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Abstract Fix a field F. The algebraic immunity over F of boolean function f : {0, 1}n →
{0, 1} is defined as the minimal degree of a nontrivial (multilinear) polynomial g(x) ∈
F[x1, . . . , xn] such that f (x) is a constant (either 0 or 1) for all x ∈ {0, 1}n satisfying
g(x) = 0. Function f is called k robust immune if the algebraic immunity of f is always not
less than k no matter how one changes the value of f (x) for k ≤ |x| ≤ n − k. For any field
F, any integers n, k ≥ 0, we characterize all k robust immune symmetric boolean functions
in n variables. The proof is based on a known symmetrization technique and constructing
a partition of nonnegative integers satisfying certain (in)equalities about p-adic distance,
where p is the characteristic of the field F.
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1 Introduction

In cryptography community, algebraic immunity (over F2) is proposed as a criteria for
boolean functions used in some stream ciphers to resist algebraic attacks [6]. In order to
resist algebraic attacks (as well as many others), there are a lot of constructions aiming to
achieve high algebraic immunity, high nonlinearity, balancedness, and so on [4, 5, 12, 15].

Symmetric boolean functions are those whose output is invariant under permutations
of inputs. Regardless of its application in stream cipher, symmetric boolean functions
are particularly well studied due to its relatively simple structure. It turns out all sym-
metric boolean functions with maximum algebraic immunity �n/2� can be completely
characterized, cumulated along a line of research [2, 10, 11, 13, 14, 16], etc.
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In computational complexity, algebraic immunity (the same definition under different
names!) also attracts some attention. Namely, (one-sided) immunity of f is defined as the
minimal degree of a nontrivial polynomial g such that f (x) = 0 ⇒ g(x) = 0; immunity
over Fp is also called weak mod-p degree. In circuit complexity, roughly speaking, lower
bound on the algebraic immunity will imply circuit lower bound under various models [3,
7–9]. In proof complexity, immunity plus some expanding property implies degree lower
bounds for Polynomial Calculus [1].

This work is motivated by the goal to characterize all symmetric boolean functions with
any given algebraic immunity (not only maximum). To make the problem easier, we pro-
pose the definition of k robust immune (which is stronger than algebraic immunity), and end
up with a complete characterization of k robust immune symmetric boolean function for any
k over any field F. The the first ingredient is a known symmetrization technique which has
been successfully applied to understand algebraic immunity of symmetric Boolean func-
tions. The main technical part is a construction of the (unique) partition of nonnegative
integers which satisfies certain p-adic distance (in)equalities, which will imply a complete
list of robust immune symmetric boolean functions.

2 Main result

Definition 1 Let F be a field, and f : {0, 1}n → {0, 1} be a boolean function. The algebraic
immunity of f over field F is defined as the minimal degree of a nontrivial1 polynomial
g ∈ F[x1, . . . , xn], such that f becomes a constant when restricting to the zeros of g, i.e.,
there exists some c ∈ {0, 1} such that g(x) = 0 ⇒ f (x) = c.

In cryptography community, algebraic immunity usually refers to that over F2, and can
also be defined as the minimal F2-degree of some boolean function g such that fg = 02

or (1 − f )g = 0. If fg = 0, then g is called an annihilator of f (over boolean cube). In
words, algebraic immunity of f is the smallest degree of some nonzero annihilator of either
f or 1 − f .

Definition 2 Boolean function f : {0, 1}n → {0, 1} is called k robust immune over field F

if the algebraic immunity of f over F is always not less than k no matter how one changes
the values of f (x) with k ≤ |x| ≤ n − k, where |x| := x1 + . . . + xn is the weight of x.

The definition of k robust immune looks a bit artificial. However, the reason why we
allow changing values of f (x) for k ≤ |x| ≤ n − k instead of k′ ≤ |x| ≤ n − k′ for some
other k′ is because k′ = k is the largest possible integer to take. Another reason we propose
this definition is because we are able to characterize all k robust immune symmetric boolean
functions, while the goal keeping in mind is to give such a characterization for all symmetric
boolean functions with any given algebraic immunity.

Our main result is the following characterization of all k robust immune symmetric
boolean functions for any given k over any field F. For convenience, if f : {0, 1}n → {0, 1}
is symmetric, let vf : {0, 1, . . . , n} → {0, 1} be its value vector, that is, f (x) = vf (|x|).

1By nontrivial, we mean there exists some x ∈ {0, 1}n such that g(x) = 0.
2fg = 0 should be understood semantically, i.e., for every x ∈ {0, 1}n, f (x)g(x) = 0; alternatively,
fg = 0 could be understood as multiplication of polynomials over the quotient ring F [x1, . . . , xn]/(x2

1 =
x1, . . . , x

2
n = xn).
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Theorem 1 For any field F, any integer t ≥ 0, there exists a partition P = P(F, t) of
nonnegative integers such that, for any k, symmetric boolean function f : {0, 1}2k+t−1 →
{0, 1} is k robust immune if and only if

vf (k − 1 − i) = 1 − vf (k + t + j) (1)

for any 0 ≤ i, j ≤ k − 1 belonging to the same set in partition P .

Remark 1 The partition P = P(F, t) will be defined explicitly in the following sequel, and
P only depends on t and the characteristic of the field F, which follows from the following
linear algebra argument. Function f has no degree ≤ d annhilator if and only if some matrix
of size

(
n

≤d

) × |f −1(1)| has rank
(

n
≤d

)
, which is a {0, 1}-matrix3. It is clear that the rank of

the {0, 1}-matrix does not change over any field extension.

Remark 2 It is known that the algebraic immunity of any n-variable boolean function is
upper bounded by �n/2�, which is not difficult to see by a dimension argument. When t = 0,
f is an odd-variable symmetric boolean functions with maximum algebraic immunity; and
when t = 1, f is an even-variable symmetric boolean function with maximum algebraic
immunity.4 For the case F = F2 and t = 0, 1, our theorem is implicitly known [11, 16]. For
general field F and general t , our result is a nontrivial generalization.

3 Overview of the proof

The proof follows from a crucial symmetrization technique in [10] and the calculation of
a determinant over the field Fp . It turns out the symmetric boolean function is k robust
immune if and only if some corresponding matrices have full rank, that is, the determinant
is nonzero. Over the field Fp , in order to prove the determinant is nonzero, the calculation
involves a lot of p-adic distance estimates.

The following lemma says in order to prove symmetric boolean function f has no
nonzero annihilator of certain degree, it suffices to consider the semi-symmetric annihila-
tors up to that degree. The crucial lemma is proved by Liu and Feng in [10] for F = F2, and
observed in [3] that it works for any field.

Lemma 1 [10] Let F be a field, and f : {0, 1}n → {0, 1} be a symmetric boolean function.
Then f has a lowest degree annihilator g of the following form,

g =
l∏

i=1

(x2i−1 − x2i )g
′,

where g′ is a symmetric function in variables x2l+1, . . . , xn.

For convenience, let us introduce the following notation ψk : Z≥0 → F
k , where

ψk(x) =
((

x

0

)
,

(
x

1

)
, . . . ,

(
x

k − 1

))
∈ F

k,

3The rows are indexed by subsets of [n] of size ≤ d, the columns are indexed by points x ∈ {0, 1}n such that
f (x) = 1, and the entry (S, x) is exactly

∏
i∈S xi .

4The converse is not true, that is, there are 2k-variable symmetric boolean functions with maximum algebraic
immunity k which are not k robust immune. However, they are “close” to some k robust immune functions.
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where
(
x
i

) = 1 + 1 + . . . + 1︸ ︷︷ ︸
(x

i) times

. In other words,
(
x
i

) = (
x
i

)
(mod p) over field Fp . The

following proposition is an immediate consequence of Lemma 1.

Proposition 1 Let f : {0, 1}n → {0, 1} be a symmetric boolean function, and vf :
{0, 1, . . . , n} → {0, 1} be its corresponding value vector. Function f is k robust immune if
and only if, for any 0 ≤ l ≤ k − 1, both

{ψk−l (i − l) : i ∈ [l, k − 1] ∪ [n − k + 1, n − l] and vf (i) = 0} (2)

and
{ψk−l (i − l) : i ∈ [l, k − 1] ∪ [n − k + 1, n − l] and vf (i) = 1} (3)

are bases of Fk−l .

Proof By the definition of k robust immune, for symmetric boolean function f , it suffices
to prove f0 has no annihilator of degree < k, and 1 − f1 has no annihilator of degree < k,
where

vf0(x) =
{

vf (x) x ∈ [0, k − 1] ∪ [n − k + 1, n]
0 otherwise

and

vf1(x) =
{

vf (x) x ∈ [0, k − 1] ∪ [n − k + 1, n]
1 otherwise.

By Lemma 1, f0 (the argument for f1 is similar) has no annihilator of degree < k if and
only if it has no annihilator of the form g = ∏l

i=1(x2i−1 − x2i )g
′, where g′ is a symmetric

function in x2l+1, . . . , xn of degree < k − l. Fix some 0 ≤ l ≤ k − 1. f0g = 0 ⇔
f0

∏l
i=1(x2i−1 − x2i )g

′ = 0, which is equivalent to f ′
0g

′ = 0, where

f ′
0 = f0|x1=x3=...=x2l−1=1,x2=x4=...=x2l=0.

It is easily checked that vf ′
0

= (vf0(l), vf0(l + 1), . . . , vf0(n − l)). Note that both f ′
0 and g′

are symmetric, and deg(g) < k − l. Thus we may write

g′ = a0e0 + . . . + ak−l−1ek−l−1,

where ei is the elementary symmetric polynomial of degree i, which takes value
(
x
i

)
at any

point with weight i. The condition f ′
0g

′ = 0 is equivalent to g′(x) = 0 for all vf ′
0
(x) = 1,

i.e., a0
(
x
0

) + a1
(
x
1

) + . . . + ak−l−1
(

x
k−l−1

) = 0. Therefore, such g′ exists if and only if there
exists a nonzero a ∈ F

k−l such that aT ψk−l (x) = 0 for all vf ′
0
(x) = vf (x + l) = 1, that is,

{ψk−l (i − l) : i ∈ [l, k − 1] ∪ [n − k + 1, n − l] and vf (i) = 1} has rank < k − l.

Remark 3 From the above proposition, we can see if symmetric f is k robust immune, then
vf (i) = 1 − vf (n − i) for 0 ≤ i ≤ k − 1, and f |x1=1,x2=0 is k − 1 robust immune.

Next step is to notice ψk(x0), ψk(x1), . . . , ψk(xk−1) has full rank if and only if the deter-
minant is nonzero (over the field F), where the determinant turns out to have the following
simple form [3]5

det(ψk(x0), ψk(x1), . . . , ψk(xk−1)) =
∏

0≤i<j≤k−1

xj − xi

j − i
. (4)

5The computation consists of some simple manipulations reducing to Vandermonde matrix.
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Over the the field F with characteristic 0, the above determinant is always nonzero for
distinct x0, . . . , xk−1, which implies P(F, t) = {{0}, {1}, {2}, . . .} for any t ≥ 0; over field
with characteristic p, the determinant is nonzero if and only if

∑

0≤i<j≤k−1

ordp(xj − xi) =
∑

0≤i<j≤k−1

ordp(j − i), (5)

where ordp(x) is the p-adic order of x, that is, the maximum integer m such that pm divides
x. From now on, we will assume F = Fp for some prime p.

Combining (4) with Proposition 1, we have the following lemma, which says if the
partition P satisfies certain condition, then the functions in Theorem 1 are k robust immune.

Lemma 2 (Sufficiency) Fix some integer t ≥ 0 and k > 0. Let P be a partition of
{0, . . . , k − 1}, i.e., P = {I0, I1, . . .}, where ∪̇i≥0Ii = {0, . . . , k − 1}. If for all I ∈ P , we
have

∑

x∈I and x<y

ordp(y − x) =
∑

x∈I and x<y

ordp(y + x + t + 1) (6)

for all 0 ≤ y ≤ k − 1 with y �∈ I , then all symmetric boolean functions satisfying (1) are k

robust immune.

Proof By Proposition 1, it suffices to prove that for all l, both (2) and (3) are bases of Fk−l .
With loss of generality, assume l = 0, and we shall prove (2) is a basis of Fk .

By condition (1), we know that, there exists index set S such that

{k − 1 − i : vf (i) = 0 and i ∈ [0, k − 1]} =
⋃

i∈S

Ii,

and

{i − k − t : vf (i) = 0 and i ∈ [k + t, 2k + t − 1]} =
⋃

i �∈S

Ii ,

where P = ∪̇i Ii . By (5), it suffices to prove
∑

0≤i<j≤k−1

ordp(j − i) =
∑

0≤i<j≤k−1

ordp(xj − xi),

where xj is either k − 1 − j or k + t + j , depending on whether j ∈ ∪i∈SIi or not.
∑

0≤i<j≤k−1

ordp(xj − xi)

=
∑

i<j
i,j∈S or i,j �∈S

ordp(j − i) +
∑

i<j
i∈S,j �∈S or i �∈S,j∈S

ordp(j + i + t + 1)

=
∑

i<j
i,j∈S or i,j �∈S

ordp(j − i) +
∑

i<j
i∈S,j �∈S or i �∈S,j∈S

ordp(j − i)

=
∑

0≤i<j≤k−1

ordp(j − i),

where the second last step follows from our condition (6).
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Lemma 3 (Necessity) Fix some integer t ≥ 0 and k > 0. Let P be a partition of {0, . . . , k−
1} satisfying (6) in Lemma 2. If for any y ∈ I ∈ P with {x ∈ I : x < y} nonempty,

∑

x∈I and x<y

ordp(y − x) <
∑

x∈I and x<y

ordp(y + x + t + 1), (7)

then all k robust immune symmetric boolean functions satisfy (1).

Proof Let P be a partition of {0, 1, . . . , k − 1} satisfying the conditions in this lemma.
Assume for contradiction that there exists some k robust immune symmetric boolean
function which does not satisfy (1).

Let 0 ≤ i < j ≤ k−1 be some pair which violates (1) with minimum j . Let l = k−1−j ,
and we shall prove

{ψk−l (i − l) : i ∈ [l, k − 1] ∪ [n − k + 1, n − l] and vf (i) = 0} (8)

is not a basis of Fk−l , which would be a contradiction to Proposition 1.
Let P ∩ {0, 1, . . . , k − l − 1} = {I0, I1, . . . , Im}, which is the partition of {0, 1, . . . , k −

l − 1} induced by P . Without loss of generality, assume j ∈ Im. Then the set (8) is exactly
the union of

{ψk−l (k − 1 − x − l) : x ∈ I0} or {ψk−l (k + t + x − l) : x ∈ I0}
{ψk−l (k − 1 − x − l) : x ∈ I1} or {ψk−l (k + t + x − l) : x ∈ I1}

...

{ψk−l (k − 1 − x − l) : x ∈ Im−1} or {ψk−l (k + t + x − l) : x ∈ Im−1}
{ψk−l (k − 1 − x − l) : x ∈ Im \ {j}} ∪ {ψk−l (k + t + j − l)}

or {ψk−l (k + t + x − l) : x ∈ Im \ {j}} ∪ {ψk−l (k − 1 − j − l)}.
Following the same calculation as we did in Lemma 2, we claim that the order of the
determinant is exactly

∑

x∈Im and x<y

ordp(y + x + t + 1) −
∑

x∈Im and x<y

ordp(y − x),

which is greater than 0 by our condition in the lemma, and thus the determinant over Fp is
zero, and therefore (8) is not a basis.

Given field F, integer t, k, assuming there exists a partition P of {0, 1, . . . , k − 1} sat-
isfying (6) and (7), then by Lemma 2 and Lemma 3, we will obtain all k robust immune
symmetric boolean functions in 2k + t − 1 variables. It remains to prove the existence of
such partitions, and we will construct P inductively on t . An interesting feature, which in
fact follows from (6) and (7), is that P does not depend on k, that is to say, P(F, t, k) and
P(F, t, k + 1) induce the same equivalence relation on {0, 1, . . . , k − 1}. Let us summarize
the conditions we need on P(Fp, t), which is our main technical lemma.

Lemma 4 (Main technical lemma) For any prime p, and any integer t ≥ 0, there exists a
partition P = P(Fp, t) of nonnegative integers satisfying the followings.

– (Soundness) For all I ∈ P , y �∈ I , we have
∑

x∈I and x<y

ordp(y − x) =
∑

x∈I and x<y

ordp(y + x + t + 1). (9)



Cryptogr. Commun. (2015) 7:297–315 303

– (Completeness) For any y ∈ I ∈ P with {x ∈ I : x < y} nonempty,
∑

x∈I and x<y

ordp(y − x) <
∑

x∈I and x<y

ordp(y + x + t + 1). (10)

Putting everything together, it is easy to see Lemma 4 together with Lemma 2 and Lemma
2 implies our main theorem. All the remaining pages are devoted to the constructive proof
of Lemma 4, which is a bit tedious. It would be interesting to find a simpler proof of Lemma
4, probably an existential proof.

4 Proof for the case char(F) = 2

In this section, we will prove Lemma 4 for F = F2.

Notations We are introducing some handy notations, which are nonstandard but will be
convenient and intuitive for the following proofs. For p = 2 (or any prime p ≥ 2), integer
x ≥ 0 has a unique p-adic expansion6

x = (x0, x1, x2, . . .)2,

where x = ∑
i≥0 xi2i . When there is no ambiguity, we will drop the subscript 2 . A pattern,

either denoted by an p-adic expansion or Greek alphabets α, β, is subset of Z≥0 descried
by p-adic expansion by the following rules.

– Character ∗ denotes any 01-string of arbitrary length, that is, pattern (∗) is exactly Z≥0.
– Character ? denotes a single bit, i.e., either 0 or 1. For example, (?, 0, ∗) denotes the set

of nonnegative integers congruent to 0, 1 mod 4.
– An integer superscript i means repeating i times. For example, (0i , ∗) denotes the set

of nonnegative integers which are multiples of 2i .
– If α is a pattern, it can be put at the end of p-adic expansion to define a new pattern,

like (0, 0, α), which is the set of integers 4x, x ∈ α.
– Since patterns are sets, set operations can be applied. For example, α ∩ [0, y] is {x ∈

α : x ≤ y}.
We are ready to define partition P(F2, t). Within this section, we may simply write

P(F2, t) as P(t).

Definition 3 Let P(0) = {(∗)} and P(1) = {(1i , 0, ∗) : i = 0, 1, . . .}. For integer t ≥ 1,

P(2t) = {(?, α) : α ∈ P(t)}.
For odd integer t ≥ 1,

P(2t + 1) = {(0, 0, α) : (0, α) ∈ P(t)} ∪ {(1, ?, α), (0, 1, α) : (1, α) ∈ P(t)}.
For odd integer t ≥ 1 and e ≥ 2,

P(2et + 1) = {(1e, α) : α ∈ P(t + 1)} ∪ {(1i , 0, ?e−1−i , α) : α ∈ P(t), 0 ≤ i ≤ e − 1}.

6Or equivalently, embed Z≥0 into the ring of p-adic integers Zp , which is a formal series x = ∑
i≥0 xip

i .
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It is not difficult to see P(t) is well-defined, that is, it is a partition of Z≥0. To make sure
the readers understand our definition of P(t), let us restate the the definition in standard set
notations.

P(0) = {Z≥0}.
P(1) = {2r+1

Z≥0 + 2r − 1 : r = 0, 1, . . .}.
P(2t) = {2I ∪ (2I + 1) : I ∈ P(t)}.

P(2t + 1) = {2I : I ∈ P(t) and I ⊆ 2Z≥0} ∪
{2I, (2I + 1) ∪ (2I − 1) : I ∈ P(t) and I ⊆ 2Z≥0 + 1}.

P(2et + 1) = {2eI + 2e − 1 : I ∈ P(t + 1)} ∪
{

⋃

0≤j≤2e−1−i−1

2eI + 2i+1j + 2i − 1 : I ∈ P(t), 0 ≤ i ≤ e − 1}.

In the following subsections, we will prove Lemma 4 for p = 2 by induction on t .
According to our definition of P(t), the proof consists of 5 cases, that is, 0, 1, 2t, 2t +
1, 2et + 1.

4.1 P(F2, 0)

Recall that P(0) = {Z≥0}. Soundness is trivially true. For completeness, we need to prove

∑

0≤x<y

ord2(y − x) <
∑

0≤x<y

ord2(y + x + 1) (11)

for any x > 0, which is equivalent to ord2(y!) < ord2((2y)!/y!), which is true because(2y
y

) ≡ 0 (mod 2) for any y > 0. We leave it as an exercise for readers, and (11) will be
used again.

4.2 P(F2, 1)

Recall that P(1) = {(1i , 0, ∗) : i = 0, 1, . . .}. For soundness, let x ∈ (1i , 0, ∗) and y ∈
(1j , 0, ∗), where i �= j . It is easily checked that ord2(x −y) = ord2(x +y +2) = min(i, j),
which proves the soundness.

For completeness, let y ∈ I = (1i , 0, ∗) with I ∩[0, y−1] nonempty, and we shall prove

∑

x∈I∩[0,y−1]
ord2(y − x) <

∑

x∈I∩[0,y−1]
ord2(y + x + 2).

Let y = (y0 = 1, . . . , yi−1 = 1, yi = 0, y≥i+1), where y≥i+1 denotes the integer
(yi+1, yi+2, . . .), that is,

∑
j≥0 2j yi+j+1. Adopt the same notation for x. It is easily checked

that

ord2(y − x) = i + 1 + ord2(y≥i+1 − x≥i+1)

and

ord2(y + x + 2) = i + 1 + ord2(y≥i+1 + x≥i+1 + 1).
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Thus, it is equivalent to prove7

∑

0≤x≥i+1<y≥i+1

ord2(y≥i+1 − x≥i+1) <
∑

0≤x≥i+1<y≥i+1

ord2(y≥i+1 + x≥i+1 + 1)

for any y≥i+1 > 0 (by assumption {x ∈ I : x < y} is nonempty), which is exactly (11).

4.3 P(F2, 2t)

By definition, P(2t) = {(?, α) : α ∈ P(t)}.

Soundness Need to prove for any y �∈ I ∈ P(2t)
∑

x∈I∩[0,y−1]
ord2(y − x) =

∑

x∈I∩[0,y−1]
ord2(y + x + 2t + 1). (12)

Let I = (?, α), where α ∈ P(t). Let y = (y0, y1, . . .), where y≥1 �∈ α by assumption y �∈ I .
The left hand side of (12) is

∑

x∈I∩[0,y−1]
ord2(y − x)

=
∑

x≥1∩[0,y≥1−1]
ord2((y0, y≥1) − (y0, x≥1))

= |α ∩ [0, y≥1 − 1]| +
∑

x≥1∩[0,y≥1−1]
ord2(y≥1 − x≥1).

The right hand side of (12) is
∑

x∈I∩[0,y−1]
ord2(y + x + 2t + 1)

=
∑

x≥1∈α∩[0,y≥1−1]
ord2((y0, y≥1) + (1 − y0, x≥1) + (1, t))

= |α ∩ [0, y≥1 − 1]| +
∑

x≥1∈α∩[0,y≥1−1]
ord2(y≥1 + x≥1 + t + 1).

By induction hypothesis, P(t) is sound, and thus
∑

x≥1
ord2(y≥1 + x≥1 + t + 1) =

∑
x≥1

ord2(y≥1 − x≥1), which proves (12).

Completeness We shall prove, for any y ∈ I ∈ P with {x ∈ I : x < y} nonempty,
∑

x∈I∩[0,y−1]
ord2(y − x) <

∑

x∈I∩[0,y−1]
ord2(y + x + t + 1). (13)

Let I = (?, α), where α ∈ P(t). The left hand side of (13) is |α ∩ [0, y≥1 − 1]| +∑
x≥1<y≥1

ord2(y≥1 − x≥1), while the right hand side is at least

|α ∩ [0, y≥1 − 1]| +
∑

x≥1<y≥1

ord2(y≥1 + x≥1 + t + 1) + δy0,1,

7In the following inequality, we could have written x instead of x≥i+1. We are denoting the variable by x≥i+1
for bit alignment.
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where δy0,1 = 1 if y0 = 1, otherwise 0. If α ∩ [0, y≥1 − 1] is nonempty, we have∑
x≥1<y≥1

ord2(y≥1 + x≥1 + t + 1) >
∑

x≥1<y≥1
ord2(y≥1 − x≥1) by the completeness of

P(t), which implies (13); otherwise y0 = 1, which also implies (13).

4.4 P(F2, 2t + 1), t odd

Recall the definition, P(2t+1) = {(0, 0, α) : (0, α) ∈ P(t)}∪{(1, ?, α), (0, 1, α) : (1, α) ∈
P(t)}, where all patterns in P(t) are of the form (0, α) or (1, α) by definition.

Soundness We need to prove for any y �∈ I ∈ P(2t + 1)
∑

x∈I and x<y

ord2(y − x) =
∑

x∈I and x<y

ord2(y + x + 2t + 2). (14)

Let us prove by case analysis according to the patterns of y and I .

Case 1 y ∈ (0, 0, α) and I = (1, ?, β), where (0, α), (1, β) ∈ P(t). Both the left and right
of (14) are 0.

Case 2 y ∈ (0, 0, α) and I = (0, 1, β), where (0, α), (1, β) ∈ P(t). The left of (14) is
|I ∩ [0, y − 1]|, and the right is

∑
x∈I∩[0,y−1] ord2(y + x + 2t + 2) = ∑

ord((0, 0, y≥2) +
(0, 1, x≥2) + (0, t + 1)) = |I ∩ [0, y − 1]|.

Case 3 y ∈ (1, ?, α) and I = (0, 0, β), where (1, α), (0, β) ∈ P(t). Both the left and right
of (14) are 0.

Case 4 y ∈ (1, ?, α) and I = (0, 1, β), where (1, α), (1, β) ∈ P(t). Both the left and right
of (14) are 0.

Case 5 y ∈ (0, 1, α) and I = (0, 0, β), where (1, α), (0, β) ∈ P(t). It is similar to Case 2.

Case 6 y ∈ (0, 1, α) and I = (1, ?, β), where (1, α), (1, β) ∈ P(t). Both the left and right
of (14) are 0.

Case 7 y ∈ (0, 0, α) and I = (0, 0, β), where (0, α), (0, β) ∈ P(t) and α �= β. The left of
(14) is

∑

x≥1∈(0,α)∩[0,y≥1−1]
ord2((0, y≥1) − (0, x≥1))

= |(0, α) ∩ [0, y≥1 − 1]| +
∑

x≥1∈(0,α)∩[0,y≥1−1]
ord2(y≥1 − x≥1),

and the right of (14) is
∑

x≥1∈(0,α)∩[0,y≥1−1]
ord2((0, y≥1) + (0, x≥1) + (0, t + 1))

= |(0, α) ∩ [0, y≥1 − 1]| +
∑

x≥1∈(0,α)∩[0,y≥1−1]
ord2(y≥1 + x≥1 + t + 1).

By induction hypothesis that P(t) is sound and (0, α) ∈ P(t), we have
∑

ord2(y≥1 −
x≥1) = ∑

ord2(y≥1 + x≥1 + t + 1), which implies (14).
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Case 8 y ∈ (1, ?, α) and I = (1, ?, β), where (1, α), (1, β) ∈ P(t) and α �= β. It is not
difficult to verify that the left of (14) is

2|α ∩ [0, y≥2 − 1]| +
∑

x≥2∈α∩[0,y≥2−1]
ord2((1, y≥2) − (1, x≥2)),

and the right of (14) is

2|α ∩ [0, y≥2 − 1]| +
∑

x≥2∈α∩[0,y≥2−1]
ord2((1, y≥2) + (1, x≥2) + t + 1).

By the induction hypothesis that P(t) is sound, and (1, y≥2) ∈ (1, α) ∈ P(t), we have∑
ord2((1, y≥2) − (1, x≥2)) = ∑

ord2((1, y≥2) + (1, x≥2) + t + 1), which implies (14).

Case 9 y ∈ (0, 1, α) and I = (0, 1, β), where (1, α), (1, β) ∈ P(t) and α �= β. The left of
(14) is

|β ∩ [0, y≥2]| +
∑

x≥2∈β∩[0,y≥2−1]
ord2((1, y≥2) − (1, x≥2))

and the right of (14) is

|β ∩ [0, y≥2]| +
∑

x≥2∈β∩[0,y≥2−1]
ord2((1, y≥2) + (1, x≥2) + t + 1).

By the induction hypothesis, P(t) is sound, then for (1, y≥2) ∈ (1, α) ∈ P(t), (1, β) ∈
P(t), we have

∑
ord2((1, y≥2) − (1, x≥2)) = ∑

ord2((1, y≥2) + (1, x≥2) + t + 1),which
proves (14).

Completeness We will prove the completeness of P(2t + 1), which amounts to, for any
y ∈ I ∈ P(2t + 1) with {x ∈ I : x < y} nonempty,

∑

x∈I and x<y

ord2(y − x) <
∑

x∈I and x<y

ord2(y + x + 2t + 2). (15)

Case 1 y ∈ I = (0, 0, α), where y≥1 ∈ (0, α) ∈ P(t). The left of (15) is

|I ∩ [0, y − 1]| +
∑

x≥1∈(0,α)∩[0,y≥1−1]
ord2(y≥1 − x≥1),

and the right of (15) is

|I ∩ [0, y − 1]| +
∑

x≥1∈(0,α)∩[0,y≥1−1]
ord2(y≥1 + x≥1 + t + 1).

Observe that y≥1 ∈ (0, α) ∈ P(t) and (0, α)∩[0, y≥1−1] is nonempty. By the completeness
of P(t), we have

∑
ord2(y≥1 − x≥1) <

∑
ord2(y≥1 + x≥1 + t + 1), which implies (15).

Case 2 y ∈ I = (1, ?, α), where (1, y≥2) ∈ (1, α) ∈ P(t). It is not difficult to verify the
left hand side of (15) is

2|α ∩ [0, y≥2 − 1]| + δy1,1 +
∑

x≥2∈α∩[0,y≥2−1]
ord2((1, y≥2) − (1, x≥2)),



308 Cryptogr. Commun. (2015) 7:297–315

while the right of (15) is at least

2|α ∩ [0, y≥2 − 1]| + 2δy1,1 +
∑

x≥2∈α∩[0,y≥2−1]
ord2((1, y≥2) + (1, x≥2) + t + 1).

Given (1, ?, α) ∩ [0, y − 1] nonempty, we either have (1, α) ∩ [0, y≥2 − 1] nonempty,
or y1 = 1. In the former case,

∑
x≥2

ord2((1, y≥2) − (1, x≥2)) <
∑

x≥2
ord2((1, y≥2) +

(1, x≥2) + t + 1) by the completeness of P(t), which implies (15); in the latter case, (15) is
also true.

Case 3 y ∈ I = (0, 1, α), where (1, y≥2) ∈ (1, α) ∈ P(t). The left of (15) is

|(1, α) ∩ [0, y≥1 − 1]| +
∑

x≥1∈(1,α)∩[0,y≥1−1]
(y≥1 − x≥1),

while the right of (15) is

|(1, α) ∩ [0, y≥1 − 1]| +
∑

x≥1∈(1,α)∩[0,y≥1−1]
(y≥1 + x≥1 + t + 1).

From the completeness of P(t), we have
∑

(y≥1 − x≥1) <
∑

(y≥1 + x≥1 + t + 1), which
implies (15).

4.5 P(F2, 2et + 1), t odd, e ≥ 2

Recall the definition, for e ≥ 2 and odd t ,

P(2et + 1) = {(1e, α) : α ∈ P(t + 1)} ∪ {(1i , 0, ?e−1−i , α) : α ∈ P(t), 0 ≤ i ≤ e − 1}.

Soundness We need to show for any y �∈ I ∈ P(2et + 1)

∑

x∈I and x<y

ord2(y − x) =
∑

x∈I and x<y

ord2(y + x + 2et + 2). (16)

Again, it will be case analysis according to the definition.

Case 1 y ∈ (1e, α) and I = (1i , 0, ?e−1−i , β), where α ∈ P(t + 1) and β ∈ P(t). The left
of (16) is i|β ∩ [0, y≥e − 1]|, and the right of (16) is

∑

x≥e∈β∩[0,y≥e−1]
ord2((1

e, y≥e) + (1i , 0, ?e−1−i , x≥e) + (0, 1, 0e−2, t)),

which is also i|β ∩ [0, y≥e − 1]|. Thus, (16) is true.

Case 2 y ∈ (1i , 0, ?e−1−i , α) and I = (1e, α). Similar with Case 1, both sides of (16) is
i|β ∩ [0, y≥e − 1]|.
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Case 3 y ∈ (1e, α) and I = (1e, β), where α, β ∈ P(t + 1) and α �= β. The left of (16) is
e|α ∩ [0, y≥e − 1]| + ∑

x≥e∈β∩[0,y≥e−1] ord2(y≥e − x≥e), while the right of (16) is

∑

x∈I and x<y

ord2(y + x + 2et + 2)

=
∑

x∈I and x<y

ord2((1
e, y≥e) + (1e, x≥e) + (0, 1, 0e−2, t))

= e|α ∩ [0, y≥e − 1]| +
∑

x≥e∈β∩[0,y≥e−1]
ord2(y≥e + x≥e + t + 2).

By induction hypothesis, P(t+1) is sound. Combining with the facts that α �= β ∈ P(t+1)

and y≥e ∈ α, we have
∑

x≥e
ord2(y≥e − x≥e) = ∑

x≥e
ord2(y≥e + x≥e + t + 2), which

implies (16).

Case 4.1 y ∈ (1i , 0, ?e−1−i , α) and I = (1j , 0, ?e−1−j , β), where α, β ∈ P(t), and i �= j .
The left of (16) is min(i, j)|I∩[0, y−1]|, and the right of (16) is also min(i, j)|I∩[0, y−1]|,
because ord2((1i , 0, yi+1, . . . , ye−1, y≥e)+(1j , 0, ?e−1−j , ∗)+(0e, t)+(0, 1)) = min(i, j).

Case 4.2 y ∈ (1i , 0, ?e−1−i , α) and I = (1i , 0, ?e−1−i , β), where α �= β ∈ P(t). The left
of (16) is8

∑

x≥e∈β∩[0,y≥e−1]
ord2((1

i , 0, yi+1, . . . , ye−1, y≥e) − (1i , 0, ?e−1−i , x≥2))

= (i + 1)|I ∩ [0, y − 1]| + |β ∩ [0, k≥e − 1]|
⎛

⎝
e−i−2∑

j=0

j2e−i−j−2 + e − i − 1

⎞

⎠

+
∑

x≥e∈β∩[0,y≥e−1]
ord2(y≥e − x≥e),

where the term j2e−i−j−2 corresponds to the sum over (1i , 0, yi+1, . . . , yi+j+1, 1 −
yi+j+2, ?e−1−i−j , x≥e); the right of (16) is

∑

x≥e∈β∩[0,y≥e−1]
ord2((1

i , 0, yi+1, . . . , ye−1, y≥e) + (1i , 0, ?e−1−i , x≥e) +

(0, 1, 0e−2, t))

= (i + 1)|I ∩ [0, y − 1]| + |β ∩ [0, k≥e − 1]|(
e−i−2∑

j=0

j2e−i−j−2 + e − i − 1)

+
∑

x≥e∈β∩[0,y≥e−1]
ord2(y≥e + x≥e + t + 1).

By the soundness of P(t), and the assumption that y≥e ∈ α, β ∈ P and α �= β, we have∑
x≥e∈β∩[0,y≥e−1] ord2(y≥e − x≥e) = ∑

x≥e∈β∩[0,y≥e−1] ord2(y≥e + x≥e + t + 1), which
proves (16).

8In abuse of notation, the term (1i , 0, ?e−1−i , x≥2) means the sum over all 01 strings by replacing ? by 0 or 1.
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Completeness It suffices to prove, for any y ∈ I ∈ P(2t + 1) with {x ∈ I : x < y}
nonempty,

∑

x∈I and x<y

ord2(y − x) <
∑

x∈I and x<y

ord2(y + x + 2et + 2). (17)

Case 1 y ∈ I = (1e, α), where α ∈ P(t + 1). In this case, the left of (17) is e|I ∩ [0, y −
1]| + ∑

x≥e∈α(y≥e − x≥e), and the right of (17) is

∑

x≥e∈α∩[0,y≥e−1]
ord2((1

e, y≥e) + (1e, x≥e) + (0, 1, 0e−2, t))

= e|I ∩ [0, y − 1]| +
∑

x≥e∈α∩[0,y≥e−1]
ord2(y≥e + x≥e + t + 2).

By the completeness of P(t + 1), and the condition y≥e ∈ α ∈ P(t + 1), we have∑
x≥e

(y≥e − x≥e) <
∑

x≥e
ord2(y≥e + x≥e + t + 2), which proves (17).

Case 2 y ∈ I = (1i , 0, ?e−1−i , α) ∈ P(2et + 1), where α ∈ P(t). The left of (17) is
∑

xi+1,...,xe−1∈{0,1},x≥e∈α

:(1i ,0,x≥i+1)<y

ord2((1
i , 0, y≥i+1) − (1i , 0, xi+1, . . . , xe−1, x≥e))

= (i + 1)|I ∩ [0, y − 1]| +
∑

x≥e∈α

ord2((yi+1, . . . , ye−1, y≥e) − (?e−i−1, x≥e))

+
∑

xi+1,...,xe−1∈{0,1}
:(xi+1,...,xe−1)<(yi+1,...,ye−1)

ord2((yi+1, . . . , ye−1, y≥e) − (xi+1, . . . , xe−1, y≥e)).

The right of (17) is
∑

xi+1,...,xe−1∈{0,1},x≥e∈α

:(1i ,0,x≥i+1)<y

ord2((1
i , 0, y≥i+1) + (1i , 0, x≥i+1) + (0, 1, 0e−2, t))

= (i + 1)|I ∩ [0, y − 1]| +
∑

x≥e∈α

ord2(y≥i+1 + (?e−i−1, x≥e) + (1, 0e−i−2, t))

+
∑

xi+1,...,xe−1∈{0,1}
:(xi+1,...,xe−1)<(yi+1,...,ye−1)

ord2(y≥i+1 + (xi+1, . . . , xe−1, y≥e) + (1, 0e−i−2, t)).

Comparing the left with the right, if we could prove
∑

x≥e∈α

ord2((yi+1, . . . , ye−1, y≥e) − (?e−i−1, x≥e))

≤
∑

x≥e∈α

ord2(y≥i+1 + (?e−i−1, x≥e) + (1, 0e−i−2, t)) (18)
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and
∑

xi+1,...,xe−1∈{0,1}
:(xi+1,...,xe−1)<(yi+1,...,ye−1)

ord2((yi+1, . . . , ye−1, y≥e) − (xi+1, . . . , xe−1, y≥e))

≤
∑

xi+1,...,xe−1

ord2(y≥i+1 + (xi+1, . . . , xe−1, y≥e) + (1, 0e−i−2, t)), (19)

and “=” in (18), (19) can not hold simultaneously, then (17) will be true.
For (18), the left hand side is

|α ∩ [0, k≥e − 1]|(
e−i−2∑

j=0

j2e−i−j−2 + e − i − 1) +
∑

x≥e∈α∩[0,y≥e−1]
ord2(y≥e − x≥e),

while the right is

|α ∩ [0, k≥e − 1]|(
e−i−2∑

j=0

j2e−i−j−2 + e − i − 1) +
∑

x≥e∈α∩[0,y≥e−1]
ord2(y≥e + t + 1).

By the induction hypothesis that P(t) is complete, we have
∑

x≥e∈α∩[0,y≥e−1]
ord2(y≥e − x≥e) ≤

∑

x≥e∈α∩[0,y≥e−1]
ord2(y≥e + t + 1),

where the ≤ is strictly less if α ∩ [0, k≥e − 1] is nonempty.

For (19), the left is
∑y′−1

x=0 ord2(y
′ − x) = ord2(y

′!), where y′ = (yi+1, . . . , ye−1),

and the right is at least
∑y′−1

x=0 ord2(y
′ + x + 1) = ord2((2y′)!/y′!). From (11), we know

ord2(y
′) ≤ ord2((2y′)!/y′!) unless y′ = 0. Suppose for contradiction that the “=” holds in

both (18) and (19) are true. Then y′ = (yi+1, . . . , ye−1) = 0 and α ∩ [0, y≥e − 1] is empty,
which implies I ∩ [0, y − 1] is empty, which contradicts our assumption!

5 Proof for the case char(F) ≥ 3

For the case p ≥ 3, the idea of proving Lemma 4 is similar to that of p = 2. And the
construction of P(Fp, t) is in some sense simpler, where fewer cases are involved.

Within the section, p is always a prime greater than 2, and let q = (p + 1)/2. For con-
venience, we may write P(t) instead of P(Fp, t), and we adopt the same p-adic expansion
notation used in the last section.

Definition 4 Let p ≥ 3 be a prime, and q = (p + 1)/2. Define

P(0) = {({x0, p − 1 − x0}, {x1, p − 1 − x1}, . . .)p : 0 ≤ xi ≤ q − 1}
and

P(1) = {((p − 1)i , {j, p − 2 − j}, α)p : α ∈ P(0), i ≥ 0, j = 0, 1, . . . , q − 2},
where {j, p − 2 − j} denotes a bit which is either j or p − 2 − j . For any integer t ≥ 0 and
0 ≤ r ≤ p − 1 with pt + r ≥ 2, define

P(pt + r)

= {({i, j}, α)p : 0 ≤ i, j ≤ p − 1, b ∈ {1, 2}, i + j + r + 1 = bp, α ∈ P(t + b − 1)}.
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To help understand the definition, let us redefine the partition in standard set notations
instead of “patterns”. Partition P(0) = {I0, I1, . . .}, where

Ij = {x = (x0, x1, . . .)p :
∑

i:xi≤q−1

xiq
i +

∑

i:xi≥q

(p − 1 − xi)q
i = j}.

P(1) = {(pi+1I + jpi + pi − 1) ∪ (pi+1I + (p − 2 − j)pi + pi − 1) :
I ∈ P(0), i ≥ 0, j = 0, 1, . . . , q − 2}.

P(pt + r) = {(i + pI) ∪ (j + pI) : 0 ≤ i, j ≤ p − 1, b ∈ {1, 2}, i + j + r + 1 = bp,

I ∈ P(t + b − 1)}.

5.1 P(Fp, 0)

By the definition of P(0), every set in P(0) is uniquely identified by some pattern ({x0, p−
1 − x0}, {x1, p − 1 − x1}, . . .)p, where x0, x1, . . . ∈ {0, 1, . . . , q − 1}.

Soundness It suffices to prove, for any y �∈ I = ({z0, p − 1 − z0}, {z1, p − 1 − z1}, . . .)p,
∑

x∈I∩[0,y−1]
ordp(y − x) =

∑

x∈I∩[0,y−1]
ordp(y + x + 1). (20)

Let i be the minimum index such that yi �∈ {zi, p − 1 − zi}. (By assumption that y �∈ I ,
such i exists.) It is not difficult to see both the left and the right of (20) is

|({zi, p − 1 − zi}, {zi+1, p − 1 − zi+1}, . . .)p ∩ [0, y≥i − 1]|
⎛

⎝
i−1∑

j=1

j2i−j−1 + i

⎞

⎠ .

Completeness It suffices to prove, for any y ∈ I with I ∩ [0, y − 1] nonempty,
∑

x∈I∩[0,y−1]
ordp(y − x) <

∑

x∈I∩[0,y−1]
ordp(y + x + 1). (21)

Let I = ({z0, p−1−z0}, {z1, p−1−z1}, . . .)p. Let i be an integer such that zi = (p−1)/2.
The ith bit on the left of (21) is zero if xj = yj for all j ≤ i, and x≥j < y≥j ; and the ith
bit on the right is zero if xj = p − 1 − yj for all j ≤ i, and x < y, which includes the case
x≥j < y≥j . By a double counting argument, without loss of generality, assume such i does
not exists, that is, for all i, zi �= (p − 1)/2.

Let φ : Z≥0 → Z≥0 be the map

φ(x) = (x′
0, x

′
1, . . .)2,

where x = (x0, x1, . . .)p is the p-adic expansion of x, and x′
i = 1 if and only if xi =

max(xi, p − 1 − xi), otherwise 0. Then, under our assumption that xi �= (p − 1)/2 for all
i, (21) becomes

∑

x∈[0,φ(y)−1]
ord2(φ(y) − x) <

∑

x∈[0,φ(y)−1]
ord2(φ(y) + x + 1),

which is equivalent to ord2(φ(y)!) < ord2((2φ(y))!/φ(y)!), which is exactly (11).
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5.2 P(Fp, 1)

Soundness We shall prove for any y �∈ I = ((p − 1)i , {j, p − 2 − j}, α)p, j < p − 2 − j ,
where y ∈ ((p − 1)i

′
, {j ′, p − 2 − j ′}, β)p , and α, β ∈ P(0),
∑

x∈I∩[0,y−1]
ordp(y − x) =

∑

x∈I∩[0,y−1]
ordp(y + x + 2). (22)

Case 1 i �= i′. Both the left and right of (22) are min(i, i′)|I ∩ [0, y − 1]|.

Case 2 i = i′ and j �= j ′. Both the left and right of (22) are i|I ∩ [0, y − 1]|.

Case 3 i = i′, j = j ′ and α �= β. The left of (22) is

(i + 1)|α ∩ [0, y≥i+1]| +
∑

x≥i+1∈α∩[0,y≥i+1]
ordp(y≥i+1 − x≥i+1),

and the right of (22) is

(i + 1)|α ∩ [0, y≥i+1]| +
∑

x≥i+1∈α∩[0,y≥i+1]
ordp(y≥i+1 + x≥i+1 + 1).

Since P(0) is sound, and y≥i+1 �∈ α ∈ P(0), we have
∑

x≥i+1
ordp(y≥i+1 − x≥i+1) =

∑
x≥i+1

ordp(y≥i+1 + x≥i+1 + 1),which implies (22).

Completeness We need to prove for any y ∈ I = ((p − 1)i , {j, p − 2 − j}, α)p ∈ P(1)

with I ∩ [0, y − 1] nonempty,
∑

x∈I∩[0,y−1]
ordp(y − x) <

∑

x∈I∩[0,y−1]
ordp(y + x + 2). (23)

The left side of (23) is
∑

xi∈{j,p−2−j},x≥i+1∈α:x<y

ordp(((p − 1)i , yi, y≥i+1)p − ((p − 1)i , xi, x≥i+1)p)

= (2i + 1)|α ∩ [0, y≥i+1 − 1]| + iδyi ,p−2−j +
∑

x≥i+1∈α
x≥i+1<y≥i+1

ordp(y≥i+1 − x≥i+1),

and the right of (23) is
∑

xi∈{j,p−2−j},x≥i+1∈α:x<y

ordp(((p − 1)i , yi , y≥i+1)p + ((p − 1)i , xi, x≥i+1)p + 2)

≥ (2i + 1)|α ∩ [0, y≥i+1 − 1]| + (i + 1)δyi ,p−2−j +
∑

x≥i+1∈α
x≥i+1<y≥i+1

ordp(y≥i+1 + x≥i+1 + 1).

Since P(0) is complete, we have
∑

x≥i+1∈α

ordp(y≥i+1 − x≥i+1) <
∑

x≥i+1∈α

ordp(y≥i+1 + x≥i+1 + 1)

if α∩[0, y≥i+1−1] is not empty, in which (23) is true. Otherwise, by assumption I∩[0, y−1]
is nonempty, we have yi = p − 2 − j , which also implies (23).
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5.3 P(Fp, pt + r)

By definition, P(pt + r) = {({i, j}, α)p : 0 ≤ i, j ≤ p − 1, b ∈ {1, 2}, i + j + r + 1 =
bp, α ∈ P(t + b − 1)}.

Soundness We will prove for any y �∈ I = ({i′, j ′}, β)p ∈ P(pt + r), where y ∈
({i, j}, α)p,

∑

x∈I∩[0,y−1]
ordp(y − x) =

∑

x∈I∩[0,y−1]
ordp(y + x + pt + r + 1). (24)

Without loss of generality, assume i = i′ and j = j ′, otherwise both sides of (24) are 0. By
definition, i + j + r + 1 = bp, where b ∈ {1, 2}, and α �= β ∈ P(t + b − 1). The left hand
side of (24) is

|I ∩ [0, y − 1]| +
∑

x≥1∈β∩[0,y≥1−1]
ordp(y≥1 − x≥1),

and the right of (24) is
∑

x≥1∈β∩[0,y≥1−1]
ordp((y0, y≥1)p + ({i, j}, x≥1)p + (r + 1, t)p)

= |I ∩ [0, y − 1]| +
∑

x≥1∈β∩[0,y≥1−1]
ordp(y≥1 + x≥1 + t + b).

By induction hypothesis, P(t + b − 1) is sound, we have
∑

x≥1
ordp(y≥1 − x≥1) =

∑
x≥1

ordp(y≥1 + x≥1 + t + b), which proves (24).

Completeness We prove, for any y ∈ I = ({i, j}, α) ∈ P(pt + r) with I ∩ [0, y − 1]
nonempty, and i < j ,

∑

x∈I∩[0,y−1]
ordp(y − x) <

∑

x∈I∩[0,y−1]
ordp(y + x + pt + r + 1), (25)

where i + j + r + 1 = bp, b ∈ {1, 2}, and α ∈ P(t + b − 1). The left of (25) is

|α ∩ [0, y≥1 − 1]| +
∑

x≥1∈α∩[0,y≥1−1]
ordp(y≥1 − x≥1),

and the right of (25) is
∑

x≥1∈α∩[0,y≥1−1]
ordp((y0, y≥1)p + ({i, j}, x≥1)p + (r + 1, t)p)

≥ |α ∩ [0, y≥1 − 1]| + δy0,j +
∑

x≥1∈α∩[0,y≥1−1]
ordp(y≥1 + x≥1 + t + b).

By the induction hypothesis that P(t + b − 1) is complete, then
∑

x≥1∈α∩[0,y≥1−1]
ordp(y≥1 − x≥1) <

∑

x≥1∈α∩[0,y≥1−1]
ordp(y≥1 + x≥1 + t + b)

if α ∩ [0, y≥1 − 1] is nonempty, in which case (25) is true; otherwise, y0 = j > i, which
also implies (25).
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