
Cryptogr. Commun. (2016) 8:277–289
DOI 10.1007/s12095-015-0136-7

Influence of addition modulo 2n on algebraic attacks

Oleksandr Kazymyrov1 ·Roman Oliynykov2 ·
Håvard Raddum3

Received: 26 November 2014 / Accepted: 15 April 2015 / Published online: 8 May 2015
© Springer Science+Business Media New York 2015

Abstract Many modern ciphers have a substitution-permutation (SP) network as a main
component. This design is well researched in relation to Advanced Encryption Standard
(AES). One of the ways to improve the security of cryptographic primitives is the use of
additional nonlinear layers. However, this replacement may not have any effect against par-
ticular cryptanalytic attacks. In this paper we use algebraic attacks to analyze an SP network
with addition modulo 2n as the key mixing layer. In particular, we show how to reduce the
number of intermediate variables in round functions based on SP networks. We also apply
the proposed method to the GOST 28147-89 block cipher that allows us to break reduced
8- and 14-round versions with complexity at most 2155 and 2215.4, respectively.

Keywords Block cipher · Addition modulo 2n · Algebraic attack · Binary decision
diagram

Mathematics Subject Classification 94A60 · 68P25 · 94C10

� Oleksandr Kazymyrov
oleksandr.kazymyrov@ii.uib.no

Roman Oliynykov
roliynykov@gmail.com

Håvard Raddum
haavardr@simula.no

1 University of Bergen, Bergen, Norway

2 Kharkiv National University of Radioelectronics, Kharkiv, Ukraine

3 Simula Research Laboratories, Oslo, Norway

mailto:oleksandr.kazymyrov@ii.uib.no
mailto:roliynykov@gmail.com
mailto:haavardr@simula.no

278 Cryptogr. Commun. (2016) 8:277–289

1 Introduction

Some modern advanced cryptographic primitives use addition modulo 2n as an extra nonlin-
ear layer in additions to substitutions (S-boxes). Most of these algorithms can be attributed
to one of two groups. The first one is based on modular additions, rotations and XORs
(ARX schemes). The second group use substitution-permutation (SP), Feistel or other net-
works. In some cases crypto primitives from the last group replace the XOR operation by
addition modulo 2n in a key mixing layer. On the one hand using addition modulo 2n may
increase the nonlinearity of a round function, but on the other hand it decreases the per-
formance. Therefore finding the balance between these two parameters is one issue for
designing crypto primitives. In this paper we will contribute to assessing the security of this
design with respect to algebraic attacks.

Intuitively, one could assume that adding an extra nonlinear layer increases the complex-
ity of cryptanalytic attacks. One assumption which is sometimes used in cryptanalysis is to
replace addition modulo 2n by the XOR operation which creates a ”weaker“ cipher that is
easier to analyze.

In this paper we investigate how the use of addition modulo 2n in round functions influ-
ences algebraic attacks. In particular, we introduce a much more efficient method describing
SP-like round functions in comparison with a naive approach. This allows to decrease the
number of variables and as a result reduce the complexity of algebraic attacks. In addition,
we describe the GOST 28147-89 block cipher [1] (from here on GOST) using the proposed
approach. Solving a system of equations of an 8-round GOST using a binary decision dia-
gram (BDD) method has complexity at most 2155. For 14-round GOST the complexity is
2215.4 using the same technique.

The rest of the paper is organized as follows. Section 2 describes the general idea of alge-
braic attacks as well as an approach to solve systems of equations using BDDs. Section 3
explains our description method of SP-like round functions. Section 4 gives the results and
details of the BDD algebraic attack against GOST. Finally, the conclusions of the paper are
presented in Section 5.

2 Algebraic attacks using a BDD approach

This section describes a general method of an algebraic attack on a block cipher and the
BDD approach used in practice.

2.1 The general idea of algebraic attack on block ciphers

Let us consider an algebraic attack on an example of a general crypto primitive based on a
substitution-permutation network (SPN). At a high level the cipher has a structure depicted
in Fig. 1. It consists of three main parts: a key mixing layer, a nonlinear layer and a linear
layer. A plaintext P is encrypted over two rounds producing a ciphertext C. At the first stage
of the algebraic attack an adversary represents the nonlinear layer as a system of equations
over a finite field Fqn . In most cases q equals 2, which means that an equation system is
created over a binary field. To represent the entire encryption algorithm the intermediate
state Z must be represented as variables. This helps to connect two adjacent nonlinear layers
together without increasing the degree of polynomials. However, this works perfectly only

Cryptogr. Commun. (2016) 8:277–289 279

Fig. 1 2-round SPN block cipher

when the key mixing layer is linear. For example, in the Advanced Encryption Standard
(AES) the key mixing layer is done using the XOR operation [2]. This operation is linear
with respect to MixColumns and ShiftRows [3, 4]. In this paper we consider a nonlinear
key mixing layer, represented by addition modulo 2n.

When the system of equations representing an entire encryption algorithm, including the
key schedule, is created one can apply a solving method to it. The promising method that is
used in this paper is an approach based on BDDs [5, 7].

2.2 Binary decision diagrams

We only give a brief overview of BDDs here, more thorough descriptions can be found in
several other sources, for instance in [8]. For clarity, when we talk about BDDs in this paper
we mean a zero-suppressed, reduced, and ordered BDD.

A BDD is a class of directed acyclic graphs. There are two particular nodes that must
be present in a BDD, called the source and the sink nodes. Other nodes are called internal
nodes. We visualize and draw a BDD by placing the source node at the top, the sink node at
the bottom, and all internal nodes in between. The internal nodes are structured in horizontal
levels, where nodes on the same level are drawn next to each other. The levels are numbered
from top to bottom, with the source node being the only node on level 1, and the sink node
the only node on level L, for some L.

Each node except for the sink node has either one or two out-going edges called the 0-
edge and the 1-edge. There are no edges between nodes on the same level, and all edges
are directed downwards. Hence an edge going from a node on level i always points to some
node on level j , for j > i. When drawing a BDD we draw the 1-edges as solid lines and
the 0-edges as dotted lines.

One important purpose for studying BDDs is that they can represent a very efficient
encoding of complex Boolean functions. In earlier works this is done by associating a vari-
able with each level, except for the bottom level (containing the sink node). We follow the
work in [5, 7], and associate each level with some linear combination of variables. An
example of a BDD representing a substitution on four bits can be seen in Fig. 2.

280 Cryptogr. Commun. (2016) 8:277–289

0. x72

1. x73

2. x74

3. x75

4. x11 + x80

5. x15 + x81

6. x19 + x82

7. x23 + x83

1

2 3

4 6 57

915 8 1311 1410 12

29 3116 181719 2022 21 24 23 2625 272830

32 33 343536 3738 39

40 41 42 43

44 45

T

Fig. 2 The BDD representation of a 4-bit S-box

2.3 Operations on BDDs

It is well known that it is possible to swap the linear combinations at two adjacent levels
without changing the underlying function encoded by the BDD [6]. To do this one may
have to introduce new nodes on one of the two levels, and the edges between nodes on these
levels must be rearranged. One important thing to note is that only the subgraph where the
swap is taking place needs to be acted on, the rest of the BDD will be unchanged.

As we are dealing with linear combinations associated with the levels, we are also inter-
ested in adding (XOR-ing) the linear combinations of two adjacent levels together. This can
be done using an algorithm similar to that of swapping levels [5]. Again, only the two levels
where the addition is taking place is touched while the rest of the BDD remains intact.

We assume our BDDs to be reduced, but after applying a swap or addition of levels, the
resulting BDD may be in an unreduced state. The reduction algorithm [8, pp. 14-15] has a
running time linear in the number of nodes, and we run the reduction algorithm whenever
needed to bring the BDD back to a reduced state. It has been proven that a reduced BDD is
unique for a given set of linear combinations of variables and their order in the BDD.

We finally remark that two BDDs may be joined, simply by identifying the sink node
of one with the source node of the other. Visually this is just stacking them on top of each
other in the natural way, resulting in a single BDD.

2.4 Linear absorption

A path from the source to the sink node will assign values to the linear combinations asso-
ciated with the levels in a BDD. If we choose a 0-edge out from a node on a level associated
with the linear combination l, we see this as generating the linear equation l = 0. Selecting
a path will hence generate a linear system of equations.

In our definition of BDDs, it is fully possible to have linear combinations for the lev-
els that are linearly dependent. Especially after joining some BDDs together the resulting
BDD may have dependencies among its linear combinations. When selecting a path in a

Cryptogr. Commun. (2016) 8:277–289 281

BDD with dependent linear combinations, we may get a system of linear equations with no
solutions, that is, an inconsistent system.

We would like to remove all linear dependencies present in a BDD. This can be done
using an algorithm called linear absorption [5, 7]. The idea of the algorithm is to identify a
set of linearly dependent linear combinations and use swap and addition of levels repeatedly
to create a level where these linear combinations have been added together. Due to the
dependency, the linear combination for this level will be 0. Selecting a 1-edge out from a
node on this level would immediately yield an inconsistency. We may therefore remove all
1-edges from nodes on this level, and afterwards remove the whole level. We say the linear
dependency we started with has been absorbed into the BDD.

We may repeat this process until all linear dependencies have been absorbed resulting in
a BDD where all linear combinations associated with the levels are independent. Selecting
a path in such a BDD is guaranteed to give a consistent linear system of equations.

2.5 Solving method

We can create a set of relatively small BDDs representing an encryption algorithm. The
general method we can use to solve such a system is to repeatedly join some of the BDDs
and absorb all linear dependencies we get along the way. If we can do this until all BDDs
have been joined into one, finding the solution is simply to select one of the remaining
paths and solve the linear system of equations we get. Because of the linear absorption we
have done, we know that this system will be consistent and will give a solution for all the
variables, including the variables for the secret key.

When applying swap and addition of levels, the number of nodes in the BDD may grow.
We may therefore run into BDDs that are too big for a computer to handle, and hence we
can (of course) not solve any system in practice. Finding how to keep the sizes of BDDs
low when joining and absorbing is currently an active research topic.

3 Addition modulo 2n in SP network

In Section 2 we gave a general overview of a block cipher based on the SP network. Now let
us assume that we have a more specific nonlinear layer represented by substitutions used in
parallel (Fig. 3). At the same time a linear layer is linear with respect to addition modulo 2
(XOR). These two layers are widely used in modern crypto primitives. The last part of the
round function is addition modulo 2n that differs from the usually applied XOR operation.
This difference causes a problem for the algebraic attack because of its nonlinearity.

In naive applications of the algebraic attack one needs to introduce extra variables
between two nonlinear layers (i.e., substitutions and the addition). The solving complexity
depends on both the number of equations and the number of variables [9], and a natural
question is how to increase the ratio of equations to variables. One of the ways is to use sev-
eral plaintext/ciphertext pairs (PCPs) with the reuse of variables across different instances
of PCPs. This approach does not help directly in our case (especially with increasing num-
ber of rounds), but can be used at further steps. Another way is to create a bigger S-box. The
best we can do is to represent the entire round function as a system of equations over F2. In
theory this works fine [10, 11], but in practice we need an enormous amount of computation
and storage resources.

Instead of creating a big system of equations we propose to split addition modulo 2n

into the size of the substitutions. In other words, use addition modulo 2|Si | followed by the

282 Cryptogr. Commun. (2016) 8:277–289

Fig. 3 Two rounds of an SP cipher

substitution Si (Fig. 4). However, this leads to an issue related to carry bits (Fig. 5a). To
solve this issue let us define a new substitution F

2|Si |+1
2 → F

|Si |
2 , where the extra bits are

the previous carry bit (cp) and the round key (Fig. 5b). Each next carry bit (cn) is generated

by other bits of the same block. Since we describe the same nonlinear layer, then c
j+1
p = c

j
n.

This approach to represent the round function allows us to use the general method for
describing the encryption algorithm stated in Section 2. It also allows to reduce the number
of variables. However, increasing the input space of a substitution may also increase the
degree of polynomials [11]. Unlike most other methods the complexity of BDD approach
does not depend on the degree of the polynomials.

Decreasing the number of variables in the considered round function leads to increasing
the complexity of the algebraic description. Since the degree of polynomials has an expo-
nential effect on the solving complexity in many known methods the BDD approach has
advantages in our case.

Fig. 4 Alternative representation of the round function

Cryptogr. Commun. (2016) 8:277–289 283

Fig. 5 Representation of addition modulo 2n and substitutions using larger S-boxes

4 Application of the proposed method on GOST

The GOST block cipher was developed in the 1970’s as a standard for securing Soviet
communications. The English description of the algorithm was released to the public in
1994 [12]. In 2014 a draft version of the new standard has been published, which is planned
to be used in the near future [13]. The draft includes two block ciphers that are oriented on
software and hardware implementations. For the hardware version the algorithm of GOST
28147-89 with fixed substitutions will be used.

4.1 Structure of the GOST algorithm

GOST is a Feistel cipher with 32 rounds without swapping after the last round. The block
size is 64 bits and the key size is 256 bits. The round function takes a 32-bit input and a
32-bit round key to produce an output of 32 bits. The components of the round function are
addition modulo 232, denoted by �, a group of eight 4-bit S-boxes, and a cyclic rotation.

At the start of the round the round key is added to the input modulo 232. The result of the
addition is then split into 8 nibbles, which are substituted according to the set of S-boxes.
The output of the S-box layer is assembled back into a 32-bit word and rotated by 11 bits to
the left. The rotated word is the output of the round function. A diagram describing GOST
can be seen in Fig. 6.

Fig. 6 Two rounds of the GOST cipher

284 Cryptogr. Commun. (2016) 8:277–289

4.2 Specification of the substitutions

The S-boxes to be used in GOST 28147-89 are not specified in the original standard. The
S-boxes are supposed to be set up by the user, and may be kept secret to be regarded as
additional key material. The cipher should be secure also with known S-boxes. Several sets
of substitutions that were recommended to be used in the algorithm have been published
[13, 14]. We took the set of substitutions defined in the draft standard. This set is also known
as ”id-tc26-gost-28147-param-A“ and have the object identifier 1.2.643.7.1.2.5.1.1. All 8
substitutions are listed in Table 1.

4.3 Key expansion

The key expansion routine of GOST is extremely simple and one can argue that GOST has
no key expansion. The user-selcted key has 256 bits, and is seen as eight 32-bit numbers
k0, . . . , k7. For the first 24 rounds of GOST the ki’s are used as round keys in sequence,
starting with k0 and ending with k7. For the last 8 rounds the round keys are still k0, . . . , k7,
but they are used in reversed order, starting with k7 in round 25 and ending with k0 in round
32.

4.4 Algebraic-differential cryptanalysis of GOST

A general concept of an algebraic-differential attack for the 4-round GOST is presented
in Fig. 7. This attack is based on the fact that some variables can be reused for several
plaintext/ciphertext pairs. Reusing variables increases the ratio of equations to variables. An
important goal for an attacker is to maximize the number of equations keeping the number
of variables at low level.

The main stages of the attack are as follows. At the first step one describes the entire
encryption algorithm for 1 PCP using the method stated in Section 3. Next, a difference is
added to the left half of the plaintext in the 8th nibble. The application of this difference
allows us to minimize the propagation of the input difference for several rounds. In Fig. 7
the white and green blocks depict known (defined for the first plaintext) variables. At the
same time the blue color describes unknown (varying) values of the bits. In the 3rd round
the gradation of the blue color from dark to light corresponds to decreasing uncertainty. This
uncertainty can be evaluated as the probability that the propagation of an input difference
stops after some nibbles. Theorem 1 describing this with a proof is given in Appendix A.

Table 1 The set of S-boxes used in the draft standard

0 1 2 3 4 5 6 7 8 9 A B C D E F

S8 1 7 E D 0 5 8 3 4 F A 6 9 C B 2

S7 8 E 2 5 6 9 1 C F 4 B 0 D A 3 7

S6 5 D F 6 9 2 C A B 7 8 1 4 3 E 0

S5 7 F 5 A 8 1 6 D 0 9 3 E B 4 2 C

S4 C 8 2 1 D 4 F 6 7 0 A 5 3 E 9 B

S3 B 3 5 8 2 F A D E 1 7 4 C 9 6 0

S2 6 8 2 3 9 A 5 C 1 E 4 7 B D 0 F

S1 C 4 6 2 A 5 B 9 E 8 D 7 0 3 F 1

Cryptogr. Commun. (2016) 8:277–289 285

Fig. 7 An algebraic-differential attack of 4-round GOST

The best found propagation is presented in Fig. 8. According to Theorem 1 with s = 4
and e = 5, the probability that the propagation of the input value stops after the 3rd nibble
is 0.999985. This fact allows to reuse variables up to 5 rounds. We use the scheme together
with the BDD method to attack GOST up to 14 rounds.

Fig. 8 Algebraic-differential analysis of 6-round GOST

286 Cryptogr. Commun. (2016) 8:277–289

4.5 Computational results

GOST has 256 unknown key bits, but only a 64-bit block. This means that one must use
at least 4 known PCPs to uniquely determine the key, which leads to rather big equation
systems. Since the final BDD contains all solutions of a system, it becomes difficult to solve
GOST systems directly.

To test the solving of GOST systems in practice it is necessary to fix (guess) parts of the
key in the system before solving. When fixing k bits of the key, the total complexity of the
attack becomes O

(
c2k

)
, where c is the complexity of solving the system. For c < 2256−k

we obtain a valid algebraic attack.
Increasing the number of fixed key bits to the correct values, we decrease the number

of PCPs needed to define the system uniquely. We have done some experiments on GOST
systems using the BDD solver, and report on two successful attacks below.

4.5.1 Fixing the first 192 bits of the key

In this system only the 64 bits in k6 and k7 used in round 7 and 8 are considered to be
unknown. The values for k0, . . . , k5 are guessed (known), and these subkeys are used in
rounds 1, . . . , 6 and rounds 9, . . . , 14. The attack therefore fits a 14-round version of GOST,
where the guessed key bits reduces the cipher to only two actual rounds.

Not surprisingly, this system is very easy to solve, and the memory consumption of
the solver is negligible. The solver used 0.7 seconds on a PC which is equivalent to 223.4

encryptions of 14-round GOST. In total we get an algebraic attack with complexity 2215.4.

4.5.2 Fixing the last 96 bits of the key

We consider an 8-round version of GOST, where we have guessed the 96 bits in k5, k6, k7.
When constructing the system, we essentially cover the first five rounds of GOST, involving
160 unknown key bits. This system is not trivial to solve. Also, because of the reuse of
variables and equations as explained in Section 4.4, we get an underdefined system that
does not give a unique solution.

When using 8 PCP pairs, the solver returns a BDD with 259 paths. However, due to the
memory constrains of the PC there are still 21 dependencies remaining among the linear
combinations for the levels. One path will give a consistent linear system (see Section 2.4)
with probability 2−21, so we expect 238 valid paths that give solutions to the system.

The time complexity for the solver to find this BDD corresponds to 230.1 8-round
encryptions of GOST. Searching in the BDD to find any one solution to the system has the
complexity of searching through approximately 221 paths. Finding one particular solution
requires searching through the whole BDD, giving a complexity of searching through 259

paths. Checking one path in the BDD has lower complexity than one GOST encryption, but
for simplicity we assume that checking one path takes the same time as doing one GOST
encryption.

The complexity for building the final BDD is 230.1 GOST encryptions. The complexity
of finding a unique key, that is finding the unique path giving this key, has complexity 259.
These two tasks must be done for every guess of the 96 bits of key, so the complexity for the
attack becomes at most 296+30.1 + 296+59 ≈ 2155 GOST encryptions, which is a lot better
than brute-forcing 256 unknown key bits.

Cryptogr. Commun. (2016) 8:277–289 287

5 Conclusions

The main idea that we are trying to convey in this work is that any changes in the structure
of crypto primitives must be re-verified. Intuitive assumptions may be wrong. On the one
hand changes increase the resistance against some attacks, but on the other hand they may
give little or no added protection against other attacks.

We decided to analyze an SP-network with addition modulo 2n against algebraic attacks.
The application of the classical algebraic description over F2 of modern ciphers gives lots
of intermediate variables that increase the total solving complexity. However, the number of
variables can be reduced by the use of larger substitutions where the non-linear layers are
combined. A negative consequence of this method may be that the degrees of the polyno-
mials increase. Higher degrees create a problem for lots of solving methods. Nonetheless,
the BDD method does not depend on the degree of polynomials and seems to be perfectly
suited for solving systems of equations describing the considered SP networks. Apply-
ing the proposed method to GOST gives the opportunity to find a 256-bit secret key for
the 8-round and 14-round versions with the complexities of 2155 and 2215.4 encryptions,
respectively.

On the whole, the proposed method of describing addition modulo 2n followed by sub-
stitutions is universal and helps to estimate the security level of crypto primitives against
algebraic attacks more precisely.

Appendix A: Propagation of carry bits in a modular adder

Theorem 1 Let Σn be an n-bit length adder implementing addition in the group Z2n . The
first input to Σn is a random uniformly chosen group element, and the second input is a
group element with the bit representation I0 = inin−1 . . . is+b+100 . . . 0ibib−1 . . . i1, where
ij ∈ {0, 1}. Let S0 = C0||E0||V0||B0 be an output value of the adder with S0 ∈ Z2n ,

C0 = r
(C0)
c r

(C0)
c−1 . . . r

(C0)
1 , E0 = r

(E0)
e r

(E0)
e−1 . . . r

(E0)
1 , V0 = r

(V0)
s r

(V0)
s−1 . . . r

(V0)
1 and

B0 = r
(B0)
b r

(B0)
b−1 . . . r

(B0)
1 , where c > 1, e > 1, s > 1, b > 1, and c + e + s + b =

n. If values IJ = inin−1 . . . is+b+1jsjs−1 . . . j1ibib−1 . . . i1 with jsjs−1 . . . j1 = J ∈
{1, . . . , 2s − 1} are sequentially taken as the second adder input, then for the output val-
ues SJ = CJ ||EJ ||VJ ||BJ , where BJ = B0 (i.e. constant), the probability of the event that
CJ = C0 for all inputs IJ (J ∈ {1, . . . , 2s − 1}) is equal to 1 − 2s−1

2se .

Proof Assume that an output value of the adder Σn is divided into the following 4 groups
of bits

– B is a constant number;
– V is a variable part of the sum;
– E is a very likely variable part of the sum because of carry bits generated by V when

zero input bits are changed to ones;
– C is an unlikely changed part of the sum, since carry bits generated by V is very likely

to be stopped at E.

Thus, the output values definitely changes at block V and may affect higher blocks E

and C through carry bits from V . It is necessary to estimate the probability of the event that

288 Cryptogr. Commun. (2016) 8:277–289

there is no carry bit from V to E, or the propagation of the carry bits will not affect C via
E, so C remains constant (CJ = C0).

From the theorem description follows that at least one different value CJ �= C0 for any
J breaks the theorem conditions. It means that it is sufficient to take into consideration only
the value J = 1s1s−1 . . . 1211 as long as J (the block of the second input corresponding V)
is taking all values from 0s0s−1 . . . 0201 till 1s1s−1 . . . 1211. If a carry bit appears for any
other value of J , it definitely appears for J = 1s1s−1 . . . 1211. The probability of the event
that a given random block of s bit length with the second input 1s1s−1 . . . 1211 of the adder
Σn will trigger E is equal to 2s−1

2s .
Now it is necessary to estimate the probability of the event that for I0 there is no carry

bit from E to C, but it appears for IJ �= I0. For this case the corresponding bits of the
first and the second input of the adder must form the output value 1e1e−1 . . . 1211. The
probability of this event is 2−e (taking into account all pairs of input values given the
necessary sum). Since the first argument of the adder is chosen randomly and indepen-
dently, the propagation probability of carry bits from E to C with the second input IJ ,
and with absence of carry bits for I0, is calculated as the product 2−e · 2s−1

2s . Accord-
ingly, the probability of the complement event, that is the block C remains constant, is
1 − 2s−1

2se .
Finally, to obtain the situation when the block B has influence on the probability the

following condition must be satisfied: the carry bits of V0 and VJ are different. The case
when the carry bit is already presented for V0 (due to the carry bit from B) leads to CJ = C0
(the carry bit is already presented and cannot change the higher bits). The number of variants
when the input value results in the carry bit for C0 is equal to number of variants when
the carry bit appears only for CJ . Thus, the carry bits from B have no influence on the
probability of the event CJ �= C0.

Therefore, the probability of the event that for BJ = B0 the bits of CJ and C0 are the
same for all IJ equals 1 − 2s−1

2se .

References

1. Dolmatov, V.: GOST 28147-89: encryption, decryption, and message authentication code (MAC)
algorithms. RFC 5830 (Informational) (2010)

2. FIPS PUB 197: Advanced Encryption Standard (AES), National Institute of Standards and Technology
(2001)

3. Knudsen, L.R., Robshaw M.: The block cipher companion, information security and cryptography.
Springer, Berlin Heidelberg (2011)

4. Kazymyrov, O., Kazymyrova, V.: Extended criterion for absence of fixed points. In: Pre-proceedings of
2nd workshop on current trends in cryptology (CTCrypt 2013), pp. 177–191 (2013)

5. Schilling, T., Raddum, H.: Solving compressed right hand side equation systems with linear absorption.
In: Helleseth, T., Jedwab, J. (eds.) Sequences and their applications – SETA 2012, vol. 7280 of lecture
notes in computer science, pp. 291–302. Springer, Berlin Heidelberg (2012)

6. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. Proceedings of the 1993
IEEE/ACM International Conference on Computer-Aided Design 12, 42–47 (1993)

7. Kazymyrov, O., Raddum, H.: Algebraic attacks using binary decision diagrams. In: Pre-proceedings of
BalkanCryptSec 2014, pp. 31–44 (2014)

8. Knuth, D.E.: The art of computer programming, bitwise tricks & techniques, binary decision diagrams,
vol. 4. Addison-Wesley (2009)

9. Albrecht, M.: Algorithmic algebraic techniques and their application to block cipher cryptanalysis. Ph.D.
thesis, Royal Holloway. University of London, the United Kingdom (2010)

Cryptogr. Commun. (2016) 8:277–289 289

10. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In:
Zheng, Y. (ed.) Advances in cryptology — ASIACRYPT 2002, vol. 2501 of lecture notes in computer
science, pp. 267–287. Springer, Berlin Heidelberg (2002)

11. Kazymyrov, O., Oliynykov, R.: Choosing substitutions for symmetric cryptographic algorithms based on
the analysis of their algebraic properties. In: Mathematical modeling, information technology, automated
control systems, vol. 925, pp. 79–86. V.N. Karazin Kharkov National University, Ukraine (In Russian)
(2010)

12. Pieprzyk, J., Tombak, L.: Soviet encryption algorithm, electronic source (1994). URL https://www.thc.
org/root/phun/stego-challenge/gost-spec.pdf

13. GOST R . -20 (draft): Information technology. Cryptographic data security. Block ciphers, Elec-
tronic source (2014). URL http://www.tc26.ru/standard/draft/GOSTR-bsh.pdf (In Russian)

14. Popov, V., Kurepkin, I., Leontiev, S.: Additional cryptographic algorithms for use with GOST 28147-89,
GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 algorithms. RFC 4357 (Informational)
(2006)

https://www.thc.org/root/phun/stego-challenge/gost-spec.pdf
https://www.thc.org/root/phun/stego-challenge/gost-spec.pdf
http://www.tc26.ru/standard/draft/GOSTR-bsh.pdf

	Influence of addition modulo 2n on algebraic attacks
	Abstract
	Introduction
	Algebraic attacks using a BDD approach
	The general idea of algebraic attack on block ciphers
	Binary decision diagrams
	Operations on BDDs
	Linear absorption
	Solving method

	Addition modulo 2n in SP network
	Application of the proposed method on GOST
	Structure of the GOST algorithm
	Specification of the substitutions
	Key expansion
	Algebraic-differential cryptanalysis of GOST
	Computational results
	Fixing the first 192 bits of the key
	Fixing the last 96 bits of the key

	Conclusions
	Appendix A Propagation of carry bits in a modular adder
	References

