
Cryptogr. Commun. (2014) 6:255–277
DOI 10.1007/s12095-014-0100-y

Multiplicative complexity of bijective 4 × 4 S-boxes

Pavol Zajac ·Matúš Jókay

Received: 20 September 2012 / Accepted: 9 April 2014 / Published online: 9 May 2014
© Springer Science+Business Media New York 2014

Abstract Multiplicative complexity of S-box is the minimum number of 2-input AND-
gates required to implement the S-box in AND, XOR, NOT logic. We show that under an
affine equivalence there is only a single class of bijective n× n S-boxes with multiplicative
complexity 1. Furthermore, we show that each bijective 4 × 4 S-box has multiplicative
complexity at most 5. Finally, we refine the bounds on the multiplicative complexity of each
affine class of bijective 4 × 4 S-boxes.

Keywords S-box · Multiplicative complexity · Affine equivalence

Mathematics Subject Classifications (2010) 94A60 · 06E30

1 Introduction

A basic building block providing the security of many cipher designs is an S-box. From the
mathematical point of view, it is simply a vectorial Boolean function, with specific proper-
ties induced by security goals. In practice, an S-box can be implemented as a look-up table,
a (relatively complex) electronic circuit, or as a specific sequence of (logic) instructions.
When designing ciphers we must balance the security and effectiveness of the imple-
mentation. Although larger S-boxes have better resistance against linear and differential
cryptanalysis, they are more difficult to implement: they take larger chip area, more oper-
ations operations in software and more memory for lookup tables. Another concern is the

This research was supported by grants APVV-0513-10 and APVV-0586-11.

P. Zajac (�) · M. Jókay
Institute of Computer Science and Mathematics, FEI STU, Ilkovičova 3, 812-19 Bratislava, Slovakia
e-mail: pavol.zajac@stuba.sk

mailto:pavol.zajac@stuba.sk

256 Cryptogr. Commun. (2014) 6:255–277

presence of side-channel attacks, as it seems more difficult to protect designs with larger
S-boxes.

Implementation concerns are especially important in lightweight cryptography [10].
Lightweight cryptography deals with implementations in resource constrained environ-
ments, such as smartcards or RFID tags. Lightweight cryptography might be especially
important for securing solutions based on intelligent sensors, such as body sensor networks
in eHealth and telemedicine solutions. The lightweight cipher Present [3] is standardized in
ISO/IEC 29192-2:2012. A core building block of Present is a special 4 × 4 bijective S-box
optimized from both security and implementation aspects.

Minimum size of a bijective non-linear S-box is 3 × 3, i.e., the S-box operates on 3-bit
inputs and produces 3-bit outputs. A more practical size for an S-box is 4 × 4 due to the
accepted word sizes in prevailing hardware. There are 16! ≈ 244 bijective 4 × 4 S-boxes.
It is possible to study various properties of all of these S-boxes [1, 12, 16, 18] using fast
affine equivalence algorithms [2]. We are interested in one specific property: multiplicative
complexity. This property is important for various problems connected to S-boxes, such
as logic circuit minimization, algebraic cryptanalysis, and optimal masking against higher
order power analysis attacks.

Boyar and Peralta introduced a new technique for logic synthesis and circuit minimiza-
tion based on the notion of multiplicative complexity. They define multiplicative complexity
(MC) of the circuit as a minimum number of AND gates required to implement a circuit in
(AND, XOR) algebra (all other logic gates can be constructed with these two). Although
MC addresses only a part of an overall Gate complexity (XOR gates are not counted) Boyar
and Peralta formulate a hypothesis that

it is plausible that a two-step process, which first reduces multiplicative complexity
and then optimizes linear components, leads to small circuits [5].

Courtois et. al. [9] introduced new tools to compute MC for small S-boxes. They also
conjectured that MC of whole ciphers plays a significant role in algebraic cryptanalysis. In
[19] we described a new method suitable for algebraic cryptanalysis that has a complexity
closely related only to the number of non-linear operations (and thus MC of the related
circuit).

The number of non-linear operations in hardware realization of S-boxes is also impor-
tant for implementations resistant against the first-order DPA [1]. However, in this area the
complexity is usually expressed in the number of GF(2n) multiplications instead of just
GF(2) multiplications (AND gates) [7, 15]. We discuss the problem of connection between
GF(2n)-multiplicative complexity and GF(2)-multiplicative complexity in Section 6.

It is easy to show that MC is invariant under affine transforms of the S-box. Thus it is
possible to study MC of affine classes of S-boxes instead of individual ones. We investigate
S-boxes with low multiplicative complexity. Our contribution is two-fold. First, we show
that there is only a single affine class of n× n S-boxes with MC equal to 1 for any n. Then
we explore small 3 × 3 S-boxes, and show that all 4 affine classes can be generated as a
composition of the single MC1 S-box. We show that this result does not hold for larger n’s.

Our additional results for n = 4 are mostly computer generated. We have implemented
an algorithm that allows us to enumerate affine classes of S-boxes up to a given MC (feasible
up to 4). Then, using composition of S-boxes of MC at most 3, we have found that the limit
on MC in case n = 4 is 5. I.e., each 4 × 4 S-boxes can be realized using at most 5 AND-
gates. We provide the statistics and the list of representatives of the affine classes along with
their multiplicative complexity.

Cryptogr. Commun. (2014) 6:255–277 257

2 Preliminaries

In the article, the term (n-bit) S-box will denote a bijective vectorial Boolean function
S : GF(2)n → GF(2)n. An affine mapping is a bijective vectorial Boolean function
A : GF(2)n → GF(2)n, A(x) = A · x + c, where c ∈ GF(2)n, and A ∈ GF(2)(n×n) is an
invertible n× n matrix over GF(2). If c = 0, mapping A is linear. As usual, we denote the
set of affine mappings over GF(2)n by Aff (2, n).

Let us define a relation: S1 ∼ S2 iff there exist two affine mappings A1, A2, such that
A1 ◦ S1 = S2 ◦A2. It is easy to show that ∼ is an equivalence relation. We will call S1 ∼ S2

affinely equivalent.
We will call an S-box with the property S(0) = 0 a constant-free S-box. From any

S-box we can get an affine equivalent constant-free S-box by using the affine mapping
S(x) �→ S(x)+ S(0). Every bijective S-box is affinely equivalent to a function that keeps
the canonical basis invariant (see Lemma 1), i.e., S(e(i)) = e(i), where e(i) denotes a vector
with a single one on i-th position. We call a bijective constant-free function that keeps
canonical basis invariant a normalized S-box. Each affine class of bijective S-boxes contains
a normalized S-box.

Lemma 1 Let S : GF(2)n → GF(2)n be a bijective function. Then there exist two non-
singular matrices A,B ∈ GF(2)(n×n), and a constant vector c ∈ GF(2)n, such that the
function F : GF(2)n → GF(2)n, F (x) = A · S(B · x)+ c is a normalized S-box. That is,
F(0) = 0, and F(e(i)) = e(i) for i = 1, 2, . . . , n.

Proof Let us define a new notation useful for the proof: let M be an arbitrary n×n matrix.
We denote the i-the column of M by M(i). Note that M(i) = M · e(i).

Let SB denote a vectorial Boolean function given by a choice of n× n matrix B:

SB = S(B · x)+ S(0).

It is easy to see that SB is a bijection only if B is non-singular. We also note that SB(0) = 0.
Let us construct an n×n matrix MB with columns given by M(i)

B = SB(e(i)). If matrix MB is
non-singular, then we can define a vectorial Boolean function F as F(x) = M−1

B · SB(x) =
M−1

B · S(B · x)+M−1
B · S(0). It is easy to verify that F has the desired properties F(0) = 0,

and F(e(i)) = e(i). Thus, for a given B, we get A = M−1
B , and c = M−1

B ·S(0), respectively.
To prove Lemma 1, we must show that for an arbitrary S-box S we can always find a

suitable non-singular matrix B producing a corresponding non-singular matrix MB.
Recall that columns of B and MB are connected by the following equation:

M(i)
B = SB(e(i)) = S(B · e(i))+ S(0) = S(B(i))+ S(0). (1)

Because S is a bijection, there is a single vector M(i)
B corresponding to a given B(i) (and

vice-versa). Moreover, since SB has a fixed point at zero, a non-zero column B(i) always
corresponds to a non-zero column M(i)

B .
Let I be the n × n identity matrix. Let MI have t < n linearly independent columns

(if t = n, we can set B = I and we are done). We can swap columns of MI, along with
the corresponding columns of I to produce a permutation matrix Bt , for which exactly the
first t columns of MBt are linearly independent (recall that MI = S(e(i)) + S(0), and

M(i)
Bt

= S(M(i)
Bt
)+ S(0), respectively). We now have two corresponding matrices Bt , MBt ,

with first t < n columns linearly independent.

258 Cryptogr. Commun. (2014) 6:255–277

Let S denote a set of vectors v for which u = S(v) + S(0) (see (1)) is not a linear
combination of vectors M(1)

Bt
, M(2)

Bt
, . . . , M(t)

Bt
. There are 2t forbidden vectors u, thus |S| =

2n− 2t . Note that 0 �∈ S. Let us further exclude from S all non-zero linear combinations of
vectors B(1)

t , B(2)
t , . . . , B(t)

t , giving us set S ′. There are 2t − 1 non-zero linear combinations
of vectors B(1)

t , B(2)
t , . . . , B(t)

t , thus |S ′| ≥ |S| − (2t − 1) = 2n − 2t+1 + 1. Using t < n,
we get |S ′| ≥ 1, so there exists at least one vector in |S ′|. Now let B(i)

t+1 = B(i)
t for each

i �= t + 1, and let us select any vector B(t+1)
t+1 ∈ S ′. This choice ensures that the first t + 1

columns of both Bt+1, and the corresponding MBt+1 are linearly independent.
We can now repeat this procedure with matrices Bt+1,Bt+2 . . . , Bn−1. Final pair Bn,

MBn will be a pair of required non-singular matrices, which completes the proof.

There are different systems of representatives for known affine classes of S-boxes [1, 6,
12, 16]. We propose to use a combination of [16], and [1]: As a natural representative we use
the first normalized S-box in a lexicographic order. In the appendix we use the numbering
of classes from [1], and our system of representatives.

We denote a normalized representative of S-box S by S∗. The following conditions hold:

1. S ∼ S∗,
2. S∗ is normalized,
3. for each S1 ∼ S: S∗ ≤lex S1.

All affine mappings are affinely equivalent with the identity mapping. For n > 2, all
affine mappings are even permutations, thus all permutations in an affine class are either
odd or even.

Definition 1 Multiplicative complexity of Boolean function F : GF(2)n → GF(2)n is the
(minimum) number of GF(2) multiplications sufficient and necessary to compute F(x) for
any x.

We will denote multiplicative complexity of function F by MC(F). Equivalent def-
inition of multiplicative complexity is based on the number of (2-input) AND-gates in
(∧,⊕, 1) algebra, where ∧ (AND) is multiplication in GF(2), ⊕ is addition in GF(2),
and negation is computed by adding a constant, i.e., x ⊕ 1. We do not need to consider the
addition of constants for constant-free S-boxes (i.e., S(0) = 0) (see Lemma 2 in [11]).

Multiplicative complexity has been intensively studied in the context of quadratic forms
[14, 17], simple Boolean predicates [11], and symmetric functions [4]. However, not much
is known in the case of vectorial Boolean functions (and S-boxes).

It is easy to see that multiplicative complexity of all S-boxes in an affine class is the same.
Thus it is sufficient to compute the multiplicative complexity of the selected representatives
of affine classes. One possible practical approach to computing multiplicative complexity
was presented by Courtois [9]. In this case, a problem of computing MC(S) is converted to
an instance of SAT, and verified by a SAT solver (top-down approach). Another practical
approach is presented by Ullrich et. al [18]. The main idea is to go through all possible com-
binations of an instruction set (in case of constant-free S-boxes these consists only of AND,
and XOR instructions) by a search, until each class is enumerated (bottom-up approach). We
use the bottom-up approach, however, unlike in [18], our approach presented in Section 5
focuses strictly on multiplications. Furthermore, it is complemented by a different approach
based on the composition, using the fact that MC(S1 ◦ S2) ≤ MC(S1)+MC(S2).

Cryptogr. Commun. (2014) 6:255–277 259

3 Bijective S-boxes with multiplicative complexity 1

The purpose of this section is to show that there is only a single affine class of bijective
S-boxes with multiplicative complexity 1 for any n ≥ 3. Moreover, we can choose a very
specific representative of this class, which can be realized by a generalization of the circuit
depicted in Fig. 1. We formalize this result in Theorem 1, and the rest of this section contains
the proof of this theorem.

Theorem 1 Let S : GF(2)n → GF(2)n be a bijective vectorial Boolean function with
multiplicative complexity 1. Then for n ≥ 3 it is affinely equivalent to �n : GF(2)n →
GF(2)n,

�n(x) = (x1 + xn−1xn, x2, . . . , xn−1, xn).

Proof To prove the Theorem 1, we will first restrict the search using Lemma 2. Then
we need to prove Lemma 4 that provides a generic formula S-boxes with multiplicative
complexity 1. For the proof of Lemma 4, we will use Lemma 3. Afterwards, we finish the
proof by using affine equivalence. The first two lemmas are rather trivial, but we include
them for the sake of completeness. Lemma 4 is also relatively straightforward, as there are
not many choices we can make if we can only use a single AND gate to construct a Boolean
function. However, a special care is needed to show the conditions that guarantee that this
function is bijective.

Lemma 2 Any S-box S is affinely equivalent to S-box Sc given by Sc(x) = S(x)+ c.

Lemma 2 is trivially derived from the definition of affine equivalence.
If we choose c = S(0), we get a constant free S-box with Sc(0) = 0. Using Lemma 2,

and the transitivity of affine equivalence, we only need to prove Theorem 1 for constant-free
S-boxes.

Fig. 1 The representative �4 of
the affine class of bijective 4 × 4
S-boxes with MC(S) = 1. Inputs
and outputs are numbered from
bottom up

260 Cryptogr. Commun. (2014) 6:255–277

Lemma 3 Let f, g, h : GF(2)n → GF(2), and let h(x) = f (x) · g(x). If f, g are distinct
balanced Boolean functions, then their product h is not balanced.

Proof Function f is balanced, so there are exactly 2n−1 points where f (x) = 1. We can
only get h(x) = 1, if both f (x) = 1, and g(x) = 1. Functions f , and g are distinct, so there
is at least one point such that f (x) = 1, and g(x) = 0. Thus there are at most 2n−1 − 1
points, where h(x) = 1, which means that h is not balanced.

It is a well known that all (non-constant) affine Boolean functions are balanced. Thus, a
corollary of Lemma 3 is that a product of two affine Boolean functions is not balanced. We
use this fact in the proof of Lemma 4.

Lemma 4 Any bijective n-bit S-box S with S(0) = 0, and multiplicative complexity
MC(S) = 1, can be written in the form

S(x) = Mx +
(
(aT x) · (bT x)

)
d, (2)

where a,b, d ∈ GF(2)n \ {0}, a �= b, M is an invertible n × n matrix over GF(2), and
aT M−1d = bT M−1d = 0.

Proof It is easy to see that any S given by (2) has MC at most 1, and that (2) covers any
Boolean function that can be realized by a single GF(2) multiplication. We must show that
conditions of Lemma 4 are necessary and sufficient for S to be a non-linear bijection.

If a = {0}, b = {0}, or d = {0}, formula (2) is reduced to S(x) = Mx, which means that
S is a linear function. Similarly, if a = b, we get

S(x) = Mx + (aT x)d =
(

M + daT
)

x,

which is also a linear function. In any other case the non-linear terms provided by(
(aT x) · (bT x)

)
d cannot be cancelled out. Thus S is non-linear (with MC(S) = 1), if and

only if the following conditions hold: a,b,d �= {0}, and a �= b, respectively.
The remaining conditions of Lemma 4 are needed to ensure that S is a bijective function.

First we will show that if M is singular, then S cannot be bijective. Let u be any non-zero
vector from the kernel of the mapping Mx. We can find 2n−1 pairs of vectors (x1, x2 =
x1 + u), such that Mx1 = Mx2. If S is a bijection than for each pair x1 �= x2 we must get
S(x1) �= S(x2), or equivalently S(x1)+ S(x2) �= 0.

We can rewrite this using (2) to:

S(x1)+ S(x2) =
(
(aT x1) · (bT x1)+ (aT x2) · (bT x2)

)
d �= 0,

and thus (
(aT x1) · (bT x1) �= (aT x2) · (bT x2)

)
. (3)

Let g(x) = (aT x) · (bT x). Condition (3) means that g must be a balanced Boolean
functions, because we must choose the pairs (x1, x2) in such a way that g(x1) = 0, and
g(x2) = 1. On the other hand, g is a product of two distinct linear functions aT x, and bT x,
which are balanced, and according to Lemma 3, g is not balanced. So there is no suitable
function g, and thus S cannot be a bijection if there is a non-zero vector u in the kernel of
the mapping Mx, i.e., if M is singular. Thus if S is bijective, M must be an invertible matrix.
On the other hand, just the condition that M is invertible is not sufficient for bijective S.

Finally, we must show (by contradiction) that last two conditions aT M−1d = 0, and
bT M−1d = 0, are necessary and sufficient for bijective S. Without the loss of generality,

Cryptogr. Commun. (2014) 6:255–277 261

let aT · M−1d = 1 (similarly for b). Let us consider function h(x) = aT M−1S(x). If S is
bijection then h must be a balanced Boolean function [13].

However, if we rewrite h using formula (2):

h(x) = aT M−1Mx +
(
(aT x) · (bT x)

)
aT · M−1d

= aT x + (aT x) · (bT x)

= (aT x) · (1 ⊕ bT x),

we can see that h is a product of two distinct affine functions. According to Lemma 3, h
cannot not balanced. Thus we get a contradiction, so both aT M−1d = 0, and bT M−1d = 0,
must hold to get bijective S.

On the other hand, let us suppose that S is not bijective, i.e., S(x1) = S(x2) for some
x1 �= x2. From S(x1) = S(x2) we can derive that

x1 + x2 =
(
(aT x1) · (bT x1)+ (aT x1) · (bT x1)

)
M−1d

Multiplying by aT , and bT , we get that

aT (x1 + x2) = bT (x1 + x2) = 0, (4)

or equivalently

aT x1 = aT x2, and bT x1 = bT x2. (5)

Rewriting S(x1 + x2) using (2) yields

S(x1 + x2) =
(
(aT x1) · (bT x2)+ (aT x2) · (bT x1)

)
d.

Using (5), we finally get S(x1 + x2) = 0. But S is constant-free, so x1 + x2 = 0. This is a
contradiction, so S must be a bijection.

Now, let us return the the proof of Theorem 1. Conditions of Lemma 4 are easy to verify
for S-box �n. We have M = I (identity matrix), and a = e(n−1), b = e(n), d = e(1), where
vector e(i) ∈ GF(2)n has only a single one on i-th position. Using (e(i))T e(j) = 0, for
i �= j , it is easy to see that aT M−1d = bT M−1d = 0.

Lemma 4 tells us how all bijective constant-free Boolean functions with multiplicative
complexity 1 look like. Now we would like to show that for any permissible choice of
parameters we can find two invertible matrices A, B, such that S(x) = B�n(Ax).

Let A be an invertible matrix chosen (at first) arbitrarily, with rows denoted by
uT

1 , . . . , uT
n . We remark that (e(i))T A = uT

i . Let B = MA−1. For linearly equivalent S-box
S we can write

S(x) = B�n(Ax) = BAx +
(
(uT

n−1x) · (uT
n x)

)
Be(1) (6)

= Mx +
(
(uT

n−1x) · (uT
n x)

)
(MA−1e(1)). (7)

Comparing (6) with (2), we require that un−1 = a, un = b, and MA−1e(1) = d, respec-
tively. We must show that under these conditions it is still possible to construct matrix A for
any permissible a, b, M, d.

Conditions of Lemma 4 a,b �= 0, and a �= b guarantee that the last two rows of matrix
A are linearly independent.

262 Cryptogr. Commun. (2014) 6:255–277

Matrix M is invertible, so we can rewrite MA−1e(1) = d as A−1e(1) = M−1d. In other
words, the first column of matrix A−1 must be equal to M−1d.

Using identity AA−1 = I we get

uT
i · M−1d =

{
1 if i = 1,
0 otherwise.

(8)

Conditions aT M−1d = bT M−1d = 0 of Lemma 4 guarantee that these conditions hold
for prescribed vectors un−1 = a, and un = b, respectively. We can always choose the set of
remaining n− 3, such that all ui are linearly independent, and conditions (8) hold. E.g., we
can choose u1 = e(j), where j is the position of the first non-zero bit of M−1d. For other
vectors, we can try to use remaining basis vectors. If we get a conflict uiM−1d = 1, we
replace the offending vector by ui + u1.

This completes the proof that any constant-free S-box S with n ≥ 3, and MC(S) = 1,
if affinely (even linearly) equivalent with �n. Now using Lemma 2 we can also drop the
condition S(0) = 0, and thus finish the proof of Theorem 1.

4 Bijective 3 × 3 S-boxes

In case of n = 3, there are only 4 affine classes of 3 × 3 bijective S-boxes [1]. Thus, the
situation with multiplicative complexity can be examined easily:

1. All affine S-boxes are in the same class A3
0 as the identity permutation 01234567.

2. Permutation �3 (01234576), class Q3
1 is given by a single swap, thus it is an odd

permutation. According to Theorem 1, �3 is the only affine class with multiplicative
complexity 1.

3. A representative 01234756 of class Q3
2 can be written as �3 ◦ rot−1 ◦�3 ◦ rot1, where

rotn denotes a rotation of a bit vector by n positions (xi �→ xi+n), giving MC(Q3
2) ≤ 2.

Using Theorem 1, we can see that MC(Q3
2) = 2.

4. Finally, representative 01254736 of class Q3
3 can be constructed as depicted in Fig. 2.

Thus MC(Q3
3) ≤ 3. Theorem 1 gives MC(Q3

3) > 1.

We remark that in the case n = 3, each class can be generated using the construction
S = (�3 ◦ rot−1)

c, where c is the desired multiplicative complexity.

Fig. 2 Construction of representatives of affine classes of 3 × 3 S-boxes

Cryptogr. Commun. (2014) 6:255–277 263

5 Multiplicative complexity of bijective 4 × 4 S-boxes

The situation for n = 4 is more complicated, as there are are 16! S-boxes (11! normalized) in
302 affine classes of 4× 4 bijective S-boxes [1]. It is still feasible to examine multiplicative
complexities of 4 × 4 bijective S-boxes using a reasonable amount of computing power.
Recall that we only need to compute multiplicative complexity of the representatives of
affine classes.

First, let us extend the ∗-notation to sets of S-boxes. Let S be a set of S-boxes. By S∗ we
denote a set of representatives of affine classes of S-boxes in S. That is, S∗ = {S∗; S ∈ S}.

We compute the multiplicative complexity of affine classes of S-boxes using the follow-
ing idea. Let Mc be a set of all S-boxes with MC(S) ≤ c. Then clearly MC(S) = c for
each S ∈ Mc \Mc−1. Set Mc is defined by these 2 conditions:

1. for each S ∈ Mc, MC(S) ≤ c;
2. if MC(S) ≤ c, then S ∈ Mc;

A set that fulfils condition 1 can be constructed by defining a set of circuits that use at
most c 2-input AND gates. However, it is more difficult to ensure that condition 2 holds. As
Mc is large, in practice we want to work with the set M∗

c instead.
Affine transformations do not require any multiplications, and non-linear transforma-

tions require at least one multiplication. Thus M∗
0 = Aff (2, n) = {id}. In Section 3 we

have shown that there is only one class of S-boxes with multiplicative complexity 1, so we
also know that1

M∗
1 = {id,�n}.

For larger c, it is more difficult to ensure the construction of representatives directly.
Instead, we will construct a set C with the following properties:

– for each S ∈ C, MC(S) ≤ c;
– for each S with MC(S) ≤ c, there exist S1 ∈ C such that S ∼ S1;

Then C∗ = M∗
c .

To produce sets C we use two constructions based on Lemma 5 (composition), and
Lemma 6 (expansion and compression), respectively.

Lemma 5 Let

Ci,j = {S2 ◦ A ◦ S1; S1 ∈ M∗
i , S2 ∈ M∗

j , A ∈ Aff (2, n)}.
Then for each S ∈ Ci,j : MC(S) ≤ i + j .

Proof S1 from the definition of Ci,j can be constructed by using i GF(2) multi-
plications, and S2 using j multiplications, respectively. Affine transformation does not
require multiplications. Thus any S-box in Ci,j can be constructed using at most i + j

multiplications.

As seen in Section 4, Lemma 5 can be used to construct all affine classes of bijective
3 × 3 S-boxes: M∗

2 = C∗
1,1, M∗

3 = C∗
2,1. The situation is different for n > 3, as M∗

1

1�n is a proper representative of its class, if x1/f1 denotes the least significant bit of the corresponding
encoding of inputs/outputs.

264 Cryptogr. Commun. (2014) 6:255–277

Fig. 3 Illustration of Lemma 6, the construction of a Boolean function with a multiplicative complexity 3.
Matrices A,B denote the place of linear equivalence

contains only even permutations, and thus we cannot construct odd permutations using only
the iteration process based on Lemma 5.

Lemma 6 Let En : GF(2)n → GF(2)n+1,

En(x) =
(
x1, x2, . . . , xn, (bT

1 · x) · (bT
2 · x)

)
.

Let Cm,n : GF(2)m → GF(2)n be a linear function. Any Boolean function F : GF(2)n →
GF(2)n with F(0) = 0, and multiplicative complexity MC(F) ≤ c can be written as a
composition

F = Cn+c,n ◦ En+c−1 ◦ · · · ◦ En+1 ◦ En.

Proof Let c = 0. Any function with F(0) = 0, and MC(F) = 0 is a linear function, which
can be written as F = Cn,n.

Let c = 1. Circuit to implement function F with MC(F) = 1 must contains a single
AND-gate. Circuit have n inputs x1, . . . , xn. A circuit can implement any number of affine
functions, i.e., functions hi(x) = ai · x + ci . At most n + 1 of these functions are linearly
independent. Let one of the independent functions be h0 = 1, and the n others hi = e(i) · x,
i=1, . . . , n.

Two inputs of the AND-gate can be consist of any affine transformation of available
inputs, and the AND-gate provides a single output. The AND-gate can be expressed by the
function g(x) = (bT

1 · x + d1) · (bT
2 · x + d2). We can move constants d1, d2 to the linear

part of the circuit by constructing g as a sum g(x) = g1((x))+ g2((x))+ d1d2, where

g1(x) = (bT
1 · x) · (bT

2 · x),

and
g2(x) = (d1bT

2 + d2bT
1) · x.

Fig. 4 Three affine classes of even S-boxes with multiplicative complexity 2 (one of the classes has
degree 3)

Cryptogr. Commun. (2014) 6:255–277 265

Fig. 5 Two affine classes of odd S-boxes with multiplicative complexity 2

Function g1 is linearly independent from any of hi ’s (g2 is a linear combination of hi ’s).
Finally, we can construct any function with n outputs by using for each output any linear
combination of n+ 2 linearly independent functions {1, h1, . . . , hn, g1}. However, F(0) =
0, so each output fi must be constant-free. Thus h0 is not used, and we get F as a linear
combination of n+1 functions {h1, . . . , hn, g1}, which is exactly constructionF = Cn+1,n◦
En.

Similarly, for larger c, each E is used to construct the next function g2, g3, . . .,
that is the output of the additional AND-gate. The input of the new c-th gate can
be any linear2 combination of the previous functions h1, . . . , hn, g1, g2, . . . , gn+c−1 (so
we use En+c−1 as the expansion function). Finally, we use n linear combinations of
h1, . . . , hn, g1, g2, . . . , gn+c−1, gn+c (compression function Cn+c,n) to construct outputs of
F .

Lemma 6 can be used to compute Mc by computing the set (Fig. 3)

{F = Cn+c,n ◦ En+c−1 ◦ · · · ◦ En+1 ◦ En;F is bijection}∗.
Unfortunately, this direct approach is quite impractical, as the number of options when
constructing F ’s is too large even for small c, n. E.g. for n = 4, c = 2 we need to choose
(4× 2)+ (5× 4) bits to go through all E’s and C’s, which is 228 S-boxes (many repeated).
For n = 4, c = 4 we get 276 S-boxes (for which we do not have enough computing power).

Figures 4, and 5, respectively, denote five classes of bijective 4 × 4 S-boxes. Three even
classes can be decomposed using �4, two odd classes cannot be decomposed in this way.

The search can be sped up if we use affine equivalence, and search only for M∗
c . We can

use the following properties of the construction:

1. Multiplication is commutative, and (bT · x) · (bT · x) = bT · x. Thus we can restrict the
search to b1 < b2 (halves the search space for each E).

2. We only search for a single S-box in each affine class. We can suppose that there is
an input linear transformation given by an invertible matrix B (so we compute F(Bx)
instead of F(x)). Now we can replace b1, b2 in En by e(1), e(2), and move b1, b2
into B instead (as the first two rows). Inner transformation Bx can be ”removed” in
compression function C. (A similar construction is used in the proof of Theorem 1).

2All possible constants can be moved to the linear part of the circuit.

266 Cryptogr. Commun. (2014) 6:255–277

Table 1 Combinations of the vectors for the first two expansions explored in construction of M∗
c (n = 4)

Description E4 E5

b1 b2 b1 b2

4 independent rows of B e(1) e(2) e(3) e(4)

Linear combination e(1) e(2) e(3) e(1)

of first two rows of B e(1) e(2) e(3) e(2)

multiplied by the third one e(1) e(2) e(3) e(1) + e(2)

3 independent rows of B, and g1 e(1) e(2) e(3) e(5)

3 independent rows of B, e(1) e(2) e(3) e(5) + e(1)

g1, and linear combination e(1) e(2) e(3) e(5) + e(2)

of the first two rows e(1) e(2) e(3) e(5) + e(1) + e(2)

3. Similarly, we can replace b1, b2 in En+1 by the choice of the next two rows of B.
However, we must take into account possible linear combination with the inputs of
the first AND-gate, e.g. to produce linearly independent functions g1(x) = x1x2, and
g2(x) = x1x3. For n = 4, c = 2 we get nine options (see Table 1). For each option there
are roughly 224 matrices C that should be explored (e.g. if we require MC(S) = 2,
we can skip C’s that do not use the outputs of the AND-gates). This process can be
extended even further, but it is impractical to implement.

4. Using outer linear transform we can also reduce the number of C’s we need to explore.
Cn+c,n is given by n × (n + c) matrix C. We can write C = AT, where T is an upper
triangular matrix, and A is an invertible n×n matrix that can be removed as outer linear
transform of affine equivalence.

5. In each class we focus our attention to normalized S-boxes. Each normalized S-box
can be written in the form S(x) = x + F(x), where the component functions of F do
not contain any linear terms in their ANF’s. Due to this fact, we suppose (an unproven
hypothesis, which were verified by computer search for n = 4, c = 2, c = 3), that we
only need to concentrate on functions for which C = (

I|cn+1 · · · cn+c
)
, where I is an

identity matrix, so that

C · (En+c−1 ◦ · · · ◦ En) = x + (cn+1 · · · cn+c)

⎛
⎜⎝

g1
...

gc

⎞
⎟⎠ .

Table 2 Statistics of S-boxes according to multiplicative complexity

MC Classes NormRep Classes [%] NormRep [%]

0 1 1 0.33 0.00

1 1 85 0.33 0.00

2 5 5250 1.66 0.01

3 25 471560 8.28 1.18

4 140 18515360 46.36 46.38

5 130 20924544 43.05 52.42

Cryptogr. Commun. (2014) 6:255–277 267

Fig. 6 S-box construction which is affinely equivalent to PRESENT S-box, class C4
266

We have used the above method to compute (for n = 4) M∗
2, M∗

3, and M∗
4, respectively.

Computing M∗
2, M∗

3 is relatively fast. For c = 4, we have reduced the search space (using
the above reductions) to 9 · 225 · 216 .= 244 S-boxes. For each function thus generated, we
verify whether it is a permutation. If it is a permutation, it is normalized, and using a large
lookup table (11! entries) its affine class is determined. The computation was distributed to
16 computing cores3, and took between 6 and 7 days in real time to finish.

Using the computed sets M∗
2, M∗

3, we have further computed the set D = [C2,3∩C3,2]∗.
This set contains all 302 affine classes4, thus D = M∗

5, and MC(S) ≤ 5 for each bijective
5 × 5 S-box.

5.1 Computational results

Computational results (n = 4) are summarized in Appendix. For each S-box we give a
proof of construction with the given number of multiplications. It can be viewed as an upper
bound on its multiplicative complexity. Unfortunately, it should not be considered as the
proven multiplicative complexity, mainly due to computer generated results.

In this section we highlight some of the observations: S-boxes with multiplicative com-
plexity 2, statistics of the S-box classes, and finally the results for S-box classes with optimal
linear and differential properties (including the PRESENT S-box).

Table 2 summarizes the statistics of the multiplicative complexity as presented in
Appendix. For each multiplicative complexity we list the number of classes, and the number
of normalized representatives of the class. Although the number of classes with multi-
plicative complexity 4 is higher, classes with multiplicative complexity 5 have a larger
number of representatives (an average number of representatives grows with multiplicative
complexity).

An important requirement for an S-boxes is its resistance against linear, and differential
cryptanalysis, respectively. There are 16 affine classes of optimal 4×4 S-boxes [12]. Out of
these classes, six classes have multiplicative complexity 4 (including PRESENT [3] S-box,
see Fig. 6):

1. even permutations: C4
296,C4

266, C4
297,C4

223 (G0,G1,G2, G8)
2. odd permutations: C4

209, C4
210 (G14,G15)

All other optimal classes have multiplicative complexity 5. We remark, that n× n S-box
with MC(S) < n should not be used in the (classical SPN-like) cipher design, as we can

3Each node had a different fixed value cn+1, but each node produced the same set, so there are still potential
reductions of the search space.
4We remark that this set also contains all 3374 classes of constant-free S-boxes under linear equivalence.

268 Cryptogr. Commun. (2014) 6:255–277

always find a combination of inputs and outputs that sums to a constant (as there are only
n− 1 linearly independent non-linear component functions).

6 Conclusions and open questions

We show that there is a single class of bijective n × n S-boxes under affine equivalence
(n ≥ 3), represented by the permutation �n. As �3 is an odd permutation, it can be used to
construct all affine classes of 3 × 3 S-boxes by composition, in such a way that multiplica-
tive complexity corresponds to the number of �3’s composed. For larger n’s �n is an even
permutation, and the composition based construction is not possible. We remark, that even
if we add an odd permutation to the possible compositions, not all S-boxes can be decom-
posed in a similar way (such that the multiplicative complexity of the final S-box is given
directly as a sum of multiplicative complexities of the composed S-boxes). However, the
composition construction might be useful to prove the upper bounds on multiplicative com-
plexity for a specific class of S-boxes. Using composition of S-boxes with multiplicative
complexity 2, and 3, respectively, we have shown that multiplicative complexity of all 4× 4
bijective S-boxes is at most 5. Combined with the SAT-solver based proofs of Courtois [9],
we can be quite confident that some affine classes have multiplicative complexity exactly 5.

Using construction based on non-linear expansion and linear compression, we have com-
puted the bounds for multiplicative complexities for each affine class of 4 × 4 S-boxes.
Knowing S-box multiplicative complexity is useful for the optimal hardware implementa-
tion of the S-box, but it might also be used in algebraic cryptanalysis. Our construction can
also be used for larger n’s to construct S-boxes with low multiplicative complexity. Unfor-
tunately, in this case the number of possibilities, as well as the number of affine classes is
much larger (already for n = 5 the number is approx. 261 [6]), so we cannot cover all classes
(with the available computing power).

An interesting open question is the connection of multiplicative complexity based on
GF(2) multiplications with masking complexity in GF(2n). In general, masking complex-
ity is defined (Definition 3, [7]) as the number of non-linear multiplications required to
evaluate polynomial representation of S-box over GF(2k). Thus the multiplicative com-
plexity is just a special case with k = 1. On the other hand, in GF(2n) terms, multiplicative
complexity expresses the minimum number of operations in the form T r(α1x)T r(α2x)

required to evaluate the polynomial along with an unlimited number of linear operations.
The question of GF(2)-multiplicative complexity of multiplication in extension fields

is intensively studied in the complexity theory area. E.g., it is known that to implement
a GF(24) multiplication we need at most eight GF(2) multiplications [8]. An important
research question is to determine the optimal k (and the related circuit design) for general
n (or a specific affine class of S-boxes) with respect to masking against DPA attacks. Our
hypothesis is that optimum is obtained always at k = 1: Let us suppose that we need at most
M2(n) GF(2) multiplications to implement a single GF(2n) multiplication. Furthermore
let the minimum number of non-linear GF(2n) multiplications to implement some S-box
be k. Our hypothesis is that the multiplicative complexity of the S-box is significantly lower
than k · M2(n). E.g., the masking complexity of PRESENT S-boxes and Serpent S-boxes
in GF(24) is 3 [15], but their multiplicative complexity (masking complexity over GF(2))
is significantly lower than the expected 3 · 8 = 24 (Serpent S-boxes 3 and 7 have MC=5,
PRESENT S-box and other Serpent S-boxes have MC=4). If it is cheaper to mask 4 or 5
non-linear single-bit operations instead of 3 non-linear four-bit operations, than the choice
of k = 1 for evaluating masking complexity is more suitable.

Cryptogr. Commun. (2014) 6:255–277 269

Appendix

List of S-boxes

For each class of S-box we list its number according to [1] (we only list class number),
its representative in hexadecimal notation (first normalized S-box in lexicographic order,
(upper bound on) multiplicative complexity, and the constructive proof of MC. The proof
is either by composition of two S-boxes with lower MC, or by writing down coefficients of
expansion-compression construction for an S-box in the given class (we do not provide a
proof of affine equivalence with the representative). The expansion-compression proof was
required for 2 S-boxes with MC(S) = 2, 5 S-boxes with MC(S) = 3, and 25 S-boxes with
MC(S) = 4.

The format of expansion-compression proof:

1. Four (single-digit) hex numbers encode vectors cn+1 · · · cn+4,
2. Eight (two-digit) hex numbers encode vectors b1,b2 for E4, E5, E6, E7.

Class Representative MC Proof

0 0123456789ABCDEF 0 Aff (2, n)

4 0123456789ABDCFE 1 �4 (Theorem 1)

1 0123456789ABCDFE 2 0800 01 02 04 10 00 00 00 00
3 0123456789ABDEFC 2 4800 01 02 04 10 00 00 00 00

2 0123456789ABCEFD 3 0210 04 08 01 10 03 10 00 00
54 012345798A6BDECF 3 4210 01 02 09 14 26 31 00 00
241 012345768A9CDEBF 3 4210 02 08 07 13 24 38 00 00
242 012345768A9CDFEB 3 4210 01 02 08 15 0b 30 00 00
291 012345768A9BCFED 3 0210 02 04 08 13 0c 30 00 00

41 012345768A9CBFED 4 4941 01 02 10 04 15 1a 0d 48
43 012345798ABE6CFD 4 8261 01 02 18 04 1b 2d 02 24
44 012345798ABFCED6 4 4821 01 02 11 04 15 1d 0a 4c
49 012345798AEDC6BF 4 8294 01 02 18 04 28 36 07 28
50 012345798AFDC6EB 4 1294 01 02 18 04 07 36 08 40
63 012345798AC6EBFD 4 8241 01 02 18 04 28 31 02 24
64 012345798ADF6CEB 4 4821 01 02 11 04 09 15 47 59
70 012345798E6CFBDA 4 8261 01 02 18 04 19 2c 25 76
71 012345798EACDF6B 4 8294 01 02 18 04 0e 1b 09 7b
76 012345798ABFEDC6 4 1295 01 02 18 04 07 32 08 46
82 0123457986ACFBED 4 8294 01 02 18 04 19 2f 06 30
85 012345798ABD6EFC 4 8241 01 02 18 04 29 32 06 26
86 012345798ABFC6ED 4 4821 01 02 11 04 17 1f 0a 4c
92 012345798AE6BDCF 4 8295 01 02 18 04 1a 30 0f 40
114 012345798FAEDBC6 4 8295 01 02 18 04 1d 2c 1b 6d
115 012345798F6CBEDA 4 71b4 01 02 18 04 1f 35 05 31
126 012345798AC6DFBE 4 1695 01 02 18 04 2e 31 05 37

270 Cryptogr. Commun. (2014) 6:255–277

Class Representative MC Proof

127 012345798AFD6CBE 4 8294 01 02 18 04 31 36 19 2b
147 012345798AE6DBFC 4 8241 01 02 18 04 28 31 06 24
148 012345798AE6CFBD 4 4821 01 02 11 04 15 1d 47 4d
187 012345798ABFEC6D 4 1294 01 02 18 04 07 32 2a 34
201 012345798E6DAFBC 4 8295 01 02 18 04 1d 31 27 4e
202 012345798A6DECBF 4 8295 01 02 18 04 07 30 2f 35
209 0123469A85EDC7FB 4 e261 01 02 18 04 27 3d 06 48
210 0123469B87DE5FAC 4 8a94 01 02 18 04 0f 16 0b 70

The format of composition proof S2 ◦ A ◦ S1:

1. S1 is representative of the first listed class;
2. A is always linear transformation, encoded by 4 hexadecimal numbers, the images of

1,2,4,8 in this order (1 encodes e(1)).
3. S2 is representative of the second listed class;

Class Representative MC Proof

12 0123456789CDEFAB 2 C: 4, 4218, 4
292 012345768A9BCEFD 2 C: 4, 4168, 4
294 0123456789BAEFDC 2 C: 4, 8429, 4

5 0123456789ACDBFE 3 C: 4, 8421, 1
6 0123456789ACBDFE 3 C: 4, 2481, 292
11 0123456789BCEFDA 3 C: 4, 8341, 3
13 0123456789CDEFBA 3 C: 4, 8241, 3
39 012345768A9CBEFD 3 C: 4, 8421, 3
40 012345768A9CBFDE 3 C: 3, 8421, 4
233 0123459A8B67CEFD 3 C: 4, C241, 292
234 0123459A8EF6BDC7 3 C: 4, 4A21, 292
236 0123459A87B6CEFD 3 C: 4, A421, 292
243 012345768ACF9BDE 3 C: 4, 8241, 294
244 012345768ACE9BFD 3 C: 4, 4821, 294
258 0123459A8BCFED76 3 C: 4, 8521, 12
259 0123459A8B67CFDE 3 C: 4, 8421, 12
260 0123459A8BCF76ED 3 C: 4, 8421, 294
264 0123459A8BCDE67F 3 C: 4, E421, 292
287 012345768A9CDFBE 3 C: 4, 4281, 292
288 0123456789CEFBDA 3 C: 4, 2C41, 292
293 0123457689CDEFBA 3 C: 4, 8142, 294
299 012345678ACEB9FD 3 C: 4, 4281, 294
300 012345AB89CDEF67 3 C: 4, 8142, 12

7 0123456789ACBEFD 4 C: 4, 1842, 241
8 0123456789ACDEFB 4 C: 4, 8241, 2
9 0123456789ACDEBF 4 C: 4, 1A42, 40
10 0123456789BCAEFD 4 C: 4, 4281, 6

Cryptogr. Commun. (2014) 6:255–277 271

Class Representative MC Proof

17 0123456987CDEFAB 4 C: 4, 8241, 5
18 0123456987ACDBFE 4 C: 4, 8421, 6
21 0123456987ACBDFE 4 C: 4, 4281, 39
22 0123456987ACEFBD 4 C: 4, 4821, 6
25 0123456987ABCEFD 4 C: 4, 4381, 39
38 0123456987ABDEFC 4 C: 4, 8721, 6
46 012345798ABDFC6E 4 C: 3, C421, 3
52 012345798EBCAF6D 4 C: 4, 8142, 287
53 012345798FADBEC6 4 C: 4, 1A42, 234
55 012345798AB6FCED 4 C: 4, 2841, 287
57 012345798ABEC6DF 4 C: 4, A142, 287
58 012345798ACFDE6B 4 C: 4, 8341, 11
59 012345798AECFDB6 4 C: 4, 8341, 40
65 012345798ADFC6EB 4 C: 4, 6281, 54
66 012345798F6DEABC 4 C: 4, 8241, 264
67 012345798A6DCFBE 4 C: 4, 8241, 287
68 0123457986ACDEBF 4 C: 4, 8142, 241
69 0123457986ACDFEB 4 C: 4, 4281, 54
72 012345798E6CFDBA 4 C: 4, A421, 54
77 012345798ACB6EDF 4 C: 4, A142, 40
79 0123457986ACBEFD 4 C: 4, 5281, 54
80 0123457986ACBFDE 4 C: 4, 8241, 241
81 0123457986ACFEBD 4 C: 4, A341, 287
93 012345798F6DEACB 4 C: 4, 8142, 40
94 012345798AD6CEFB 4 C: 4, A241, 40
95 012345798ADFC6BE 4 C: 4, 4281, 233
96 012345798ADEC6FB 4 C: 4, A241, 287
97 0123459A87EDCFB6 4 C: 4, 8421, 241
98 0123459A87DFB6CE 4 C: 4, C341, 241
100 0123459A87BE6CDF 4 C: 4, A621, 39
101 0123459A87ECFD6B 4 C: 4, 8421, 287
108 0123459A8D6FE7BC 4 C: 4, 8621, 241
109 0123459A8B6CFD7E 4 C: 4, E241, 242
116 0123459A8DC6BFE7 4 C: 4, 8521, 241
117 0123459A8C6DFB7E 4 C: 4, E241, 39
118 0123459A8EC6F7DB 4 C: 4, 8521, 241
122 0123459A87ED6BFC 4 C: 4, E241, 39
128 0123459A87BEDF6C 4 C: 4, 6B21, 54
129 0123459A87E6BCDF 4 C: 4, A421, 39
130 0123459A8E7FDB6C 4 C: 4, 1842, 234
131 0123459A8F6C7EBD 4 C: 4, 5281, 233
132 0123459A8EF7DB6C 4 C: 4, 8621, 40
133 0123459A8EC6F7BD 4 C: 4, C241, 40
150 0123459A87ECDFB6 4 C: 4, 3481, 260
151 0123459A87EC6BFD 4 C: 4, 3481, 258
152 0123459A87ECD6BF 4 C: 4, A621, 54
153 0123459A87BEFDC6 4 C: 4, 8621, 242

272 Cryptogr. Commun. (2014) 6:255–277

Class Representative MC Proof

158 0123459A87ECF6BD 4 C: 4, 5821, 236
159 0123459A87ED6FBC 4 C: 4, 9142, 234
161 0123459A876EFDCB 4 C: 4, 5921, 236
162 0123459A876ECFDB 4 C: 4, 3481, 264
164 0123459A876ECBFD 4 C: 4, 8341, 264
165 0123459A876EDBCF 4 C: 4, 8341, 233
166 0123459E8F6CADB7 4 C: 4, 8421, 40
167 0123459A8CBF76ED 4 C: 4, 8721, 11
168 0123459A8CE7FB6D 4 C: 4, 6381, 259
169 012345798ACFB6ED 4 C: 4, 8241, 242
170 012345798AECB6FD 4 C: 4, 8341, 241
171 0123459A8CE7BFD6 4 C: 4, 5281, 259
172 0123459A8CD67EFB 4 C: 4, 8341, 243
173 012345798AFDC6BE 4 C: 4, 8241, 40
176 0123457986ACEFDB 4 C: 4, 8341, 287
178 0123459A8BDFC76E 4 C: 4, 9142, 236
181 0123459A8CFBE7D6 4 C: 4, 4A21, 54
182 0123459A8CEB76FD 4 C: 4, C142, 241
183 0123459E8AB6FDC7 4 C: 4, A421, 287
184 0123459A8BCEDF76 4 C: 4, 8721, 287
185 0123459A8B6ECFD7 4 C: 4, C421, 40
186 0123459A8BECDF76 4 C: 4, 8621, 11
190 0123459A8DBC7EF6 4 C: 4, C621, 241
191 0123459A8BDF6CE7 4 C: 4, E621, 242
195 0123459A87E6DFBC 4 C: 4, A521, 54
199 0123459A87ECBFD6 4 C: 4, 6A21, 54
200 0123459A87EC6FBD 4 C: 4, C241, 242
203 012345798ACF6BDE 4 C: 4, 8241, 11
204 012345798AEC6BDF 4 C: 4, A421, 40
206 0123459A8EF7BDC6 4 C: 4, A621, 40
207 0123459A8C67DFEB 4 C: 4, C142, 40
213 0123459A8CFB76DE 4 C: 4, 8521, 11
214 0123459A8BCFDE67 4 C: 4, 8421, 299
215 012345AB86CE79FD 4 C: 4, 8421, 293
216 0123457986CDEFBA 4 C: 4, 8142, 11

220 0123469B85CF7AED 4 C: 4, C521, 242
222 0123467985EDBFAC 4 C: 4, 8521, 242
223 0123469B87CF5AED 4 C: 4, E241, 244
229 0123459A8C6D7EFB 4 C: 4, 5A21, 54
230 0123459A8D7EBF6C 4 C: 4, C241, 241
232 0123459A8EC67FDB 4 C: 4, 8521, 40
235 0123459A86B7CFDE 4 C: 4, 8421, 291
237 0123459A86B7CEFD 4 C: 4, 6821, 40
238 0123457689CEAFBD 4 C: 4, 4821, 288
239 0123457689CEAFDB 4 C: 4, 5821, 40
240 012345768A9CDEFB 4 C: 4, 1842, 236

Cryptogr. Commun. (2014) 6:255–277 273

Class Representative MC Proof

245 012345768ACF9BED 4 C: 4, C241, 291
246 0123456987BAEFDC 4 C: 4, 2841, 5
247 012345698AB7CDFE 4 C: 4, 8421, 2
248 0123456987CEFBDA 4 C: 4, 4A21, 39
252 0123459A86CFEB7D 4 C: 4, 9241, 264
256 012345AB86CF79ED 4 C: 4, 8421, 13
257 0123459A8BCF76DE 4 C: 4, 8421, 11
262 0123459A8BCDF76E 4 C: 4, A621, 244
263 0123459A87E6FDCB 4 C: 4, A721, 39
265 0123459A87CDE6BF 4 C: 4, C621, 40
266 0123469B87CFA5DE 4 C: 4, A241, 244
267 012345798F6CBEAD 4 C: 4, 6381, 54
286 0123459A86EF7BCD 4 C: 4, 8421, 288
289 0123456789CEBFDA 4 C: 4, 1C42, 40
290 0123456789BCEAFD 4 C: 4, 1842, 40
296 0123469B87CFDEA5 4 C: 4, 8241, 244
297 0123469A8D5E7FBC 4 C: 4, A421, 244
301 012345AB89CDEF76 4 C: 4, 8142, 13

14 0123456987CDEFBA 5 C: 294, A512, 287
15 012345698ABEC7DF 5 C: 294, A162, 40
16 012345698ABEC7FD 5 C: 294, 5821, 6
19 0123456987ACDEFB 5 C: 294, 8142, 241
20 0123456987ACDFEB 5 C: 3, 1964, 241
23 0123456987BCFEDA 5 C: 294, 4391, 54
24 012345698ABCFED7 5 C: 3, 1A42, 40
26 0123456987BCDEFA 5 C: 3, 1862, 241
27 012345698ABCDEF7 5 C: 294, A124, 40
28 0123456987BCFADE 5 C: 3, 2841, 40
29 012345698ABCEFD7 5 C: 294, 2941, 39
30 012345698ACB7EFD 5 C: 294, 2841, 39
31 0123456987ACBEFD 5 C: 3, 2954, 241
32 0123456987ACEBFD 5 C: 294, 8A14, 241
33 0123456987BCFEAD 5 C: 294, 8521, 6
34 0123456987BCEFDA 5 C: 294, 8D21, 6
35 0123456987CEAFDB 5 C: 294, 4821, 39
36 0123456987CEAFBD 5 C: 3, 5F32, 39
37 0123456987ACDFBE 5 C: 294, A214, 40
42 012345798A6CEDBF 5 C: 3, 1942, 236
45 012345798AFBC6ED 5 C: 292, 4C13, 241
47 012345798ADE6CFB 5 C: 3, 1862, 236
48 012345798AED6CBF 5 C: 3, 2851, 287
51 012345798EADFB6C 5 C: 3, 8A41, 287
56 012345798ABF6CED 5 C: 3, 6A31, 287
60 012345798AFCB6ED 5 C: 294, A631, 287
61 012345798AFCEDB6 5 C: 12, AB24, 287
62 012345798ABFC6DE 5 C: 3, A851, 287

274 Cryptogr. Commun. (2014) 6:255–277

Class Representative MC Proof

73 012345798E6CDFBA 5 C: 3, 2C54, 241
74 012345798F6CEDBA 5 C: 3, 5821, 40
75 012345798AFB6CDE 5 C: 3, 1A64, 236
78 0123457986ACBFED 5 C: 3, 2851, 40
83 0123457986ACFBDE 5 C: 3, 2854, 241
84 012345798F6DCABE 5 C: 3, 2A51, 287
87 012345798F6DECBA 5 C: 294, E421, 39
88 012345798E6DCFBA 5 C: 294, A531, 39
89 012345798F6DCEBA 5 C: 3, 2D54, 40
90 012345798E6CFBAD 5 C: 3, 2841, 287
91 012345798FACDE6B 5 C: 3, 2A41, 287
99 0123459A87CBDE6F 5 C: 3, 4A32, 241
102 012345798AEFC6BD 5 C: 294, 8E12, 40
103 0123459A86C7DEBF 5 C: 294, 1582, 236
104 0123459A86C7EDFB 5 C: 294, 8A51, 287
105 0123459A867CBFDE 5 C: 3, 6A21, 287
106 0123459A867CBEFD 5 C: 3, 2954, 287
107 0123459A86CF7EBD 5 C: 294, A241, 287
110 0123459A86CED7FB 5 C: 3, 7821, 242
111 0123459A86BC7EFD 5 C: 3, 6C21, 40
112 0123459A8CBF7ED6 5 C: 294, A421, 39
113 0123459A8BECD6F7 5 C: 294, C241, 40
119 012345798A6CDEFB 5 C: 3, 5932, 236
120 0123459A8DCBE6F7 5 C: 294, 8241, 287
121 0123459A8BFD6E7C 5 C: 294, 8251, 287
123 0123459A86BCF7ED 5 C: 294, A851, 287
124 0123459A86CEDFB7 5 C: 294, 1482, 236
125 0123459A86CB7FDE 5 C: 3, 2854, 287
134 0123459A86C7DFEB 5 C: 3, 6821, 40
135 0123459A86CDF7BE 5 C: 294, A431, 39
136 0123459A86C7EBDF 5 C: 3, 3C54, 39
137 0123459A87EFB6DC 5 C: 294, 8962, 40
138 0123459A86EFB7DC 5 C: 294, 4821, 288
139 0123456987BCAFDE 5 C: 294, 2851, 39
140 012345698ABECFD7 5 C: 3, 2D54, 39
141 0123459A86EF7BDC 5 C: 294, C162, 40
142 012345798E6DFCBA 5 C: 3, 2C51, 40
143 0123459A86CEB7FD 5 C: 294, 8612, 40
144 0123459A86CEDF7B 5 C: 294, 8521, 40
145 0123459A86BCE7DF 5 C: 3, 6831, 40
146 0123459A86CB7EFD 5 C: 3, 3798, 264
149 012345798AE6FDCB 5 C: 294, 8162, 40
154 0123467985EDFACB 5 C: 3, 6E31, 242
155 0123467985EDAFBC 5 C: 3, 7832, 242
156 0123459A86CEF7DB 5 C: 3, 2E51, 234
157 0123459A86CFEBD7 5 C: 3, 5C32, 234
160 0123469A85FD7CEB 5 C: 294, C421, 241

Cryptogr. Commun. (2014) 6:255–277 275

Class Representative MC Proof

163 0123469C85FAEDB7 5 C: 294, C621, 40
174 0123459A86CE7FDB 5 C: 3, 6932, 242
175 012345798F6CDEBA 5 C: 294, 8621, 242
177 0123457986BCFADE 5 C: 294, 8214, 40
179 012345798AEDC6FB 5 C: 3, 1962, 236
180 0123459A8D6CFB7E 5 C: 3, 6821, 242
188 012345798ABEFC6D 5 C: 3, 3691, 233
189 0123457986CEFBDA 5 C: 3, 4F32, 39
192 0123459A8DBF6CE7 5 C: 3, 3D41, 39
193 0123459A8CBEF67D 5 C: 292, 4812, 241
194 012345798AFCDE6B 5 C: 294, 8A14, 287
196 0123469C85FAED7B 5 C: 292, 1862, 236
197 0123459A8F7E6CDB 5 C: 292, 6813, 40
198 0123459A86C7BFDE 5 C: 294, 4128, 264
205 012345798AEFB6CD 5 C: 294, 4821, 6
208 0123459A86C7BEFD 5 C: 3, 6932, 40
211 0123459A86CFD7BE 5 C: 294, 4C21, 264
212 0123459A86BC7FDE 5 C: 294, A621, 287
217 012345698ACBE7FD 5 C: 294, 8421, 2
218 0123457986BCDFAE 5 C: 294, 8124, 241
219 012345798AFC6BDE 5 C: 294, 8251, 236
221 0123457986CEAFDB 5 C: 3, 2C41, 40
224 0123457986CFBEAD 5 C: 294, C731, 242
225 0123456987CFBEAD 5 C: 3, 1C42, 40
226 012345798E6DAFCB 5 C: 3, 3498, 233
227 012345798AD6FCEB 5 C: 3, 3491, 233
228 0123459A86BCFD7E 5 C: 3, 6A31, 40
231 0123469A85FDBCE7 5 C: 292, 8251, 236
249 0123459A86CEFBD7 5 C: 3, 2C41, 39
250 0123459A86CD7EBF 5 C: 294, 8A51, 40
251 0123459A86CFE7BD 5 C: 3, 2C41, 234
253 0123459A86CF7EDB 5 C: 3, 2B54, 287
254 0123459A86BCEDF7 5 C: 294, 5618, 264
255 012345798EBCAFD6 5 C: 3, 6932, 287
261 0123459A86CFB7DE 5 C: 294, C421, 291
268 0123459A86CEBF7D 5 C: 3, 4E21, 39
269 0123459A86CFBE7D 5 C: 3, 8142, 234
270 0123469A8C5D7EFB 5 C: 292, 7921, 287
271 0123469A8C5DF7BE 5 C: 3, BE31, 234
272 0123469A8DBC5EF7 5 C: 292, 6E54, 40
273 0123459A8DBFE76C 5 C: 292, 2A53, 236
274 0123459A87EDBF6C 5 C: 3, 8162, 234
275 0123459A8CEBD6F7 5 C: 3, 2C54, 39
276 0123459A8DFB7C6E 5 C: 3, 6832, 287
277 0123459A87EBDF6C 5 C: 294, 8421, 260
278 0123469A8FBEC75D 5 C: 292, 2917, 236
279 0123459A87E6CFDB 5 C: 3, 3841, 264

276 Cryptogr. Commun. (2014) 6:255–277

Class Representative MC Proof

280 0123457986ACFDEB 5 C: 3, 3781, 54
281 0123457986ACEBFD 5 C: 3, 2841, 241
282 0123469A8DBCF75E 5 C: 292, 6E72, 242
283 0123469A8C5DBEF7 5 C: 292, 7C62, 241
284 0123459A87ECFB6D 5 C: 294, 8631, 40
285 0123457986CEAFBD 5 C: 294, EA21, 39
295 0123469C8A7DE5FB 5 C: 292, 6A23, 40
298 012345698ACEB7FD 5 C: 294, 8214, 5

References

1. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations of all 3×3 and 4×4
S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES, Lecture Notes in Computer Science, vol. 7428, pp.
76–91. Springer (2012)

2. Biryukov, A., Cannière, C.D., Braeken, A., Preneel, B.: A toolbox for cryptanalysis: Linear and affine
equivalence algorithms. In: Biham, E. (ed.) Advances in Cryptology – EUROCRYPT 2003, Lecture
Notes in Computer Science, vol. 2656, pp. 33–50. Springer-Verlag. doi:10.1007/3-540-39200-9 3 (2003)

3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.,
Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.)
CHES, Lecture Notes in Computer Science, vol. 4727, pp. 450–466. Springer (2007)

4. Boyar, J., Peralta, R.: Tight bounds for the multiplicative complexity of symmetric functions. Theor.
Comput. Sci. 396(1–3), 223–246 (2008). doi:10.1016/j.tcs.2008.01.030

5. Boyar, J., Peralta, R.: A new combinational logic minimization technique with applications to cryptology.
SEA, 178–189 (2010)

6. Cannière, C.D.: Analysis and design of symmetric encryption algorithms. Ph.D. thesis, Katholieke
Universiteit Leuven (2007)

7. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order masking schemes for s-
boxes. In: Fast Software Encryption, pp. 366–384. Springer (2012)

8. Cenk, M., Özbudak, F.: On multiplication in finite fields. J. Complex. 26(2), 172–186 (2010).
doi:10.1016/j.jco.2009.11.002, http://www.sciencedirect.com/science/article/pii/S0885064X09001095

9. Courtois, N., Hulme, D., Mourouzis, T.: Solving circuit optimisation problems in cryptography and
cryptanalysis. Cryptology ePrint Archive. Report 2011/475 (2011)

10. Eisenbarth, T., Kumar, S.: A survey of lightweight-cryptography implementations, Vol. 24, pp. 522–533
(2007)

11. Fischer, M., Peralta, R.: Counting predicates of conjunctive complexity one. Tech. Rep.
YALEU/DCS/TR1222, Yale University (2001)

12. Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. In: Carlet, C., Sunar, B. (eds.)
Arithmetic of Finite Fields, Lecture Notes in Computer Science, vol. 4547, pp. 159–176. Springer
Berlin / Heidelberg (2007), doi:10.1007/978-3-540-73074-3 13

13. Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics and its Applications, Vol. 20.
Addison-Wesley, Reading, Massachussetts (1983)

14. Mirwald, R., Schnorr, C.: The multiplicative complexity of quadratic boolean forms. Theor. Com-
put. Sci. 102(2), 307–328 (1992). doi:10.1016/0304-3975(92)90235-8, http://www.sciencedirect.com/
science/article/pii/0304397592902358

15. Roy, A., Vivek, S.: Analysis and improvement of the generic higher-order masking scheme of fse 2012.
Cryptology ePrint Archive, Report 2013/345. http://eprint.iacr.org/ (2013)

16. Saarinen, M.J.O.: Cryptographic analysis of all 4 × 4 - bit S-boxes. In: Miri, A., Vaudenay, S. (eds.)
Selected Areas in Cryptography, Lecture Notes in Computer Science, vol. 7118, pp. 118–133. Springer
(2011)

http://dx.doi.org/10.1007/3-540-39200-9_3
http://dx.doi.org/10.1016/j.tcs.2008.01.030
http://dx.doi.org/10.1016/j.jco.2009.11.002
http://www.sciencedirect.com/science/article/pii/S0885064X090 01095
http://dx.doi.org/10.1007/978-3-540-73074-3_13
http://dx.doi.org/10.1016/0304-3975(92)90235-8
http://www.sciencedirect.com/science/article/pii/030439759290 2358
http://www.sciencedirect.com/science/article/pii/030439759290 2358
http://eprint.iacr.org/

Cryptogr. Commun. (2014) 6:255–277 277

17. Schnorr, C.: The multiplicative complexity of boolean functions. In: Mora, T. (ed.) Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Computer Science, vol. 357, pp.
45–58. Springer Berlin / Heidelberg. 10.1007/3-540-51083-4 47 (1989)

18. Ullrich, M., Cannière, C.D., Indesteege, S., Küçük, O., Mouha, N., Preneel, B.: Finding optimal bitsliced
implementations of 4 x 4-bit S-boxes. In: Symmetric Key Encryption Workshop. 20 (2011)

19. Zajac, P.: A new method to solve mrhs equation systems and its connection to group factorization. J.
Math. Cryptol. 7(4), 279–381 (2013). doi:10.1515/jmc-2013-5012

http://dx.doi.org/10.1515/jmc-2013-5012

	Multiplicative complexity of bijective 44 S-boxes
	Abstract
	Introduction
	Preliminaries
	Bijective S-boxes with multiplicative complexity 1
	Bijective 3 3 S-boxes
	Multiplicative complexity of bijective 44 S-boxes
	Computational results

	Conclusions and open questions
	Appendix
	List of S-boxes
	References

