)
,

where per(a) is the period of sequence a. In fact, the last equality is obvious by the def-
inition of primitive sequences. It suffices to show the first equality. Firstly, it is clear that
per([a] mod 2) ≤ per(a). On the other hand, since Lka �= a for 0 < k < per(a), where
Lka = (a(t + k))t≥0 is the k-shift of a, it follows from Theorem 2 that [Lka] mod 2 �=
[a] mod 2 for 0 < k < per(a) which implies that per([a] mod 2) ≥ per(a).

Remark 3 When n ≤ 2(2e − 1), Condition (i) fails to hold. In fact, if n ≤ 2(2e − 1), we
have (note that both p and q are odd)

pn − 1

gcd(pn − 1, qn − 1)
< pn/2 ≤ pn/2+2e−1/2 <

(
pe − 1

)
p(n/2+e−1).

Remark 4 The method above does not apply to the case of Z/(peqr ) if r > 1. The obstacle
is that in the Case 3 of our proof, if c and d are linearly dependent over Z/(qr ) with r > 1,
then it is not true that c = [λ · d] mod qr for some λ ∈ Z/(qr ).

The rest of this Section is devoted to the discussion of Conditions (i)-(ii) of Theorem 2.
When e = 2, the proportions of (p, q) satisfying Conditions (i) and (ii) of Theorem 2

among 3 ≤ p �= q ≤ prime(5000) are tested under several ranges of n, where prime(k)

is the k-th prime number, see the results in Table 1.
Based on a result of Bugeaud, Corvaja and Zannier [13, Theorem 1], we will show that

for given p, q, e, Conditions (i) and (ii) of Theorem 2 always hold for sufficiently large n.
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Table 1 Proportions of (p, q) satisfying Conditions (i) and (ii) of Theorem 2 among 3 ≤ p �= q ≤
prime(5000)

n 3 ≤ p �= q ≤ prime(5000) n 3 ≤ p �= q ≤ prime(5000)

7 91.130 % 19 99.999 %

8 69.485 % 20 99.958 %

9 99.493 % 21 99.999 %

10 99.015 % 22 99.992 %

11 99.987 % 23 100 %

12 99.044 % 24 99.969 %

13 99.999 % 25 99.999 %

14 99.978 % 26 100 %

15 99.991 % 27 99.999 %

16 99.914 % 28 99.998 %

17 99.999 % 29 99.999 %

18 99.914 % 30 99.975 %

Lemma 5 ([13, Theorem 1]) If a and b are two multiplicatively independent integers
greater than 1 (i.e. the only integer solution (x, y) of the equation axby = 1 is (x, y) =
(0, 0)), then for any given real number ε > 0, there exists an integer Nε such that

gcd
(
an − 1, bn − 1

)
< 2nε

for n > Nε.

Theorem 3 For given p, q, e, there exists an integer N such that Conditions (i) and (ii) of
Theorem 2 always hold if n > N .

Proof Since it is clear that p and q are multiplicatively independent, it follows from
Lemma 5 that for a given real number ε > 0, there exists a positive number Nε such that

gcd
(
pn − 1, qn − 1

)
< 2ε·n

for n > Nε. Therefore, when n > Nε , we have

pn − 1

gcd(pn − 1, qn − 1)
>

pn − 1

2ε·n , (6)

qn − 1

gcd(qn − 1, pe−1(pn − 1))
≥ qn − 1

pe−1 gcd(pn − 1, qn − 1)
>

qn − 1

pe−12ε·n . (7)

Choose 0 < ε < 1/2, then it can be verified that

lim
n→+∞

pn − 1

2ε·n · (pe − 1) p(n/2+e−1)
= +∞,

lim
n→+∞

qn − 1

pe−12ε·n · (
q2 − 1

)
qn/2

= +∞.
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Therefore there exists an integer N ′ such that for n > N ′,
pn − 1

2ε·n >
(
pe − 1

)
p(n/2+e−1) and

qn − 1

pe−12ε·n >
(
q2 − 1

)
qn/2. (8)

Set N = max{Nε,N
′}. Then the result is obtained by combining (6), (7) and (8).

Acknowledgments The authors would like to thank the anonymous referees for their helpful comments
and suggestions. This work is supported by NSF of China (Grant Nos. 61272042 and 61402524) and by the
Science and Technology on Information Assurance Laboratory (Grant No. KJ-13-006).

Appendix A: proof of Proposition 1

We first briefly introduce Galois rings. The notation and definitions we will use here are from [12].
A Galois ring is a finite commutative ring R with identity 1 in which the set of all zero divisors has the

form pR for some prime p. Primary examples of Galois rings are integer residue rings Z/(pe) and finite
fields GF (q) of q elements. A Galois ring R is uniquely determined up to isomorphism by its characteristic
pe and the number of elements qe , where q = pr . Therefore in what follows we denote such a ring by
GR (qe, pe). In particular, GR (pe, pe) = Z/(pe). Let R′ = GR (qen, pe) be an extension of degree n of
R = GR (qe, pe). We denote by Aut

(
R′/R

)
the set of all automorphisms of the ring R′ that fix each element

of R. The group Aut
(
R′/R

)
is a cyclic group of order n generated by some automorphism σ :

Aut
(
R′/R

) =< σ >=
{
1, σ, . . . , σ n−1

}
.

Moreover, for α ∈ R′, σ (α) = α iff α ∈ R, see [14, Theorem 14.30].
If f (x) is a basic irreducible polynomial of degree n over Z/(pe), then all the roots of f (x) belong to

GR (pen, pe). Moreover if α is such a root in GR (pen, pe), then α, σ (α) , . . . , σ n−1 (α) are all the roots of
f (x) in GR (pen, pe), where σ is the generator of the cyclic group Aut (GR(pen, pe)/GR(pe, pe)).

To prove Proposition 1, we need the following four lemmas.

Lemma 6 ([15, Theorem 2]) Let pe be a prime power and f (x) a monic polynomial of degree n over Z/(pe)

that has no multiple factors over Z/(p). Suppose α0, α1, . . . , αn−1 are all roots of f (x) in GR (pem, pe)

for some integer m. Then for any a = (a(t))t≥0 ∈ G(f (x), pe), there uniquely exists β0, β1, . . . , βn−1 ∈
GR (pem, pe) such that

a (t) = β0α
t
0 + β1α

t
1 + . . . + βn−1α

t
n−1,t ≥ 0. (9)

Inversely, if a sequence a = (a(t))t≥0 over Z/(pe) satisfies (9), then a ∈ G(f (x), pe).

Lemma 7 ([16, Proposition 6.1]) Let p be a prime number and f (x) a primitive polynomial of degree n ≥ 2
over Z/(p). Let a ∈ G′(f (x), p) and s a positive integer. Then the minimal polynomial of a(s) is irreducible
over Z/(p) with degree dividing n and

per
(
a(s)

)
= pn − 1

gcd (pn − 1, s)
.

Lemma 8 ([17, Theorem 2]) Let pe be a prime power and a = (a(t))t≥0 a sequence over Z/(pe). Then the
minimal polynomial g(x) of a over Z/(pe) is unique iff g(x) is a basic irreducible polynomial.

Lemma 9 ([18, Theorem 11.1]) Let pe be a prime power and f (x) a basic irreducible polynomial of degree
n over Z/(pe). Suppose α is a root of f (x) in GR (pen, pe), then per(f (x), pe) = ord (α), where ord (α)

is the least positive integer s such that αs = 1.

Now we start to prove Proposition 1.

Proof (Proof of Proposition 1) Let g(x) be a minimal polynomial of a(s) over Z/(pe). Then it is clear that
g (x) (mod p) is a characteristic polynomial of

[
a(s)

]
mod p

over Z/(p). By Lemma 8, it suffices to show that
g(x) is a basic irreducible polynomial polynomial of degree n over Z/(pe) only depending on f (x).
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Let h(x) be the minimal polynomial of
[
a(s)

]
mod p

over Z/(p). Then it follows from Lemma 7 that h(x)

is irreducible over Z/(p) with degree dividing n and

per

([
a(s)

]

mod p

)
= pn − 1

gcd (pn − 1, s)
.

Since pn−1
gcd(pn−1,s) > pn/2 by assumption, it follows that degh (x) = n(for otherwise degh(x) ≤ n/2,

which yields per
([

a(s)
]
mod p

)
= per(h(x), p) ≤ pn/2 − 1, a contradiction). Since g (x) (mod p) is a

characteristic polynomial of
[
a(s)

]
mod p

over Z/(p), we have

deg g(x) = deg (g(x) (mod p)) ≥ degh(x) = n. (10)

On the other hand, let R′ = GR (pen, pe), R = Z/(pe), and Aut
(
R′/R

) =< σ >. Suppose α is a root
of f (x) in R′, then α, σ (α) , . . . , σ n−1 (α) are all the roots of f (x) in R′. By Lemma 6 there uniquely exist
β0, β1, . . . , βn−1 ∈ R′ such that

a (t) = β0α
t + β1(σ (α))t + . . . + βn−1(σ

n−1 (α))t for t ≥ 0,

and so

a(s) (t) = a(st) = β0(α
s)t + β1(σ

(
αs

)
)t + . . . + βn−1(σ

n−1 (
αs

)
)t for t ≥ 0. (11)

Let k be the least positive integer such that σk (αs) = αs . It is clear that k | n and αs, σ (αs) , . . . , σ k−1 (αs)

are pairwise distinct. Then (11) can be rewritten as

a(s) (t) = β ′
0(α

s)t + β ′
1(σ

(
αs

)
)t + . . . + β ′

n−1(σ
k−1 (

αs
)
)t for t ≥ 0,

where β ′
i =

(n/k)−1∑

j=0
βjk+i for 0 ≤ i ≤ k − 1. Set

m(x) =
k−1∏

i=0

(
x − σ i

(
αs

))
.

Since σ (m(x)) = m(x) and m(x) is a monic polynomial over Z/(pe), it follows from Lemma 6 that m(x) is
a characteristic polynomial of a(s) over Z/(pe), and so

deg g(x) ≤ degm(x) = k ≤ n. (12)

Combining (10) and (12) we obtain that deg g (x) = n. Now we have

deg (g(x)(mod p)) = deg g(x) = n = degh(x),

it follows that both g(x) (mod p) and h(x) are the minimal polynomial of
[
a(s)

]
mod p

over Z/(p), and so
we get that g(x) (mod p) = h(x) (since it is well-known that the minimal polynomial of a sequence over the
finite field Z/(p) is unique). Thus we have showed that g (x) is a basic irreducible polynomial of degree n

over Z/(pe), then by Lemma 8 the minimal polynomial of a(s) over Z/(pe) is unique. Moreover, it can be

seen from the process of the proof above that n = k and g(x) =
n−1∏

i=0

(
x − σ i (αs)

)
, and so g(x) is obviously

only depending on f (x). Finally, by Lemma 9 we have

per(g(x), pe) = ord(αs) = ord(α)

gcd (ord(α) , s)
= per(f (x), pe)

gcd (per(f (x), pe), s)
,

thus per(g(x), pe) = pe−1(pn−1)
gcd(pe−1(pn−1),s)

. This completes the proof.
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