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Abstract The Learning Parity with Noise problem (LPN) is appealing in cryptography as
it is considered to remain hard in the post-quantum world. It is also a good candidate for
lightweight devices due to its simplicity. In this paper we provide a comprehensive analysis
of the existing LPN solving algorithms, both for the general case and for the sparse secret
scenario. In practice, the LPN-based cryptographic constructions use as a reference the secu-
rity parameters proposed by Levieil and Fouque. But, for these parameters, there remains
a gap between the theoretical analysis and the practical complexities of the algorithms we
consider. The new theoretical analysis in this paper provides tighter bounds on the complex-
ity of LPN solving algorithms and narrows this gap between theory and practice. We show
that for a sparse secret there is another algorithm that outperforms BKW and its variants.
Following from our results, we further propose practical parameters for different security
levels.
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1 Introduction

The Learning Parity with Noise problem (LPN) is a well-known problem studied in cryptog-
raphy, coding theory and machine learning. In the LPN problem, one has access to queries
of the form (v, c), where v is a random vector and the inner product between v and a secret
vector s is added to some noise to obtain c. Given these queries, one has to recover the value
of s. So, the problem asks to recover a secret vector s given access to noisy inner products
of itself with random vectors.

It is believed that LPN is resistant to quantum computers so it is a good alternative
to the number-theoretic problems (e.g. factorization and discrete logarithm) which can be
solved easily with quantum algorithms. Also, due to its simplicity, it is a nice candidate
for lightweight devices. As applications where LPN or LPN variants are deployed, we first
have the HB family of authentication protocols: HB [27], HB+ [28], HB++ [11], HB# [21]
and AUTH [31]. An LPN-based authentication scheme secure against Man-in-the-Middle
was presented in Crypto 2013 [35]. There are also several encryption schemes based on
LPN: Alekhnovich [3] presents two public-key schemes that encrypt one bit at a time. Later,
Gilbert, Robshaw and Seurin [21] introduce LPN-C, a public-key encryption scheme proved
to be IND-CPA. Two schemes that improve upon Alekhnovich’s scheme are introduced
in [16] and [15]. In PKC 2014, Kiltz et al. [30] propose an alternative scheme to [16]. Duc
and Vaudenay [18] introduce HELEN, an LPN-based public-key scheme for which they pro-
pose concrete parameters for different security levels. A PRNG based on LPN is presented
in [8] and [4].

The LPN problem can also be seen as a particular case of the LWE [38] problem where
we work in Z2. While in the case of LWE the reduction from hard lattice problems attests the
hardness [10, 37, 38], there are no such results in the case of LPN. The problem is believed
to be hard and is closely related to the long-standing open problem of efficiently decoding
random linear codes.

In the current literature, there are few references when it comes to the analysis of LPN.
The most well-known algorithm is BKW [9]. When introducing the HB+ protocol [28],
which relies on the hardness of LPN, the authors propose parameters for different levels of
security according to the BKW performance. These parameters are shown later to be weaker
than thought [20, 33]. Fossorier et al. [20] provide a new variant that brings an improvement
over the BKW algorithm. Levieil and Fouque [33] also give a formal description of the
BKW algorithm and introduce two improvements over it. For their algorithm based on the
fast Walsh-Hadamard transform, they provide the level of security achieved by different
instances of LPN. This analysis is referenced by most of the papers that make use of the
LPN problem. While they offer a theoretical analysis and propose secure parameters for
different levels of security, the authors do not discuss how their theoretical bounds compare
to practical results. As we will see, there is a gap between theory and practice. In the domain
of machine learning, [22, 40] also cryptanalyse the LPN problem. The best algorithm for
solving LPN was presented at Asiacrypt 2014 [24]. This new variant of BKW uses covering
codes as a novelty.

While these algorithms solve the general case when we have a random secret, in the
literature there is no analysis and implementation done for an algorithm specially conceived
for the sparse secret case, i.e. the secret has a small Hamming weight.

The BKW algorithm can also be adapted to solve the LWE problem in exponential time.
Implementation results and improvements of it were presented in [1, 2, 17]. In terms of
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variants of LPN, we have Ring-LPN [25] and Subspace LPN [31]. As an application for
Ring-LPN we have the Lapin authentication protocol [25] and its cryptanalysis in [6, 23].

Motivation & contribution Our paper comes to address exactly the aforementioned open
problems, i.e. the gap between theory and practice and the analysis of an LPN solving algo-
rithm that proves to be better than BKW and its variants in the case of a sparse secret. First,
we present the current existing LPN solving algorithms in a unified framework. For these
algorithms, we provide experimental results and give a better theoretical analysis that brings
an improvement over the work of Levieil and Fouque [33]. Furthermore, we implement and
analyse three new algorithms for the case where the secret is sparse. Our results show that
for a sparse secret the BKW family of algorithms is outperformed by an algorithm that uses
Gaussian elimination. Our motivation is to provide a theoretical analysis that matches the
experimental results. Although this does not prove that LPN is hard, it gives tighter bounds
for the parameters used by the aforementioned cryptographic schemes. It can also be used
to have a tighter complexity analysis of algorithms related to LPN solving. Our results were
actually used in [24] and also for LWE solving in [17].

Organization In Section 2 we introduce the definition of LPN and present the main LPN
solving algorithms. We also present the main ideas of how the analysis was conducted
in [33]. We introduce novel theoretical analyses and show what improvements we bring in
Section 3. Besides analysing the current existing algorithms, we propose three new algo-
rithms and analyse their performance in Section 4. In Section 5, we provide the experimental
results for the algorithms described in Sections 3 & 4. We compare the theory with the
practical results and show the tightness of our query complexity. We provide a compari-
son between all these algorithms in Section 6 and propose practical parameters for a 80 bit
security level.

Notations and preliminaries Let 〈·, ·〉 denote the inner product, Z2 = {0, 1} and ⊕
denote the bitwise XOR. For a domain D, we denote by x

U← D the fact that x is drawn
uniformly at random from D. We use small letters for vectors and capital letters for matrices.
We represent a vector v of size k as v = (v1, . . . , vk), where vi is the ith bit of v. We denote
the Hamming weight of a vector v by HW(v). By Berτ we define the Bernoulli distribution
with parameter τ , i.e. for a random variable X, Pr[X = 1] = τ = 1 − Pr[X = 0]. The bias
of a boolean random variable X is defined as δ = E((−1)X). Thus, for a Bernoulli variable
we have δ = 1 − 2τ .

2 LPN

In this section we introduce the LPN problem and the algorithms that solve it. For ease of
understanding, we present the LPN solving algorithms in a unified framework.

2.1 The LPN problem

Intuitively, the LPN problem asks to recover a secret vector s given access to noisy inner
products of itself and random vectors. More formally, we present below the definition of the
LPN problem.
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Definition 1 (LPN oracle) Let s
U← Z

k
2 and let τ ∈]0, 1

2 [ be a constant noise parameter.
Denote by Ds,τ the distribution defined as{

(v, c) | v
U← Z

k
2, c = 〈v, s〉 ⊕ d, d ← Berτ

}
∈ Z

k+1
2 .

An LPN oracle OLPN
s,τ is an oracle which outputs independent random samples according

to Ds,τ .

Definition 2 (Search LPN problem) Given access to an LPN oracle OLPN
s,τ , find the vector

s. We denote by LPNk,τ the LPN instance where the secret has size k and the noise parameter
is τ . Let k′ ≤ k. We say that an algorithm M (n, t, m, θ, k′)-solves the search LPNk,τ

problem if

Pr
[
MOLPN

s,τ (1k) = (s1 . . . sk′) | s
U← Z

k
2

]
≥ θ,

and M runs in time t , uses memory m and asks at most n queries from the LPN oracle.

Note that we consider here the problem of recovering the first k′ bits of the secret. We
will show in Section 3 that for all the algorithms we consider, the cost of recovering the full
secret s is dominated by the cost of recovering the first block of k′ bits of s.

An equivalent way to formulate the search LPNk,τ problem is as follows: given access to
a random matrix A ∈ Z

n×k
2 and a column vector c over Z2, such that AsT ⊕ d = c, find the

vector s. Here the matrix A corresponds to the matrix that has the vectors v on its rows, s

is the secret vector of size k and c corresponds to the column vector that contains the noisy
inner products. The column vector d is of size n and contains the corresponding noise bits.

One may observe that with τ = 0, the problem is solved in polynomial time through
Gaussian elimination given n = �(k) queries. The problem becomes hard once noise is
added to the inner product. The value of τ can be either independent or dependent of the
value k. Usually the value of τ is constant and independent from the value of k. A case
where τ is taken as a function of k occurs in the construction of the encryption schemes [3,
15]. Intuitively, a larger value of τ means more noise and makes the problem of search LPN
harder. The value of the noise parameter is a trade-off between the hardness of the LPNk,τ

and the practical impact on the applications that rely on this problem.
The LPN problem has also a decisional form. The decisional LPNk,τ asks to distinguish

between the uniform distribution over Zk+1
2 and the distribution Ds,τ . A similar definition

for an algorithm that solves decisional LPN can be adopted as above. Let Uk+1 denote an
oracle that outputs random vectors of size k + 1. We say that an algorithm M (n, t, m, θ)-
solves the decisional LPNk,τ problem if∣∣∣Pr

[
MOLPN

s,τ (1k) = 1
]

− Pr
[
MUk+1(1k) = 1

]∣∣∣ ≥ θ

and M runs in time t , uses memory m and needs at most n queries.
Search and decisional LPN are polynomially equivalent. The following lemma expresses

this result.

Lemma 1 ([8, 29]) If there is an algorithm M that (n, t, m, θ)-solves the decisional
LPNk,τ , then one can build an algorithmM′ that (n′, t ′,m′, θ ′, k)-solves the search LPNk,τ

problem, where n′ = O(n · θ−2 log k), t ′ = O(t · k · θ−2 log k), m′ = O(m · θ−2 log k)) and
θ ′ = θ

4 .
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We do not go into details as this is outside the scope of this paper. We only analyse the
solving algorithms for search LPN. From now on we will refer to it simply as LPN.

2.2 LPN solving algorithms

In the current literature there are several algorithms to solve the LPN problem. The first
that appeared, and the most well known, is BKW [9]. This algorithm recovers the secret

s of an LPNk,τ instance in sub-exponential 2
O

(
k

log k

)
time complexity by requiring a sub-

exponential number 2
O

(
k

log k

)
of queries from the OLPN

s,τ oracle. Levieil and Fouque [33]
propose two new improvements which are called LF1 and LF2. Fossorier et al. [20] also
introduce a new algorithm, which we denote FMICM, that brings an improvement over BKW.
The best algorithm to solve LPN was recently presented at Asiacrypt 2014 [24]. It can be
seen as a variant of LF1 where covering codes are introduced as a new method to improve
the overall algorithm. All these algorithms still require a sub-exponential number of queries
and have a sub-exponential time complexity.

Using BKW as a black-box, Lyubashevsky [34] introduces a ”pre-processing” phase and

solves an LPNk,τ instance with k1+η queries and with a time complexity of 2
O

(
k

log log k

)
. The

queries given to BKW have a worse bias of τ ′ = 1
2 − 1

2

(
1−2τ

4

) 2k
η log k

. Thus, this variant

requires a polynomial number of queries but has a worse time complexity. Given only n =
�(k) queries, the best algorithms run in exponential time 2�(k) [36, 39].

An easy to solve instance of LPN was introduced by Arora and Ge [5]. They show that in
the k-wise version where the k-tuples of the noise bits can be expressed as the solution of a
polynomial (e.g. there are no 5 consecutive errors in the sequence of queries), the problem
can be solved in polynomial time. What makes the problem easy is the fact that an adversary
is able to structure the noise.

In this paper we are interested in the BKW algorithm and its improvements presented by
Levieil and Fouque [33] and by Guo et al. [24]. The common structure of all these algo-
rithms is the following: given n queries from the OLPN

s,τ oracle, the algorithm tries to reduce
the problem of finding a secret s of k bits to one where the secret s′ has only k′ bits, with
k′ < k. This is done by applying several reduction techniques. We call this phase the reduc-
tion phase. Afterwards, during the solving phase we can apply a solving algorithm that
recovers the secret s′. We then update the queries with the recovered bits and restart to fully
recover s. For the ease of understanding, we describe all the aforementioned LPN solving
algorithms in this setting where we separate the algorithms in two phases. We empha-
size the main differences between the algorithms and discuss which improvements they
bring.

First, we assume that k = a · b. Thus, we can visualise the k-bit length vectors v as a

blocks of b bits.

2.2.1 BKW∗ algorithm

The BKW∗ algorithm as described in [33] works in two phases:

Reduction phase Given n queries from the LPN oracle, we group them in equivalence
classes. Two queries are in the same equivalence class if they have the same value on a
set q1 of b bit positions. These b positions are chosen arbitrarily in {1, . . . , k}. There are
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at most 2b such equivalence classes. Once this separation is done, we perform the follow-
ing steps for each equivalence class: pick one query at random, the representative vector,
and xor it to the rest of the queries from the same equivalence class. Discard the repre-
sentative vector. This will give vectors with all bits set to 0 on those b positions. These
steps are also illustrated in Algorithm 1 (steps 5 – 10). We are left with at least n − 2b

queries where the secret is reduced to k−b effective bits (others being multiplied by 0 in all
queries).

We can repeat the reduction technique a − 1 times on other disjoint position sets
q2, . . . , qa−1 from {1, . . . , k}\q1 and end up with at least n − (a − 1)2b queries where the
secret is reduced to k − (a − 1)b = b bits. The bias of the new queries is δ2a−1

, as shown
by the following Lemma with w = 2a−1.

Lemma 2 ([9, 33]) If (v1, c1), . . . , (vw, cw) are the results of w queries from ALPN
s,p , then

the probability that:

〈v1 ⊕ v2 ⊕ . . . ⊕ vw, s〉 = c1 ⊕ . . . ⊕ cw

is equal to 1+δw

2 .

It is easy so see that the complexity of performing this reduction step is O(kan).

After a − 1 iterations, we are left with at least n − (a − 1)2b queries, and a secret of
size of b effective bits at positions 1, . . . , b. The goal is to keep only those queries that have
Hamming weight one (step 11 of Algorithm 1). Given n − (a − 1)2b queries and one bit

position j ∈ {1, . . . , k}\{q1 ∪ . . . ∪ qa−1}, only n′ = n−(a−1)2b

2b will have a single non-zero
bit on position j and 0 on all the others. These queries represent the input to the solving
phase. The bias does not change since we do not alter the original queries. The complexity
for performing this step for n − (a − 1)2b queries is O

(
b(n − (a − 1)2b)

)
as the algorithm

just checks if the queries have Hamming weight 1.
The bit c is part of the query also: it gets updated during the xoring operations but

we do not consider this bit in partitioning or when computing the Hamming weight of
a query. Later on, the information stored in this bit will be used to recover bits of the
secret.

Remark 1 Given that we have performed the xor between pairs of queries, we note that
the noise bits are no longer independent. In the analysis of BKW∗, this was overlooked by
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Levieil and Fouque [33].1 The original BKW [9] algorithm overcomes this problem in the
following manner: each query that has Hamming weight 1 is obtained with a fresh set of
queries. Given a2b queries the algorithm runs the xoring process and is left with 2b vectors.

From these 2b queries, with a probability of 1 − (
1 − 2−b

)2b ≈ 1 − 1
e
, where e = 2.718,

there is one with Hamming weight 1 on a given position i. In order to obtain more such
queries the algorithm repeats this process with fresh queries. This means that for guess-
ing 1 bit of the secret, the original algorithm requires n = a · 2b · 1

1−1/e
· n′ queries,

where n′ denotes the number of queries needed for the solving phase. This is larger than
n = 2bn′ + (a − 1)2b which is the number of queries given by Levieil and Fouque [33].
We implemented and run BKW∗ as described in Algorithm 1 and we discovered that this
dependency does not affect the performance of the algorithm. I.e., the number of queries
computed by the theory that ignores the dependency of the error bits matches the prac-
tical results. We need n = n′ + (a − 1)2b (and not n = 2bn′ + (a − 1)2b) queries
in order to recover one block of the secret. The theoretical and practical results are pre-
sented in Section 5. Given our practical experiments, we keep the “heuristic” assumption
of independence and the algorithm as described in [33] which we called BKW∗. Thus,
we assume from now on the independence of the noise bits and the independence of the
queries.

Another discussion on the independence of the noise bits is presented in [19]. There we
can see what is the probability to have a collision, i.e. two queries that share an error bit,
among the queries formed during the xoring steps.

We can repeat the algorithm a times, with the same queries, to recover all the k bits. The
total time complexity for the reduction phase is O

(
ka2n

)
as we perform the steps described

above a times (instead of O(kan) as given in [33]). However, by making the selection of a

and b adaptive with ab near to the remaining number of bits to recover, we can show that the
total complexity is dominated by the one of recovering the first block. So, we can typically
concentrate on the algorithm to recover a single block. We provide a more complete analysis
in Section 3.

Solving phase The BKW solving method recovers the 1-bit secret by applying the major-
ity rule. The queries from the reduction phase are of the form c′

j = si ⊕ d ′
j , d ′

j ←
Ber(

1−δ2a−1
)
/2

and si being the ith bit of the secret s. Given that the probability for the noise

bit to be set to 1 is smaller than 1
2 , in more than half of the cases, these queries will be si .

Thus, we decide that the value of si is given by the majority rule (steps 12–14 of Algorithm
1). By applying the Chernoff bounds [13], we find how many queries are needed such that
the probability of guessing incorrectly one bit of the secret is bounded by some constant θ ,
with 0 < θ < 1.

The time complexity of performing the majority rule is linear in the number of queries.

Complexity analysis With their analysis, Levieil and Fouque [33] obtain the following
result:

1Definition 2 of [33] assumes independence of samples but Lemma 2 of [33] shows the reduction without
proving independence.
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Theorem 1 (Theorem 1 from [33]) For k = a · b, the BKW∗ algorithm heuristically (n =
20 · ln(4k) · 2b · δ−2a + (a − 1)2b, t = O(kan),m = kn, θ = 1

2 , b)-solves the LPN

problem.2

In Section 3 we will see that our theoretical analysis, which we believe to be more
intuitive and simpler, gives tighter bounds for the number of queries.

2.2.2 LF1 algorithm

During the solving phase, the BKW algorithm recovers the value of the secret bit by bit.
Given that we are interested only in queries with Hamming weight 1, many queries are
discarded at the end of the reduction phase. As first noted in [33], this can be improved
by using a Walsh-Hadamard transform instead of the majority rule. This improvement
of BKW is denoted in [33] by LF1. Again, we present the algorithm in pseudo-code in
Algorithm 2. As in BKW∗, we can concentrate on the complexity to recover the first
block.

Reduction phase The reduction phase for LF1 follows the same steps as in BKW∗ in
obtaining new queries as 2a−1 xors of initial queries in order to reduce the secret to size b.
At this step, the algorithm does not discard queries anymore but proceeds directly with the
solving phase (see steps 3–10 of Algorithm 2). We now have n′ = n − (a − 1)2b queries
after this phase.

Solving phase The solving phase consists in applying a Walsh-Hadamard transform
in order to recover b bits of the secret at once (steps 11–13 in Algorithm 2). We can
recover the b-bit secret by computing the Walsh-Hadamard transform of the function
f (x) = ∑

i 1v′
i=x(−1)c

′
i . The Walsh-Hadamard transform is f̂ (ν) = ∑

x(−1)〈ν,x〉f (x) =∑
x(−1)〈ν,x〉 ∑

i 1v′
i=x(−1)c

′
i = ∑

i (−1)〈v′
i ,ν〉+c′

i = n′ − 2HW
(
A′νT + c′). For ν = s,

we have f̂ (s) = n′ − 2 · HW(d ′), where d ′ represents the noise vector after the reduction
phase. We know that most of the noise bits are set to 0. So, f̂ (s) is large and we suppose
it is the largest value in the table of f̂ . Thus, we have to look at the maximum value of the

2The term (a − 1)2b is not included in Theorem 1 from [33]. This factor represents the number of queries
lost during the reduction phase and it is the dominant one for all the algorithms except BKW∗.
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Walsh-Hadamard transform in order to recover the value of s. A naive implementation of
a Walsh-Hadamard transform would give a complexity of 22b since we apply it on a space
of size 2b. Since we apply a fast Walsh-Hadamard transform, we get a time complexity of
b2b [14].

Complexity analysis The following theorem states the complexity of LF1:

Theorem 2 (Theorem 2 from [33]) For k = a·b and a > 1, the LF1 algorithm heuristically
(n = (8b + 200)δ−2a + (a − 1)2b, t = O

(
kan + b2b

)
,m = kn + b2b, θ = 1

2 , b)-solves
the LPN problem.3

The analysis is similar to the one done for BKW∗, except that we now work with blocks
of the secret s and not bits. Thus, we bound by 1

2a
the probability that f̂ (s′) > f̂ (s), where

s′ is any of the 2b −1 values different from s. As for BKW∗, we will provide a more intuitive
and tighter analysis for LF1 in Section 3.2.

BKW∗ vs. LF1 We can see that compared to BKW∗, LF1 brings a significant improvement
in the number of queries needed. As expected, the factor 2b disappeared as we did not
discard any query at the end of the reduction phase. There is an increase in the time and
memory complexity because of the fast Walsh-Hadamard transform, but these terms are not
the dominant ones.

2.2.3 LF2 algorithm

LF2 is a heuristic algorithm, also introduced in [33], that applies the same Walsh-Hadamard
transform as LF1, but has a different reduction phase. We provide the pseudocode for LF2
below.

Reduction phase Similarly to BKW∗ and LF1, the n queries are grouped into equivalence
classes. Two queries are in the same equivalence class if they have the same value on a
window of b bits. In each equivalence class we perform the xor of all the pairs from that

3The term b2b in the time complexity is missing in [33]. While in general kan is the dominant term, in the
special case where a = 1 (thus we apply no reduction step) a complexity of O(kan) would be wrong since,
in this case, we apply the Walsh-Hadamard transform on the whole secret and the term k2k dominates the
final complexity.
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class. Thus, we do not choose any representative vector that is discarded afterwards. Given

that in an equivalence class there are n/2b queries, we expect to have 2b

(
n/2b

2

)
queries

at the end of the xor-ing. One interesting case is when n is of the form n = 3 · 2b as with

this reduction phase we expect to preserve the number of queries since

(
3
2

)
= 3. For any

n > 3 · 2b, the number of queries will grow exponentially and will also affect the time and
memory complexity.

Solving phase This works like in LF1.
In a scenario where the attacker has access to a restricted number of queries, this heuristic

algorithm helps in increasing the number of queries. With LF2, the attacker might produce
enough queries to recover the secret s.

2.2.4 FMICM algorithm

Another algorithm by Fossorier et al. [20] uses ideas from fast correlation attacks to solve
the LPN problem. While there is an improvement compared with the BKW∗ algorithm, this
algorithm does not perform better than LF1 and LF2. Given that it does not bring better
results, we just present the main steps of the algorithm.

As the previous algorithms, it can be split into two phases: reduction and solving phase.
The reduction phase first decimates the number of queries and keeps only those queries that
have 0 bits on a window of a given size. Then, it performs xors of several queries in order to
further reduce the size of the secret. The algorithm that is used for this step is similar to the
one that constructs parity checks of a given weight in correlation attacks. The solving phase
makes use of the fast Walsh-Hadamard transform to recover part of the secret. By iteration
the whole secret is recovered.

2.2.5 Covering codes algorithm

The new algorithm [24] that was presented at Asiacrypt 2014, introduces a new type of
reduction. There is a difference between [24] and what was presented at the Asiacrypt con-
ference (mostly due to our results). We concentrate here on [24] and in the next section we
present the suggestions we provided to the authors.

Reduction phase The first step of this algorithm is to transform the LPN instance where
the secret s is randomly chosen to an instance where the secret has now a Bernoulli
distribution. This method was described in [4, 6, 32].

Given n queries from the LPN oracle: (v̄1, c1), (v̄2, c2), . . . , (v̄n, cn), select k linearly
independent vectors v̄i1 , . . . , v̄ik . Construct the k×k target matrix M that has on its columns

the aforementioned vectors, i.e. M =
[
v̄T
i1
v̄T
i2

. . . v̄T
ik

]
. Compute

(
MT

)−1
the inverse of

MT , where MT is the transpose of M . We can rewrite the k queries corresponding to the
selected vectors as MT sT +d ′, where d ′ is the k-bit column vector d = (

di1 , di2 , . . . , dik

)T .
We denote c′ = MT sT + d ′. For any v̄j that is not used in matrix M do the following
computation:

v̄j

(
MT

)−1
c′ + cj =

〈
v̄j

(
MT

)−1
, d ′

〉
+ dj .
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We discard the matrix M . From the initial set of queries, we have obtained a new set
where the secret value is d ′. This can be seen as a reduction to a sparse secret. The complex-
ity of this transform is O

(
k3 + nk2

)
by the schoolbook matrix inversion algorithm. This can

be improved as follows: for a fixed χ , one can split the matrix
(
MT

)−1
in a′ =

⌈
k
χ

⌉
parts⎡

⎢⎢⎣
M1
M2
. . .

Ma′

⎤
⎥⎥⎦ of χ rows. By pre-computing v̄Mi for all v̄ ∈ {0, 1}χ , the operation of performing

v̄j

(
MT

)−1
takes O

(
ka′). The pre-computation takes O(2χ ) and is negligible if the mem-

ory required by the BKW reduction is bigger. With this pre-computation the complexity is
O(nka′).

Afterwards the algorithm follows the usual BKW reduction steps where the size of the
secret is reduced to k′ by the xoring operation. Again the vector of k bits is seen as being
split into blocks of size b. The BKW reduction is applied a times. Thus, we have k′ = k−ab.

The secret s of k′ bits is split into 2 parts: one part denoted s2 of k′′ bits and the other
part, denoted s1, of k′ − k′′ bits. The next step in the reduction is to guess value of s1 by
making an assumption on its Hamming weight: HW(s1) ≤ w0. The remaining queries are
of the form (vi, ci = 〈vi, s2〉 ⊕ di), where vi, s2 ∈ {0, 1}k′′

and di ∈ Ber 1−δ2a

2
. Thus, the

problem is reduced to a secret of k′′ bits.
At this moment, the algorithm approximates the vi vectors to the nearest codeword gi in

a
[
k′′, 	

]
linear code where k′′ is the size and 	 is the dimension. By observing that gi can

be written as gi = g′
iG, where G is the generating matrix of the code, we can write the

equations in the form

ci = 〈vi, s2〉 ⊕ di = 〈
g′

iG, s2
〉 ⊕ 〈vi − gi, s2〉 ⊕ di = 〈

g′
i , s

′
2

〉 ⊕ d ′
i

with s′
2 = s2G

T and d ′
i = 〈vi − gi, s2〉 ⊕ di , where g′

i , s
′
2 have length 	. If the code has

optimal covering radius ρ, vi − gi is a random vector of weight bounded by ρ, while s2 is
a vector of some small weight bounded by w1, with some probability. So, 〈vi − gi, s2〉 is
biased and we can treat d ′

i in place of di .
In [24], the authors approximate the bias of 〈vi −gi, s2〉 to δ′ = (

1 − 2 ρ
k′′

)w1 , as if all bits
were independent. As discussed in the next section, this approximation is far from good.

No queries are lost during this covering code operation and now the secret is reduced to
	 bits. We now have n′ = n − k − a2b queries after this phase.

Solving phase The solving phase of this algorithm follows the same steps as LF1,
i.e. it employs a fast Walsh-Hadamard transform. One should notice that the solving
phase recovers 	 relations between the bits of the secret and not actual 	 bits of the
secret.

Complexity analysis Recall that in the algorithm two assumptions are made regarding
the Hamming weight of the secret: that s2 has a Hamming weight smaller than w1 and that
s1 has a Hamming weight smaller than w0. This holds with probability Pr

(
w0, k

′ − k′′) ·
Pr

(
w1, k

′′) where

Pr(w,m) =
w∑

i=0

(1 − τ)m−iτ i

(
m

i

)
.
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The total complexity is given by the complexity of one iteration to which we add
the number of times we have to repeat the iteration. We state below the result from
[24]:

Theorem 3 (Theorem 1. from [24]) Let n be the number of samples required and
a, a′, b, w0, w1, 	, k

′, k′′ be the algorithm parameters. For the LPNk,τ instance, the number
of bit operations required for a successful run of the new attack is equal to

t = tsparse reduction + tbkw reduction + tguess + tcovering code + tWalsh transform

Pr(w0, k′ − k′′) Pr(w1, k′′)
,

where

– tsparse reduction = nka′ is the cost of reducing the LPN instance to a sparse secret
– tbkw reduction = (k + 1)an is the cost of the BKW reduction steps

– tguess = n′ ∑w0
i=0

(
k′ − k′′

i

)
i is the cost of guessing k′ − k′′ bits and n′ = n− k −a2b

represents the number of queries at the end of the reduction phase
– tcovering code = (

k′′ − 	
) (

2n′ + 2	
)
is the cost of the covering code reduction and n′ is

again the number of queries

– tWalsh transform = 	2	
∑w0

i=0

(
k′ − k′′

i

)
is the cost of applying the fast Walsh-Hadamard

transform for every guess of k′ − k′′ bits

under the condition that n − a2b > 1
δ2a+1 ·δ′2 , where δ = 1 − 2τ and δ′ = (

1 − 2 ρ
k′′

)w1 and

ρ is the smallest integer, s.t.
∑ρ

i=0

(
k′′
i

)
> 2k′′−	.

The condition n−a2b > 1
δ2a+1 ·δ′2 proposed in [24] imposes a lower bound on the number

of queries needed in the solving phase for the fast Walsh-Hadamard transform. In our anal-
ysis, we will see that this is underestimated: the Chernoff bounds dictate a larger number of
queries.

3 Tighter theoretical analysis

In this section we present a different theoretical analysis from the one of Levieil and
Fouque [33] for the solving phases of the LPN solving algorithms. A complete comparison
is given in Section 5. Our analysis gives tighter bounds and aims at closing the gap between
theory and practice. For the new algorithm from [24], we present the main points that we
found to be incomplete.

We first show how the cost of solving one block of the secret dominates the total cost
of recovering s. The main intuition is that after recovering a first block of k′ secret bits, we
can apply a simple back substitution mechanism and consider solving a LPNk−k′,τ problem.
The same strategy is applied by [1, 17] when solving LWE. Note that this is simply a gen-
eralisation of the classic Gaussian elimination procedure for solving linear systems, where
we work over blocks of bits.

Specifically, let k1 = k and ki = ki−1 − k′
i−1 for i > 1 and k′

i−1 < ki−1. Now, suppose
we were able to

(
ni, ti , mi, θi , k

′
i

)
-solve an LPNki ,τ instance (meaning we recover a block

of size k′
i from the secret of size ki with probability θi , in time ti and with memory mi).
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One can see that for ki+1 < ki we need less queries to solve the new instance (the number
of queries is dependent on the size ki+1 and on the noise level). With a smaller secret,
the time complexity will decrease. Having a shorter secret and less queries, the memory
needed is also smaller. Then, we can (n, t, m, θ, k)-solve the problem LPNk,τ (i.e recover s

completely), with n = max(n1, n2, . . .), θ = θ1 + θ2 + . . ., t = t1 + k′
1n1 + t2 + k′

2n2 . . .

(the terms k′
ini are due to query updates by back substitution) and m = max(m1,m2, . . .).

Finally, by taking θi = 3−i , we obtain θ ≤ 1
2 and thus recover the full secret s with

probability over 50 %.
It is easily verified that for all the algorithms we consider, we have n = n1, m =

m1, and t is dominated by t1. We provide an example on a concrete LPN instance in
Appendix B.

For all the solving algorithms presented in this section we assume that n′ queries remain
after the reduction phase and that the bias is δ′. For the solving techniques that recover the
secret block-by-block, we assume the block size to be k′.

3.1 BKW∗ algorithm

Given an LPN instance, the BKW∗ solving method recovers the 1 bit secret by applying the
majority rule. Recall that the queries are of the form c′

j = si ⊕ d ′
j , d ′

j ← Ber(1−δ′)/2. The
majority of these queries will most likely be c′

j = si . It is intuitive to see that the majority
rule fails when more than half of the noise bits are 1 for a given bit. Any wrong guess of
a bit gives a wrong value of the k-bit secret s. In order to bound the probability of such
a scenario, we use the Hoeffding bounds [26] with Xj = dj (See Appendix A). We have

Pr[Xj = 1] = 1−δ′
2 . For X = ∑n′

j=1 Xj , we have E(X) = (1−δ′)n′
2 and we apply Theorem

12 with λ = δn′
2 , αj = 0 and βj = 1 and we obtain

Pr [incorrect guess on si] = Pr

[
X ≥ n′

2

]
≤ e− n′δ′2

2 .

As discussed in Remark 1, the assumption of independence is heuristic.
Using the above results for every bit 1, . . . , b, we can bound by a constant θ , the prob-

ability that we guess incorrectly a block of s, with 0 < θ < 1. Using the union bound, we

get that n′ = 2δ′−2 ln( b
θ
). Given that n′ = n−(a−1)2b

2b and that δ′ = δ2a−1
, we obtain the

following result.

Theorem 4 For k ≤ a · b, the BKW∗ algorithm heuristically (n = 2b+1δ−2a
ln

(
b
θ

) + (a −
1)2b, t = O(kan), m = kn, θ, b)-solves the LPN problem.

We note that we obtained the above result using the union bound. One could make use

of the independence of the noise bits and obtain n = 2b+1δ−2a
ln

(
1

1−2−1/k

)
+ (a − 1)2b,

but this would bring a very small improvement.
In terms of query complexity, we compare our theoretical results with the ones from [33]

in Tables 1 and 2. We provide the log2(n) values for k varying from 32 to 100 and we
take different Bernoulli noise parameters that vary from 0.01 to 0.4. Overall, our theoretical
results bring an improvement of a factor 10 over the results of [33].

In Section 5.1 we show that Theorem 4 gives results that are very close to the ones we
measure experimentally.
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Table 1 BKW∗ query
complexity - our theory τ k

32 48 64 80 100

0.01 10.97 12.82 15.93 18.66 21.74

0.10 15.84 20.01 24.12 28.20 33.28

0.20 19.71 24.85 30.97 34.83 39.90

0.25 21.81 26.95 33.07 38.14 44.11

0.40 28.24 36.38 43.64 48.71 55.78

We note that our BKW∗ algorithm, for which we have stated the above theorem, follows
the steps from Algorithm 1 for k = a · b. For k < a · b the algorithm is a bit different. In
this case we have a − 1 blocks of size b and an incomplete block of size smaller than b.
During the reduction phase, we first partition the incomplete block and then apply (a − 2)

reduction steps for the complete blocks. We finally have b bits to recover. Other than this
small change, the algorithm remains the same.

If the term 2b+1δ−2a
ln

(
b
θi

)
dominates n, the next iteration can use a decreased by 1

leading to a new n ≈ 2b+1δ−2a−1
ln

(
b

θi+1

)
which is roughly the square root of the previous

n. So, the complexity of recovering this block is clearly dominated by the cost of recovering
the previous block. If the term (a − 1)2b is dominating, we can decrease b by one in the
next block and reach the same conclusion.

3.2 LF1 algorithm

For the LF1 algorithm, the secret is recovered by choosing the highest value of a Walsh-
Hadamard transform. Recall that the Walsh transform is f̂ (ν) = n′ − 2HW

(
A′νT + c′).

For ν = s, we obtain that the Walsh transform has the value f̂ (s) = n′ − 2HW(d ′). We
have E(f̂ (s)) = n′δ′.

The failure probability for LF1 is bounded by the probability that there is another vector
ν = s such that HW

(
A′νT + c′) ≤ HW

(
A′sT + c′). Recall that A′sT +c′ = d ′. We define

x = s + ν so that A′νT + c′ = A′xT + d ′. We obtain that the failure probability is bounded
by 2k′

times the probability that HW
(
A′xT + d ′) ≤ HW(d ′), for a fixed k′-bit non-zero

vector x. As A′ is uniformly distributed, independent from d ′, and x is fixed and non-zero,
A′xT + d ′ is uniformly distributed, so we can rewrite the inequality as HW(y) ≤ HW(d ′),
for a random y.

Table 2 BKW∗ query
complexity - theory [33] τ k

32 48 64 80 100

0.01 14.56 16.60 19.68 22.59 25.64

0.10 19.75 23.87 27.95 32.00 37.06

0.20 23.50 28.61 34.69 38.64 43.70

0.25 25.60 30.72 36.79 41.85 47.90

0.40 31.89 40.00 47.37 52.43 59.48
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To bound the failure probability, we again use the Hoeffding inequality [26]. Let
X1, X2, . . . , Xn′ be random independent variables with Xj = yj −d ′

j , Pr(Xj ∈ [−1, 1]) =
1. We have E

(
yj − d ′

j

)
= δ′

2 . We can take λ = E[X] = δ′n′
2 in Theorem 12 and obtain:

Pr [incorrect guess on one block] ≤ 2k′
Pr

⎡
⎣ n′∑

j=1

(
yj − d ′

j

)
≤ 0

⎤
⎦ ≤ 2k′

e− n′δ′2
8 .

Again we can bound the probability of incorrectly guessing one block of s by θ . With

n′ = 8
(

ln 2k′
θ

)
δ′−2, the probability of failure is smaller than θ . The total number of queries

will be n = n′ + (a − 1)2b and we have δ′ = δ2a−1
, k′ = b. Similar to BKW, we obtain the

following theorem:

Theorem 5 For k ≤ a · b, the LF1 algorithm heuristically (n = 8 ln
(

2b

θ

)
δ−2a + (a −

1)2b, t = O
(
kan + b2b

)
, m = kn + b2b, θ, b)-solves the LPN problem.

By comparing the term (8b + 200)δ−2a
in Theorem 2 with our value of 8 ln

(
2b

θ

)
δ−2a

,

one might check that our term is roughly a factor 2 smaller than that of [33] for practical
values of a and b. For example, for a LPN768,0.01 instance (with a = 11, b = 70), our
analysis requires 268 queries for the solving phase while the Levieil and Fouque analysis
requires 269 queries.

3.3 LF2 algorithm

Having the new bounds for LF1, we can state a similar result for LF2. Recall that when
n = 3 · 2b, LF2 preserves the number of queries during the reduction phase. For 3 · 2b ≥ n′
we have that:

Theorem 6 For k ≤ a · b and n = 3 · 2b ≥ 8 ln
(

2b

θ

)
δ−2a

, the LF2 algorithm heuristically

(n = 3 · 2b, t = O
(
kan + b2b

)
,m = kn + b2b, θ, b)-solves the LPN problem.

One can observe that we may allow n to be smaller than 3 · 2b. Given that the solving
phase may require less than 3 · 2b, we could start with less queries, decrease the number
of queries during the reduction and end up with the exact number of queries needed for the
solving phase.

3.4 Covering codes algorithm

Recall that the algorithm first reduces the size of the secret to k′′ bits by running BKW
reduction steps. Then it approximates the vi vector to the nearest codeword gi in a [k′′, 	]
linear code with G as generator matrix. The noisy inner products can be rewritten as

ci = 〈
g′

iG, s2
〉 ⊕ 〈vi − gi, s2〉 ⊕ di =

〈
g′

i , s2G
T
〉
⊕ d ′

i = 〈
g′

i , s
′
2

〉 ⊕ d ′
i ,

where gi = g′
iG, s′

2 = s2G
T and d ′

i = 〈gi − vi, s2〉 ⊕ di .
Given that the code has a covering radius of ρ and that the Hamming weight of s2 is

smaller than w1, the bias of 〈gi − vi, s2〉 is computed as δ′ = (
1 − 2 ρ

k′′
)w1 in [24], where k′′

is the size of s2. We stress that this approximation is far from good.
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Indeed, with the [3, 1] repetition code given as an example in [24], the xor of two error
bits is unbiased. Even worse: the xor of the three bits has a negative bias. So, when using
the code obtained by 25 concatenations of this repetition code and w1 = 6, with some
probability of 36 % we have at least two error bits falling in the same concatenation and the
bias makes this approach fail.

We can do the same computation with the concatenation of five [23, 12] Golay codes
with w1 = 15, as suggested in [24]. With probability 0.21 %, the bias is zero or negative so
the algorithm fails. With some probability 8.3 %, the bias is too low.

In any case, we cannot take the error bits as independent. When the code has optimal
covering radius ρ, we can actually find an explicit formula for the bias of 〈vi − gi, s2〉
assuming that s2 has weight w1:

Pr [〈vi − gi, s2〉 = 1|HW(s2) = w1] = 1

S(k′′, ρ)

∑
i≤ρ,i odd

(w1

i

)
S(k′′ − w1, ρ − i)

where S(k′′, ρ) is the number of k′′-bit strings with weight at most ρ.
To solve LPN512,0.125, [24] proposes the following parameters

a = 6 a′ = 9 b = 63 	 = 64 k′′ = 124 w0 = 2 w1 = 16

and obtain n = 266.3 and a complexity of 279.92. With these parameters, [24] approximated
the bias to

(
1 − 2 ρ

k′′
)w1 = 2−5.91 (with ρ = 14). With our exact formula, the bias should

rather be of 2−7.05. So, n should be multiplied by 4.82 (the square of the ratio).
Also, we stress that all this assumes the construction of a code with optimal radius cov-

erage, such as the Golay codes, or the repetition codes of odd length and dimension 1. But
these codes do not exist for all [k′′, 	]. If we use concatenations of repetition codes, given as
an example in [24], the formula for the bias changes. Given 	 concatenations of the [ki, 1]
repetition code, with k1 + . . . + k	 = k′′, ki ≈ k′′

	
and 1 ≤ i ≤ 	, we would have to split

the secret s2 in chunks of k1, . . . , k	 bits. We take w11 + . . . + w1	 = w1 where w1i is the
weight of s2 on the ith chunk. In this case the bias for each repetition code is

δi = 1 − 2 × 1

S(ki, ρi)

∑
j≤ρi ,j odd

(
w1i

j

)
S(ki − w1i , ρi − j), (1)

where ρi =
⌊

ki

2

⌋
.

The final bias is
δ′ = δ1 · · · δ	. (2)

We emphasize that the value of n is underestimated in [24]. Indeed, with n′ = bias−2,

the probability that arg max
(
f̂ (ν)

)
= s′

2 is too low in LF1. To have a constant probability

of success θ , our analysis says that we should multiply n′ by 8 ln
(

2	

θ

)
. For LPN512,0.125 and

θ = 1
3 , this is 363.

When presenting their algorithm at Asiacrypt 2014, the authors of [24] updated their
computation by using our suggested formulas for the bias and the number of queries. In
order to obtain a complexity smaller than 280, they further improved their algorithm by the
following observation: instead of assuming that the secret s2 has a Hamming weight smaller
or equal to w1, the algorithm takes now into account all the Hamming weights that would
give a good bias for the covering code reduction. I.e., the algorithm takes into account all
the Hamming weights w for which δ′ > εset, where εset is a preset bias. The probability
of a good secret changes from Pr(w1, k

′′) to Pr(HW) that we define below. They further
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adapted the algorithm by using the LF2 reduction steps. Recall that for n = 3·2b, the number
of queries are preserved during the reduction phase. With these changes they propose the
following parameters for LPN512,0.125:

a = 5 b = 62 	 = 60 k′′ = 180 w0 = 2 εset = 2−14.18

Using two [90, 30] linear codes, they obtain that n = 263.6 = 3 · 2b queries are needed, the
memory used is of m = 272.6 bits and the time complexity is t = 279.7. Thus, this algorithm
gives better performance than LF2 and shows that this LPN instance does not offer a security
of 80 bits. 4

With all the above observations we update the Theorem 3.

Theorem 7 Let a, a′, b, w0, w1, 	, k
′, k′′, εset be the algorithm parameters. The covering

code (n = 8 ln
(

2	

θ

)
1

δ2a+1
ε2
set

+ a2b ,t, m = kn+ 2k′′−	 + 	2	, θ, 	)-solves the LPN problem

5, where δ = 1 − 2τ and εset is a preset bias. The code chosen for the covering code
reduction step can be expressed as the concatenation of one or more linear codes. The time
t complexity can be expressed as

t = tsparse reduction + tbkw reduction + tguess + tcovering code + tWalsh transform

Pr(w0, k′ − k′′) Pr(HW)
,

where

– tsparse reduction = nka′ is the cost of reducing the LPN instance to a sparse secret
– tbkw reduction = (k + 1)an is the cost of the BKW reduction steps

– tguess = n′ ∑w0
i=0

(
k′ − k′′

i

)
i is the cost of guessing k′ − k′′ bits and n′ = n− k −a2b

represents the number of queries at the end of the reduction phase
– tcovering code = (k′′ − 	)(2n′ + 2	) is the cost of the covering code reduction and n′ is

again the number of queries

– tWalsh transform = 	2	
∑w0

i=0

(
k′ − k′′

i

)
is the cost of applying the fast Walsh-Hadamard

transform for every guess of k′ − k′′ bits

– Pr(HW) = ∑
wi

(1 − τ)k
′′−wi τwi

(
k′′
wi

)
where wi is chosen such that the bias δ′

(computed following (1) and (2)), which depends on wi and the covering radius ρ of
the chosen code, is larger than εset

4 Other LPN solving algorithms

Most LPN-based encryption schemes use τ as a function of k, e.g. τ = 1√
k

[3, 15]. The

bigger the value of k, the lower the level of noise. For k = 768, we have τ ≈ 0.036. For
such a value we say that the noise is sparse. Given that these LPN instances are used in

4For the computation of n the authors of [24] use the term 4 ln
(
2	

)
instead of 8 ln

(
2	

θ

)
. If we use our

formula, we obtain that we need more than 3 · 2b queries and obtain a complexity of t = 280.08.
5This n corresponds to covering code reduction using LF1. For LF2 reduction steps we need to have n =
3 · 2b+ k ≥ 8 ln

(
2	

θ

)
1

δ2a+1
ε2
set

.
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practice, we consider how we can construct other algorithms that take advantage of this
extra information.

The first two algorithms presented in this section bring new ideas for the solving phase.
The third one provides a method to recover the whole secret and does not need any reduction
phase.

We maintain the notations used in the previous section: n′ queries remain after the
reduction phase, the bias is δ′ and the block size is k′.

For these solving algorithms, we assume that the secret is sparse. Even if the secret is not
sparse, we can just assume that the noise is sparse. We can transform an LPN instance to an
instance of LPN where the secret is actually a vector of noise bits by the method presented
in [32]. The details of this transform were given in Section 2.2.5 for the covering codes
algorithm.

We denote by � the sparseness of the secret, i.e. Pr[si = 1] = 1−�
2 for any 1 ≤ i ≤ k.

We say that the secret is �-sparse. We can take � = δ.
The assumption we make is that the Hamming weight of the k′-bit length secret s is in

a given range. On average we have that HW(s) = k′
(

1−�
2

)
, so an appropriate range is[

0, k′
(

1−�
2

)
+ σ

2

√
k′

]
, where σ is constant. We denote k′

(
1−�

2

)
by EHW and σ

2

√
k′ by

dev. Thus, we are searching in the range [0, EHW +dev]. We can bound the probability that
the secret has a Hamming weight outside the range by using the Hoeffding bound [26].

Let X1, X2, . . . , Xk′ be independent random variables that correspond to the secret bits,
i.e. Pr[Xi = 1] = 1−�

2 and Pr(Xi ∈ [0, 1]) = 1. We have E(X) = 1−�
2 k′. Using Theorem

12, we get that

Pr[HW(s) not in range] = Pr

[
HW(s) − (1 − �)

2
k′ ≥ σ

√
k′

4

]
≤ e− σ2

2 .

If we want to bound by θ/2 the probability that HW(s) is not in the correct range for

one block, we obtain that σ =
√

2 ln
(

2
θ

)
.

4.1 Exhaustive search on sparse secret

We have S = ∑EHW +dev
i=0

(
k′
i

)
vectors ν with Hamming weight in our range. One first idea

would be to perform an exhaustive search on the sparse secret. We denote this algorithm
by Search1. For every such value ν, we compute HW

(
AνT + c

)
. In order to compute the

Hamming weight we have to compute the multiplication between A and all ν which have the
Hamming weight in the correct range. This operation would take O

(
Sn′k′) time but we can

save a k′ factor by the following observation done in [7]: computing AνT , with HW(ν) = i

means xoring i columns of A. If we have the values of AνT for all ν where HW(ν) = i

then we can compute Aν′T for HW(ν′) = i +1 by adding one extra column to the previous
results.

We use here a similar reasoning done for the Walsh-Hadamard transform. When ν = s,
the value of HW

(
AsT + c

)
is equal to HW(d) and we assume that this is the smallest

value as we have more noise bits set on 0 than 1. Thus, going through all possible values
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of ν and keeping the minimum will give us the value of the secret. The time complexity of
Search1 is the complexity of computing the Hamming weight, i.e. O(Sn′).

Besides Search1, which requires a matrix multiplication for each trial, we also discovered
that a Walsh transform can be used for a sparse secret. We call this algorithm Search2.
The advantage is that a Walsh transform is faster than a naive exhaustive search and thus
improves the time complexity. We thus compute the fast Walsh-Hadamard transform and
search the maximum of f̂ only for those S values with Hamming weight in the correct
range. Given that we apply a Walsh transform we get that the complexity of this solving
algorithm is O(k′2k′

). So, it is more interesting than Search1 when Sn′ > k′2k′
.

For both algorithms the failure probability is given by the scenario where there exists
another sparse value ν = s such that HW

(
AνT + c

) ≤ HW
(
AsT + c

)
. As we search

through S possible values for the secret we obtain that

Pr[incorrect guess on one block] ≤ Se− n′δ′2
8 .

The above probability accounts for only one block of the secret. Thus we can say that

with σ =
√

2 ln
(

2
θ

)
and n = 8

(
ln 2S

θ

)
δ−2a +(a−1)2b, the probability of failure is smaller

than θ .
Another failure scenario, that we take into account into our analysis, occurs when the

secret has a Hamming weight outside our range.

Complexity analysis Taking n = n′ +(a−1)2b, k′ = b, δ′ = δ2a−1
and � = δ, we obtain

the following theorems for Search1 and Search2:

Theorem 8 Let S = ∑EHW +dev
i=0

(
b
i

)
where EHW = b

(
1−�

2

)
and dev = σ

2

√
b and

let n′ = 8 ln
(

2S
θ

)
δ−2a

. For k ≤ a · b and a secret s that is �-sparse, the Search1

algorithm heuristically (n = 8 ln
(

2S
θ

)
δ−2a + (a − 1)2b, t = O(kan + n′S),m =

kn + b

(
b

EHW + dev

)
, θ, b)-solves the LPN problem.

Theorem 9 Let S = ∑EHW +dev
i=0

(
b
i

)
whereEHW = b

(
1−�

2

)
and dev = σ

2

√
b. For k ≤ a ·b

and a secret s that is �-sparse, the Search2 algorithm heuristically (n = 8 ln
(

2S
θ

)
δ−2a +

(a − 1)2b, t = O(kan + b2b),m = kn, θ, b)-solves the LPN problem.

Here, we take the probability, that any of the two failure scenarios to happen, to be each
θ/2. A search for the optimal values such that their sum is θ , brings a very little improvement
to our results. Taking k′ = b, we stress that S is much smaller than the 2k′ = 2b term that
is used for LF1. For example, for k = 768, a = 11, b = 70 and τ = 0.05, we have that
S ≈ 233 which is smaller than 2b = 270 and we get n′ = 267.33 and n = 273.34 (compared
to n′ = 268.32 and n = 273.37 for LF1). We thus expect to require less queries for exhaustive
search compared to LF1. As the asymptotic time complexity of Search2 is the same as
LF1 and the number of queries is smaller, we expect to see that this algorithm runs faster
than LF1.
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4.2 Meet in the middle on sparse secret (MITM)

Given that AsT + d = c, we split s into s1 and s2 and rewrite the equation as A1s
T
1 + d =

A2s
T
2 + c. With this split, we try to construct a meet-in-the-middle attack by looking for

A2s
T
2 + c close to A1s

T
1 . The secret s has size k′ and we split it into s1 of size k1 and s2 of

size k2 such that k1+k2 = k′. We consider that both s1 and s2 are sparse. Thus the Hamming

weight of si lies in the range
[
0, ki

(
1−�

2

)
+ σ ′

2

√
ki

]
. We denote ki

(
1−�

2

)
+ σ ′

2

√
ki by

maxHW(ki). In order to bound the probability that both estimates are correct we use the same

bound shown in Section 4 and obtain that σ ′ =
√

2 ln
(

4
θ

)
.

For our MITM attack we have a pre-computation phase. We compute and store A1s
T
1

for all S1 = ∑maxHW(k1)
i=0

(
k1
i

)
possible values for s1. We do the same for s2, i.e com-

pute A2s
T
2 + c for all S2 = ∑maxHW(k2)

i=0

(
k2
i

)
vectors s2. The pre-computation phase takes

(S1 + S2)n
′ steps in total. Afterwards we pick ξ bit positions and hope that the noise d

has only values of 0 on these positions. If this is true, then we could build a mask μ

that has Hamming weight ξ such that d ∧ μ = 0. The probability for this to happen is(
1+δ′

2

)ξ = e
−ξ ln 2

1+δ′ .

We build our meet-in-the-middle attack by constructing a hash table where we store, for
all s2 values, A2s

T
2 +c at position h

(
(A2s

T
2 + c) ∧ μ

)
. We have S2 vectors s2, so we expect

to have S22−ξ vectors on each position of the hash table. For all S1 values of s1, we check
for collisions, i.e. h((A1s

T
1 ) ∧ μ) = h((A2s

T
2 + c) ∧ μ). If this happens, we check if A1s

T
1

xored with A2s
T
2 + c gives a vector d with a small Hamming weight. Remember that with

the pre-computed values we can compute d with only one xor operation. If the resulting
vector has a Hamming weight in our range, then we believe we have found the correct s1
and s2 values and we can recover the value of s. Given that A1s

T
1 +A2s

T
2 +d = c, we expect

to have
(
A2s

T
2 + c

)∧ μ = A1s
T
1 ∧ μ only when d ∧ μ = 0. The condition d ∧ μ = 0 holds

with a probability of
(

1+δ′
2

)ξ

so we have to repeat our algorithm
(

2
1+δ′

)ξ

times in order to

be sure that our condition is fulfilled.
As for exhaustive search, we have two scenarios that could result in a failure. One

scenario is when s1 or s2 have a Hamming weight outside the range. The second one
happens when there is another vector ν = s such that HW

(
A1ν

T
1 + A2ν

T
2 + c

) ≤
HW

(
A1s

T
1 + A2s

T
2 + c

)
and

(
A1ν

T
1 + A2ν

T
2 + c

) ∧ μ = 0. This occurs with probability

smaller than S1S2e
− n′δ′2

8 .

Complexity analysis The time complexity of constructing the MITM attack is (S1 +
S2)n

′ + ((S1 + S2)ξ + S1S22−ξ n′) ·
(

2
1+δ′

)ξ

. We include here the cost of the pre-

computation phase and the actual MITM cost. We obtain that the time complexity is

O
(

(S1 + S2)n
′ + (S1 + S2)ξ

(
2

1+δ′
)ξ + S1S2n

′
(

1
1+δ′

)ξ
)

. Taking again n′ = n − (a −
1)2b, k′ = b, δ′ = δ2a−1

, � = δ, we obtain the following result for MITM.

Theorem 10 Let n′ = 8 ln
(

2
θ
S1S2

)
δ−2a

. Take k1 and k2 values such that b = k1 + k2. Let

Sj = ∑maxHW(kj )

i=0

(kj

i

)
where maxHW(kj ) = kj

(
1−�

2

)
+ σ ′

2

√
kj for j ∈ {1, 2}. For k ≤ a ·b
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and a secret s that is�-sparse, the MITM algorithm heuristically (n = 8 ln
(

2
θ
S1S2

)
δ−2a +

(a − 1)2b, t = O
(

kan + (S1 + S2)n
′ + (S1 + S2)ξ

(
2

1+δ2a−1

)ξ + S1S2n
′
(

1
1+δ2a−1

)ξ
)

,

m = kn + S2 + (S1 + S2)n
′, θ, b)-solves the LPN problem.

4.3 Gaussian elimination

In the case of a sparse noise, one may try to recover the secret s by using Gaussian elim-
ination. It is well known that LPN with noise 0, i.e. τ = 0, is an easy problem. This idea
was used in [12] in order to mount a passive attack on HB and HB+ protocols. If we are
given �(k) queries for which the noise is 0, one can just run Gaussian elimination and in
O(k3) recover the secret s. For a LPNk,τ instance, the event of having no noise for k queries
happens with a probability pnonoise = (1 − τ)k .

We design the following algorithm for solving LPN: first, we have no reduction phase.
For each k new queries, we assume that the noise is 0. We recover an ν through Gaussian
elimination. We must test if this value is the correct secret by computing the Hamming
weight of A′νT +c′, where A′ is the matrix that contains n′ fresh queries and c′ is the vector
containing the corresponding noisy inner products. We expect to have a Hamming weight in

the range
[
0,

(
1−δ

2

)
n′ + σ

√
n′

2

]
, where σ is a constant. From the previous results we know

that for a correct secret we have

Pr
[
HW

(
A′sT + c′) not in range

]
≤ e− σ2

2 .

If we want to bound by θ/2 the probability that the Hamming weight of the noise is not

in the correct range, for the correct secret, we obtain that σ =
√

2 ln
(

2
θ

)
.

For a ν = s, we use the Hoeffding inequality to bound that HW
(
A′νT + c′) is in the

correct range. Let X1, . . . , Xn′ be the random variables that correspond to Xi = 〈vi, ν〉⊕ci .
Let X = X1 + . . . + Xn′ . We have E(X) = n′

2 . Using the Hoeffding inequality, we take

λ = δn′
2 − σ

√
n′

2 and obtain

Pr[failure] = 2k Pr
[
HW

(
A′νT + c′)]

in correct range
]

= 2k Pr[X − E(X) ≤ −λ]

≤ 2ke
−

2
(

δn′
2 − σ

√
n′

2

)2

n′ = 2ke
−

(
δ
√

n′ − σ
)2

2

If we bound this probability of failure by θ/2 we obtain that we need at least n′ =(√
2 ln 2k+1

θ
+ σ

)2

δ−2 queries besides the k that are used for the Gaussian elimination.

As aforementioned, with a probability of pnonoise = (1 − τ)k , the Gaussian elimination
will give the correct secret. Thus, we have to repeat our algorithm 1

pnonoise
times.

Complexity analysis The computation of the Hamming weight has a cost of O(n′k2).
Given that we run the Gaussian elimination and the verification step 1

pnonoise
times, we obtain

the following theorem for this algorithm:
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Theorem 11 Let n′ =
(√

2 ln 2k+1

θ
+

√
2 ln

(
2
θ

))2

δ−2. The Gaussian elimination algo-

rithm (n = k+2
(1−τ)k

+ n′, t = O
(

n′k2+k3

(1−τ)k

)
, m = k2 + n′k, θ, k)-solves the LPN

problem.6

Remark 2 Notice that this algorithm recovers the whole secret at once and the only assump-
tion we make is that the noise is sparse. We don’t need to run the transform such that we
have a sparse secret and there are no queries lost during the reduction phase.

Remark 3 In the extreme case where (1 − τ)k > θ , the Gaussian elimination algorithm can
just assume that k queries have noise 0 and retrieve the secret s without verifying that this
is the correct secret.

5 Tightness of our query complexity

In this section we compare the theoretical analysis with implementation results of all the
LPN solving algorithms described in Sections 3 & 4.

We implemented the BKW, LF1 and LF2 algorithms as they are presented in [33] and in
pseudocode in Algorithms 1–3. The implementation was done in C on a Intel Xeon 3.33Ghz
CPU. We used a custom bit library to store and handle bit vectors. Using the OpenMP
library7, we have also parallelized certain crucial parts of the algorithms. The xor-ing in
the reduction phases as well as the majority phases for instance, are easily distributed onto
multiple threads to speed up the computation. Furthermore, we implemented the exhaustive
search and MITM algorithms described in Section 4. The various matrix operations per-
formed for the sparse LPN solving algorithms are done with the M4RI library 8. Regarding
the memory model used, we implemented the one described in [33] in order to accommo-
date the LF2 algorithm. The source code of our implementation can be found at http://lasec.
epfl.ch/lpn/lpn source code.zip.

We ran all the algorithms for different LPN instances where the size of the secret varies
from 32 to 100 bits and the Bernoulli parameter τ takes different values from 0.01 to 0.4. A
value of τ = 0.1 for a small k as the one we are able to test means that very few, if none,
of the queries have the noise bits set on 1. For this sparse case, an exhaustive search is the
optimal strategy. Also, τ = 0.4 might seem also as an extreme case. Still, we provide the
query complexity for these extreme cases to fully observe the behaviour of the LPN solving
algorithms.

For each LPN instance, we try to find the theoretical number of oracle queries required
to get a 50 % probability of recovering the full secret while optimizing the time complexity.
This means that in half of our instances we recover the secret correctly. In the other half
of the cases it may happen that one or more bits are guessed wrong. We thus take θ = 1

3
as the probability of failure for the first block. We choose a and b that would minimize
the time complexity and we apply this split in our theoretical bounds in order to compute

6Given that we receive uniformly distributed vectors from the LPN oracle, from n + 2 vectors v we expect to
have n linearly independent ones.
7http://openmp.org/wp
8http://m4ri.sagemath.org/

http://lasec.epfl.ch/lpn/lpn_source_code.zip
http://lasec.epfl.ch/lpn/lpn_source_code.zip
http://openmp.org/wp
http://m4ri.sagemath.org/
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Table 3 BKW∗ query
complexity - practice τ k

32 48 64 80 100

0.01 10.40(5) 11.85(6) 15.01(6) 17.68(7) 20.78(7)

0.10 14.32(4) 19.99(4) 23.13(4) 27.30(4)

0.20 18.64(3) 23.84(3)

0.25 21.93(2) 25.95(3)

0.40 27.25(2)

Table 4 BKW∗ query
complexity - theory τ k

32 48 64 80 100

0.01 10.97(5) 12.82(6) 15.93(6) 18.66(7) 21.74(7)

0.10 15.84(4) 20.01(4) 24.12(4) 28.20(4) 33.28(4)

0.20 19.71(3) 24.85(3) 30.97(3) 34.83(4) 39.90(4)

0.25 21.81(2) 26.95(3) 33.07(3) 38.14(3) 44.11(4)

0.40 28.24(2) 36.38(2) 43.64(3) 48.71(3) 55.78(3)

Table 5 LF1 query complexity -
practice τ k

32 48 64 80 100

0.01 7.32(6) 10.12(6) 11.58(7) 13.32(8) 14.99(8)

0.10 10.20(4) 13.20(4) 15.52(5) 17.98(5) 21.38(5)

0.20 11.53(3) 15.57(3) 18.03(4) 21.04(4) 25.18(4)

0.25 12.69(3) 16.20(3) 20.70(4) 22.24(4) 25.93(4)

0.40 15.61(2) 19.74(2) 23.97(3)

Table 6 LF1 query complexity -
theory τ k

32 48 64 80 100

0.01 8.89(6) 10.53(6) 12.77(7) 14.17(8) 16.13(8)

0.10 11.38(4) 13.87(4) 17.04(5) 18.56(5) 22.05(5)

0.20 13.01(3) 17.06(3) 19.05(4) 21.77(4) 26.59(4)

0.25 14.42(3) 17.25(3) 22.65(4) 23.39(4) 26.72(4)

0.40 16.95(2) 24.01(2) 25.83(3) 28.30(3) 35.00(3)
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Table 7 LF2 query complexity -
practice τ k

32 48 64 80 100

0.01 6.85(6) 9.09(6) 10.24(7) 12.41(8) 13.15(8)

0.10 9.30(4) 12.60(4) 15.12(5) 16.90(5) 20.65(5)

0.20 10.88(3) 15.40(3) 16.94(4) 20.47(4) 24.88(4)

0.25 12.34(3) 15.92(3) 20.61(4) 21.00(4) 25.40(4)

0.40 15.44(2) 19.74(2) 23.52(3)

Table 8 Search1 query
complexity - practice τ k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 13.25(8) 14.93(8)

0.10 10.15(4) 13.15(4) 16.44(4) 17.93(5) 21.34(5)

0.20 11.51(3) 15.54(3) 17.99(4) 21.02(4) 25.15(4)

0.25 12.66(3) 16.18(3) 19.88(3)

0.40 15.61(2) 19.74(2)

Table 9 Search1 query
complexity - theory τ k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 14.05(8) 16.06(8)

0.10 11.33(4) 13.84(4) 17.61(4) 18.50(5) 22.04(5)

0.20 13.01(3) 17.06(3) 18.99(4) 21.76(4) 26.59(4)

0.25 14.42(3) 17.25(3) 23.01(3) 28.00(3) 26.71(4)

0.40 16.98(2) 24.01(2) 25.87(3) 28.31(3) 35.00(3)

Table 10 Search2 query
complexity - practice τ k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 13.25(8) 14.93(8)

0.10 10.15(4) 13.15(4) 15.36(5) 17.93(5) 21.34(5)

0.20 11.51(3) 15.54(3) 17.99(4) 21.02(4) 25.15(4)

0.25 12.66(3) 16.18(3) 20.63(4)

0.40 15.61(2) 19.74(2)
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Table 11 Search2 query
complexity - theory τ k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 14.05(8) 16.06(8)

0.10 11.33(4) 13.84(4) 16.89(5) 18.50(5) 22.04(5)

0.20 13.01(3) 17.06(3) 18.99(4) 21.76(4) 26.59(4)

0.25 14.42(3) 17.25(3) 22.63(4) 23.38(4) 26.71(4)

0.40 16.98(2) 24.01(2) 25.87(3) 28.31(3) 35.00(3)

Table 12 MITM query
complexity - practice τ k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 13.25(8) 14.93(8)

0.10 10.13(4) 13.15(4) 16.47(4)

0.20 11.49(3) 15.54(3)

0.25 12.89(2)

0.40

Table 13 MITM query
complexity - theory τ k

32 48 64 80 100

0.01 5.16(1) 5.70(1) 6.12(1) 14.10(8) 16.10(8)

0.10 11.37(4) 13.87(4) 17.61(4) 21.59(4) 22.05(5)

0.20 13.02(3) 17.06(3) 23.00(3) 28.00(3) 26.59(4)

0.25 16.03(2) 17.26(3) 23.01(3) 28.00(3) 35.00(3)

0.40 16.98(2) 24.01(2) 25.87(3) 28.31(3) 35.00(3)

Table 14 Gaussian elimination
query complexity - theory τ k

32 48 64 80 100

0.01 5.16 5.70 6.12 8.43 8.89

0.10 10.04 12.91 15.73 18.48 21.84

0.20 15.31 21.04 26.60 32.08 38.84

0.25 18.28 25.51 32.56 39.52 48.15

0.40 28.58 40.96 53.17 65.28 80.34
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the theoretical number of initial queries. We apply the same split in practice and try to
minimize the number of initial queries such that we maintain a 50 % probability of success.
We thus experimented with different values for the original number of oracle samples, and
ran multiple instances of the algorithms to approximate the success probability. One can
observe that in our practical and theoretical results the a, b parameters are the same and the
comparison is consistent. We were limited by the power of our experimental environment
and thus we were not able to provide results for instances that require more than 230 queries.

5.1 BKW∗

The implementation results for BKW∗ are presented in Table 3. Each entry in the table is of
the form log2(n)(a), where n is the number of oracle queries that were required to obtain a
50 % success rate for the full recovery of the secret. Parameter a is the algorithm parameter
denoting the number of blocks into which the vectors were split. We take b = � k

a
�. By

maintaining the value of a, we can easily compute the number of queries and the time &
memory complexity. In Table 4 we present the theoretical results for BKW∗ obtained by
using Theorem 4. We can see that our theoretical and practical results are within a factor of
at most 2.

If we take the example of LPN100,0.01, we need 220.78 queries and our theoretical analysis
gives a value of 221.47. These two values are very close compared with the value predicted
by [33], 225.64, which is a factor 10 larger. We emphasize again that for both the theory and
the practice we use the split that optimizes the time complexity and from this optimal split
we derive the number of queries.

Remark 4 For the BKW∗ algorithm we tried to optimize the average final bias of the queries,
i.e. obtaining a better value than δ2a−1

. Recall that at the beginning of the reduction phase,
we order the queries in equivalence classes and then choose a representative vector that is
xored with the rest of queries from the same class. One variation of this reduction operation
would be to change several times the representative vector. The incentive for doing so is the
following: one representative vector that has error vector set on 1 affects the bias δ of all
queries, while by choosing several representative vectors this situation may be improved;
more than half of them will have error bit on 0. We implemented this new approach but we
found that it does not bring any significant improvement. Another change that was tested
was about the majority rule applied during the solving phase. Queries have a worst case
bias of δ2a−1

(See Lemma 2), but some have a larger bias. So, we could apply a weighted
majority rule. This would decrease the number of queries needed for the solving phase. We
implemented the idea and discovered that the complexity advantage is very small.

5.2 LF1

Below we present the experimental and theoretical results for the LF1 algorithm. As a first
observation we can see that, for all instances, this algorithm is a clear optimization over the
original BKW∗ algorithm. As before, each entry is of the form log2(n)(a), where n and a

are selected to obtain a 50 % success rate for the full recovery of the secret and b = � k
a
�.

Table 6 shows our theoretical results for LF1 using Theorem 5. When we compare the
experimental and the practical results for LF1 (See Tables 5 and 6) we can see that the gap
between them is of a factor up to 3.
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Remark 5 One may observe a larger difference for the LPN48,0.4 instance: n = 219.74 (prac-
tice) vs. n = 224.01 (theory). For this case, the implementation requires n = 219.74 initial
queries compared with the theory that requires n = 224.01 queries. Here we have a = 2 and
b = 24 and the term (a−1)2b dominates the query complexity. The discrepancy comes from
the worst-case analysis of the reduction phase where we say that at each reduction step we
discard 2b queries. With this reasoning, we predict to lose 224 queries. If we analyse more

closely, we discover that actually in the average-case we discard only 2b ·
[
1 −

(
1 − 1

2b

)n]
queries (this is the number of expected non-empty equivalence classes). Thus, with only
219.74 initial queries, we run the reduction phase and discard 219.70 queries, instead of 224.
We are left with 214.45, queries which are sufficient for the solving phase. We note that for
large LPN instances, this difference between worst-case and average-case analysis for the
number of deleted queries during reduction rounds becomes negligible.

Remark 6 Recall that in LF1, like in all LPN solving algorithms, we perform the reduction
phase by splitting the queries into a blocks of size b. When this split is not possible, we
consider that we have a − 1 blocks of size b and a last block shorter of size b′ with b′ < b.
By LF1∗ we denote the same LPN solving algorithm that makes use of the Walsh transform
but where the split of the blocks is done different. We allow now to have a last block larger
than the rest. The gain for this strategy may be the following: given that we recover a larger
block of the key, we run our solving phase fewer times. Although the complexity of the
transform is bigger as we work with a bigger block, the reduction phase has to be applied
fewer times. From our experiments we discover there seems to be no difference between the
performance of the two algorithms.

5.3 LF2

We tested the LF2 heuristic on the same instances as for BKW∗ and LF1. The results are
summarized in Table 7. To illustrate the performance of the heuristic, we concentrate on a
particular instance, LPN100,0.1 with a = 5, b = 20. As derived in [33], the LF1 algorithm
for this parameter set should require less than (8 · b + 200) · δ−2a ≈ 218.77 queries for a
solving phase and (a − 1) · 2b + (8 · b + 200) · δ−2a ≈ 222.13 queries overall to achieve
a success probability of 50 %. Using our theoretical analysis, the LF1 algorithm for this
parameter set requires to have 8 ln(3·2b)δ−2a +(a−1)2b ≈ 222.05 queries overall and 217.20

queries for the solving phase. Our experimental results for LF1 were a bit lower than our
theoretical ones: 221.38 oracle samples were sufficient. If we use the LF2 heuristic starting
with 3·220 ≈ 221.58 samples, we get about the same amount of vectors for the solving phase.
In this case there are no queries lost during reduction. We thus have much more queries than
should actually be required for a successful solving phase and correctly solve the problem
with success probability close to 100 %. So we can try to start with less. By starting off
with 220.65 queries and thus loosing some queries in each reduction round, we also solved
the LPN problem in slightly over 50 % of the cases. The gain in total query complexity for
LF2 is thus noticeable but not extremely important.

As another example, consider the parameter set k = 768, τ = 0.05 proposed at the
end of [33]. The values for a, b which minimize the query complexity are a = 9, b = 86
(a · b = 774 > k). Solving the problem with LF1 should thus require about 287 vectors for
the solving phase and 289 oracle samples overall. Using LF2, as 3 · 2b ≈ 287 oracle samples
would be sufficient, we obtain a reduction by a factor ≈ 4.
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Even though LF2 introduces linear dependencies between queries, this doesn’t seem to
have any noticeable impact on the success probability in recovering the secret value.

Remark 7 A general observation for all these three algorithms, shown also by our results, is
that the bias has a big impact on the number of queries and the complexity. Recall that the
bias has value δ2a−1

at the end of the reduction phase. We can see from our tables that the
lower the value of τ , i.e. larger value of δ = 1 − 2τ , the higher a can be chosen to solve the
LPN instance. Also, for a constant τ , the higher the size of the secret, the higher a can be
chosen.

Remark 8 The LF2 algorithm is a variation of LF1 that offers a different heuristic technique
to decrease the number of initial queries. The same trick could be used for BKW∗, exhaustive
search and MITM.

While the same analysis can be applied for exhaustive search and MITM as for LF2,
BKW∗ is a special case. We denote by BKW2 this variation of BKW where we use the reduc-
tion phase from LF2. Recall that for BKW∗ we need to have n = 2b+1δ−2a

ln
(

b
θ

)+(a−1)2b

queries and here the dominant term is 2b+1δ−2a
ln

(
b
θ

)
. Thus, we need to start with 3 ·2b +ε,

where ε > 0 and increase such that at the end of the last iteration of the reduction we get
the required number of queries. This improves the initial number of queries and we have a
gain of factor a for the time complexity. For an LPN48,0.1 instance, our implementation of
BKW2 requires n = 213.82 = 3.54 · 212 initial queries and increases it, during the reduction
phase, up to 219.51, the amount of queries needed for the solving phase. Thus, there is an
improvement from 219.99 (See Table 3) to 213.82 and the time complexity is better. While
this is an improvement over BKW∗, it still performs worse than LF1 and LF2.

5.4 Exhaustive search

Recall that for exhaustive search we have two variants. The results for Search1 are displayed
in Tables 8 and 9. For Search1 we observe that the gap between theory and practice is of a
factor smaller than 4. In terms of number of queries, Search1 brings a small improvement
compared to LF1. We will see in the next section the complete comparison between all the
implemented algorithms. The same (a − 1)2b dominant term causes the bigger difference
for the instances LPN48,0.4 and LPN64,0.25.

The results for Search2 are displayed in Tables 10 and 11.
We notice that for both Search1 and Search2 the instances LPN32,0.01, LPN48,0.01 and

LPN68,0.01 have the number of queries very low. This is due to the following observation:
for n ≤ 68 linearly independent queries and τ = 0.01 we have that the noise bits are
all 0 with a probability larger than 50 %. Thus, for k ≤ 64 we hope that the k queries
we receive from the oracle have all the noise set on 0. With k noiseless, linearly indepen-
dent queries we can just recover s with Gaussian elimination. This is an application of
Remark 3.

5.5 MITM

In the case of MITM, the experimental and theoretical results are illustrated in Tables 12
and 13. There is a very small difference between MITM and exhaustive search algorithms
for a sparse secret: in practice, MITM requires just couple of tens queries less than Search1
and Search2 for the same a and b parameters.
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5.6 Gaussian elimination

As aforementioned, in the Gaussian elimination the only assumption we need is to have a
noise sparse. We don’t run any reduction technique and the noise is not affected. As the
algorithm depends on the probability to have a 0 noise on k linearly independent vectors, the
complexity decays very quickly once we are outside the sparse noise scenario. We present
in Table 14 the theoretical results obtained for this algorithm.

In the next section we will show the effectiveness of this simple idea in the sparse case
scenario and compare it to the other LPN solving algorithms.

Again for LPN32,0.01, LPN48,0.01 and LPN64,0.01 we apply Remark 3.

5.7 Covering codes

The covering code requires the existence of a code with the optimal coverage. For each
instance one has to find an optimal code that minimizes the query and time complexity.
Unlike the previous algorithms, this algorithm cannot be truly automatized. In practice we
could test only the cases that were suggested in [24]. Thus, we are not able to compare the
theoretical and practical values. Nevertheless, we will give theoretical values for different
practical parameters in the next section.

6 Complexity analysis of the LPN solving algorithms

We have compared our theoretical bounds with our practical results and we saw that there
is a small difference between the two. Our theoretical analysis also gives tighter bounds
compared with the results from [33]. We now extend our theoretical results and compare
the asymptotic performance of all the LPN algorithms for practical parameters used by the

Fig. 1 Time Complexity of LPN Algorithms on instances LPN
k, 1√

k
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LPN-based constructions. We consider the family of LPN
k, 1√

k

instances proposed in [3, 15].

Although the covering code cannot be automatized, as for each instance we have to try dif-
ferent codes with different sizes and dimensions, we provide results also for this algorithm.
When dealing with the covering code reduction, we always assume the existence of an ideal
code and compute the bias introduced by this step. We do not consider here concatenation
of ideal codes and we will see that we obtain a worse result for the LPN512,0.125 instance
compared with the result from [24], although the difference is small. In the covering code
algorithm we also stick with the BKW reduction steps and don’t use the LF2 reduction. As
aforementioned, the LF2 reduction brings a small improvement to the final complexity. This
does not affect the comparison between all the LPN solving algorithms.

We analyse the time complexity of each algorithm, by which we mean the number of
bit operations the algorithm performs while solving an LPN problem. For each algorithm,
we consider values of k for which the parameters (a, b) minimising the time complexity
are such that k = a · b. For the LF2 algorithm, we select the initial number of queries
such that we are left with at least n′ = 8 ln(3 · 2b)δ−2a

queries after the reduction phase.
Recall that by Search1 we denote the standard exhaustive search algorithm and Search2
is making use of a Walsh-Hadamard transform. The results are illustrated in Fig. 1. We
recall the time complexity and the initial number of queries for each algorithm in Table 15,
where S represents the number of sparse secrets with S < 2b. For MITM, the values S1
(resp. S2) represent the number of possible values for the first (resp. second) half of the
secret, n′ = 8(ln(6S1S2))δ

−2a
represents the number of queries left after the reduction phase

and ξ represents the Hamming weight of the mask used. In the case of the covering codes
algorithm, all a, b, a′, k′, k′′, l, w0, εset are parameters of the algorithm and n′ represents
the number of queries left after the reduction phase. Recall that θ is 1

3 .
We can bound the logarithmic complexity of all these algorithms by k

log2(k)
+ c1 and

c3 log2(k) +
√

k
ln(2)

+ c2. The lower bound is given by the asymptotic complexity of the

Gaussian elimination that can be expressed as c log2 k +
√

k
ln(2)

when τ = 1√
k

.

The complexity of BKW can be written as mink=ab

(
poly · 2b · δ−2a )

and for the other
algorithms (except the Gaussian elimination) the formula is mink=ab(poly · (

2b + δ−2a
)
)
,

where poly denotes a polynomial factor. By searching for the optimal a, b values,we have
two cases:

– for a > 1, we find a ∼ log2
k

(log2 k)2 ln 1
δ

and b = k
a

and obtain that 2b dominates δ−2a
.

For δ = 1 − 2√
k

we obtain the complexity poly · 2
k

log2(k) .

– for a = 1, we have that for

– BKW the complexity is poly · 2k

– LF1, LF2,Search2 the complexity is poly + k2k

– Search1, MIT M the complexity is poly · Sr and poly · S2
r ′ , respectively, where

we define Sr to be #{v ∈ {0, 1}k | HW(v) ≤ r}. We need to bound the value
of Sr . By induction we can show that Sr ≤ k

k−r−1 · kr

r! . For τ ≈ 1√
k

, we have

that r ≈ (
1 + σ

2

)√
k and r ′ ≈

(
1
2 + σ

2
√

2

)√
k. We obtain that the complexity

for both algorithms is poly · 2
γ
√

k log2 k+O
(√

k
)
, where γ is a constant. This is

not better than 2
k

log2(k) for k < 200 000, but asymptotically this gives a better
complexity.
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For Gaussian elimination, the complexity is poly
(1−τ)k

which is poly · 2
√

k for τ = 1√
k

.

We see in Fig. 1 that in some cases increasing the value of k may result in a decrease
in time complexity. The reason for this is that we are considering LPN instances where the
noise parameter τ takes value 1√

k
. Thus, as k grows, the noise is reduced, which leads to an

interesting trade-off between the complexity of the solving phase and the complexity of the
reduction phase of the various algorithms. This behaviour does not seem to occur for the

BKW algorithm. In this case, the query complexity n = 2b+1
(

1 − 2√
k

)−2a

ln(2k)+(a−1)2b

is largely dominated by the first term, which grows exponentially not only in terms of the
noise parameter, but also in terms of the block size b.

Remark 9 (LF1 vs. Search2) As shown in Fig. 1, the overall complexity of the LF1 and
Search2 algorithms is quasi identical. From Theorems 5 and 9, we deduce that for the same
parameters (a, b), the Search2 algorithm should perform better as long as S < 2b−1. This
is indeed the case for the instances we consider here, although the difference in complexity
is extremely small.

We can see clearly that for the LPN
k, 1√

k

family of instances, the Gaussian elimination

outperforms all the other algorithms for k > 500. For no k < 1000, the LPN
k, 1√

k

offers an

80 bit security. This requirement is achieved for k = 1090.

Selecting secure parameters We remind that for each algorithm we considered, our anal-
ysis made use of a heuristic assumption of query and noise independence after reduction.
In order to propose security parameters, we simply consider the algorithm which performs
best under this assumption.

By taking all the eight algorithms described in this article, Tables 16, 17, 18, 19, 20, 21,
22, 23 display the logarithmic time complexity for various LPN parameters. For instance,
the LF2 algorithm requires 284 steps to solve a LPN384,0.25 instance.

We recall here the result from [24]: an instance LPN512,0.125 offers a security of 79.7. We
obtain a value of 82. The difference comes mainly from the use of LF2 reduction in [24] and
from a search of optimal concatenation of linear codes.

When comparing all the algorithms, we have to keep in mind that the Gaussian elimina-
tion recovers the whole secret, while for the rest of the algorithms we give the complexity to
recover a block of the secret. Still, this does not affect our comparison as we have proven in
Section 3 that the complexity of recovering the first block dominates the total complexity.

We highlight with red the best values obtained for different LPN instances. We observe
the following behaviour: for a sparse case scenario, i.e. τ = 0.05 for k ≥ 576 or τ =

Table 16 Security of LPN
against BKW τ k

256 384 448 512 576 640 768 1280

1√
k

69 88 97 106 114 123 140 198

0.05 67 88 98 109 118 127 145 216

0.125 79 105 116 128 138 149 170 253

0.25 93 123 137 150 163 175 201 295

0.4 115 147 163 180 196 212 244 347
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Table 17 Security of LPN
against LF1 τ k

256 384 448 512 576 640 768 1280

1√
k

50 63 71 79 85 88 102 145

0.05 50 62 71 79 87 95 102 159

0.125 56 73 78 88 98 107 125 176

0.25 64 84 89 100 110 121 142 199

0.4 76 94 103 116 129 142 168 229

Table 18 Security of LPN
against LF2 τ k

256 384 448 512 576 640 7681280

49 61 69 78 85 86 100 143

0.05 49 61 69 78 86 94 100 158

0.125 55 73 77 87 97 106 124 175

0.25 64 84 88 99 109 121 142 198

0.4 76 94 103 116 129 141 168 229

Table 19 Security of LPN
against Search1 τ k

256 384 448 512 576 640 768 1280

1√
k

56 69 77 80 87 95 108 154

0.05 51 69 78 84 89 95 111 162

0.125 64 82 91 100 110 121 140 199

0.25 82 110 122 134 145 155 179 263

0.4 109 141 157 173 189 205 236 337

Table 20 Security of LPN
against Search2 τ k

256 384 448 512 576 640 768 1280

1√
k

50 63 71 79 84 88 102 145

0.05 50 62 71 79 87 95 102 159

0.125 56 73 78 88 98 107 125 176

0.25 64 84 89 100 110 121 142 199

0.4 76 94 103 116 129 142 168 229
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Table 21 Security of LPN
against MIT M τ k

256 384 448 512 576 640 768 1280

1√
k

56 70 78 86 91 96 111 159

0.05 55 70 78 88 98 104 114 176

0.125 65 88 96 104 112 122 142 203

0.25 85 113 125 137 148 159 184 270

0.4 109 141 158 174 190 206 237 339

Table 22 Security of LPN
against Gaussian elimination τ k

256 384 448 512 576 640 768 1280

49 56 59 62 64 67 70 85

0.05 44 56 61 66 71 77 87 127

0.125 75 102 115 127 140 153 178 279

0.25 133 188 215 242 269 296 350 565

0.4 218 314 362 409 457 504 600 979

Table 23 Security of LPN
against Covering codes τ k

256 384 448 512 576 640 768 1280

44 55 59 64 70 73 85 123

0.05 42 54 59 65 72 78 88 132

0.125 52 67 74 82 89 96 109 161

0.25 70 87 96 106 115 125 139 204

0.4 94 110 123 136 149 161 179 281

1√
k

< 0.05, the Gaussian elimination offers the best performance. For τ = 1√
k

no k from

our tables offers a 80 bit security. Once we are outside the sparse case scenario, we have
that LF2 and the covering code algorithms are the best ones. The covering code proves to
be better than LF2 for a level of noise of 0.125. While the performance of the covering code
reduction highly depends on the sparseness of the noise, LF2 has a more general reduction
phase and is more efficient for noise parameters of 0.25 and 0.4. Also for a τ > 0.5 the
covering code is better than the Gaussian elimination.

Thus, for different scenarios, there are different algorithms that prove to be efficient.
This comparison clearly shows that for the family of instances LPN

k, 1√
k

neither the BKW,

nor its variants are the best ones. One should use the Gaussian elimination algorithm.
As we have shown, there still remains a small gap between the theoretical and practical

results for the algorithms we analysed. It thus seems reasonable to take a safety margin
when selecting parameters to achieve a certain level of security.
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Based on this analysis, we could recommend the LPN instances LPN512,0.25, LPN640,0.125,
LPN1280,0.05 or LPN1280, 1√

1280
to achieve 80 bit security for different noise levels. We note

that the value LPN768,0.05 that Levieil and Fouque suggest as a secure instance to use actually
offers only 66 bit security and thus is not recommended.

7 Conclusion

In this article we have analysed and presented the existing LPN algorithms in a unified
framework. We introduced a new theoretical analysis and this has improved the bounds of
Levieil and Fouque [33]. In order to give a complete analysis for the LPN solving algo-
rithms, we also presented three algorithms that use the advantage that the secret is sparse.
We analysed also the latest algorithm presented at Asiacrypt 2014. While the covering code
and the LF2 algorithms perform best in the general case where the Bernoulli noise parame-
ter is constant, the Gaussian elimination shows that for the sparse case scenario the length
of the secret should be bigger than 1100 bits. Also, we show that some values proposed by
Leviel and Fouque are insecure in the sparse case scenario.

Acknowledgments We would like to thank Thomas Johansson and all the authors of [24] for their help in
providing us with their paper and for their useful discussions. We further congratulate them for receiving the
Best Paper Award of Asiacrypt 2014.

Appendix A: Hoeffding’s bounds

Theorem 12 [26] Let X1, X2, . . . , Xn be n independent variables. We are given that
Pr[Xi ∈ [αi, βi]] = 1 for 1 ≤ i ≤ n. We define X = X1 + . . . + Xn and E[X] is the
expected value of X. We have that

Pr[X − E[X] ≥ λ] ≤ e
− 2λ2∑n

i=1(βi−αi )
2

and

Pr[X − E[X] ≤ −λ] ≤ e
− 2λ2∑n

i=1(βi−αi )
2
,

for any λ > 0.

Appendix B: LF1 - full recovery of the secret

We provide here an example of the LF1 algorithm, for the LPN512,0.125 instance, where we
recover the full secret. We provide the values of a, b, n and time complexity to show that
indeed the number of queries for the first iteration, dominates the number of queries needed
later on. Also, this shows that the time complexity of recovering the first block dominates
the total time complexity. For LPN512,0.125, we obtain the following values (See Table 24).

The way one can interpret this table is the following: LF1 recovers first 74
bits by taking a = 7 and requiring 276.59 queries. The total complexity of this
step, i.e. the reduction, solving and updating operation, is of 288.43 bit operations.
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Table 24 Full secret recovery
for the instance LPN512,0.125 i a b log2 n log2 t

1 7 74 76.59 88.43

2 7 63 65.68 77.29

3 7 54 61.52 72.91

4 6 54 56.32 67.28

5 6 45 47.32 58.02

6 6 37 39.37 49.80

7 6 31 34.98 45.14

8 5 31 33.00 42.66

9 5 25 27.02 36.36

10 5 20 22.56 31.56

11 5 16 21.01 29.67

12 4 16 17.72 25.79

13 4 12 14.89 22.51

14 3 12 13.30 20.19

15 2 11 11.38 17.36

16 2 6 9.26 14.10

17 1 5 8.30 11.69

Next, LF1 solves LPN438,0.125 and continues this process until it recovers the whole
secret.

We can easily see that indeed the number of queries and the time complexity of the first
block dominate the other values.
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