
Cryptogr. Commun. (2015) 7:91–119
DOI 10.1007/s12095-014-0111-8

Horizontal collision correlation attack on elliptic curves
– Extended Version –

Aurélie Bauer · Eliane Jaulmes · Emmanuel Prouff ·
Jean-René Reinhard · Justine Wild

Received: 17 February 2014 / Accepted: 17 September 2014 / Published online: 15 October 2014
© Springer Science+Business Media New York 2014

Abstract Elliptic curves based algorithms are nowadays widely spread among embedded
systems. They indeed have the double advantage of providing efficient implementations
with short certificates and of being relatively easy to secure against side-channel attacks. As
a matter of fact, when an algorithm with constant execution flow is implemented together
with randomization techniques, the obtained design usually thwarts classical side-channel
attacks while keeping good performances. Recently, a new technique that makes randomiza-
tion ineffective, has been successfully applied in the context of RSA implementations. This
method, related to a so-called horizontal modus operandi, introduced by Walter in 2001,
turns out to be very powerful since it only requires leakages on a single algorithm execution.
In this paper, we combine such kind of techniques together with the collision correlation
analysis, introduced at CHES 2010 by Moradi et al., to propose a new attack on elliptic
curves atomic implementations (or unified formulas) with input randomization. We show
how it may be applied against several state-of-the art implementations, including those of
Chevallier-Mames et al., of Longa and of Giraud-Verneuil and also Bernstein and Lange for
unified Edward’s formulas. Finally, we provide simulation results for several sizes of ellip-
tic curves on different hardware architectures. These results, which turn out to be the very
first horizontal attacks on elliptic curves, open new perspectives in securing such implemen-
tations. Indeed, this paper shows that two of the main existing countermeasures for elliptic
curve implementations become irrelevant when going from vertical to horizontal analysis.

Keywords Side-channel analysis · Elliptic curves implementations · ECDSA · Horizontal
attacks · Collision attacks

Mathematics Classifications (2010) 14G50 · 94A60 · 94A62 · 46N30 · 97P60

The short version of this paper has been published in [8]

A. Bauer · E. Jaulmes · E. Prouff (�) · J.-R. Reinhard · J. Wild
ANSSI, 51, Bd de la Tour-Maubourg, 75700, Paris, France
e-mail: e.prouff@gmail.com

mailto:e.prouff@gmail.com

92 Cryptogr. Commun. (2015) 7:91–119

1 Introduction

Elliptic Curves Cryptosystems (ECC) that have been introduced by N. Koblitz [37] and
V. Miller [45], are based on the notable discrete logarithm problem, which has been thor-
oughly studied in the literature and is supposed to be a hard mathematical problem. The
main benefit in elliptic curves based algorithms is the size of the keys. Indeed, for the same
level of security, the schemes require keys that are far smaller than those involved in clas-
sical public-key cryptosystems. The success of ECC led to a wide variety of applications
in our daily life and they are now implemented on lots of embedded devices: smart-cards,
micro-controller, and so on. Such devices are small, widespread and in the hands of end-
users. Thus the range of threats they are confronted to is considerably wider than in the
classical situation. In particular, physical attacks are taken into account when assessing the
security of the application implementation (e.g. the PACE protocol in e-passports [33]) and
countermeasures are implemented alongside the algorithms.

A physical attack may belong to one of the two following families: perturbation anal-
ysis or observation analysis. The first one tends to modify the cryptosystem processing
with laser beams, clock jitter or voltage perturbation. Such attacks can be thwarted by
monitoring the device environment with captors and by verifying the computations before
returning the output. The second kind of attacks consists in measuring a physical informa-
tion, such as the power consumption or the electro-magnetic emanation, during sensitive
computations. Inside this latter area we can distinguish, what we call simple attacks, that
directly deduces the value of the secret from one or a small number of observation(s) (e.g.
Simple Power Analysis [39]) and advanced attacks involving a large number of obser-
vations and exploiting them through statistics (e.g. Differential Power Analysis [40] or
Correlation Power Analysis [15]). Such attacks require the use of a statistical tool, also
known as a distinguisher, together with a leakage model to compare hypotheses with real
traces (each one related to known or chosen inputs). The latter constraint may however be
relaxed thanks to the so-called collision attacks [52] which aim at detecting the occurrences
of colliding values during a computation, that can be linked to the secret [12, 21, 48, 49].
In order to counteract all those attacks, randomization techniques can be implemented (e.g.
scalar/message blinding for ECC [25]). The recent introduction of the so-called horizontal
side-channel technique by Clavier et al. in [20] seems to have set up a new deal. This
method, which is inspired by Walter’s work [56], takes its advantage in requiring a unique
power trace, thus making classical randomization techniques ineffective. Up to now, it has
been applied successfully on RSA implementations and we show in this paper that it can be
combined with collision correlation analysis to provide efficient attack on elliptic curves
protected implementations.

Core idea. In the context of embedded security, most ECC protocols (e.g. ECDSA [2] or
ECDH [3]) use a short term secret that changes at each protocol iteration. In this particular
setting, advanced side-channel attacks, which require several executions of the algorithm
with the same secret, are ineffective. As a consequence, only protection against S-PA is
usually needed, that can be done thanks to the popular atomicity principle [17, 29, 43]. Up
to now, this technique is considered as achieving the best security/efficiency trade-off to
protect against side-channel analysis. In this paper, we provide a new side-channel attack,
called horizontal collision correlation analysis that defeats such protected ECC implemen-
tations. In particular, implementations using point/scalar randomization combined with
atomicity are not secure, contrary to what was thought up to now. Moreover in order to

Cryptogr. Commun. (2015) 7:91–119 93

complete our study, we also investigate the case of unified formulas 1. Indeed, we show that
our horizontal collision correlation attack allows to distinguish, with a single leakage trace,
a doubling operation from an addition one. This technique, which allows to eventually
recover the secret scalar, is applied to three different atomic formulae on elliptic curves,
namely those proposed by Chevallier-Mames et al. in [17], by Longa in [43], by Giraud
and Verneuil in [29].

Paper Organisation. The paper is organized as follows. First, Section 2 introduces a
framework enabling to formally study the resistance of an implementation against side-
channel attacks in both Horizontal and Vertical modes. Section 3 recalls some basics about
ECC in a side-channel attacks context. Then, under the assumption that one can distinguish
common operands in modular multiplications, the outlines of our new horizontal collision
correlation attack are presented in Section 4. After a theoretical analysis explaining how to
practically deal with the distinguishability assumption, we provide in Section 5 experimen-
tal results for 160, 256 and 384-bit-size curves working with 8 or 32-bit registers. These
results show that the attack success rate stays high even when significant noise is added to
the leakage.

2 A comprehensive study of side-channel analyses

In the following, a general framework is introduced which enables to describe most of the
existing attacks in a similar way and to identify their core differences (actually the leakage
pre-treatment, the leakage model and the statistical test).

2.1 A general framework for simple and advanced side-channel analyses

Theoretically modelling a side-channel analysis obviously requires some prior statistical
notions.

Notations. A realization of a random variable X is referred to as the corresponding
lower-case letter x. A sample of observations of X is denoted by (x) or by (xi)i when
an indexation is needed. In this case, the global event is sum up as (x) ←↩ X. The ith

coordinate of a variable X (resp. x), viewed as a vector, is denoted by X[i] (resp. x[i]). As
usual, the notation E[X] refers to the mean of X. For clarity reasons we sometimes use the
notation EX[·] to enlighten the variable over which the mean is computed. The variance of
X is denoted by var(X).

Attacks presented in this paper involve the linear correlation coefficient which measures
the linear interdependence between two variables X and Y . It is defined as ρ(X, Y) =
cov(X,Y)

σXσY
, where cov(X, Y), called covariance between X and Y , equals E[(X−E[X]).(Y −

E[Y])] = E[XY] − E[X]E[Y] and where σX and σY respectively denotes the standard
deviation of X and Y . The linear correlation coefficient can be approximated from realiza-
tions samples (xi)1≤i≤n and (yi)1≤i≤n of X and Y respectively. For this approximation, the
following so-called Pearson’s coefficient is usually involved:

1Among the unified formulas, we especially focus on the Edward’s ones in [9] introduced by Bernstein and
Lange since they lead to efficient doubling and addition computations compared to the Weierstrass case [16].

94 Cryptogr. Commun. (2015) 7:91–119

Fig. 1 Power consumption of
the processing of O

ρ̂(X, Y) = n
∑

i xiyi − ∑
i xi

∑
j yj

√

n
∑

i x2
i − (∑

i xi

)2
√

n
∑

j y2
j − (∑

j yj

)2
. (1)

Attack Context. In the subsequent descriptions of side-channel analyses, an algorithm A
is modelled by a sequence of elementary calculations (Ci)i that are Turing machines aug-
mented with a common random access memory (see [44] for more details about this model).
Each elementary calculation Ci reads its input Xi in this memory and updates it with its
output Oi = Ci(Oi). All the attacks below target a variable O(s, X) defined as the output
of a specific computation (e.g. a multiplication) performed by the device and parametrized
by a secret sub-part s and a public variable2 X. In the following, we shall use O instead of
O(s, X) if there is no ambiguity on s and X.

To recover information on s, the attacks are performed on a sample of observations related
to the processing of O by the device. Each of those observations, such as power con-
sumption, electromagnetic emanations, and so on, is usually composed of several physical
measurements corresponding to leakages at different times ti . It can hence be viewed as a
realization of a multivariate random variable L whose coordinates L[i] satisfy:

L[i] = ϕi (O) + Bi , (2)
where ϕi only depends on the device behaviour at time ti during the processing of O and

Bi is an independent Gaussian noise with zero mean and standard deviation σi . The function
ϕi is a priori unknown. The index i will be sometimes omitted. In this case, it is assumed that
the same function is associated to all the time indices. See Fig. 1 to illustrate the notations
and Appendix A for an extension of the definitions and notations to higher-order contexts.

An SCA is based on the Hypothesis Testing principle [38]. To make this test, a set of
prediction values hj are deduced from each hypothesis ŝ on s and from the sample of imple-
mentation inputs (xj) corresponding to the observations. This step involves a leakage model
function m that must have been priorly chosen by the attacker (for instance based on its
knowledge on the attacked device architecture). With this model function, the prediction
values hj are built s.t. hj = m(O(ŝ, xj)). Eventually, the adversary uses a distinguisher ρ

to compare the hj with the observations lj ←↩ L|X = xj . This results in a so-called score
value, �[ŝ] for the hypothesis ŝ. The tuple of scores (�[ŝ])ŝ is called scores vector.

2We shall sometimes need to consider the known value as a pair of variables: in this case we will use the
notation (X, Y) instead of X.

Cryptogr. Commun. (2015) 7:91–119 95

Table 1 Simple side-channel analysis

1. Choose a value x for X.

2. Measure a sample (lj)j ←↩ (L|X = x) of N leakages.

3. Select a distinguisher � and choose a model function m.

4. For each hypothesis ŝ on s, compute h = m(O(ŝ, x)).

5. For each ŝ, compute �[ŝ] = �
[
(lj)j , h

]
.

6. Deduce from �[·] information on s.

The overall set of SCA is usually split in two subclasses. The first one, called simple
Side-Channel Analysis, contains all attacks where observations only need to be done on a
single value of the public input parameter (this implies that all the xj are equal to a same
value, say x). This set contains S-PA [39], S-EMA [27, 51] or S-TA (Timing Analysis)
[39]. The second subclass, called advanced Side-Channel Analysis, includes attacks where
observations of the targeted internal processing must be done for several public input
parameters. In particular, it contains univariate SCA attacks such as D-PA [41], C-PA [15]
or MI-PA [28] and multivariate SCA attacks such as HO-D-PA [41, 50] or HO-MI-PA [6].
We give hereafter a more formal description of those two subclasses.

Simple SCA. The class of simple SCA includes all Vertical or Horizontal SCA where the
adversary makes observations on a single input. Table 1 provides a description of a simple
Side-Channel Analysis.3

Remark 1 In theory, simple SCA may be conducted with a single observation. In practice
however, it is often necessary to use several observations of the processing for the same
variable x in order to reduce the noise impact. In this case, the statistical distinguisher ρ

may for instance involve a preliminary step consisting in the averaging of the observations
sample.

Example 1 (S-PA on an RSA implementation based on the left-to-right Square and Multi-
ply algorithm) In this case, the target processing is the entire computation O = Xsmodn.
For a constant message x ←↩ X, the adversary starts by getting a sample of observations
(lj) ←↩ L|X = x. Then, ranging i from the index of the key most significant bit to 0, he
makes an hypothesis ŝ[i]. From the model, he hence gets, for each index i, a pattern pŝ[i]
that is assumed to correspond to the power consumption profile of either a squaring plus a
multiplication if ŝ[i] equals 1 or a squaring alone if ŝ[i] equals 0. Eventually, the adversary
chooses the Euclidean distance as distinguisher � and computes it between h = pŝ[i] and
the part of the mean vector 1

N

∑
j lj corresponding to the ith step of the exponentiation.

The hypothesis ŝ[i] minimizing the distance is assumed to be the most likely one.

Advanced SCA. All the attacks where observations must involve several inputs belong
to the advanced SCA category. This kind of attacks follows the outlines given in Table 2.

3In contexts where the adversary is not allowed to choose the algorithm input but knows it, the first step just
aims at fixing the input value for the rest of the attack.

96 Cryptogr. Commun. (2015) 7:91–119

Table 2 Advanced side-channel analysis (A-SCA)

1.Get N measurements (lj , xj)j ←↩ (L, X).

2. Select a distinguisher � and choose a model function m.

3. For each hypothesis ŝ on s build a set of predictions hj such that hj = m(o(ŝ, xj)).

4. For each ŝ, compute �[ŝ] = �
[
(hj)j , (lj)j

]

5. Deduce from �[·] information on s.

Remark 2 Depending on the statistical treatment processed by the distinguisher, the lat-
ter one may include a particular leakage post-processing ε. This post-treatment may be
used to select some particular points in the leakage traces and, possibly, to combine them.
For instance, in a second-order advanced SCA involving the mutual information as distin-
guisher, the function ε can be defined such that ε (L) = (L[p], L[q]) for some constant
indices (a.k.a. leakage times) p and q. In a second-order advanced SCA involving the corre-
lation coefficient as distinguisher, ε may be defined such that εε (L) = (L[p] − E(L[p])) ·
(L[q] − E(L[q])). Moreover, the choice of the model function must be done in accordance
with the distinguisher (see e.g. [50] and [28]).

Example 2 In template A-SCA, the probability density function fŝ,xj
of the random vari-

able (L|S = ŝ, X = xj) is estimated for all pairs (ŝ, xj). The model function m and
the predictions (hj (·))j are hence defined such that hj (·) = m(o(ŝ, xj)) = fŝ,xj

(·). The
estimation may for instance be done on a copy of the attacked device on which an open
access is allowed. Eventually, the distinguisher corresponds to a Maximum Likelihood Test:
�[ŝ] = ∏

j fŝ,xj
(lj).

2.2 Leakage measurements and observations

In the literature, two main approaches have been defined to get the observations lj (which
corresponds to the first step of the attacks in Tables 1 and 2). The first method simply
consists in executing the implementation several times (with the same input in simple SCA
or with several ones in advanced SCA) and in defining lj as the observation related to the
j th algorithm execution. Those attacks are called Vertical. The second method refers to
attacks where a single execution is needed and where each lj corresponds to the observation
of a processing at a different time period during the latter. In this case, the index j refers
to the time period. The underlying assumption is that all the observations rely on the same
internal calculus O(s,X), parametrized by a same secret s and different known values xj

in advanced SCA, or a constant one x in simple SCA. Attacks corresponding to this modus
operandi are called Horizontal. Figure 2 illustrates the notations and the differences between
the two modus operandi.

All the attacks discussed in Section 2.1 can be either Vertical or Horizontal4. Even if the
Horizontal or Vertical characteristic of an SCA has no impact on the attack steps themselves
(as described in Tables 1 and 2), it does impact the implementation security analysis. Indeed,
we will see in Section 5 that a countermeasure may become ineffective when going from

4Possibly, the observations acquisition phase may mix horizontal and vertical techniques. In this case, the
attack will be termed Rectangle.

Cryptogr. Commun. (2015) 7:91–119 97

Fig. 2 Vertical and Horizontal SCA

one category of attacks to another one. We illustrate this in the context of secure RSA
implementations.

2.3 Security evaluation

To analyse the resistance of an implementation against any of the attacks presented in
previous sections, we can evaluate the following quantity:

∣
∣
∣Pr[S = s] − Pr

[
S = s | (�[ŝ])ŝ

]∣∣
∣ .

Indeed, if this value turns out to be negligible, it means that the adversary does not gain
any advantage in recovering the secret key s by processing the SCA than just guessing it at
random from uniformly distributed values among the set of all possibilities. In this case, we
consider the implementation to be resistant to the corresponding SCA attack (represented
by the scores vector �[·]). This way of analyzing the security is very close to the approach
based on guessing entropy introduced in [53]. Also, after considering �[·] as an Oracle with
which the adversary interacts, the approach exactly corresponds to that followed in classical
security proofs in modern cryptography.

2.4 Taxonomy

Based on the discussions conducted in previous sections, we propose here a general taxon-
omy for simple and advanced side-channel attacks. To name an attack we propose to use the
convention [XXX]-[YYY]-[ZZZ] where:

98 Cryptogr. Commun. (2015) 7:91–119

• XXX equals either S for simple SCA or is a reference to the statistical tool for advanced
SCA (e.g. C for Correlation, MI for Mutual Information, ML for Maximum Likelihood,
LR for Linear Regression, etc.). In case of multivariate SCA, we propose to pad the
order/dimension followed by O at the left of the distinguisher letter.

• YYY is an acronym referring to the leakage type; PA for Power Analysis, EMA for
Electromagnetic Analysis, TA for Timing Attacks, etc.

• ZZZ is optional and may be used to specify if the attack is profiled or not. In this case,
ZZZ is replaced by P (for Profiling) or UnP (for UnProfiling). For instance, Template
attack is a ML-PA-P attack.

Of course, all those attacks can be applied either on a Vertical or Horizontal mode.
Figure 3 illustrates the taxonomy for some existing attacks.

3 Side-channel attacks against elliptic curves

In this section, we study the resistance of several implementations of ECC algorithms with
respect to horizontal SCA.

3.1 Background on Elliptic Curves

As this paper focuses on side-channel attacks on ECC, let us recall now some basics on
elliptic curves and especially on the various ways of representing points on such objects
(the reader could refer to [23, 32] for more details).

Throughout this paper, we are interested in elliptic curve implementations running on
platforms (ASIC, FPGA, micro-controller) embedding a hardware modular multiplier (e.g.
a 16-bit, 32-bit or 64-bit multiplier). On such implementations, the considered elliptic
curves are usually defined over a prime finite field Fp. In the rest of this paper, we will
assume that all curves are defined over Fp with p �= {2, 3}. The algorithm used for
the hardware modular multiplication is assumed to be known to the attacker. Moreover,
to simplify the attack descriptions, we assume hereafter that the latter multiplication is
performed in a very simple way: a schoolbook long integer multiplication followed by a
reduction. Most of current devices do not implement the modular multiplications that way,

Fig. 3 Side-Channel Attacks

Cryptogr. Commun. (2015) 7:91–119 99

but the attacks described hereafter can always be adapted by changing the definition of the
elementary operations of Section 4.3 (see Appendix B).

Definition. An elliptic curve E over a prime finite field Fp with p �= {2, 3} can be
defined as an algebraic curve of affine reduced Weierstrass equation:

(E) : y2 = x3 + ax + b , (3)

with (a, b) ∈ (Fp)2 and 4a3 + 27b2 �= 0. Let P = (x1, y1) and Q = (x2, y2) be two
points on (E), the sum R = (x3, y3) of P and Q belongs to the curve under a well-known
addition rule [37]. The set of pairs (x, y) ∈ (Fp)2 belonging to (E), taken with an extra
point ϑ , called point at infinity, form an abelian group named E(Fp).

In the rest of the paper, the points will be represented using their projective coordinates.
Namely, a point P = (x, y) is expressed as a triplet (X : Y : Z) such that X = xZ and
Y = yZ. This choice is discussed in Appendix C.

3.2 Points operations in presence of SCA

This paper focusses on elliptic curves cryptosystems which involve the scalar multiplication
[s]P , implemented with the well-known double and add algorithm.

In a non-protected implementation, the sequence of point doublings and point additions
can reveal the value of s with a single leakage trace. Thus to protect the scheme against
S-PA, the sequence of point operations must be independent from the secret value. This
can be achieved in several ways. The double and add always algorithm [25] is the sim-
plest solution. It consists in inserting dummy point additions each time the considered bit
value of s is equal to 0. In average, this solution adds an overhead of log2(s)

2 point addi-
tions. Another technique consists in using unified formulae for both addition and doubling
[10, 11, 42]. Finally, the strategy which is usually adopted in constrained devices such
as smart cards is atomicity since it achieves the best time/memory trade-off [17, 29, 43].
This principle is a refinement of the double and add always technique. It consists in writ-
ing addition and doubling operations as a sequence of a unique pattern. This pattern is
itself a sequence of operations over Fp . Since the pattern is unique, the same sequence of
field operations is repeated for the addition and the doubling, the only difference being the
number of times the pattern is applied for each operation. It thus becomes impossible to
distinguish one operation from the other or even to identify the starting and ending of these
operations.

To defeat an atomic implementation, the adversary needs to use advanced side-channel
attacks (see Section 2.1), such as D-PA, C-PA and so on. These attacks focus on the oper-
ations operands instead of only focusing on the kind of operations. They usually require
more observations than for S-PA since they rely on statistical analyses. In the ECC lit-
erature, such attacks have only been investigated in the vertical setting, where they can be
efficiently prevented by input randomization.

4 Horizontal collision correlation attack on ECC

We show hereafter that implementations combining atomicity and randomization techniques
are in fact vulnerable to collision attacks in the horizontal setting. This raises the need for
new dedicated countermeasures.

100 Cryptogr. Commun. (2015) 7:91–119

This section starts by recalling some basics on collision attacks. Then, assuming that the
adversary is able to distinguish when two field multiplications have a common (possibly
unknown) operand, we show how to exhibit flaws in the atomic algorithms proposed in [17,
29, 43] and also in implementations using the unified formulae for Edward’s curves [9].
Eventually, we apply the collision attack presented in the first subsection to show how to
efficiently deal with the previous assumption.

4.1 Collision power analysis in the horizontal setting

To recover information on a subpart s of the secret s, collision side-channel analyses are
usually performed on a sample of observations related to the processing, by the device,
of two variables O1 and O2 that jointly depend on s. The advantage of those attacks,
compared to the classical ones, is that the algorithm inputs can be unknown since the
adversary does not need to compute predictions on the manipulated data. When performed
in the horizontal setting, the observations on O1 and O2 are extracted from the same
algorithm execution (see Section 2.1). Then, the correlation between the two samples of
observations is estimated thanks to the Pearson’s coefficient (see (1)) in order to recover
information on s. We sum up hereafter the outlines of this attack, that will be applied in the
following.

Remark 3 In Table 3, we use Pearson’s coefficient to compare the two samples of
observations but other choices are possible (e.g. mutual information).

Remark 4 In order to deduce information on s from the knowledge of ρ̂, one may use for
instance a Maximum Likelihood distinguisher (see a discussion on that point in Section 5).

In the next section, the attack in Table 3 is invoked as an Oracle enabling to detect
whether two field multiplications share a common operand.

Assumption 1 The adversary can detect when two field multiplications have at least one
operand in common.

In Section 4.3, we will come back to the latter hypothesis and will detail how it can indeed
be satisfied in the particular context of ECC implementations on constrained systems.

4.2 Attacks on ECC implementations: core idea.

We start by presenting the principle of the attack on atomic implementations, and then on an
implementation based on unified (addition and doubling) formulae over Edward’s curves.

Table 3 Collision power analysis

1. Identify two elementary calculations C1(·) and C2(·) which are processed several times, say N , with

input(s) drawn from the same distribution(s). The correlation between the random variables O1 and O2

corresponding to the outputs of C1 and C2 must depend on the same secret sub-part s.

2. For each of the N processings of C1 (resp. C2) get an observation 	1
j (resp. 	2

j) with j ∈ [1;N].
3. Compute the quantity:ρ̂ = ρ̂

(
(1

j)j , (
2
j)j

)

4. Deduce information on s from ρ̂.

Cryptogr. Commun. (2015) 7:91–119 101

Fig. 4 Three first atomic patterns of point doubling and addition

Attack on Chevallier-Mames et al.’s Scheme. In Chevallier-Mames et al.’s atomic
scheme, historically the first one, the authors propose the three first patterns5 given in Fig. 4
for the doubling of a point Q = (X1 : Y1 : Z1) and the addition of Q with a second point
P = (X2 : Y2 : Z2).

As expected, and as a straightforward implication of the atomicity principle, the doubling
and addition schemes perform exactly the same sequence of field operations if the star
(dummy) operations are well chosen6. This implies that it is impossible to distinguish a
doubling from an addition by just looking at the sequence of calculations (i.e. by S-PA). Let
us now focus on the operations’ operands. In the addition scheme, the field multiplications
in Patterns 1 and 3 both involve the coordinate Z2. On the contrary, the corresponding
multiplications in the doubling scheme have a priori independent operands (indeed the first
one corresponds to the multiplication X1 · X1, whereas the other one corresponds to Z2

1 ·
Z2

1). If an adversary has a mean to detect this difference (which is actually the case under
Assumption 1), then he is able to distinguish a doubling from an addition and thus to fully
recover the secret scalar s. Indeed, let us focus on the processing of the second step of the
double and add left-to-right algorithm, and let us denote by s the most significant bit of
s. Depending on s, this sequence either corresponds to the processing of the doubling of
Q = [2]P (case s = 0) or to the addition of Q = [2]P with P (case s = 1). Eventually, the
results T1 and T2 of the field multiplications in respectively Patterns 1 and 3 satisfy:

{
T1 = (X1 · X1)

1−s · (Z2 · Z2)
s

T2 = (
Z2

1 · Z2
1

)1−s · (
Z2

2 · Z2
)s , (4)

where we recall that we have P = (X2 : Y2 : Z2) and Q = (X1 : Y1 : Z1). Equation 4
and Assumption 1 enables to deduce whether s equals 0 or 1. Applying this attack log2(s)

times, all the bits of s can be recovered one after the other.
We now show that the same idea can successfully be applied to attack the other atomic

implementations proposed in the literature, namely those of Longa [43] and Giraud and
Verneuil [29].

5For readability reasons we do not recall the full patterns but the interested reader can find them in [17].
6Guidelines are given in [17] to define the dummy operations in a pertinent way.

102 Cryptogr. Commun. (2015) 7:91–119

Attack on Longa’s Scheme. The atomic pattern introduced by Longa in [43] is more effi-
cient than that of Chevallier-Mames et al. ’s scheme. This improvement is got by combining
affine and Jacobian coordinates in the points addition, see Fig. 5.

It can be seen that the first and third patterns of Longa’s scheme contain two field multi-
plications that either have no operand in common (doubling case) or share the operand Z1
(addition case). Similarly to Chevallier-Mames et al.’s scheme, we can hence define the two
following random variables:

{
T1 = (

Z1 · Z1

)1−s · (
Z1 · Z1

)s

T2 = (
X1 · 4Y 2

1

)1−s · (
Z2

1 · Z1

)s , (5)

Under Assumption 1, it leads to the recovery of s.

Attack on Giraud and Verneuil’s Scheme. Giraud and Verneuil introduced in [29] a
new atomic pattern which reduces the number of field additions, negations and dummy
operations (
) compared to the above proposals. The patterns are recalled in Fig. 6.

Once again, depending on the secret s, we observe a repetition of two multiplications
with a common operand in the first pattern of the addition scheme (ADD 1.), leading to the
following equations: {

T1 = (X1 · X1)
1−s · (Z2 · Z2)

s

T2 = (2Y1 · Y1)
1−s · (

Z2
2 · Z2

)s , (6)

which, under Assumption 1, leads to the recovery of s.

Fig. 5 The first and third patterns used in atomicity of Longa

Cryptogr. Commun. (2015) 7:91–119 103

Fig. 6 The beginning of Giraud and Verneuil’s patterns

Remark 5 A second version of the patterns in Fig. 6 has been proposed in [29] which allows
to save more field additions and negations without addition of dummy operations. This
proposal share the same weakness as the previous ones and our attack still applies.

Attack on Edward’s Curves. Edward’s representation of elliptic curves has been introduced
in [26]. In a subsequent paper [10], Bernstein and Lange homogenized the curve equation
in order to avoid field inversions in Edward’s addition and doubling formulae. For this
homogenized representation, points addition and doubling are both computed thanks to the
same formula. Let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be two points on the curve,
the sum R = (X3 : Y3 : Z3) of P and Q is given by the following system:

⎧
⎨

⎩

X3 = Z1Z2(X1Y2 − Y1X2)(X1Y1Z
2
2 + Z2

1X2Y2)

Y3 = Z1Z2(X1X2 + Y1Y2)(X1Y1Z
2
2 − Z2

1X2Y2)

Z3 = dZ2
1Z2

2(X1X2 + Y1Y2)(X1Y2 − Y1X2)

, (7)

where d is some constant related to the Edward curve equation. Formulae (7) works
whether P equals Q or not, meaning that it applies similarly for addition and doubling. This
is one of the main advantage of Edward’s representation compared to the other ones (e.g.
Projectives) where such unified formulae do not exist. For attack illustration purpose, we
give in Fig. 7 a sequence of operations which could appear when evaluating the formulae in
(7) either to compute P + P or P + Q.

Here, we can exploit the fact that the multiplication X1Z1 is performed twice if P = Q

(i.e when the formula processed a doubling), which is not the case otherwise (see Fig. 7).
We can hence define the two following random variables:

{
T1 = (X1 · Z1)

1−s · (X1 · Z2)
s

T2 = (X1 · Z1)
1−s · (X2 · Z1)

s , (8)

which, under Assumption 1, leads to the recovery of s.

Fig. 7 First steps of algorithm
for addition

104 Cryptogr. Commun. (2015) 7:91–119

Remark 6 This technique still applies in the case of other unified formulae (e.g. those intro-
duced in [16]). Indeed, the sequence of operations in [16] present the same weaknesses as
illustrated in Fig. 7. The multiplication X1Z1 is performed twice if the current operation is
a doubling (see the first and third multiplications in [16, Section 3, Fig. 1]).

In [10], Bernstein and Lange propose a sequence of operations to evaluate (7)
while minimizing the total number of multiplications and squarings. We recall it in
Fig. 8.

For P = Q or P �= Q, it may be checked that the sequence in Fig. 8 does not contain
two terms which share the same operand. This implies that the attack strategy developed
against previous atomic schemes does no longer apply here. It is however possible to follow
another attack strategy relying on some defect of the double-and-add algorithm relatively to
collision attacks. Indeed, with the double-and-add algorithm, every addition operation leads
to perform an addition by a same point : the base point of the scalar multiplication. If we
assume that the position in the operations flow of such an addition is known, for example
if the most or least significant bit of the exponent is 1, then it is trivial to identify all the
positions of the point additions using Assumption 1. Remark that this is quite general : this
attack does not rely on some property of the unified sequence of operations described by
Bernstein and Lange to compute point additions on Edward curves. It shows that the double-
and-add algorithm is vulnerable to the attacks we present even when used with unified
formulae.

4.3 Distinguishing common operands in multiplications

In this section we apply the collision attack principle presented in Section 4.1 to show how
an adversary may deal with Assumption 1. This will conclude our attack description. As
mentioned before, we assume that the field multiplications are implemented in an arithmetic
co-processor with a Long Integer Multiplication (LIM) followed by a reduction. Many other
multiplication methods exist but our attack can always be slightly adapted to also efficiently
apply to those methods (see Appendix B).

Let ω denote an architecture size (e.g. ω equals 8, 16 or 32) and let us denote by
(X[t], . . . , X[1])2ω the base-2ω representation of an integer. We recall hereafter the main
steps of the LIM when applied between two integers X and Y .

Fig. 8 First steps of algorithm for addition

Cryptogr. Commun. (2015) 7:91–119 105

Let W , X, Y and Z be four independent values of size tω bits. We show hereafter how
to distinguish by side-channel analysis the following three cases:

• Case (0) where the device processes LIM(X,W) and LIM(Y, Z) (all the operands are
independent),

• Case (1) where LIM(X,Z) and LIM(Y, Z) are processed (the two LIM processings
share an operand).

• Case (2) where LIM(X,Z) is processed two times (the two LIM processings operate
on the same inputs).

To summarize, case (i) corresponds to two integer multiplications sharing i input
factor(s).

For such a purpose, and by analogy with our side-channel model in Section 2.1 and
Table 3, we denote by C1 (resp. C2) the multiplication in the loop during the first LIM
processing (resp. the second O processing) and by O1 (resp. O2) its result. The output of
each ω-bit word multiplication during the loop may be viewed as a realization of the random
variable O1

a,b (resp. O2
a,b). To each of those realizations we associate a leakage 	1

a,b (resp.

	2
a,b). To distinguish between cases (1), (2), and (3), we directly apply the attack described

in Table 3 and we compute the Pearson’s correlation coefficient:

ρ
(
(1

a,b)a,b, (
2
a,b)a,b

)
. (9)

In the specific case of the LIM, where all the word products X[a]Y [b] are processed,
on can also average the observations of computations sharing a same input word Y [b]. This
post-processing on the observations leads to evaluate the following Pearson coefficient in
the attack:

ρmean
(
(1

a,b)a,b, (
2
a,b)a,b

)
= ρ

((
1

t

∑

a

	1
a,b

)

b

,

(
1

t

∑

a

	2
a,b

)

b

)

. (10)

In the following section, we actually argue that this second correlation coefficient gives
better results, which is confirmed by our attacks simulations reported in Section 5.

106 Cryptogr. Commun. (2015) 7:91–119

4.4 Study of the attack soundness

This section aims at arguing on the soundness of the approach described previously to dis-
tinguish common operands in multiplications. For such a purpose, we explicit formulae for
the linear correlation coefficients corresponding to Pearson’s coefficients given in (9) and
(10). Indeed, Pearson’s coefficient can be viewed as an estimator of the linear correlation
coefficient: when the number of samples tends toward infinity, it tends toward the linear
correlation coefficient.

For simplicity, the development is made under the assumption that the device leaks
the Hamming weight of the processed data but similar developments could be done for
other models and would lead to other expressions. Under the Hamming weight assump-
tion, we have 	1

a,b ←↩ HW(O1
a,b) + B1

a,b and 	2
a,b ←↩ HW(O2

a,b) + B2
a,b where

the Bi
a,b random variables are independent Gaussian random variables with zero mean

and same standard deviation σ . The three cases presented in last section, 0-, 1- or 2-
shared factors in two t-word integers multiplications, can be expressed in the following
manner:

• O1
a,b = X[a].W [b], O2

a,b = Y [a].Z[b]
• O1

a,b = X[a].Z[b], O2
a,b = Y [a].Z[b]

• O1
a,b = X[a].Z[b], O2

a,b = X[a].Z[b]
We model the integers X, Y,Z, W as vectors of independent, uniformly distributed,

ω-bit word random variables. Furthermore, as seen in the previous subsection, we can
either apply the Pearson coefficient directly using (9), or take advantage of the properties
of the LIM to aggregate all observations pertaining to a same word of the second factor
of the multiplication using (10). In the former case, the pairs (1

a,b, 	
2
a,b) can be seen as

t2 samples of a pair of noisy random variables following distributions which depend on
the number of shared factors between O1 and O2. In the latter case, the pairs of aggre-
gated values can be seen as t samples of pairs of noisy averaged random variables of
the form 1

t

∑t
a=1 HW(U [a]V [b]), with distributions depending on the number of shared

factors.
For everyone of the 6 cases (3 attack cases times 2 types of correlation processing – nor-

mal or with averaging –), the correlation between the two noisy random variables can be
expressed as a function of statistical parameters of the Hamming weights of word products
(variance and covariance), and the standard deviation σ of the noise random variables. To
get the expressions, the bilinearity of the covariance, the independence of the noise ran-
dom variables and the word random variables may be used, which eventually results in the
following formulae:

ρ0 = ρmean
0 = 0;

ρ1 = cov(HW(X.Z),HW(Y.Z))

var(HW(X.Z)) + σ 2
; ρ2 = var(HW(X.Z))

var(HW(X.Z)) + σ 2
;

ρ1 = t2cov(HW(X.Z),HW(Y.Z))

tvar(HW(X.Z)) + t (t − 1)cov(HW(X.Z),HW(Y.Z)) + tσ 2
;

ρ2 = tvar(HW(X.Z)) + t (t − 1)cov(HW(X.Z),HW(Y.Z))

tvar(HW(X.Z)) + t (t − 1)cov(HW(X.Z),HW(Y.Z)) + tσ 2
,

where the index of the correlation coefficient refers to the attack case (a.k.a. the number of
shared operands between the two word products).

Cryptogr. Commun. (2015) 7:91–119 107

Establishing explicit expressions of the variance and covariance of the Hamming weight
of products of uniformly distributed random variables in the general case remains an open
question. There are two favourable cases where we are able to obtain such expressions.

The parameter ω is small. The distribution considered can be computed and thus their
variance and covariance can be derived. For example for ω = 8, we have

var(HW(X.Z)) = 1136522959

228

cov(HW(X.Z),HW(Y.Z)) = 279558159

228

Hamming weight of least significant bits. The elementary word multiplication takes as input
two ω-bit words and outputs a 2ω-bit word. This output is stored in 2 words. If the leakage
associated to the multiplication can be decomposed in two parts, associated to the most
significant bits and least significant bits of the results, then word multiplication mod 2ω

can be considered instead of word multiplication in the ring of the integers. Due to the ring
structure of Z/2ω

Z, explicit formulae giving the variances and covariances of interest as
function of ω can be derived.

We have

var(HW(X.Z)) = 1
22ω+2

(
(ω + 1)22ω − 2ω2ω − 1

)
,

cov(HW(X.Z),HW(Y.Z)) = 1
22ω+2

(
2.22ω − (2ω + 1)2ω − 1

)
,

ρ1 = 1

1 + 22ω+2σ 2+(ω−1)22ω+2ω

2.22ω−(2ω+1)2ω−1

, ρmean
1 = 1

1 + 1
t

22ω+2σ 2+(ω−1)22ω+2ω

2.22ω−(2ω+1)2ω−1

,

ρ2 = 1

1 + 22ω+2σ 2

(ω+1)22ω−2ω2ω−1

, ρmean
2 = 1

1 + 22ω+2σ 2

t (2.22ω−(2ω+1)2ω−1)+2ω[(ω−1)2ω+1]
.

Note that when t tends towards infinity, the correlation coefficient of averaged variables
tends towards 1 (which is optimal), whereas the correlation coefficient when considering
directly the random variables has some value strictly lower than 1 independently of the size
of the sample.

5 Experiments

In order to validate the approach presented in Section 4.3 and thus to illustrate the practi-
cal feasibility of our attack, we performed several simulation campaigns for various sizes
of elliptic curves, namely �log2(p)� ∈ {160, 256, 384}, implemented on different kinds
of architectures, namely ω ∈ {8, 32} using the Chevallier-Mames et al. ’s scheme. Each
experiment has been performed in the same way. For each (p, ω), we computed Pearson’s
correlation coefficient (10) between the sample of observations coming from the leakages
on operations C1 and C2 in the two following cases 7:

• when the secret bit s is equal to 1, that is when an addition is performed (which implies
correlated random variables, see (4)),

7We also performed experiments with the correlation defined in (9) and observed that the attacks were always
less efficient than with the correlation in (10), which is in line with the analysis conducted in Section 4.4

108 Cryptogr. Commun. (2015) 7:91–119

• when the secret bit s is equal to 0, that is when a doubling operation is performed
(which implies independent random variables, see (4)).

From the configuration (p, ω), the size t of the observations’ samples used in the attack
can be directly deduced: it equals � log2(p)

ω
�. The quality of the estimations of the correlation

coefficient by Pearson’s coefficient depends on both the observations signal to noise ratio
(SNR) and t . When the SNR tends towards 0, the sample size t must tend towards infinity
to deal with the noise. Since, in our attack the samples size cannot be increased (it indeed
only depends on the implementation parameters p and ω), our correlation estimations tend
towards zero when the SNR decreases. As a consequence, distinguishing the two Pearson
coefficients coming from s = 0 and s = 1 becomes harder when the SNR decreases. This
observation raises the need for a powerful (and robust to noise) test to distinguish the two
coefficients. To take this into account for each setting (p, ω) and several SNR, we com-
puted an histogram approximation of the distribution of Pearson’s coefficient defined in
(10) over samples of size t . To build those kinds of templates, leakages have been gener-
ated in the Hamming weight model with additive Gaussian noise of mean 0 and standard
deviation8 σ . When there is no noise at all, namely when σ = 0 (i.e SNR = +∞), one can
observe that the mean of Pearson’s coefficient is coherent with the predictions evaluated
in Section 4.4.

Figures (9, 10, 11 and 12) illustrate the spreading of the obtained Pearson’s coefficients.
The curves indicate the evolution of the maxima of the distributions, and the colored cone
around the maximum indicates the smallest interval containing more than half of the prob-
ability weight of the Pearson’s coefficient distribution. This gives us information about
the amount of trust we can put into the values obtained during the attacks. It also shows
whether a distinction between the right hypothesis and the wrong one can easily be high-
lighted. For each SNR value (denoted by τ) and each sample size t , let us denote by ρ̂0,t (τ)

(resp. ρ̂1,t (τ)) the random variable associated to the processing of (10) for s = 0 (resp. for
s = 1). Clearly, the efficiency of the attack described in Section 4 depends on the ability of
the adversary to distinguish, for a fixed pair (t, τ), the distribution of ρ̂0,t (τ) from that of
ρ̂1,t (τ). In other terms, once the adversary has computed a Pearson coefficient ρ̂ he must
decide between the two following hypotheses; H0 : ρ̂ ←↩ ρ̂0,t (τ) or H1 : ρ̂ ←↩ ρ̂1,t (τ).
For such a purpose, we propose here to apply a maximum likelihood strategy and to choose
the hypothesis having the highest probability to occur. Based on the approximation of the
Pearson’s coefficient we obtained, we computed the value ρlimit

t (τ) for which the values
of the density probability function in both hypotheses are equal. During the attack, if ρ̂

is smaller than ρlimit
t (τ), the distinguisher chooses H0, otherwise it chooses H1. Attacks

reported in Figs. 13 and 14 apply this strategy. They aim at recovering one bit of the secret
scalar.

Remark 7 Since the adversary is not assumed to know the exact leakage SNR, the max-
imum likelihood can be computed for several SNR values τ starting from ∞ to some
pre-defined threshold. This problematic occurs each time that the principle of collision
attacks is applied.

Remark 8 For a curve of size n = �log2(p)� and a ω-bit architecture, the adversary can
have a sample of t = � n

ω
� observations if he averages over the columns and t = �(n

ω
)2�

8In this context, the SNR simply equals ω/4σ 2.

Cryptogr. Commun. (2015) 7:91–119 109

Fig. 9 Pre-computations on w =8-bit registers

without averaging. All experiments provided in this section have been performed using the
“average” strategy.

This attack works for any kind of architecture, even for a 32-bit one (see Fig. 14), which
is the most common case in nowadays implementations. In the presence of noise, the attack
success decreases highly but stays quite successful for curves of size 160, 256 and 384 bits.
In all experiments (Figs. 13 and 14), we also observe that the success rate of our attack
increases when the size of the curve becomes larger. This behaviour can be explained by the
increasing number of observations available in this case. Paradoxically, it means that when
the theoretical level of security becomes stronger (i.e p is large), resistance against side-
channel attacks becomes weaker. This fact stands in general for horizontal attacks and has
already been noticed in [19, 56].

6 Discussion about possible countermeasures

In this section we first recall classical countermeasures that are usually involved to defeat
simple SCA and vertical advanced SCA, and we discuss about their (in)efficiency in the
horizontal setting. In particular, following the same reasoning as in [20], we alert on the fact
that a countermeasure effectiveness can be annihilated when going from the vertical context
to the horizontal one. Then, in Section 6.2, we particularly focus on several countermeasures
dedicated to Horizontal advanced SCA, trying to identify those that are the most effective
against the collisions attack proposed in this paper.

Fig. 10 Pre-computations on
w =8-bit registers

110 Cryptogr. Commun. (2015) 7:91–119

Fig. 11 Pre-computations on w =32-bit registers

6.1 Overview of classical countermeasures on elliptic curves

Careful choice of the elliptic curve scalar multiplication. A first natural idea is to look for
a scalar multiplication scheme inherently resistant against our horizontal collisions attack.
The choice of a regular scheme (always performing the same sequence of additions and
doublings whatever the secret scalar) seems a priori pertinent as distinguishing the two
operations brings no sensitive information. From this point of view, the schemes Double &
Add Always [25] or the Montgomery Ladder [47] look interesting. We recall them hereafter:

Unfortunately, even if the above algorithms withstand straightforward applications of our
attack, they stay vulnerable to a slight adaptation of it. Let us respectively denote by R

(i)
0

and R
(i)
1 the values of the registers R0 and R1 after the ithiteration of the loop.

• For Algorithm 2, we have R
(i+1)
0 = 2R

(i)
0 . This doubling and the addition performed

to compute R
(i)
1 have the first operand R

(i)
0 in common iff si = 0 (otherwise one can

assume that they operate on independent operands). It is therefore possible to recover

Cryptogr. Commun. (2015) 7:91–119 111

Fig. 12 Pre-computations on
w =32-bit registers

the value of each bit si by applying the idea of our horizontal collisions attack 9 to the
sequences of field operations involved in both R

(i+1)
0 ← 2R

(i)
0 and R

(i)
1 ← R

(i)
0 + P .

• For Algorithm 3, we have R
(i+1)
1−si+1

= R
(i)
0 + R

(i)
1 . This addition and the subsequent

doubling performed to compute R
(i+1)
si have the operand R

(i)
0 in common iff si+1 = 0.

It is therefore possible to recover the value of each bit si+1 by applying the idea of
our horizontal collisions attack to the manipulations of the field coordinates of the first
operand in both R

(i+1)
1−si+1

← R
(i)
0 + R

(i)
1 and R

(i+1)
si+1 ← 2R

(i)
si+1 . The same kind of flaw

can also be found in the left-to-right version of the Montgomery Ladder proposed in
[35].

This attack is defeated if the step R1−si ← R0 +R1 in Algorithm 3 is replaced by R1−si ←
R1−si + Rsi (which is actually the way Montgomery Ladder is classically described in the
SCA literature – e.g. [31] –).

Randomizing the scalar. This countermeasure was proposed by Coron in [25]. It consists
in changing the value of the secret scalar in the point multiplication for each computation.
For most schemes based on elliptic curves this countermeasure may be viewed as part of
the protocol since the secret used in the point multiplication changes at each execution of
the protocol. This is for instance the case with ECDH and ECDSA. This explains why,
usually, specific countermeasures against advanced (vertical) attacks are not implemented
in the elliptic curve setting. When such a countermeasure is added on purpose or part of
the protocol, it does not provide any protection against our attack since it only requires one
power curve.

Blinding the base point. This is the second countermeasure proposed by Coron in [25]. It
consists in modifying the point P by adding a random point R. This countermeasure does
not have any impact against our attack since the adversary recovers the value of the secret
exponent independently from the base point value.

Randomizing the coordinates. This third countermeasure of Coron [25], which modifies the
coordinates of the point P , has no effect on our attack exactly for the same reasons as for
the second countermeasure. Indeed, the secret scalar is recovered independently from the
base point value.

9Contrary to the attacks described in Section 4, the attack against Algorithms 2 and 3 does not try to detect
two similar operations with a common operand but tries to detect when a same operand is manipulated two
times. Even if this scenario is not exactly the one analyzed in this paper, we think that the corresponding
attack stays efficient as it is based on the same principles.

112 Cryptogr. Commun. (2015) 7:91–119

Fig. 13 Success rate of the
attack on 8-bit registers

Splitting the scalar. It is considered in [18, 22]. It consists in splitting the scalar in two parts
i.e in computing [s]P = [s1]P + [s2]P . This countermeasure decreases the vertical attacks
efficiency by a quadratic factor since the two point multiplications need to be combined in a
so-called second-order attack setting. Against our attack, this countermeasure is much less
efficient. Indeed, its efficiency is only decreased by a factor 2 since we are able to recover
the bits of s1 first, then those of s2 in an independent way.

Randomizing the curve or the field. This idea is described in [4, 34, 54] with different
techniques. All these techniques modify the input of the point multiplication but they do not
hide the property exploited in most of our attacks, that is the reuse of the point coordinate
Z in the addition operation, and thus turn out to be inefficient in our setting.

6.2 Investigating countermeasures inside modular multiplication

The previous section has raised the need for new techniques to thwart side-channel analysis
in the horizontal setting. In this section, we deal with this issue by investigating whether the
solutions proposed in [19, 20] and developed in [55, Sec. 2.7] in the context of RSA can be
applied to ECC.

As discussed in Section 4.3 and Appendix B, the multiplication of two integers U =
(U [t], . . . U [1])2ω and V = (V [t], . . . V [1])2ω frequently leads to the processing of the
following ω-bit word multiplications:

⎛

⎜
⎜
⎜
⎝

U [1]V [1] U [1]V [2] · · · U [1]V [t]
U [2]V [1] · · · · · · U [2]V [t]

...
...

. . .
...

U [t]V [1] · · · · · · U [t]V [t]

⎞

⎟
⎟
⎟
⎠

.

Fig. 14 Success rate of the
attack on 32-bit registers

Cryptogr. Commun. (2015) 7:91–119 113

Essentially, our attack consists in detecting when the same value V is used for two differ-
ent modular multiplications. For such a purpose we correlate the elements of the previous
matrix with those of the following one:

⎛

⎜
⎜
⎜
⎝

U ′[1]V ′[1] U ′[1]V ′[2] · · · U ′[1]V ′[t]
U ′[2]V ′[1] · · · · · · U ′[2]V ′[t]

...
...

. . .
...

U ′[t]V ′[1] · · · · · · U ′[t]V ′[t]

⎞

⎟
⎟
⎟
⎠

,

where V = V ′ for s = 1 and V �= V ′ for s = 0.

Countermeasures proposed in [19, 20, 55] consist in protecting the U [i]V [j] (resp.
(U ′[i]V ′[j])) products by blinding some of the operands with different random values
and/or by randomizing the order in which they are processed. We study hereafter the
soundness of those techniques when applied in ECC context.

6.2.1 Operands blinding

This countermeasure blinds each U [i] and V [j] with two random values R1 and R2 such
that U [i]V [j] = (U [i] − R1)(V [j] − R2) + R1V [j] + R2U [i] − R1R2. Then, each of
the four terms is computed independently. First of all, it must be noticed that the multi-
plicative masking of V [j] (by R1) and U [i] (by R2) is not effective when U [i] or V [j]
is null, which introduces a flaw that may be exploited by C-PA [30]. Moreover, the values
1
t
(
∑

i U [i])(V [j] − R2) are still correlated with the values 1
t
(
∑

i U ′[i])(V ′[j] − R′
2) when

V = V ′. Thus, although this countermeasure decreases the attack efficiency, it does not
totally remove the leakage.

6.2.2 Shuffling rows and columns

In this countermeasure, rows and columns of the matrix are permuted independently. This
means that one permutation applies on the rows and a second one on the columns. How-
ever one can notice that the rows permutation is the same for each column and reciprocally.
Shuffling rows has no impact since U is unknown in the attack. When averaging over

each column of the matrix, we observe that
(

1
t
(
∑

j U [j])V [i]
)

i
and

(
1
t
(
∑

j U ′[j])V ′[i]
)

i

stay correlated when V [i] = V ′[i]. However, due to the column permutation, the adver-
sary needs to guess the value of the permutation in order to observe this correlation. As a
consequence, this countermeasure adds a t ! search factor to the computational time of the
attack.

6.2.3 Shuffling and blinding

In this countermeasure, only the V [j] are blinded using t independent random values asso-
ciated with each row, while the rows of the matrix are randomly permuted. Namely, the U [i]
are blinded while the columns of the matrix are permuted. This countermeasure prevents
our attack, but opens new issues such as the manipulation of the correcting factor related to
the blinding part. This value could be exploited in a zero-value attack [30].

114 Cryptogr. Commun. (2015) 7:91–119

6.2.4 Global shuffling

This countermeasure, proposed in [7], starts from the shuffling and blinding countermea-
sure, but performs the shuffling of rows and columns simultaneously. This essentially
replaces two permutations of size t by a single one of size t2, hence increasing the secu-
rity against brute force attack from 2(t !) to (t2!). Of course, care should also be taken when
propagating the carry during the reconstruction of UV from the U [i]V [j]. This point is
successfully addressed in [7]. Eventually, among shuffling methods, this countermeasure
seems to be the most interesting one to defeat our attack. It is however still an open problem
to formally quantify its effectiveness.

7 Conclusion

In this paper, we investigated the horizontal correlation attacks, introduced by Clavier et
al., in the context of ECC implementations. We showed that these attacks, although funda-
mentally belonging to the well-known advanced side-channel attacks, are not covered by
traditional countermeasures such as randomization techniques. Indeed, we have shown that
we are able to apply such horizontal attacks on state-of-the-art SCA-protected ECC imple-
mentations. We showed how to defeat all the atomic point addition and doubling schemes
proposed in the literature and also the one using the unified formulas, even when combined
with randomization. Our simulations confirmed the validity of our attack for classical sizes
of curves. It stays applicable even in a moderate noise setting.

We feel that this topic opens many areas for further research. Namely, the formal study
and proofs of countermeasures against horizontal attacks is necessary in order to effectively
protect implementations against this kind of attacks. It would also be of interest to inves-
tigate the applicability of such attacks to other domains of cryptography, such as pairings,
code-based cryptography or keyed hash functions.

Appendix A: Extension to Higher Orders

The leakage definition given in 2 stands for contexts where instantaneous leakage about
the implementation secret parameter exists. When the latter condition is not verified, the
adversary must consider several intermediate values simultaneously to reveal sensitive infor-
mation. In this context, side-channels are usually called multivariate by opposition with the
first class of attacks that are called univariate. Except 2, the framework introduced in Sec-
tion 2.1 and the formalism given in Section 2.2 continue to be valid. For completeness, we
generalize the definition of the leakage coordinates in (2) to encompass contexts where sev-
eral intermediate results must be observed to reveal information about a sensitive internal
processing O(k,X):

L[i] = ϕi (Vi) + βi (11)
where ϕi and βi are similar as in (2) and where Vi refers to the value manipulated at time
ti . 10

10For instance, if L is related to the manipulation of two shares M1 and M2 of O, then one can for instance
assume that half of the Vi corresponds to M1 and the other half to M2. Moreover, (2) is a particular case of
(11) where all manipulated data are assumed to be equal to O.

Cryptogr. Commun. (2015) 7:91–119 115

When the general definition (11) is used in place of (2) to model the instantaneous leakage,
a prerequisite for a multivariate SCA to be possible is that there exists at least one tuple
of coordinates of L that statistically depends on O(s, X). Actually for Horizontal SCA the
number of tuples must be high enough for the involved statistical tools to be effective.

Appendix B: Implementations of Modular Multiplications

In Section 4.3, we argued that an adversary may deal with Assumption 1 by using collisions
attack. For such a purpose, we focussed on the classical Long Integer Multiplication (LIM)
and we showed that horizontal collisions attacks can be applied to distinguish when two
multiplications are performed with at least one common operand. Obviously, in practice,
there are several other techniques to implement the modular multiplication U · V mod p

between two tω-bit long integers. Let us argue here briefly that our attack still applies
efficiently in some of these other cases.

Among all existing modular multiplication techniques, two main methods can be high-
lighted: those which perform long multiplications [1, 13, 24] followed by a global reduction
[5, 36] and those where multiplication and reduction are interleaved [14, 46]. The sequence
of operations related to those implementations always contain the products U [i] · V [j] that
were targeted in our attack. Hence, by applying the same approach as described in Sec-
tion 4.3, it stays possible to distinguish the two following cases: “Case (1)” when the device
processes two multiplications with independent operands and “Case (2)” when the device
computes the multiplication of two related operands that jointly depend on a secret bit s.
We recall hereafter some classical modular multiplication techniques.

Schoolbook Multiplication. This technique, also called Long Integer Multiplication (LIM),
is a digit-by-digit multiplication algorithm where the products U [i] · V [j] are executed in
the row order. An alternative approach has been introduced by Comba in [24]: it uses the
same principle as the LIM but the products are taken in the column order.

Karatsuba-Ofman. This technique is very popular and is considered as one of the most
efficient way to multiply two integers. If t = 2n, then U and V can be expressed as
follows11:

U = UH · 2nω + UL and V = VH · 2nω + VL , (12)
where UH , VH (resp. UL, VL) represent the n most significant ω-bit words of U and V

(resp. the n least significant ω-bit words). The core idea of Karatsuba-Ofman multiplication
is to process UV as follows:

U · V = 22nω(UH VH) + 2nω(UH VL + ULVH) + ULVL . (13)

and
UH VL + ULVH = (UH + VL)(UL + VH) − UH VH − ULVL . (14)

It may be checked that the processing of (13) and (14) may be done with 3 multiplications
(instead of 4 with the LIM). By applying the idea recursively, the overall complexity is
roughly reduced from t2 to t log2(3). When such a multiplication algorithm is used, only the
t final elementary multiplications U [i]V [i], with i ∈ [1, t] can be involved in a collision
attack such as described in Section 4.3. This strongly decreases the efficiency of our attack.

11If t is odd, it can be right-padded with a zero.

116 Cryptogr. Commun. (2015) 7:91–119

Booth’s Multiplication. The idea here is to rewrite the representation of the operands
(for example by using a signed representation) in order to increase the number of zeroes
in the latter. The advantage of this method is that it allows a faster multiplication. The
multiplication is then performed as the LIM.

Montgomery’s Multiplication. The principle of this method is to perform the modular mul-
tiplication using modular reductions easier to compute, by introducing an integer R, called
the radix. R is defined such that R = 2tω > p. Every element x ∈ Fp is then represented
by X = xRmodp. This is called the Montgomery representation of x. Assume two ele-
ments are given in their Montgomery representation U and V . To compute the Montgomery
representation Z of their product, we first compute the standard multi-precision multiplica-
tion of U and V which is a number of size at most p2. By applying Montgomery reduction
to this result, we obtain Z. Thus, to multiply two elements in Montgomery representation,
we only need to perform a single multi-precision multiplication followed by a Montgomery
reduction. No division is needed.

In practice, this operation can be made more efficient by interleaving the multipli-
cation and reduction steps. In our case, we will still be able to identify the elementary
multiplications needed for the attack.

Appendix C: Projective Coordinates

In Weierstrass (3), points on elliptic curves are described in affine representation, namely
using their (x, y)-coordinates. While it seems to be the simplest way to describe points
over (E), addition and doubling formulas using affine coordinates require to compute the
inverse of an element in Fp, which is a very costly operation. This drawback led embedded
systems developers to use other kinds of representations, such as for instance the projective
coordinates that enable to perform point operations without requiring any field inversion.
Moreover this type of representation avoids the need to resort to special treatment for the
point at infinity. This is an advantage compared to the affine coordinates, since it prevents
side-channel attacks that exploits the difference of representation between O and non-zero
points.

To make it clear a point P = (x, y) can be expressed in projective coordinates by a triplet
(X : Y : Z) such that X = xZ and Y = yZ. Following this definition, point (X : Y : Z) is
the same as point (λX : λY : λZ) for λ �= 0.

Obviously other types of point representations share the same properties listed above
with the projective coordinates. Jacobian coordinates or even the Edwards’ ones are exam-
ples of such representations. They require a small number of elementary operations in order
to add or double points on (E).

References

1. Karatsuba, A., Ofman, Y. (eds.): Multiplication of Many-Digital Numbers by Automatic Computers,
vol. 145 (1962)

2. ANSI X9.62: Public Key Cryptography for the Financial Service Industry: The Elliptic Curve Digital
Signature Algorithm (ECDSA). American National Standards Institute (1998)

3. ANSI X9.63: Public Key Cryptography for the Financial Service Industry: Key Agreement and Key
Transport Using Elliptic Curve Cryptography. American National Standards Institute (1998)

Cryptogr. Commun. (2015) 7:91–119 117

4. Baek, Y.-J., Vasyltsov, I.: How to Prevent DPA and Fault Attack in a Unified Way for ECC Scalar
Multiplication - Ring Extension Method In: ISPEC, pp. 225–237 (2007)

5. Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption algorithm on a stan-
dard digital signal processor. In: Proceedings on Advances in Cryptology—CRYPTO ’86, pp. 311–323.
Springer-Verlag, London (1987)

6. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-Charvillon, N.: Mutual
information analysis: a comprehensive study. J. Cryptol. 24(2), 269–291 (2011)

7. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-channel attacks against secure
RSA implementations. In: Dawson, E. (ed.) Topics in Cryptology — CT-RSA 2013, volume 7779 of
Lecture Notes in Computer Science, pp. 1–17. Springer (2013)

8. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal collision correlation attack on elliptic curves.
In: Lange, T., Lauter, K.E., Lisonek, P. (eds.) Selected Areas in Cryptography, volume 8282 of Lecture
Notes in Computer Science, pp. 553–570. Springer (2013)

9. Bernstein, D.J., Lange, T.: Analysis and Optimization of Elliptic-Curve Single-Scalar Multiplication.
Cryptology ePrint Archive, Report 2007/455, (2007) http://eprint.iacr.org/

10. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic curves. In: Kurosawa, K. (ed.)
Advances in Cryptology — Proceedings of ASI-ACRYPT 2007, volume 4833 of Lecture Notes in
Computer Science, pp. 29–50. Springer (2007)

11. Billet, O., Joye, M.: The Jacobi Model of an Elliptic Curve and Side-Channel Analysis. Cryptology
ePrint Archive, Report 2002/125 (2002)

12. Bogdanov, A., Kizhvatov, I., Pyshkin, A.: Algebraic methods in side-channel collision attacks and prac-
tical collision detection. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) Progress in Cryptology –
INDOCRYPT 2008, volume 5365 of LNCS, pp. 251–265. Springer-Verlag (2008)

13. Booth, A.: A signed binary multiplication technique. Q. J. Mech. Appl. Math. 4(2), 236–240 (1951)
14. Brickell, E.F.: A survey of hardware implementation of RSA (Abstract). In: CRYPTO, volume 435 of

Lecture Notes in Computer Science, pp. 368–370. Springer (1989)
15. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M.,

Quisquater, J.-J. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2004, volume 3156 of
Lecture Notes in Computer Science, pp. 16–29. Springer (2004)

16. Brier, É., Joye, M.: Weierstraß elliptic curves and side-channel attacks In: Naccache, D., Paillier, P.
(eds.) Public Key Cryptography – PKC 2002, volume 2274 of Lecture Notes in Computer Science, pp.
335–345. Springer (2002)

17. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple side-channel
analysis: side-channel atomicity. IEEE Trans. Comput. 53(6), 760–768 (2004)

18. Ciet, M., Joye, M.: Elliptic Curve Cryptosystems in the Presence of Permanent and Transient Faults.
Cryptology ePrint archive, report 2003/028 (2003)

19. Clavier, C., Feix, B., Gagnerot, G., Giraud, C., Roussellet, M., Verneuil, V.: ROSETTA for single trace
analysis – recovery of secret exponent by triangular trace analysis. In: INDOCRYPT, pp. 140–155 (2012)

20. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal correlation analysis on expo-
nentiation. In: Soriano, M., Qing, S., Lopez, J. (eds.) ICICS, volume 6476 of Lecture Notes in Computer
Science, pp. 46–61. Springer (2010)

21. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved collision-correlation power
analysis on first order protected AES. In: Preneel, B., Takagi, T. (eds.) Cryptographic Hardware and
Embedded Systems, 13th International Workshop – CHES 2011, volume 6917 of Lecture Notes in
Computer Science, pp. 49–62. Springer (2011)

22. Clavier, C., Joye, M.: Universal exponentiation algorithm – a first step towards provable SPA-Resistance.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) Cryptographic Hardware and Em- bedded Systems – CHES
2001, volume 2162 of Lecture Notes in Computer Science, pp. 300–308. Springer (2001)

23. Cohen, H., Frey, G. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press
(2005)

24. Comba, P.G.: Exponentiation cryptosystems on the IBM PC. IBM Syst. J. 29(4), 526–538 (1990)
25. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç,

Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems – CHES ’99, volume 1717 of
Lecture Notes in Computer Science, pp. 292–302. Springer (1999)

26. Edwards, H.M.: A normal form for elliptic curves. Bull. Am. Math. Soc. 44, 393–422 (2007)
27. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç Ç.K.,

Naccache, D., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems CHES 2001, volume
2162 of Lecture Notes in Computer Science, pp. 251–261. Springer (2001)

28. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P.
(eds.) CHES, volume 5154 of Lecture Notes in Computer Science, pp. 426–442. Springer (2008)

http://eprint.iacr.org/

118 Cryptogr. Commun. (2015) 7:91–119

29. Giraud, C., Verneuil, V.: Atomicity improvement for elliptic curve scalar multiplication. In: Gollmann,
D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) Smart Card Research and Advanced Applications, 9th Inter-
national Conference – CARDIS 2010, volume 6035 of Lecture Notes in Computer Science, pp. 80–101.
Springer (2010)

30. Golić, J., Tymen, C.: Multiplicative masking and power analysis of AES. In: Kaliski, B.S. Jr., Koç, Ç.K.,
Paar, C. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2002, volume 2523 of Lecture
Notes in Computer Science, pp. 198–212. Springer (2002)

31. Goundar, R.R., Joye, M., Miyaji, A., Rivain, M., Venelli, A.: Scalar multiplication on Weierstraß elliptic
curves from co-z arithmetic. J. Cryptographic Engineering 1(2), 161–176 (2011)

32. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to elliptic curve cryptography. In: Springer
Professional Computing Series (2003)

33. ISO/IEC JTC1 SC17 WG3/TF5 for the International Civil Aviation Organization: Supplemental Access
Control for Machine Readable Travel Documents. Technical Report (2010)

34. Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve cryptography. In: Koç,
Ç.K., Naccache, D., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2001,
volume 2162 of Lecture Notes in Computer Science, pp. 386–400. Springer

35. Joye, M.: Highly regular right-to-left algorithms for scalar multiplication. In: Paillier, P., Verbauwhede,
I. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2007, volume 4727 of Lecture Notes
in Computer Science, pp. 135–147. Springer (2007)

36. Knuth, D.E.: The Art of Computer Programming, vol. 2, 3rd edn. Addison Wesley (1988)
37. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
38. Koç, Ç.K.: Cryptographic Engineering. Springer (2008)
39. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In:

Koblitz, N. (ed.) Advances in Cryptology – CRYPTO ’96, volume 1109 of Lecture Notes in Computer
Science, pp. 104–113. Springer (1996)

40. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.J. (ed.) Advances in Cryptology
– CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pp. 388–397. Springer (1999)

41. Kocher, P.C., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power analysis. J. Cryptographic
Engineering 1(1), 5–27 (1998)

42. Liardet, P.-Y., Smart, N.P.: Preventing SPA/DPA in ECC systems using the Jacobi form. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2001, volume
2162 of Lecture Notes in Computer Science, pp. 401–411. Springer (2001)

43. Longa, P.: Accelerating the Scalar Multiplication on Elliptic Curve Cryptosystems over Prime Fields.
Master’s thesis: School of Information Technology and Engineering, University of Ottawa, Canada
(2007)

44. Micali, S., Reyzin, L.: Physically observable cryptography (Extended Abstract). In: Naor, M. (ed.) The-
ory of Cryptography Conference – TCC 2004, volume 2951 of Lecture Notes in Computer Science, pp.
278–296. Springer (2004)

45. Miller, V.S.: Use of elliptic curves in cryptography. In: Wiliams, H.C. (ed.) Advances in Cryptology –
CRYPTO ’85, volume 218 of Lecture Notes in Computer Science, pp. 417–426. Springer (1985)

46. Montgomery, P.L.: Modular multiplication without trial division. Math. Comp. 44(170), 519–521 (1985)
47. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization. Math. Comput. 48,

243–264 (1987)
48. Moradi, A.: Statistical tools flavor side-channel collision attacks. In: Pointcheval, D., Johansson, T. (eds.)

EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pp. 428–445. Springer (2012)
49. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis collision attack. In:

Mangard, S., Standaert, F.-X. (eds.) Cryptographic Hardware and Embedded Systems, CHES 2010, 12th
International Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of
Lecture Notes in Computer Science, pp. 125–139. Springer (2010)

50. Prouff, E., Rivain, M., Bévan, R.: Statistical analysis of second order differential power a.nalysis. IEEE
Trans. Comput. 58(6), 799–811 (2009)

51. Quisquater, J.-J., Samyde, D.: A new tool for non intrusive analysis of smart cards based on electro-
magnetic emissions, the SEMA and DEMA methods. Presented at the rump session of EUROCRYPT
2000 (2000)

52. Schramm, K., Wollinger, T., Paar, C.: In: Johansson, T. (ed.) Fast Software En- cryption – FSE 2003,
volume 2887 of Lecture Notes in Computer Science, pp. 206–222. Springer (2003)

53. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel attacks.
In: EUROCRYPT, volume 5479, Lecture Notes in computer science. pp. 443–461. Springer (2009)

54. Tunstall, M., Joye, M.: Coordinate blinding over large prime fields. In: Mangard, S., Standaert,
F.-X. (eds.) Cryptographic Hardware and Embedded Systems, CHES 2010, 12th International Work-

Cryptogr. Commun. (2015) 7:91–119 119

shop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of Lecture Notes in
Computer Science. Springer (2010)

55. Verneuil, V.: Elliptic Curve Cryptography and Security of Embedded Devices, PhD thesis, Universite de
Bordeaux (2012)

56. Walter, C.D.: Sliding windows succumbs to big Mac attack. In: Koç, Ç.K., Naccache, D., Paar, C.
(eds.) Cryptographic Hardware and Embedded Systems – CHES 2001, volume 2162 of Lecture Notes in
Computer Science. Springer (2001)

	Horizontal collision correlation attack on elliptic curves
	Abstract
	Introduction
	A comprehensive study of side-channel analyses
	
	A general framework for simple and advanced side-channel analyses
	
	

	Leakage measurements and observations
	

	Security evaluation
	Taxonomy

	Side-channel attacks against elliptic curves
	Background on Elliptic Curves
	Points operations in presence of SCA

	Horizontal collision correlation attack on ECC
	Collision power analysis in the horizontal setting
	Attacks on ECC implementations: core idea.
	Attack on Longa's Scheme.
	Attack on Giraud and Verneuil's Scheme.
	Attack on Edward's Curves.

	Distinguishing common operands in multiplications
	Study of the attack soundness
	The parameter is small.
	Hamming weight of least significant bits.

	Experiments
	Discussion about possible countermeasures
	Overview of classical countermeasures on elliptic curves
	Careful choice of the elliptic curve scalar multiplication.
	Randomizing the scalar.
	Blinding the base point.
	Randomizing the coordinates.
	Splitting the scalar.
	Randomizing the curve or the field.

	Investigating countermeasures inside modular multiplication
	Operands blinding
	Shuffling rows and columns
	Shuffling and blinding
	Global shuffling

	Conclusion
	Appendix A A: Extension to Higher Orders
	

	 B: Implementations of Modular Multiplications
	Appendix B B: Implementations of Modular Multiplications
	Schoolbook Multiplication.
	Karatsuba-Ofman.
	Booth's Multiplication.
	Montgomery's Multiplication.

	 C: Projective Coordinates
	Appendix C C: Projective Coordinates
	References

