Cryptogr. Commun. (2015) 7:163-184
DOI 10.1007/s12095-014-0113-6

Masking and leakage-resilient primitives: One,
the other(s) or both?

Sonia Belaid - Vincent Grosso -
Francois-Xavier Standaert

Received: 25 January 2014 / Accepted: 17 September 2014 / Published online: 10 October 2014
© Springer Science+Business Media New York 2014

Abstract Securing cryptographic implementations against side-channel attacks is one
of the most important challenges in modern cryptography. Many countermeasures have
been introduced for this purpose, and analyzed in specialized security models. Formal
solutions have also been proposed to extend the guarantees of provable security to phys-
ically observable devices. Masking and leakage-resilient cryptography are probably the
most investigated and best understood representatives of these two approaches. Unfor-
tunately, claims whether one, the other or their combination provides better security at
lower cost remained vague so far. In this paper, we provide the first comprehensive treat-
ment of this important problem. For this purpose, we analyze whether cryptographic
implementations can be security-bounded, in the sense that the time complexity of the
best side-channel attack is lower-bounded, independent of the number of measurements
performed. Doing so, we first put forward a significant difference between stateful prim-
itives such as leakage-resilient PRGs (that easily ensure bounded security), and stateless
ones such as leakage-resilient PRFs (that hardly do). We then show that in practice,
leakage-resilience alone provides the best security vs. performance tradeoff when bounded
security is achievable, while masking alone is the solution of choice otherwise. That is,
we highlight that one (x)or the other approach should be privileged, which contradicts
the usual intuition that physical security is best obtained by combining countermea-
sures. Besides, our experimental results underline that despite defined in exactly the same
way, the bounded leakage requirement in leakage-resilient PRGs and PRFs imply signif-
icantly different challenges for hardware designers. Namely, such a bounded leakage is
much harder to guarantee for stateless primitives (like PRFs) than for statefull ones (like

S. Belaid
Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France

S. Belaid
Thales Communications, Security, 4 Avenue des Louvresses, 92230 Gennevilliers, France

V. Grosso - F.-X. Standaert (0<))

ICTEAM/ELEN/Crypto Group, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
e-mail: fstandae @uclouvain.be

@ Springer

mailto:fstandae@uclouvain.be

164 Cryptogr. Commun. (2015) 7:163-184

PRGs). As a result, constructions of leakage-resilient PRGs and PRFs proven under the
same bounded leakage assumption, and instantiated with the same AES implementation,
may lead to different practical security levels.

Keywords Side-channel attacks - Leakage-resilience - Pseudorandom number generators
and functions - Security evaluations

1 Introduction

Masking is a frequently considered solution to improve security against side-channel
attacks [5, 19]. A large number of papers investigated its application to smart card
implementations of the AES (e.g. [17, 37, 53, 55]). It essentially randomizes all
the sensitive variables in a cryptographic device, by splitting them into d shares,
and performs all computations on these shares afterwards. The resulting process is
expected to improve physical security since if the masking scheme is carefully imple-
mented (i.e. if the leakages of all the shares are independent), higher-order moments
of the leakage distribution have to be estimated to reveal key-dependent information.
It has been shown that the number of measurements needed to perform a successful
DPA (Differential Power Analysis) increases exponentially with the number of shares
(see, e.g. [44, 59]).

One limitation of masking is that (as most countermeasures against side-channel
attacks [30]) it “only” reduces the amount of information leakage, at the cost of sometimes
strong performance overheads [20]. Another line of work, next denoted as leakage-resilient
cryptography, followed a complementary approach and tried to make the exploitation of
this information more difficult (e.g. computationally). For this purpose, the main assump-
tion is that the information leakage per iteration is limited in some sense. When applied
in the context of symmetric cryptography, most instances of leakage-resilient constructions
rely on re-keying strategies for this purpose, as first suggested by Kocher [27]. Examples
of primitives include Pseudo-Random Generators (PRGs) [12, 15, 41, 57, 58, 64, 65] and
Pseudo-Random Functions (PRFs) [1, 10, 15, 34, 58, 64].

The topic of leakage resilience has given rise to quite animated debates in the cryp-
tographic community. Several assumptions have been proposed, and the quest for models
that adequately capture physical reality is still ongoing (see [57] for a recent discus-
sion). Yet, and independent of the relevance of the proofs obtained within these models,
a more pragmatic problem is to find out the security levels of leakage-resilient construc-
tions in front of standard side-channel adversaries (i.e. the same as the ones considered
in security evaluations for masking). That is, are these primitives useful to help crypto-
graphic designers to pass current certification procedures (e.g. EMVco [14] or Common
Criteria [7])?

Unfortunately, claims in one or the other direction remained vague so far. The main rea-
son is that, as hinted by Bernstein in a CHES 2012 rump session talk, substantiated answers
require to consider both security and performances [3], i.e. two qualities that are generally
hard to quantify. In this paper, we aim to contribute to this issue and provide tools allowing
to determine the best way to reach a given security level in different (software and hardware)
scenarios, within the limits of what empirical evaluations can provide. For this purpose, we
will consider the AES-based PRG and PREF illustrated in Figs. 1 and 2, respectively. For

@ Springer

Cryptogr. Commun. (2015) 7:163-184 165

stage 1 stage 2 stage 3

stage 3 stage 2

Fig. 1 Stateful leakage-resilient PRG with N = 2 (left) and N = 256 (right)

every key k;, the PRG produces a key k; 41 and N-1 strings yi, yé, e yj'\,fl, both obtained
by encrypting N public plaintexts p; with k;.

As for the PRF, we use the tree-based construction from Goldreich, Goldwasser and
Micali [18], where each step incorporates log,[N] input bits and generates k;y; =
AESy, (pz.). Following [34], the last stage is optionally completed by a whitening step, in
order to limit the data complexity of attacks targeting the PRF output to one (e.g. when
using large N values, typically).

Quite naturally, there is a simple security versus efficiency tradeoff for both types of
constructions. In the first (PRG) case, we produce a 128-bit output stream every NIX | AES

encryptions. In the second (PRF) case, we produce a 128-bit output every lo}gz(i,) AES
encryptions (+1 if output whitening is used). The details of these primitives are not neces-
sary for the understanding of this work. The only important feature in our discussions is
that the PRG construction is stateful (i.e. maintains a state — here the key k; — in memory
between consecutive invocations) while the PRF one is stateless (i.e. produces the output y
only based on the current input x). As a result, the PRG limits the number of measurements

ko

stage 1 stage 1 (x[0:7]=5F)

YL w e SO o 2152
L

Y1 v ses)

,,,,,,, stages 5-126

stage 127

stage 128 output whitening

y=FK(x=01110...10) y=FK(x=5FC3F8...A287)

Fig. 2 Stateless leakage-resilient PRF with N = 2 (left) and N = 256 (right)

@ Springer

166 Cryptogr. Commun. (2015) 7:163-184

that a side-channel adversary can perform with the same key, since each key k; is only going
to be observed once as long as no cycles occur. By contrast, the PRF only limits his data
complexity (i.e. the number of plaintexts that can be observed). In practice, it means that in
this latter case, the same measurement can be repeated multiple times, e.g. in order to get
rid of the physical noise through averaging. As already discussed by Medwed et al. in [34],
Section 3, this may lead to significant difference in terms of security against DPA.

In order to compare and combine these two primitives with masking, we investigate
whether they can lead to security-bounded implementations, i.e. implementations such that
the time complexity of the best side-channel attack remains bounded independent of the
number of measurements performed by the adversary. Doing so, we first show that the state-
ful leakage-resilient PRG in Fig. 1 naturally leads to such implementations. By contrast,
this guarantee is harder to reach with (stateless) leakage-resilient PRFs such as in Fig. 2.
The tweaked construction proposed in [34] (that takes advantage of hardware parallelism)
is in fact the only security-bounded PRF we found in our experiments. Next, we put for-
ward that better security at lower cost is obtained by using the leakage-resilient PRG alone
(i.e. without masking), while masking alone is the most efficient solution for improving the
security of stateless primitives whenever the implementations cannot be security-bounded.
Therefore, our results underline that both masking and leakage-resilient primitives can be
useful ingredients in the design of physically secure designs. But they also lead to the coun-
terintuitive observation that sometimes (in fact, frequently), these solutions are better used
separately, hence contradicting the usual intuition that security against side-channel attacks
is best obtained via a combination of countermeasures.

Admittedly, these results are only obtained for a set of side-channel attacks that are
representative of the state-of-the-art. Hence, positive observations such as made for the
tweaked construction in [34] are not proven: they only indicate that the cryptanalysis of such
schemes may be hard with current knowledge. In the same lines, the differences between
leakage-resilient PRGs and PRFs do not contradict their proofs: they only indicate that
the (crucial) assumption of bounded leakage can imply different challenges for hardware
designers. Hence, instantiating these primitives with the same AES implementation can lead
to different security levels (even if the same N value is used in both cases).

2 Methodology & limitations

The main goal of this paper is to provide sound techniques to evaluate how leakage-resilient
PRGs/PRFs and masking combine. In this section, we provide a brief description of the
methodology we will use for this purpose, and underline its limitations. The two main com-
ponents, namely performance and security evaluations, are detailed in Sections 3 and 4, and
then combined in Section 5. Our proposal essentially holds in five steps that we detail below.

1. Fix the target security level. In the following, we will take the AES Rijndael with 128-
bit key as case study. Since a small security degradation due to side-channel attacks
is unavoidable, we will consider 120-bit, 100-bit and 80-bit target security levels for
illustration. We do not go below 80-bit keys since it typically corresponds to current
short-term security levels [9].

2. Choose an implementation. Given a cryptographic algorithm, this essentially corre-
sponds to the selection of a technology and possibly a set of countermeasures to
incorporate in the designs to evaluate. In the following, we will consider both software
and hardware implementations for illustration, since they lead to significantly different

@ Springer

Cryptogr. Commun. (2015) 7:163-184 167

performance and security levels. As for countermeasures, different types of masking
schemes will be considered.

3. Evaluate performances / extract a cost function. Given an implementation, different
metrics can be selected for this purpose (such as code size, RAM, or cycle count in
software and area, frequency, throughput or power consumption in hardware). Both for
software and hardware implementations, we will use combined functions, namely the
“code size x cycle count” product and the “area / throughput” ratio. While our method-
ology would be perfectly applicable to other choices of metrics, we believe they are
an interesting starting point to capture the efficiency of our different implementations.
In particular for the hardware cases, such metrics are less dependent on the serial vs.
parallel nature of the target architectures (see [26], Section 2).

4. Evaluate security / extract the maximum number of measurements. This central part
of our analysis first requires to select the attacks from which we will evaluate secu-
rity. In the following, we will consider the “standard DPA attacks” described in [31]
for this purpose. Furthermore, we will investigate them in the profiled setting of tem-
plate attacks (i.e. assuming that the adversary can build a precise model for the leakage
function) [6]. This choice is motivated by the goal of approaching worst-case evalu-
ations [56]. Based on these attacks, we will estimate the security graphs introduced
in [61], i.e. compute the adversaries’ success rates as a function of their computing
power and number of measurements. From a given security level (e.g. 120-bit time
complexity), we will finally extract the maximum number of measurements per key
tolerated, as can be bounded by the PRG construction.

5. Compute a global cost metric (possibly with an application constraint). In case of
security-bounded implementations, the previous security evaluation can be used to esti-
mate how frequently one has to “re-key” within a leakage-resilient construction. From
this estimate, we derive the average number of AES encryptions to execute per 128-bit
output. By multiplying this number with the cost function of our performance eval-
uations, we obtain a global metric for the implementation of an AES-based design
ensuring a given security level. In case of security-unbounded implementations, re-
keying is not sufficient to maintain the target security level independent of the number
of measurements performed by the adversary. So the cost functions have to be com-
bined with an application constraint, stating the maximum number of measurements
that can be tolerated to maintain this security level.

Quite naturally, such a methodology is limited in the same way as any performance and
security evaluation. From the performance point-of-view, our investigations only apply to a
representative subset of the (large) set of AES designs published in the literature. Because
of place constraints, we first paid attention to state-of-the-art implementations and coun-
termeasures, but applying our methodology to more examples is naturally feasible (and
desirable). A very similar statement holds for security evaluations. Namely, we considered
standard DPA attacks as a starting point, and because they typically correspond to the state-
of-the-art in research and evaluation laboratories. Yet, cryptanalytic progresses can always
appear!. Besides, countermeasures such as masking may rely on physical assumptions that
are difficult to compare rigorously (since highly technology-dependent), as will be detailed
next with the case of “glitches”.

IFor example, the algebraic side-channel attacks introduced in [49, 50], while somewhat unrealistic for now,
would certainly lead to different security levels.

@ Springer

168 Cryptogr. Commun. (2015) 7:163-184

Note that these limitations are to a large extent inherent to the problem we tackle, and
our results also correspond to the best we can hope in this respect. Hence, more than the
practical conclusions that we draw in the following sections (that are of course important for
current engineers willing to implement physically secure designs), it is the fact that we are
able to compare the performance vs. security tradeoffs corresponding to the combination of
leakage-resilient constructions with masking that is the most important contribution of this
work. Indeed, these comparisons are dependent on the state-of-the-art implementations and
attacks that are considered to be relevant for the selected algorithm.

3 Performance evaluations

In this section, we provide our performance evaluations for unprotected and masked AES
designs. As previously mentioned, we will consider both software and hardware examples
for this purpose. In this context, the main challenge is to find implementations that are (rea-
sonably) comparable. This turned out to be relatively easy in the software case, for which we
selected a couple of implementations in 8-bit microcontrollers, i.e. typical targets for side-
channel analysis. By contrast, finding implementations in the same technology turns out to
be more challenging in hardware: transistor sizes have evolved from (more than) 130um to
(less than) 65nm over the last 15 years (i.e. the period over which most countermeasures
against side-channel attacks have been proposed). Hence, published performance evalua-
tions for side-channel protected designs are rarely comparable. Yet, we could find several
designs in a recent FPGA technology, namely the Xilinx Virtex-5 devices (that are based on
a 65nm process).

The performances of the implementations we will analyze are summarized in Table 1.
As previously mentioned, our software cost function is the frequently considered “code size
x cycle count” metric, while we use the “area / throughput” ratio in the hardware (FPGA)
case. As for the countermeasures evaluated, we first focused on the higher-order masking
scheme proposed by Rivain and Prouff at CHES 2010, which can be considered as the state-
of-the-art in software [53]. We then added the CHES 2011 polynomial masking scheme of
Prouff and Roche [45] (and its implementation in [20]), as a typical example of “glitch-
resistant” solution relying on secret sharing and multiparty computation (see the discussion
in the next paragraph). A similar variety of countermeasures is proposed in hardware, where
we also consider an efficient but glitch-sensitive implementation proposed in [48], and a
threshold AES implementation that is one of the most promising solutions to deal with
glitches in this case [36]. Note that this latter implementation is based on an 8-bit archi-
tecture (rather than a 128-bit one for the others). So although our cost function is aimed at
making comparisons between different architectures more reflective of the algorithms’ and
countermeasures’ performances, more serial implementations as this one generally pay a
small overhead due to their more complex control logic.

Physical assumptions and glitches As explicit in Table 1, countermeasures against side-
channel attacks always rely on a number of physical assumptions. In the case of masking, a
central one is that the leakage of the shares manipulated by the target implementation should
be independent of each other [22]. Glitches, that are transient signals appearing during the
computations in certain (e.g. CMOS) implementations, are a typical physical default that
can cause this assumption to fail, as first put forward by Mangard et al. in [32]. There

@ Springer

Cryptogr. Commun. (2015) 7:163-184 169

Table 1 Performance of some illustrative AES implementations

Software (8-bit) code size cycle cost physical
Implementations (bytes) count function assumptions
Unprotected [13] 1659 4557 7.560 -

1-mask Boolean [53] 3153 129 - 103 406.7 glitch-sensitive
1-mask polynomial [20, 45] 20 682 1064 - 103 22 000 glitch-resistant
2-mask Boolean [53] 3845 271 - 103 1042 glitch-sensitive
FPGA (Virtex-5) area throughput cost physical
Implementations (slices) (enc/sec) function assumptions
Unprotected (128-bit) [48] 478 245100 21.46 -

1-mask Boolean (128-bit) [48] 1462 100-10° 160.8 glitch-sensitive
Threshold (8-bit) [36] 958 e 1499 glitch-resistant

are two possible solutions to deal with such physical defaults: either by making explicit
to cryptographic engineers that they have to prevent glitches at the physical level, or by
designing countermeasures that can cope with glitches.

Interestingly, the first solution is one aspect where hardware and software implementa-
tions significantly differ. Namely, while it is usually possible to ensure independent leakages
in masked software, by ensuring a sufficient time separation between the manipulation of
the shares, it is extremely difficult to avoid glitches in hardware [33]. Yet, even in hard-
ware it is generally expected that the “glitch signal” will be more difficult to exploit by
adversaries, especially if designers pay attention to this issue [35]. In this context, the main
question is to determine the amplitude of this signal: if sufficiently reduced in front of the
measurement noise, it may turn out that a glitch-sensitive masked implementation leads to
improved security levels (compared to an unprotected one). Since this amplitude is highly
technology-dependent, we will use it as a parameter to analyze the security of our hardware
implementations in the next sections. Yet, we recall that it is a safe practice to focus on
glitch-resistant implementations when it comes to hardware. Besides, we note that glitches
are not the only physical default that may cause the independent leakage assumption to be
contradicted in practice [42, 51].

4 Security evaluations

We now move to the core of our analysis, namely the security evaluation of different imple-
mentations. For this purpose, we first need to discuss the type of security evaluation we
will conduct, which can be viewed as a tradeoff between generality and informativeness.
That is, one ideally wants to reach general conclusions in the sense that they are indepen-
dent of the underlying device technology. A typical solution for this purpose is to evaluate
the “security order” of a countermeasure, as defined by Coron et al. [8]. Informally, the
security order corresponds to the largest moment in the leakage probability distributions
that is key-independent (hence from which no information can be extracted). For example,
an unprotected implementation can be attacked by computing mean values (i.e. first-order
moments) [28]. By contrast, the hope of masking is to ensure that adversaries will have to

@ Springer

170 Cryptogr. Commun. (2015) 7:163-184

estimate higher-order moments, which is expected to increase the data complexity required
to extract information, as first shown by Chari et al. [5]. Evaluating the order is interest-
ing because under the independent leakage assumption mentioned in the last section, it can
be done based on the mathematical description of a countermeasure only. Of course, the
informativeness of such an abstract evaluation is limited since (1) it indeed does not allow
testing whether the independent leakage assumption is fulfilled, and (2) even if this assump-
tion is fulfilled, there is no strict correspondance between the security order and the security
level of an implementation (e.g. measured with a probability of success corresponding to
some bounded complexities). This is because already for masking (i.e. the countermeasure
that aims at increasing the security order), and even if independent leakages are observed
in practice, the actual complexity of a side-channel attack highly depends on the amount of
noise in the measurements. And of course, there are also countermeasures that simply do
not aim at increasing the security order, e.g. shuffling [21].

One appealing way to mitigate the second issue is to perform so-called ‘“‘simulated
attacks”. This essentially requires to model the leakage corresponding to different sensi-
tive operations in an idealized implementation. For example, a usual approximation is to
consider that all the intermediate values during a cryptographic computation (such as the
S-boxes inputs and outputs for a block cipher) leak the sum of their Hamming weight and a
Gaussian distributed noise [30]. It is then possible to accurately estimate the evaluation met-
rics proposed in [56] (i.e. mutual information, success rate, guessing entropy) from these
mathematically generated leakages. Furthermore, one can use the noise variance as a secu-
rity parameter and analyze its impact on the time and data complexity of successful attacks.
Quite naturally, such an alternative still does not solve the first issue (i.e. the independent
leakage assumption), for which the only possibility is to evaluate the real measurements of
an actual implementation, in a given technology. This latter solution is admittedly the most
informative, but also the least general, and is quite intensive for comparison purposes (since
it requires to have access to source codes, target devices and measurement setups for all
the designs to evaluate). Interestingly, it has been shown that simulated attacks can be quite
close to real ones in the context of standard DPA and masking [59]. So since our goal is
to show that there exist realistic scenarios where leakage-resilient PRGs/PRFs and masking
are useful ingredients to reach a given security level at the lowest cost, we will use this type
of evaluations in the following.

Note finally that performing simulated attacks could not be replaced by computing
explicit formulae for the success rate such as, e.g. [16, 52]. Indeed, these formulae only
predict subkey (typically key bytes) recoveries while we consider security graphs for full
128-bit master keys. Beside, they are only applicable to unprotected devices so far, and
hardly capture masked implementations and the effect of key-dependent algorithmic noise
as we will consider next.

4.1 Evaluation setups

We will consider two types of setups in our evaluations: one for software, one for hardware.
As illustrated in Fig. 3 in the case of a Boolean-masked S-box implementation with two
shares, the main difference is that the software performs all the operations sequentially,
while the hardware performs them in parallel. We will further assume that the leakage of
parallel operations is summed [40]. As previously mentioned, we will illustrate our analyses
with a Hamming weight leakage function. Additionally, we will consider a noise variance

@ Springer

Cryptogr. Commun. (2015) 7:163-184 171

X1

ki
A\ 'T‘ o X1
Ot

N
%

mi

.

X2

Xz

b+

D
A%

MNNSAD AN e ANANN,
Li L L L L

Fig. 3 Simulated leaking implementations. Left: software, right: hardware

of 10, corresponding to a Signal-to-Noise Ratio of 0.2 (as defined in [29])?. This is a typical
value, both for software implementations [11] and FPGA measurement boards [25].

Let us denote the AES S-box as S, a byte of plaintext and key as x; and k; (respectively),
the random shares used in masking as rl.j (before the S-box) and mlj (after the S-box), the
Hamming weight function as HW, the bitwise XOR as @, the field multiplication used in
polynomial masking as ®, and Gaussian-distributed noise random variables N i’ . From these
notations, we can specify the list of all our target implementations as summarized in Table 2.

A couple of observations are worth being underlined as we now discuss.

First, and as already mentioned, the main difference between software and hardware
implementations is the number of exploitable leakage samples: there is a single such sample
per plaintext in hardware while there are 16 x (N,, + 1) ones in software (with N,, the
number of masks). Next, we only considered glitches in hardware (since it is generally
possible to ensure independent leakage in software, by ensuring a sufficient time separation
between the manipulation of the shares). We assumed that “first-order glitches” can appear
in our Boolean-masked FPGA implementation, and modeled the impact of the mask as an
additive binomial noise in this case. We further assumed that the amplitude of this first-order
signal was reduced according to a factor f. This factor corresponds to the parameter used
to quantify the amplitude of the glitches mentioned in the previous section. Note that this
modeling is sound because the complexity of a first-order DPA only depends on the value of
its SNR (which is equivalent to correlation and information theoretic metrics in this case, as
proven in [31]). So even leakage functions deviating from the Hamming weight abstraction
would lead to similar trends. Since the threshold implementation in [36] guarantees the
absence of first-order glitches, we only analyzed the possibility of second-order glitches for
this one, and modeled them in the same way as just described (i.e. by considering the second

2The SNR corresponds to ratio between the signal variance (that equals 2 for the Hamming weights of
uniformly distributed 8-bit values) and the noise variance.

@ Springer

Cryptogr. Commun. (2015) 7:163-184

172

d
4
do
d
4
do

d
UONINAISUOD

d

d
d
d

UONINLISUOD

IopIo-pug
ou
19pI0-1S|
19pI0-1S|
ou
ou
ou

$21011]8

ou

ou
ou

ou

$21011]8

N+ [CHOMH + :.~§>>:+:._E\mx._«@.5m§>:_N =1

N+ GADMH + (WDMH + G ® [@ (1@ SIMHIK =7
N+ ICHOMH+ (e deml X =17

N+ ICHMH (yeibgmu] < =T

N+ICOMH+ (@ (@ SMHIK =7
N+I((r@DSMHIK =7

N+ (e MHIL =17

(91 = 1> 1 I9A0 wns) uoyounf a8vynaj

N+ GIDOMH = {T N+ (DMH = 77

NG (e (e SIMH = [T

N+ (d @ WS (Y NSMH = {71

N+ @' @ (@ MS)MH = [T

N+ CAOMH = T[N+ (i & (Y ® S)MH = |7
IN+ (" ®)S)MH = "1

([91 11 3 1 A) uonounf 28vyvaj

[9€] (019-8) proysamy,

[9€] (119-8) proussryL

[8+] (319-8Z1) ueajood ysew-|
[8+] (319-8Z1) ueajood ysew-|
[8+] (11q-8Z 1) ues[00g sew-|
[8+] (119-8Z1) parosroxdupy
[8+] (119-8Z1) parosroxdupy
VO S-XIMIA

[€¢6] ueajoog ysew-g

[t ‘02 Terwoukjod ysew-|
[€6] urajoog ysew-|
[¢1] pa1oorordupny

aIeMIJOS 11q-8

SLHY
ARE)
laHD
Laay
TgHY
NHD

nHY

P

sy

as
rgsy
nsA

PA

suoneuowa[dwr Jagre) o Jo ISIT 7 qeL

pringer

Qs

Cryptogr. Commun. (2015) 7:163-184 173

mask Ml-2 as an additive binomial noise, and reducing the amplitude of the second-order
signal by a factor f). Third, the chosen-plaintext construction of [34] is only applicable in
hardware. Furthermore, we only evaluated its impact for the unprotected implementation,
and the 1-mask Boolean one with glitches. As will become clear in the next section, this
is because the data complexity bound to 256 (that is the maximum tolerated by design
in this case) is only relevant when successful side-channel attacks occur for such small
complexities (which was only observed for implementations with first-order signal).

For convenience, we denoted each implementation in our experiments with three let-
ters. The first one corresponds to the type of scenario considered, i.e. with Known (K) or
carefully Chosen (C) plaintexts. The second one indicates whether we are in a Software
(S) or Hardware (H) case study. The third one corresponds to the type of countermeasure
selected, i.e. Unprotected (U), 1- or 2-mask Boolean (B, B,), 1-mask Polynomial (P;) and
2-mask threshold (T,). The additional star signals finally reflect the presence of (first-order
or second-order) glitches. For example, KHB is an AES design protected with a 1-mask
Boolean scheme, implemented in an imperfect hardware leading to first-order glitches, and
analyzed in the context of known (uniform) plaintexts.

4.2 Template attacks and security graphs

Given the leakage functions defined in Table 2, a template attack first requires to build a
leakage model. In the following, and for each byte of the AES master key, we will consider
Gaussian templates for unprotected implementations, and Gaussian mixtures for masked
implementations. Let us denote the probability density function of a Gaussian distribution
taken on input z, with mean p (resp. mean vector) and variance o2 (resp. covariance
matrix ¥) as N (z|u, 02) (resp. N'(z|p, ¥)). This notation directly leads to models of the
form:

N Uik xi s Ok; xi)

Pr [kill;, xi] = ; ()
model Zk;ngN(l”Mkf,xi’ka,xi))
Nk x; » Ok x;
Pr [kl] = (ke Oh) @
model D krek NUlpks x5 0 3))
for (software and hardware) unprotected implementations and:
Z * MN(ll,lzllLkh iy *y Eki, i *)
Pr [k,-|ll~] ’ ll-z, x,-] _ m; € i Xj,m; Xi,m; ’ (3)
model

1 52
Zk;*EIC meEM N(ll s li |”“kl?*,xi,m;‘7 Ek;*,x;,m;*)

Zm?eM N(”Mki.,xi.,mf’ Gkivxiemf)
Pr [k;|l, xi] = N , “
model Zk?eic meeM (”/’ka,xi,m;k) O'k;*,x,-,m;f)

for (software and hardware) masked implementations with two shares. The formula nat-
urally extends to more shares, by just adding more sums over the masks. Note that in

@ Springer

174 Cryptogr. Commun. (2015) 7:163-184

=
3
[=%
£
8
()
£
min 02
20 max
: : : mean
0— - - 0
0 05 1 15 2 25 3
number of measurements % 10*

Fig. 4 Security graph for the Boolean-masked hardware implementation KHB;

these models, all the noise (including the algorithmic one in hardware implementations)
is captured by the Gaussian distribution®. Given these models, the template adversary will
accumulate information on the key bytes k;, by computing products of probabilities corre-
sponding to multiple plaintexts. Doing so and for each key byte, he will produce lists of 256
probabilities corresponding each possible candidate &;, defined as follows:

q
R A RO)]
=11, [En77). 8

j=
with the leakage vector LU) respectively corresponding to ll.(j) (resp. {) in the context of

(1) (resp. (2)) and ll-] ’(/), liz’) (resp. 1)) in the context of (3) (resp. (4)). The number of mea-
surements is given by ¢ in (5). Next and for each target implementation, we will repeat 100
experiments. And for each value of ¢ in these experiments, use a rank estimation algorithm
to evaluate the time complexity needed to recover the full AES master key [61]. Eventu-
ally, we will build “security graphs” where the attack probability of success is provided in
function of a time complexity and a number of measurements.

Iterative DPA against constructions with carefully chosen plaintexts. Note that while
standard DPA attacks are adequate to analyze the security of unprotected and masked imple-
mentations in a known-plaintext scenario, their divide-and-conquer strategy hardly applies
to the PRF in [34], with carefully-chosen plaintexts leading to key-dependent algorithmic
noise. This is because the (maximum 256) constants c; used in this proposal are such that all
16 bytes are always identical. Hence, a standard DPA will provide a single list of probabili-
ties, containing information about the 16 AES key bytes at once. In this case, we additionally
considered the iterative DPA described in this previous reference, which essentially works
by successively removing the algorithmic noise generated by the best-rated key bytes. While
such an attack can only work under the assumption that the adversary has an very precise
leakage model in hand, we use it as a representative of worst-case attack against such a
construction.

3While algorithmic noise is generated with a binomial distribution in our experiments (as mentioned in the
previous subsections), it is closely approximated by a normal one, since combined with enough (simulated)
physical noise that is Gaussian.

@ Springer

Cryptogr. Commun. (2015) 7:163-184 175

global cost metric (log scale)
global cost metric (log scale)

Ksu KsSB1 KSB2 KsSP1 KsuU KSB1 KsB2 KsSP1

Fig. 5 LR-PRGs in software. 80-bit (left) and 120-bit (right) security

4.3 Experimental results

For illustration, the security graph of the AES implementation KHB; is given in Fig. 4,
where we additionally provide the maximum number of measurements tolerated to maintain
security levels corresponding to 220, 2190 and 280 time complexity (Figs. 5, 6 and 7). All
the implementations in Table 2 have been similarly evaluated and the result of these exper-
iments are in Appendix, Figs. 8,9, 10, 11, 12 and 13. Note that in the aforementioned case
of iterative DPA (Appendix, Fig. 14), the adversary recovers the AES key bytes but still
has to find their position within the AES state, which (roughly) corresponds to 16! ~ 2%
possibilities [2].

5 Security vs. performance tradeoffs

We now combine the results in the previous sections to answer our main question. Namely,
what is the best way to exploit masking and/or leakage-resilient primitives to resist standard
DPA in hardware and software implementations?

5.1 Leakage-resilient PRGs

Let M be the maximum number of measurements tolerated to maintain a given secu-

rity level for one of the implementations in Section 4. The re-keying in leakage-resilient
PRGs is such that it is exactly this number M that is limited by design (i.e. the value N

I cost function I cost function
[—Inumber of measurements - 4[| C_Inumber of measurements

KsU KSB1 KSB2 KSP1 KsU KSB1 KSB2 KSP1

Fig. 6 LR-PRFs in software with KP. 80-bit (left) and 120-bit (right) security

@ Springer

~
=)}

Cryptogr. Commun. (2015) 7:163-184

N
o
(S

-
o
w

o

global cost metric (log scale)
s =

global cost metric (log scale)

-
[=)
©

CHU CHUit CHB1* CHB1°f10 CHB1"it CHB1"itf10 CHU CHUit CHB1* CHB1'f10 CHB1"it CHB1"itf10

Fig. 7 LR-PRFs in hardware with CP. 80-bit (left) and 120-bit (right) security

in Fig. 1 bounds M for the adversary), hence directly leading to security-bounded imple-
mentations. The global cost metric we use in this case can be written as Mﬁf | X cost
function, where the first factor corresponds to the average number of AES encryptions that
are used to produce each 128-bit output string, and the second one is the cost function of
Table 1.

A comparison of different leakage-resilient PRG implementations in software (i.e. based
on different unprotected and protected AES implementations) is given in Fig. 5 for 80-bit
and 120-bit security levels (the results for 100-bit security are in Appendix, Fig. 15, left).
The main observation in this context is that the straightforward implementation of the PRG
with an unprotected AES design is the most efficient solution. This is mainly because mov-
ing from the smallest M value (i.e. M = 2, as imposed by the 120-bit security level in the
unprotected case - see Fig. 8-left) to large ones (e.g. M > 1000 for masked implementa-
tions) can only lead to a gain factor of 2 for the global cost metric, which is not justified in
view of the performance overheads due to the masking. For a similar reason (i.e. the lim-
ited interest of increasing M), the global cost metric is essentially independent of the target
security level in the figure. In other words, there is little interest in decreasing this security
level since it leads to poor performance improvements. The hardware implementations in
Appendix, Figs. 15-right and 16 lead to essentially similar intuitions, as also witnessed by
the limited impact of decreasing the amplitude of the glitch signal with the f factor (see the
KHB] and KHT} implementations for which f = 10 in the latter figures).

5.2 Leakage-resilient PRFs

Security-unbounded implementations Let us now consider (stateless) leak-age-resilient
PRFs. As already mentioned, those constructions only bound the adversary’s data com-
plexity. The main observation in this case is that if random plaintexts are considered, such
implementations can only be security-unbounded (with the slight cautionary note that we
give below). This fact can be easily explained when the PRF is instantiated with an unpro-
tected software implementation of the AES. What happens then is that the adversary can
repeat his measurements to get rid of the physical noise, and consequently move from
the security graph of Appendix, Fig. 8-left to the one of Appendix, Fig. 13-right. Such a
“repeating” attack is exactly the one already mentioned in [34] to argue that bounded data
complexity is not enough to bound (computational) security. In fact, it similarly applies
to masked implementations. The only difference is that the adversary will not average his
measurements, but rather combine them as in (5). This is because given a leakage function,
e.g. the Hamming weight one that leads to 9 distinguishable events, the distribution of the

@ Springer

Cryptogr. Commun. (2015) 7:163-184 177

measurements in a masked implementation will lead to the same number of distinguishable
events: the only difference is that more sampling will be necessary to distinguish them (see
the appendices in [60] for a plot of these distributions). So if the number of measurements is
not bounded, attacks with low time complexities as in Appendix, Fig. 13 right will always
exist.

One important consequence is that using the PRF construction in this context is essen-
tially useless for all the AES implementations we consider in this paper. The only way to
maintain a target security level for such stateless primitives is to limit the number of mea-
surements by putting a constraint on the lifetime of the system. And this lifetime will be
selected according to the maximum number of measurements tolerated that can be extracted
from our security graphs, which now highly depends on the countermeasure selected. In
other words, we can only evaluate the cost function and the security level attained indepen-
dently in this case, as illustrated in Fig. 6 for our software instances (the 100-bit security
level is again given in Appendix, Fig. 17-left). Here, we naturally come back to the standard
result that Boolean (resp. polynomial) masking increases security at the cost of performance
overheads that are roughly quadratic (resp. cubic) in the number of shares. Note that the
security level of the 1-mask polynomial scheme is higher than the 2-mask Boolean one for
the noise variance we consider, which is consistent with the previous work of Roche and
Prouff [54]. Similar conclusions are obtained with hardware implementations (Appendix,
Fig. 17-right and Appendix, Fig. 18), for which the impact of glitches is now clearly visi-
ble. For example, a factor f = 10 essentially multiplies the number of measurements by f
for the Boolean masking with first-order glitches, and f? for the threshold implementation
with second-order glitches.

Cautionary note The statement that stateless leakage-resilient PRFs can only be security
unbounded if known plaintexts are considered essentially relates to the fact that repeated
measurements allow removing the effect of the noise and the masks in a leaking imple-
mentation. Yet, this claim should be slightly mitigated in the case of algorithmic noise in
hardware implementations. Indeed, this part of the noise can only be averaged up to the data
complexity bound that is imposed by the PRF design. Taking the example of our hardware
implementations where all 16 S-boxes are manipulated in parallel, the SNR corresponding
to algorithmic noise can be computed as the ratio between the variance of a uniformly dis-
tributed 8-bit values’s Hamming weight (i.e. 2) and the variance of 15 such values (i.e. 30).
Averaging this noise over M plaintexts will lead to SNRs of , 5} v » Which is already larger
than 17 if M = 256 (i.e. a noise level for which the security graph will be extremely close
to the worst case one of Appendix, Fig. 13-right). So although there is a “gray area” where
a leakage-resilient PRF implemented in hardware can be (weakly) security-bounded, these
contexts are of quite limited interest because they will imply bounds on the data complex-
ity that are below 256, i.e. they anyway lead to less efficient solutions than the tweaked
construction that we investigate in the next subsection.

Security-bounded implementations As just discussed, stateless primitives hardly lead to
security bounded implementations if physical and algorithmic noise can be averaged - which
is straightforwardly feasible in a known plaintext scenario. The tweaked construction in [34]
aims at avoiding such a weakness by preventing the averaging of the algorithmic noise,
thanks to the combined effect of hardware parallelism and carefully chosen plaintexts lead-
ing to key-dependencies in this noise. Since only the physical noise can be averaged in this
case, the bounded data complexity that the leakage-resilient PRF guarantees consequently
leads to security-bounded implementations again (Fig. 9) . This is illustrated both by the
standard DPAs (such as in Appendix, Figs. 10-right and 12-left) and the iterative attacks

@ Springer

178 Cryptogr. Commun. (2015) 7:163-184

(such as in Appendix, Fig. 13) that can be performed against this PRF*. As in Section 5.1,
we extracted the maximum data complexity D from these graphs, and produced as global

cost metric:
128 .
X cost function,
|log, (D) |

where the first factor corresponds to the (rounded) average number of AES encryptions
needed to produce a 128-bit output, and the second one is the cost function of Table 1. A
comparison of our different leakage-resilient PRFs instantiated with a hardware implemen-
tation of the AES and chosen plaintexts is given in Fig. 7. Here again, we observe that the
most efficient solution is to consider an unprotected design. Interestingly, we also observe
that for the unprotected AES, the iterative attack is the worst case for the 80-bit security
level (where it forces the re-keying after 97 plaintexts vs. 256 for the standard DPA), while
the standard DPA is the worst-case for the 120-bit security level (where it forces the re-
keying after 10 plaintexts vs. 37 for the iterative attack). This nicely fits the intuition that
iterative attacks become more powerful as the data complexity increases, i.e. when the addi-
tional time complexity corresponding to the enumeration of a permutation over 16 bytes
becomes small compared to the time complexity required to recover the 16 AES key bytes
(unordered).

6 Conclusion

The results in this work essentially show that masking and leakage-resilient constructions
hardly combine constructively. For (stateful) PRGs, our experiments indicate that both
for software and hardware implementations, a leakage-resilient design instantiated with
an unprotected AES is the most efficient solution to reach any given security level. For
stateless PRFs, they rather show that a bounded data complexity guarantee is (mostly) inef-
fective in bounding the (computational) complexity of the best attacks. So implementing
masking and limiting the lifetime of the cryptographic implementation is the best solution
in this case. Nevertheless, the chosen-plaintext tweak proposed in [34] is an interesting
exception to this conclusion, as it leads to security-bounded hardware implementations for
stateless primitives that are particularly interesting from an application point-of-view, e.g.
for re-synchronization, challenge-response protocols, ... Quite naturally, such a construc-
tion would deserve further analysis since it relies on assumptions that are not yet fully
understood. Besides, their extension to software implementations is an interesting scope
for further research. In this respect, the combination of a chosen-plaintext leakage-resilient
PRF with the shuffling countermeasure in [62] seems promising, as it could “emulate” the
key-dependent algorithmic noise ensuring security bounds in hardware.

Acknowledgments F.-X. Standaert is an associate researcher of the Belgian Fund for Scientific Research
(FNRS-ER.S.). Work funded in parts by the European Commission through the ERC project 280141
(CRASH) and the European ISEC action grant HOME/2010/ISEC/AG/INT-011 B-CCENTRE project.

4As previously mentioned, there is an additional 16! &~ 2% time complexity implied in the iterative DPA
attacks, corresponding to the enumeration of a permutation over the 16 AES key bytes that is necessary to
test each key candidate.

@ Springer

Cryptogr. Commun. (2015) 7:163-184 179

Appendix

120} 120
‘2‘ 100 ‘>‘,‘ 100 vevetdeoe. . OTUON
3 3 so-
[=% [= %
5 eof 5 60
(] (8]
(] [
E 40t £ 40
20+ 20
0 : : 0 : :
0 10 20 30 40 50 60 70 0 500 1000 1500 2000 2500 3000
number of measurements number of measurements

Fig. 8 DPA-based security graphs for KSU (left) and KSB; (right)

-
N
o

100 - 00 i b TS
z z
- -
5 60 & 60
o o
[[
£ 40 £ 40
20 20
0 - 0 :
0 05 1 15 2 0 05 1 15 2
number of measurements x10° number of measurements x10°

Fig. 9 DPA-based security graphs for KSB; (left) and KSP; (right)

120
100}
z z
3 80 3
g g
g 60} G 60
(8] o
(o3 L]
£ 40 £ 40
20+ 20
0 : : ol :
0 20 40 60 80 100 0 50 100 150 200 250
number of measurements data complexity

Fig. 10 DPA-based security graphs for KHU (left) and CHU (right)

@ Springer

180 Cryptogr. Commun. (2015) 7:163-184

time complexity
time complexity

20 20

o 05 1 15 2 25 3 0 20 40 60 80 100 120 140
number of measurements x10* number of measurements

Fig. 11 DPA-based security graphs for KHB; (left) and KHBY/f = 1 (right)

2 2z
8 8
Q [=%
§ 0 &
o (3]
[
£ 40 £
20 20
. ‘ 0— : :
0 50 100 150 200 250 0 5 10 15
data complexity number of measurements x10°

Fig. 12 DPA-based security graphs for CHB}/ f=1 (left) and KHT} (right)

time complexity
time complexity

0 1 2 3 4 5 10
number of measurements x10* data complexity

Fig. 13 DPA-based security graphs for KHT5/ f=1 (left) and repeating attacks (right)

120}

> 5100

3 3 80|

Q. L)

5 60 5 6o

(3] o

é 40 £ 40|
20 20
0 0

100 150 0 50 100 150 200 250
data complexity data complexity

o

Fig. 14 Iterative DPA-based security graphs for CHU (left) and CHB}/f = 1 (right)

@ Springer

Cryptogr. Commun. (2015) 7:163-184

KsU KsSB1 KsSB2 KSP1

global cost metric (log scale)
=

o

KHU KHB1

KHB1*KHB1*f10KHT2 KHT2*KHT2*f10

181

global cost metric (log scale)

KHU KHB1 KHB1*KHB1*fIOKHT2 KHT2*KHT2*f10

LR-PRGs in software (left) and hardware (right). 100-bit security

global cost metric (log scale)

KHU KHB1

KHB1*KHB1*f10 KHT2 KHT2'KHT2*f10

Fig. 16 LR-PRGs in hardware. 80-bit (left) and 120-bit (right) security

10 10
I cost function - I cost function

10* [L—Inumber of measuments] o| I number of measurements

10+ 4
10° 1

10°t 1
10° 1

2

107+ 4
10’ 1
10° 10°

KsuU KSB1 KsB2 KSP1

KHB1° KHB1°F10 KHT2 KHT2* KHT2°f10

KHU KHB1

Fig. 17 LR-PRFs in software (left) and hardware (right) with KP. 100-bit security

10 10
I cost function I cost function

. [_Inumber of measurements [_Inumber of measurements

10+ 1 i
10 B

10't 1

) 10°} 1
107+ L
10° 0’

KHB1° KHB1°f10 KHT2 KHT2* KHT2'f10

KHU

KHB1

KHU KHB1 KHB1°KHB1*f10 KHT2 KHT2® KHT2°f10

Fig. 18 LR-PRFs in hardware with KP. 80-bit (left) and 120-bit (right) security

@ Springer

182 Cryptogr. Commun. (2015) 7:163-184

References

1. Abdalla, M., Belaid, S., Fouque, P.-A.: Leakage-resilient symmetric encryption via re-keying. In: Bertoni
and Coron [4], pp. 471488

2. Belaid, S., De Santis, F., Heyszl, J., Mangard, S., Medwed, M., Schmidt, J.-M., Standaert, F.-X.,
Tillich, S.: Towards fresh re-keying with leakage-resilient PRFs: Cipher design principles and analysis.
Cryptology ePrint Archive, Report 2013/305 (2013). http://eprint.iacr.org/

3. Bernstein, D.J.: Implementing “practical leakage-resilient cryptography”. CHES 2012 Rump Session
Talk, Leuven, Belgium (2012)

4. Bertoni, G., Coron, J.-S. (eds.): Cryptographic Hardware And Embedded Systems - CHES 2013 - 15th
International Workshop. Santa Barbara, CA, USA, August 20-23, 2013. Proceedings, volume 8086 of
Lecture Notes in Computer Science. Springer (2013)

5. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis
attacks. In: Wiener [63], pp. 398-412

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski. B.S. Jr., Ko¢, C.K., Paar, C. (eds.) CHES,
volume 2523 of Lecture Notes in Computer Science, pp. 13-28. Springer (2002)

7. Common Criteria Portal. http://www.commoncriteriaportal.org/

8. Coron, J.-S., Prouff, E., Rivain, M.: Side channel cryptanalysis of a higher order masking scheme. In:
Paillier and Verbauwhede [38] pp. 28-44

9. Cryptographic Key Length Recommendation. http://www.keylength.com/

10. Dodis, Y., Pietrzak, K.: Leakage-resilient pseudorandom functions and side-channel attacks on feistel
networks. In: Rabin, T. (ed.) CRYPTO, volume 6223 of Lecture Notes in Computer Science, pp. 21-40.
Springer (2010)

11. Durvaux, F., Renauld, M., Standaert, F.-X., van Oldeneel tot Oldenzeel, L., Veyrat-Charvillon, N.: Effi-
cient removal of random delays from embedded software implementations using hidden markov models.
In: Mangard, S. (ed.) CARDIS, volume 7771 of Lecture Notes in Computer Science, pp. 123-140.
Springer (2012)

12. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293-302. IEEE Computer
Society (2008)

13. Eisenbarth, T., Gong, Z., Giineysu, T., Heyse, S., Indesteege, S., Kerckhof, S., Koeune, F., Nad, T.,
Plos, T., Regazzoni, F., Standaert, F.-X., van Oldeneel tot Oldenzeel, L.: Compact implementation and
performance evaluation of block ciphers in ATtiny devices. In: Mitrokotsa, A., Vaudenay, S. (eds.)
AFRICACRYPT, volume 7374 of Lecture Notes in Computer Science, pp. 172-187. Springer (2012)

14. Europay Mastercard Visa. http://www.emvco.com/

15. Faust, S., Pietrzak, K., Schipper, J.: Practical leakage-resilient symmetric cryptography. In: Prouff and
Schaumont [46], pp. 213-232

16. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for dpa with novel algorithmic confusion analysis. In:
Prouff and Schaumont [46], pp. 233-250

17. Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel analysis with additive and
multiplicative maskings. In: Preneel and Takagi [43], pp. 240-255

18. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In:
FOCS, pp. 464-479, IEEE Computer Society (1984)

19. Goubin, L., Patarin, J.: Des and differential power analysis (the ”duplication” method). In: Kog, C.K.,
Paar, C. (eds.) CHES, volume 1717 of Lecture Notes in Computer Science, pp. 158—172. Springer (1999)

20. Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. multiparty computation: How large is the gap for the
AES? In: Bertoni and Coron [4], pp. 400416

21. Herbst, C., Oswald, E., Stefan Mangard: An AES smart card implementation resistant to power analysis
attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS, volume 3989 of Lecture Notes in Computer Science,
pp. 239-252 (2006)

22. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks. In: Boneh,
D. (ed.) CRYPTO, volume 2729 of Lecture Notes in Computer Science, pp. 463—481. Springer (2003)

23. Johansson, T., Nguyen, P.Q. (eds.): Advances in cryptology - EUROCRYPT 2013, 32nd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May
26-30, 2013. Proceedings, volume 7881 of Lecture Notes in Computer Science. Springer (2013)

24. Joux, A. (ed.): Advances in Cryptology - EUROCRYPT 2009, 28th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings, volume 5479 of Lecture Notes in Computer Science. Springer (2009)

@ Springer

http://eprint.iacr.org/
http://www.commoncriteriaportal.org/
http://www.keylength.com/
http://www.emvco.com/

Cryptogr. Commun. (2015) 7:163-184 183

25.

26.

27: Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener [68], pp. 388-397
29.
30.
31
32.
33.
34.
3s.
36.

37.
38.
39.
40.
41.
4.

43.

44,
45.

46.

47.

48.

49.

Katashita, T., Satoh, A., Kikuchi, K., Nakagawa, H., Aoyagi, M.: Evaluation of DPA characteristics of
sasebo for board level simulation. In: Huss, S., Schindler, W. (eds.) Proceedings of COSADE 2010, p.
4, Darmstadt, Germany (2011)

Kerckhof, S., Durvaux, F., Hocquet, C., Bol, D., Standaert, F.-X.: Towards green cryptography: A
comparison of lightweight ciphers from the energy viewpoint. In: Prouff and Schaumont [46], pp.
390407

Kocher, P.C.: Leak resistant cryptographic indexed key update. US Patent 6539092

Mangard, S.: Hardware countermeasures against DPA? A statistical analysis of their effectiveness. In:
Okamoto, T. (ed.) CT-RSA, volume 2964 of Lecture Notes in Computer Science, pp. 222-235. Springer
(2004)

Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets of Smart Cards.
Springer (2007)

Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying standard differential power
analysis attacks. IET Inf. Sec. 5(2), 100-110 (2011)

Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked cmos gates. In: Menezes, A. (ed.)
CT-RSA, volume 3376 of Lecture Notes in Computer Science, pp. 351-365. Springer (2005)

Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hardware implementa-
tions. In: Rao and Sunar [47], pp. 157-171

Medwed, M., Standaert, F.-X., Joux, A.: Towards super-exponential side-channel security with efficient
leakage-resilient PRFs. In: Prouff and Schaumont [46], pp. 193-212

Moradi, A., Mischke, O.: Glitch-free implementation of masking in modern FPGAs. In: HOST, pp.
89-95. IEEE (2012)

Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: A very compact and a
threshold implementation of AES. In: Paterson [39], pp. 69-88

Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis resistant description of
the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE, volume 3557 of Lecture Notes in Computer
Science, pp. 413-423. Springer (2005)

Paillier, P., Verbauwhede, I. (eds.): Cryptographic Hardware and Embedded Systems - CHES 2007, 9th
International Workshop. Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture
Notes in Computer Science. Springer (2007)

Paterson, K.G. (ed.): Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques. Tallinn, Estonia, May 15-19, 2011.
Proceedings, volume 6632 of Lecture Notes in Computer Science. Springer (2011)

Peeters, E., Standaert, F.-X., Donckers, N., Quisquater, J.-J.: Improved higher-order side-channel attacks
with FPGA experiments. In: Rao and Sunar [47], pp. 309-323

Pietrzak, K.: A leakage-resilient mode of operation. In: Joux [24], pp. 462482

Popp, T., Kirschbaum, M., Zefferer, T., Mangard, S.: Evaluation of the masked logic style mdpl on a
prototype chip. In: Paillier and Verbauwhede [38], pp. 81-94

Preneel, B., Takagi, T. (eds.): Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th
International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings, volume 6917 of
Lecture Notes in Computer Science. Springer (2011)

Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security proof. In: Johansson and
Nguyen [23], pp. 142-159

Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using secure multi-party
computation protocols. In: Preneel and Takagi [43], pp. 63-78

Prouff, E., Schaumont, P.: Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th Interna-
tional Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings, volume 7428 of Lecture Notes
in Computer Science. Springer (2012)

Rao, J.R., Berk Sunar (eds.): Cryptographic Hardware and Embedded Systems - CHES 2005, 7th Interna-
tional Workshop, Edinburgh, UK, August 29 - September 1, 2005, Proceedings, volume 3659 of Lecture
Notes in Computer Science. Springer (2005)

Regazzoni, F.,, Yi, W., Standaert, F.-X.: FPGA implementations of the AES masked against power anal-
ysis attacks. In: Huss, S., Schindler, W. (eds.) Proceedings of COSADE 2011, pp 56-66, Darmstadt,
Germany (2011)

Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung, M., Lin, D., Jing,
J. (eds.) Inscrypt, volume 6151 of Lecture Notes in Computer Science, pp. 393—410. Springer (2009)

@ Springer

184 Cryptogr. Commun. (2015) 7:163-184

50. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel attacks on the AES: Why
time also matters in DPA. In: Clavier, C., Gaj, K. (eds.) CHES, volume 5747 of Lecture Notes in
Computer Science, pp. 97—111. Springer (2009)

51. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A formal study of
power variability issues and side-channel attacks for nanoscale devices. In: Paterson [39], pp. 109—
128

52. Rivain, M.: On the exact success rate of side channel analysis in the gaussian model. In: Avanzi, R.M.,
Keliher, L., Sica, F. (eds.) Selected Areas in Cryptography, volume 5381 of Lecture Notes in Computer
Science, pp. 165-183. Springer (2008)

53. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.-
X. (eds.) CHES, volume 6225 of Lecture Notes in Computer Science, pp. 413-427. Springer (2010)

54. Roche, T., Prouff, E.: Higher-order glitches free implementation of the AES using secure multi-party
computation protocols extended version. Cryptology ePrint Archive Report 2011/413. http://eprint.iacr.
org/ (2011)

55. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.) CT-RSA, volume
3860 of Lecture Notes in Computer Science, pp. 208-225. Springer (2006)

56. Standaert, F.-X., Malkin, T., Yung, M.: A unified framework for the analysis of side-channel key recovery
attacks. In: Joux [24], pp. 443-461

57. Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptography under empirically veri-
fiable assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO (1), volume 8042 of Lecture Notes in
Computer Science, pp. 335-352. Springer (2013)

58. Standaert, F.-X., Pereira, O., Yu, Y., Quisquater, J.-J., Yung, M., Oswald, E.: Leakage resilient cryp-
tography in practice. In: Sadeghi, A.-R., Naccache, D. (eds.) Towards Hardware-Intrinsic Security,
Information Security and Cryptography, pp. 99—134. Springer (2010)

59. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M., Kasper, M., Mangard,
S.: The world is not enough: Another look on second-order DPA. In: Abe, M. (ed.) ASTACRYPT, volume
6477 of Lecture Notes in Computer Science, pp. 112-129. Springer (2010)

60. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M., Kasper, M., Mangard,
S.: The world is not enough: Another look on second-order DPA. Cryptology ePrint Archive, Report
2010/180. http://eprint.iacr.org/ (2010)

61. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond computing power. In:
Johansson and Nguyen [23], pp. 126-141

62. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling against side-channel
attacks: A comprehensive study with cautionary note. In: Wang, X., Sako, K. (eds.) ASIACRYPT,
volume 7658 of Lecture Notes in Computer Science, pp. 740-757. Springer (2012)

63. Wiener, ML.J. (ed.): Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture
Notes in Computer Science. Springer (1999)

64. Yu, Y., Standaert, F.-X.: Practical leakage-resilient pseudorandom objects with minimum public random-
ness. In: Dawson, E. (ed.) CT-RSA, volume 7779 of Lecture Notes in Computer Science, pp. 223-238.
Springer (2013)

65. Yu, Y., Standaert, F.-X., Pereira, O., Yung, M.: Practical leakage-resilient pseudorandom genera-
tors. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer and
Communications Security, pp. 141-151. ACM (2010)

@ Springer

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

	Masking and leakage-resilient primitives: One, the other(s) or both?
	Abstract
	Introduction
	Methodology & limitations
	Performance evaluations
	Physical assumptions and glitches

	Security evaluations
	Evaluation setups
	Template attacks and security graphs
	Iterative DPA against constructions with carefully chosen plaintexts.

	Experimental results

	Security vs. performance tradeoffs
	Leakage-resilient PRGs
	Leakage-resilient PRFs
	Security-unbounded implementations
	Cautionary note
	Security-bounded implementations

	Conclusion
	Acknowledgments
	Appendix:
	References

