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Abstract Recently, the second weight of generalized Reed-Muller codes have been
determined (Erickson 1974; Bruen 2010; Geil, Des. Codes Cryptogr. 48(3):323–330,
2008; Rolland, Cryptogr. Commun. 2(1):19–40, 2010). In this paper, we give the
second weight codewords of the generalized Reed-Muller codes.
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1 Introduction

In this paper, we want to characterize the second weight codewords of generalized
Reed-Muller codes.

We first introduce some notations:
Let p be a prime number, n a positive integer, q = pn and Fq a finite field with q

elements.
If m is a positive integer, we denote by Bq

m the Fq-algebra of the functions from
Fm

q to Fq and by Fq[X1, . . . , Xm] the Fq-algebra of polynomials in m variables with
coefficients in Fq.

We consider the morphism of Fq-algebras ϕ : Fq[X1, . . . , Xm] → Bq
m which asso-

ciates to P ∈ Fq[X1, . . . , Xm] the function f ∈ Bq
m such that

∀x = (x1, . . . , xm) ∈ F
m
q , f (x) = P(x1, . . . , xm).

The morphism ϕ is onto and its kernel is the ideal generated by the polynomials
Xq

1 − X1, . . . , Xq
m − Xm. So, for each f ∈ Bq

m, there exists a unique polynomial P ∈
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Fq[X1, . . . , Xm] such that the degree of P in each variable is at most q − 1 and ϕ(P) =
f . We say that P is the reduced form of f and we define the degree deg( f ) of f as
the degree of its reduced form. The support of f is the set {x ∈ Fm

q : f (x) �= 0} and

we denote by | f | the cardinal of its support (by identifying canonically Bq
m and F

qm

q ,
| f | is actually the Hamming weight of f ).

For 0 ≤ r ≤ m(q − 1), the rth order generalized Reed-Muller code of length qm is

Rq(r, m) := { f ∈ Bq
m : deg( f ) ≤ r}.

For 1 ≤ r ≤ m(q − 1) − 2, the automorphism group of generalized Reed-Muller
codes Rq(r, m) is the affine group of F

m
q (see [2]).

For more results on generalized Reed-Muller codes, we refer to [7].
In the following of the article, we write r = t(q − 1) + s, 0 ≤ t ≤ m − 1, 0 ≤ s ≤

q − 2.
In [10], interpreting generalized Reed-Muller codes in terms of BCH codes, it

is proved that the minimal weight of the generalized Reed-Muller code Rq(r, m) is
(q − s)qm−t−1.

The following theorem gives the minimum weight codewords of generalized Reed-
Muller codes and is proved in [7] (see also [12]).

Theorem 1 Let r = t(q − 1) + s < m(q − 1), 0 ≤ s ≤ q − 2. The minimal weight code-
words of Rq(r, m) are codewords whose support is the union of (q − s) distinct
parallel af f ine subspaces of codimension t + 1 included in an af f ine subspace of
codimension t.

In his Ph.D thesis [8], Erickson proves that if we know the second weight of
Rq(s, 2), then we know the second weight for all generalized Reed-Muller codes.
From a conjecture on blocking sets, Erickson conjectures that the second weight of
Rq(s, 2) is (q − s)q + s − 1. Bruen proves the conjecture on blocking set in [5]. Geil
also proves this result in [9] using Groebner basis. An altenative approach can be
found in [13] where the second weight of most Rq(r, m) is established without using
Erickson’s results.

Theorem 2 For m ≥ 3, q ≥ 3 and q ≤ r ≤ (m − 1)(q − 1) the second weight W2 of the
generalized Reed-Muller codes Rq(r, m) satisf ies:

1. if 1 ≤ t ≤ m − 1 and s = 0,

W2 = 2(q − 1)qm−t−1;
2. if 1 ≤ t ≤ m − 2 and s = 1,

(a) if q = 3, W2 = 8 × 3m−t−2,

(b) if q ≥ 4, W2 = qm−t ,

3. if 1 ≤ t ≤ m − 2 and 2 ≤ s ≤ q − 2,

W2 = (q − s + 1)(q − 1)qm−t−2.

In [6], Cherdieu and Rolland prove that the codewords of Rq(s, m) of weight
(q − s + 1)(q − 1)qm−2, 2 ≤ s ≤ q − 2, which are the product of s polynomials of
degree 1 are of the following form.
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Theorem 3 Let m ≥ 2, 2 ≤ s ≤ q − 2 and f ∈ Rq(s, m) such that | f | = (q − s +
1)(q − 1)qm−2; we denote by S the support of f . Assume f is the product of s poly-
nomials of degree 1 then either S is the union of q − s + 1 parallel af f ine hyperplanes
minus their intersection with an af f ine hyperplane which is not parallel or S is the
union of (q − s + 1) af f ine hyperplanes which meet in a common af f ine subspace of
codimension 2 minus this intersection.

In [14], Sboui proves that the only codewords of Rq(s, m), 2 ≤ s ≤ q
2 whose weight

is (q − s + 1)(q − 1)qm−2 are these codewords. The case where q = 2 is proved in
[11]. In [1], Ballet and Rolland prove that a codeword with an irreducible but not
absolutely irreducible factor of degree greater than 1 over Fq is not a second weight
codeword.

All the results proved in this paper are summarized in Section 2 and their proofs
are in the following sections.

2 Results

2.1 Description of second weight codewords of generalized Reed-Muller codes

The following theorems and propositions describe the second weight codewords of
generalized Reed-Muller code Rq(r, m) for q ≥ 3, m ≥ 2, and 1 ≤ r ≤ m(q − 1) − 1.
We recall that we write r = t(q − 1) + s where 0 ≤ t ≤ m − 1 and 0 ≤ s ≤ q − 2.

2.1.1 Case where t = m − 1 and s �= 0

Theorem 4 Let m ≥ 2, q ≥ 5, 1 ≤ s ≤ q − 4. Up to af f ine transformation, the second
weight codewords of Rq((m − 1)(q − 1) + s, m) are of the form

∀x = (x1, . . . , xm) ∈ F
m
q f (x) = α

m−1∏

i=1

(
1 − xq−1

i

) s−1∏

j=1

(xm − b j)

where α ∈ F
∗
q and b j ∈ Fq are such that if j �= k, b j �= b k.

Proposition 1 Let m ≥ 2 and q ≥ 4. Up to af f ine transformation, the second weight
codewords of Rq((m − 1)(q − 1) + q − 3, m) are either of the form

∀x = (x1, . . . , xm) ∈ F
m
q f (x) = α

m−1∏

i=1

(
1 − xq−1

i

) q−4∏

i=1

(xm − b i)

where α ∈ F
∗
q and b j ∈ Fq are such that if j �= k, b j �= b k or

∀x = (x1, . . . , xm) ∈ F
m
q f (x) = α

m−2∏

i=1

(
1 − xq−1

i

) q−1∏

i=1

(aixm−1 + b ixm)

q−3∏

i=1

(xm − ci)
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where α ∈ F
∗
q, (a j, b j) ∈ F

2
q \ {(0, 0)} and c j ∈ F

∗
q are such that if j �= k c j �= ck or of the

form ∀x = (x1, . . . , xm) ∈ Fm
q

f (x) = α

m−2∏

i=1

(
1 − xq−1

i

) q−1∏

i=1

(aixm−1 + b ixm)

q−4∏

i=1

(xm − ci)(axm−1 + b xm + c)

where α ∈ F
∗
q, (a j, b j) ∈ F

2
q \ {(0, 0)}, c j ∈ F

∗
q are such that if j �= k c j �= ck and a ∈ F

∗
q,

b ∈ Fq, c ∈ F
∗
q

Proposition 2 Let m ≥ 2 and q ≥ 3. If q ≥ 3, up to af f ine transformation, the
second weight codewords of Rq((m − 1)(q − 1) + q − 2, m) are of the form ∀x =
(x1, . . . , xm) ∈ F

m
q

f (x) = α

m−2∏

i=1

(
1 − xq−1

i

) q−2∏

i=1

(xm−1 − b i)

q−2∏

i=1

(xm − ci)(axm−1 + b xm + c)

where α ∈ F
∗
q, a ∈ F

∗
q, b ∈ F

∗
q, c ∈ Fq and b j ∈ Fq, c j ∈ Fq are such that if j �= k, b j �=

b k and c j �= ck

2.1.2 Case where 0 ≤ t ≤ m − 2 and 2 ≤ s ≤ q − 2

Theorem 5 Let q ≥ 4, m ≥ 2, 0 ≤ t ≤ m − 2, 2 ≤ s ≤ q − 2. Up to af f ine transforma-
tion, the second weight codewords of Rq(t(q − 1) + s, m) are either of the form

∀x = (x1, . . . , xm) ∈ F
m
q f (x) = α

t∏

i=1

(
1 − xq−1

i

) s−1∏

j=1

(xt+1 − b j)(xt+2 − c)

where α ∈ F∗
q, b j ∈ Fq are such that if j �= k, b j �= b k and c ∈ Fq or of the form

∀x = (x1, . . . , xm) ∈ F
m
q f (x) = α

t∏

i=1

(
1 − xq−1

i

) s∏

j=1

(a jxt+1 + b jxt+2 + c j)

where α ∈ F
∗
q and (a j, b j) ∈ F

2
q \ {(0, 0)}, c j ∈ Fq such that

A =
s⋂

j=1

{(xt+1, xt+2, . . . , xm) : a jxt+1 + b jxt+2 + c j = 0} �= ∅

and dim(A) = m − t − 2.

2.1.3 Case where s = 0

Theorem 6 Let m ≥ 2, q ≥ 3, 1 ≤ t ≤ m − 1. Up to af f ine transformation, the second
weight codewords of Rq(t(q − 1), m) are either of the form

∀x = (x1, . . . , xm) ∈ F
m
q f (x) = α

t−1∏

i=1

(
1 − xq−1

i

) q−2∏

j=1

(xt − b j)(xt+1 − c)
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where α ∈ F
∗
q, b j ∈ Fq are such that if j �= k, b j �= b k and c ∈ Fq or of the form

∀x = (x1, . . . , xm) ∈ F
m
q f (x) = α

t−1∏

i=1

(
1 − xq−1

i

) q−1∏

j=1

(a jxt + b jxt+1 + c j)

where α ∈ F
∗
q and (a j, b j) ∈ F

2
q \ {(0, 0)}, c j ∈ Fq such that

A =
q−1⋂

j=1

{(xt, xt+1, . . . , xm) : a jxt + b jxt+1 + c j = 0} �= ∅

and dim(A) = m − t − 1.

2.1.4 Case where 0 ≤ t ≤ m − 2 and s = 1

Theorem 7 Let q ≥ 4, m ≥ 1, 0 ≤ t ≤ m − 1. Up to af f ine transformation, the second
weight codewords of Rq(t(q − 1) + 1, m) are of the form

∀x = (x1, . . . , xm) ∈ F
m
q f (x) = α

t∏

i=1

(
1 − xq−1

i

)

where α ∈ F
∗
q.

Proposition 3 Let m ≥ 3, q = 3, 1 ≤ t ≤ m − 2. Up to af f ine transformation, the
second weight codewords of R3(2t + 1, m) are of the form

∀x = (x1, . . . , xm) ∈ F
m
q f (x) = α

t−1∏

i=1

(
1 − x2

i

)
xtxt+1xt+2

where α ∈ F
∗
3.

Remark 1 For q = 3, in the case where r = 1, the second weight of R3(1, m) is 3m

and the second weight codewords are degree zero codewords.

Remark 2 From the above theorems, it follows that second weight codewords of
generalized Reed-Muller codes are product of degree 1 factors.

2.2 Strategy of proof

In the following, except when another affine space is specified, a hyperplane or a
subspace is, respectively, an affine hyperplane or an affine subspace of F

m
q .

It is easy to verify that the codewords described above are second weight code-
words. Using the following lemma and its corollary from [7], we deduce that these
codewords are exactly the second weight codewords from the results on the structure
of the support of second weight codewords below.
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Lemma 1 Let m ≥ 1, q ≥ 2, f ∈ Bq
m and a ∈ Fq. If for all (x2, . . . , xm) in F

m−1
q ,

f (a, x2, . . . , xm) = 0 then for all (x1, . . . , xm) ∈ Fm
q ,

f (x1, . . . , xm) = (x1 − a)g(x1, . . . , xm)

with degx1
(g) ≤ degx1

( f ) − 1.

Corollary 1 Let m ≥ 1, q ≥ 2, f ∈ Bq
m and a ∈ Fq. If for all (x1, . . . , xm) in F

m
q such

that x1 �= a, f (x1, . . . , xm) = 0 then for all (x1, . . . , xm) ∈ F
m
q , f (x1, . . . , xm) = (1 −

(x1 − a)q−1)g(x2, . . . , xm).

2.2.1 Case where t = m − 1 and s �= 0

Theorem 4 comes from

Theorem 8 Let m ≥ 2, q ≥ 5, 1 ≤ s ≤ q − 4 and f ∈ Rq((m − 1)(q − 1) + s, m) such
that | f | = q − s + 1. Then the support of f is included in a line.

Propositions 1 and 2 come from

Proposition 4 Let m ≥ 2. If q ≥ 4 and f ∈ Rq((m − 1)(q − 1) + q − 3, m) such that
| f | = 4 or q ≥ 3 and f ∈ Rq((m − 1)(q − 1) + q − 2, m) such that | f | = 3, then the
support of f is included in an af f ine plane.

Indeed, in both cases, since the support of f is included in an affine plane, up to
affine transformation, ∀x = (x1, . . . , xm) ∈ F

m
q ,

f (x) =
m−2∏

i=1

(
1 − xq−1

i

)
g(xm−1, xm)

where g ∈ Rq(u, 2), u ∈ {2q − 4, 2q − 3}.
Consider the case of Proposition 1. If the support of f is included in a line then f

is a minimum weight codeword of Rq((m − 1)(q − 1) + q − 4, m) and we get the first
case of the Proposition. Assume that 3 points of the support are included in a line L.
We denote by A the point of the support which is not in L and by B, C , D the 3
other points. We define a point E such that ABDE is a parallelogram.

Then considering the lines parallel to (AB) and those parallel to (AD) which do
not contain any point of the support, the line parallel to (BD) through E and the
line L and L′ (see Fig. 1), we get that up to affine transformation g is of the form
q−3∏

i=1

(xm−1 − b i)

q−3∏

i=1

(xm − ci)

3∏

i=1

(αixm−1 + βixm + γi) where b i ∈ Fq, ci ∈ Fq are such

that if j �= k, b j �= b k, c j �= ck and αi ∈ F
∗
q, βi ∈ F

∗
q, γi ∈ Fq. So f ∈ Rq((m − 1)(q − 1)

+q − 2, m) and this case is not possible.
In the other cases, the four points of the support form a quadrilateral, we denote

by M the intersection of the diagonals of this quadrilateral. By applying an affine
transformation, we can assume that M = (0, 0).

If at least two of the edges of this quadrilateral are parallel, considering all the lines
through M which do not contain any point of the support and all the lines parallel to
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Fig. 1 Proposition 1, case
where 3 points of the support
are included in a line

these edges which contain neither M nor any point of the support, we get that f is of
the second form in Proposition 1.

In the last case, we denote by A, B, C, D the vertices of the quadrilateral and by
C′ (respectively D′) the intersection of the diagonal (BD) (respectively (AC)) with
the line parallel to (AB) through C (respectively D). Then considering all the lines
through M which do not contain any point of the support, all the lines parallel to
(AB) which do not contain any point of the support and the line (C′ D′), we get that
f is of the third form in Proposition 1.

Consider now the case of Proposition 2. Denote by A, B, C the 3 points of the
support and define D a point such that ABCD is a parallelogram. Considering
the line through D parallel to (AC) we get that f is of the form described in the
Proposition.

2.2.2 Case where 0 ≤ t ≤ m − 2 and 2 ≤ s ≤ q − 2

Theorem 5 comes from

Theorem 9 Let q ≥ 4, m ≥ 2, 0 ≤ t ≤ m − 2, 2 ≤ s ≤ q − 2. The second weight code-
words of Rq(t(q − 1) + s, m) are codewords whose support S is included in an af f ine
subspace of codimension t and either S is the union of q − s + 1 parallel af f ine
subspaces of codimension t + 1 minus their intersection with an af f ine subspace
of codimension t + 1 which is not parallel or S is the union of (q − s + 1) af f ine
subspaces of codimension t + 1 which meet in an af f ine subspace of codimension t + 2
minus this intersection (see Fig. 2).

2.2.3 Case where s = 0

Theorem 6 comes from:

Theorem 10 Let m ≥ 2, q ≥ 3, 1 ≤ t ≤ m − 1. The second weight codewords of
Rq(t(q − 1), m) are codewords whose support S is included in an af f ine subspace
of codimension t − 1 and either S is the union of 2 parallel af f ine subspaces of
codimension t minus their intersection with an af f ine subspace of codimension t which
is not parallel or S is the union of two non parallel af f ine subspaces of codimension t
minus their intersection.
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Fig. 2 The possible support
for a second weight
codeword of R4(5, 3)

(a) (b)

2.2.4 Case where 0 ≤ t ≤ m − 2 and s = 1

Theorem 7 comes from

Theorem 11 For q ≥ 4, m ≥ 1, 0 ≤ t ≤ m − 1, if f ∈ Rq(t(q − 1) + 1, m) is such that
| f | = qm−t , the support of f is an af f ine subspace of codimension t.

Proposition 3 comes from

Proposition 5 Let m ≥ 3, q = 3, 1 ≤ t ≤ m − 2 and f ∈ R3(2t + 1, m) such that | f | =
8.3m−t−2. We denote by S the support of f . Then S is included in A an af f ine subspace
of dimension m − t + 1, S is the union of two parallel hyperplanes of A minus their
intersection with two non parallel hyperplanes of A (see Fig. 3).

3 A preliminary lemma

Lemma 2 Let q ≥ 3, m ≥ 3, and S be a set of points of Fm
q such that #S = u.qn < qm,

with u �≡ 0 mod q. Assume for all hyperplanes H either #(S ∩ H) = 0 or #(S ∩ H) =
v.qn−1, v < u or #(S ∩ H) ≥ u.qn−1 Then there exists H an af f ine hyperplane such that
S does not meet H or such that #(S ∩ H) = vqn−1.

Proof Assume for all H hyperplane, S ∩ H �= ∅ and #(S ∩ H) �= vqn−1. Consider an
affine hyperplane H; then for all H′ hyperplane parallel to H, #(S ∩ H′) ≥ u.qn−1.

Fig. 3 The support of a second
weight codeword of R3(3, 3)
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Since u.qn = #S =
∑

H′//H

#(S ∩ H′), we get that for all H hyperplane, #(S ∩ H) =

u.qn−1.
Now consider A an affine subspace of codimension 2 and the (q + 1) hyperplanes

through A. These hyperplanes intersect only in A and their union is equal to F
m
q . So

uqn = #S = (q + 1)u.qn−1 − q#(S ∩ A).

Finally we get a contradiction if n = 1. Otherwise, #(S ∩ A) = u.qn−2. Iterating this
argument, we get that for all A affine subspace of codimension k ≤ n, #(S ∩ A) =
u.qn−k.

Let A be an affine subspace of codimension n + 1 and A′ an affine subspace
of codimension n − 1 containing A. We consider the (q + 1) affine subspace of
codimension n containing A and included in A′, then

u.q = #(S ∩ A′) = (q + 1)u − q#(S ∩ A)

which is absurd since #(S ∩ A) is an integer and u �≡ 0 mod q. So there exists H0 an
hyperplane such that #(S ∩ H0) = vqn−1 or S does not meet H0. �

Remark 3 This lemma applies in particular when S is the support of a second weight
codeword and vqn is the minimal weight.

4 Case where t = m − 1 and s �= 0

4.1 Proof of Theorem 8

We recall that S is the support of f . Let ω1, ω2 ∈ S and H be an affine hyperplane
containing ω1 and ω2. Assume S ∩ H �= S. We have #S = q − s + 1 ≤ q and ω1, ω2 ∈
S ∩ H, so there exists an affine hyperplane parallel to H which does not meet S. Since
the affine group is the automorphism group of generalized Reed-Muller codes, we
can apply an affine transformation without changing the weight of a codeword. So,
we can assume x1 = 0 is an equation of H and we denote by Ha the affine hyperplane
parallel to H of equation x1 = a, a ∈ Fq. Let I := {a ∈ Fq : S ∩ Ha = ∅} and denote
by k := #I; s ≤ k ≤ q − 2. Let c �∈ I, we define

∀x = (x1, . . . , xm) ∈ F
m
q , fc(x) = f (x)

∏

a �∈I,a �=c

(x1 − a)

that is to say fc is a function in Bq
m such that its support is S ∩ Hc. Since c �∈ I, fc is

not identically zero. Then | f | =
∑

c �∈I

| fc| and we consider two cases.

– Assume k > s.
Then the reduced form of fc has degree at most (m − 1)(q − 1) + q − 1 + s − k
and | fc| ≥ k − s + 1. Then,

(q − s + 1) = | f | =
∑

c �∈I

| fc| ≥ (q − k)(k − s + 1)



250 Cryptogr. Commun. (2013) 5:241–276

which gives

1 ≥ (q − 1 − k)(k − s)

this is possible if and only if k = q − 2 = s + 1 and we get a contradiction since
s ≤ q − 4.

– Assume k = s.
Then S meets (q − s − 1) affine hyperplanes parallel to H in 1 point and H in 2
points. Consider the function g in Bq

m defined by

∀x = (x1, . . . , xm) ∈ F
m
q , g(x) = x1 f (x).

The reduced form of g has degree at most (m − 1)(q − 1) + s + 1 and

|g| = (q − s − 1).

So g is a minimum weight codeword of Rq((m − 1)(q − 1) + s + 1, m) and its
support is included in a line. This line is not included in H. So consider H1 an
affine hyperplane which contains this line but does not contain both ω1 and ω2.
Then S ∩ H1 �= S and H1 contains at least 3 points of S since s ≤ q − 4 which
gives a contradiction by applying the previous argument to H1.

So S is included in all affine hyperplanes through ω1 and ω2 which gives the result.

4.2 Proof of Proposition 4

– If f ∈ Rq((m − 1)(q − 1) + q − 2, m) is such that | f | = 3, we have the result since
3 points are always included in an affine plane.

– Assume f ∈ Rq((m − 1)(q − 1) + q − 3, m) is such that | f | = 4. By Corollary 1,
there exist a, b , c, d ∈ F

∗
q and ω(a) = (ω

(a)

1 , . . . , ω(a)
m ), ω(b) = (ω

(b)

1 , . . . , ω(b)
m ),

ω(c) = (ω
(c)
1 , . . . , ω(c)

m ), ω(d) = (ω
(d)

1 , . . . , ω(d)
m ) 4 distinct points of F

m
q such that

∀x = (x1, . . . , xm) ∈ F
m
q ,

f (x) = a
m∏

i=1

(
1 −

(
xi − ω

(a)

i

)q−1
)

+ b
m∏

i=1

(
1 −

(
xi − ω

(b)

i

)q−1
)

+ c
m∏

i=1

(
1 −

(
xi − ω

(c)
i

)q−1
)

+ d
m∏

i=1

(
1 −

(
xi − ω

(d)

i

)q−1
)

.

So,

f (x) = (−1)m(a + b + c + d)

m∏

i=1

xq−1
i

+(−1)m−1
m∑

i=1

(
aω

(a)

i + bω
(b)

i + cω(c)
i + dω

(d)

i

)
xq−2

i

∏

j�=i

xq−1
j + r

with deg(r) ≤ (m − 1)(q − 1) + q − 3. Since f ∈ Rq((m − 1)(q − 1) + q − 3, m),
{

a + b + c + d = 0
aω(a) + bω(b) + cω(c) + dω(d) = 0

.

So, a
−−−−→
ω(d)ω(a) + b

−−−−−→
ω(d)ω(b) + c

−−−−→
ω(d)ω(c) = −→

0 which gives the result.
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Remark 4 In both cases we cannot prove that the support of f is included in a line.
Indeed,

– Let ω1, ω2, ω3 be 3 points of F
m
q not included in a line. For q ≥ 3 we can find a,

b ∈ F
∗
q such that a + b �= 0. Let f = a1ω1 + b1ω2 − (a + b )1ω3 where for ω ∈ F

m
q ,

1ω is the function from F
m
q to Fq such that 1ω(ω) = 1 and 1ω(x) = 0 for all x �= ω.

Then, since
∑

x∈Fm
q

f (x) = a + b − (a + b ) = 0, f ∈ Rq((m − 1)(q − 1) + q − 2, m).

– Let ω1, ω2, ω3 be 3 points of Fm
q not included in a line and set

ω4 = ω1 + ω2 − ω3.

Then f = 1ω1 + 1ω2 − 1ω3 − 1ω4 ∈ Rq((m − 1)(q − 1) + q − 3, m).

5 Case where 0 ≤ t ≤ m − 2 and 2 ≤ s ≤ q − 2

5.1 Case where t = 0

In this subsection, we write r = a(q − 1) + b with 0 ≤ a ≤ m − 1 and 0 < b ≤ q − 1.

Lemma 3 Let q ≥ 3, m ≥ 2, 0 ≤ a ≤ m − 2, 2 ≤ b ≤ q − 1 and f ∈ Rq(a(q − 1) +
b , m) such that | f | = (q − b + 1)(q − 1)qm−a−2; we denote by S the support of f . If
H is an af f ine hyperplane of F

m
q such that S ∩ H �= ∅ and S ∩ H �= S then either S

meets all af f ine hyperplanes parallel to H or S meets q − b + 1 af f ine hyperplanes
parallel to H in (q − 1)qm−a−2 points or S meets q − 1 af f ine hyperplanes parallel to
H in (q − b + 1)qm−a−2 points.

Proof By applying an affine transformation, we can assume x1 = 0 is an equation
of H and consider the q affine hyperplanes Hw of equation x1 = w, w ∈ Fq, parallel
to H. Let I := {w ∈ Fq : S ∩ Hw = ∅} and denote by k := #I. Assume k ≥ 1. Since
S ∩ H �= ∅ and S ∩ H �= S, k ≤ q − 2. For all c ∈ Fq, c �∈ I, we define

∀x = (x1, . . . , xn) ∈ F
m
q , fc(x) = f (x)

∏

w∈Fq,w �=c,w �∈I

(x1 − w).

– Assume b < k.
Then 2 ≤ q − 1 + b − k ≤ q − 2 and for all c �∈ I, the reduced form of fc has
degree at most a(q − 1) + q − 1 + b − k. So | fc| ≥ (k − b + 1)qm−a−1. Hence

(q − 1)(q − b + 1)qm−a−2 ≥ (q − k)(k − b + 1)qm−a−1

which means that (b − k)q(q − k − 1) + b − 1 ≥ 0. However (b − k) ≤ −1 and
q − k − 1 ≥ 1 so (b − k)q(q − k − 1) + b − 1 < 0 which gives a contradiction.

– Assume b ≥ k.
Then 0 ≤ b − k ≤ q − 2 and for all c �∈ I, the reduced form of fc has degree at
most (a + 1)(q − 1) + b − k. So | fc| ≥ (q − b + k)qm−a−2. Hence

(q − 1)(q − b + 1)qm−a−2 ≥ (q − k)(q − b + k)qm−a−2

with equality if and only if for all c �∈ I, | fc| = (q − b + k)qm−a−2. Finally, we
obtain that (k − 1)(k − b + 1) ≥ 0 which is possible if and only if k = 1 or 1 ≥
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b − k ≥ 0. Now, we have to show that k = s is impossible to prove the lemma.
If b = q − 1, since k ≤ q − 2, we have the result. Assume b ≤ q − 2 and b = k.
Then, for all c �∈ I, fc ∈ Rq((a + 1)(q − 1), m). The minimum weight of Rq((a +
1)(q − 1), m) is qm−a−1 and its second weight is 2(q − 1)qm−a−2. We denote by
N1 := #{c �∈ I : | fc| = qm−a−1}. Since k = b , N1 ≤ q − b . Furthermore, we have

(q − b + 1)(q − 1)qm−a−2 ≥ N1qm−a−1 + (q − b − N1)2(q − 1)qm−a−2

which means that N1 ≥ (q−1)(q−b−1)

q−2 > q − b − 1. Finally, N1 = q − b and for all
c �∈ I, | fc| = qm−a−1. However (q − 1)(q − b + 1)qm−a−2 > (q − b )qm−a−1 which
gives a contradiction. �

Lemma 4 For m = 2, q ≥ 3, 2 ≤ b ≤ q − 1. The second weight codewords of Rq(b , 2)

are codewords of Rq(b , 2) whose support S is the union of q − b + 1 parallel lines
minus their intersection with a line which is not parallel or S is the union of (q − b + 1)

lines which meet in a point minus this point.

Proof To prove this lemma, we use some results on blocking sets proved by Erickson
in [8] and Bruen in [5]. All these results are recalled in the Appendix of this paper.
By Theorem 3, which is also true for b = q − 1 (see [8, Lemma 3.12]), it is sufficient
to prove that f ∈ Rq(b , 2) such that | f | = (q − b + 1)(q − 1) is the product of linear
factors.

Let f ∈ Rq(b , 2) such that | f | ≤ (q − b + 1)(q − 1) = q(q − b ) + b − 1. We de-
note by S its support. Then, S is not a blocking set of order (q − b ) of F

2
q (Theorem

13) and f has a linear factor (Lemma 10).
We proceed by induction on b . If b = 2 and f ∈ Rq(b , 2) is such that | f | ≤ (q −

b + 1)(q − 1), then f has a linear factor and by Lemma 1 f is the product of two
linear factors. Assume if f ∈ Rq(b − 1, 2) is such that | f | ≤ (q − b + 2)(q − 1) then
f is a product of linear factors. Let f ∈ Rq(b , 2) such that | f | ≤ (q − b + 1)(q − 1);
then f has a linear factor. By applying an affine transformation, we can assume for all
(x, y) ∈ F2

q, f (x, y) = y f̃ (x, y) with deg( f̃ ) ≤ b − 1. So, L the line of equation y = 0
does not meet S the support of f . Since (q − b + 1)(q − 1) > q, S is not included in a
line and by Lemma 3, either S meets (q − b + 1) lines parallel to L in (q − 1) points
or S meets (q − 1) lines parallel to L in (q − b + 1) points.

In the first case, by Lemma 1, we can write for all (x, y) ∈ F
2
q,

f (x, y) = y(y − a1) . . . (y − ab−2)g(x, y)

where ai, 1 ≤ i ≤ q − 2 are q − 2 distinct elements of F
∗
q and deg(g) ≤ 1 which gives

the result.
In the second case, we denote by a ∈ Fq the coefficient of xs−1 in f̃ . Then for any

λ ∈ F
∗
q, since S meets all lines parallel to L but L in q − s + 1 points, we get for all

x ∈ Fq,

f (x, λ) = aλ(x − a1(λ)) . . . (x − ab−1(λ))

So there exists a1, . . . ab−1 ∈ Fq[Y] of degree at most q − 1 such that for all
(x, y) ∈ F

2
q,

f (x, y) = ay(x − a1(y)) . . . (x − ab−1(y)).
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Then for all x ∈ Fq,

f̃0(x) = f̃ (x, 0) = a(x − a1(0)) . . . (x − ab−1(0))

and | f̃0| ≤ q − 1. So,

| f̃ | ≤ | f | + | f̃0| ≤ (q − b + 2)(q − 1).

By induction hypothesis, f̃ is the product of linear factors which finishes the proof of
Lemma 4. �

Proposition 6 For m ≥ 2, q ≥ 3, 2 ≤ b ≤ q − 1. The second weight codewords of
Rq(b , m) are codewords of Rq(b , m) whose support S is the union of q − b + 1
parallel hyperplanes minus their intersection with an af f ine hyperplane which is not
parallel or S is the union of (q − b + 1) hyperplanes which meet in an af f ine subspace
of codimension 2 minus this intersection.

Proof We say that we are in configuration A if S is the union of q − b + 1 parallel
hyperplanes minus their intersection with an affine hyperplane which is not parallel
(see Fig. 2a) and that we are in configuration B if S is the union of (q − b + 1) hy-
perplanes which meet in an affine subspace of codimension 2 minus this intersection
(see Fig. 2b).

We prove this proposition by induction on m. The Lemma 4 proves the case where
m = 2. Assume m ≥ 3 and that second weight codeword of Rq(b , m − 1), 2 ≤ b ≤
q − 1 are of type A or type B. Let f ∈ Rq(b , m) such that | f | = (q − 1)(q − b +
1)qm−2 and we denote by S its support.

– Assume S meets all affine hyperplanes.
Then, by Lemma 2, there exists an affine hyperplane H such that #(S ∩ H) =
(q − b )qm−2. By applying an affine transformation, we can assume x1 = 0 is an
equation of H. We denote by 1H the function in Bq

m such that

∀x = (x1, . . . , xm) ∈ F
m
q , 1H(x) = 1 − xq−1

1

then the reduced form f.1H has degree at most (t + 1)(q − 1) + s and the support
of f.1H is S ∩ H so S ∩ H is the support of a minimal weight codeword of
Rq(q − 1 + b , m) and S ∩ H is the union of (q − b ) parallel affine subspaces of
codimension 2. Consider P an affine subspace of codimension 2 included in H
such that #(S ∩ P) = (q − b )qm−3. Assume there are at least two hyperplanes
through P which meet S in (q − b )qm−2 points. Then, there exists H1 an affine
hyperplane through P different from H such that #(S ∩ H1) = (q − b )qm−2.
So, S ∩ H1 is the union of (q − b ) parallel affine subspaces of codimension
2. Consider G an affine hyperplane which contains Q an affine subspace of
codimension 2 included in H which does not meet S and the affine subspace
of codimension 2 included in H1 which meets Q but not S (see Fig. 4).
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Fig. 4 Proposition 6, case
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By applying an affine transformation, we can assume xm = λ, λ ∈ Fq is an
equation of an hyperplane parallel to G. For all λ ∈ Fq, we define fλ ∈
Bq

m−1 by

∀(x1, . . . , xm−1) ∈ F
m−1
q , fλ(x1, . . . , xm−1) = f (x1, . . . , xm−1, λ).

If all hyperplanes parallel to G meets S in (q − b + 1)(q − 1)qm−3 then for all
λ ∈ Fq, fλ is a second weight codeword of Rq(b , m − 1) and its support is of type
A or B. We get a contradiction if we consider an hyperplane parallel to G which
meets S ∩ H and S ∩ H1. So, there exits G1 an hyperplane parallel to G which
meets S in (q − b )qm−2 points and S ∩ G1 is the union of (q − b ) parallel affine
subspaces of codimension 2 which is a contradiction. Then for all H′ hyperplane
through P different from H #(S ∩ H′) ≥ (q − 1)(q − b + 1)qm−3. Furthermore,
since

(q − b )qm−2 + q.(q − 1)(q − b + 1)qm−3

−q.(q − b )qm−3 = (q − 1)(q − b + 1)qm−2,

#(S ∩ H′) = (q − 1)(q − b + 1)qm−3. Finally, by applying the same argument to
all affine subspaces of codimension 2 included in H parallel to P, we get that
all hyperplanes through an affine subspace of codimension 2 parallel to P but
H meet S in (q − 1)(q − b + 1)qm−3. Choosing q such hyperplanes, we get q
parallel hyperplanes (Gi)1≤i≤q such that for all 1 ≤ i ≤ q, #(S ∩ Gi) = (q − b +
1)(q − 1)qm−3 and #(S ∩ Gi ∩ H) = (q − b )qm−3. Then by induction hypothesis,
S ∩ Gi is either of type A or of type B.
If there exists i0 such that S ∩ Gi0 is of type A. Consider F an affine hyperplane
containing R an affine subspace of codimension 2 included in H which does not
meet S and the affine subspace of codimension 2 included in Gi0 which does
not meets S but meets R. If for all F ′ hyperplane parallel to F, #(S ∩ F ′) > (q −
b )qm−2 then #(S ∩ F ′) = (q − 1)(q − b + 1)qm−3. So S ∩ F ′ is the support of a
second weight codeword of Rq(b , m − 1) and is either of type A or of type B
which is absurd is we consider an hyperplane parallel to F which meets S ∩ H.
So there exits F1 an affine hyperplane parallel to F which meets S in (q − b )qm−2

points. So S ∩ F1 is the union of (q − s) parallel affine subspaces of codimension
2 which is absurd since S ∩ Gi0 is of type A (see Fig. 5).
If for all 1 ≤ i ≤ q, S ∩ Gi is of type B. Let H1 be the affine hyperplane parallel
to H which contains the affine subspace of codimension 3 intersection of the
affine subspaces of codimension 2 of S ∩ G1. We consider R an affine subspace
of codimension 2 included in H which does not meet S. Then there is (q − b + 1)

affine hyperplanes through R which meet S ∩ G1 in (q − b )qm−3. However, if we



Cryptogr. Commun. (2013) 5:241–276 255

Fig. 5 Proposition 6, case
where S meets all affine
hyperplanes, there exists Gi0
such that S ∩ Gi0 is of type A

H

G

F
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denote by k the number of hyperplanes through R which meet S in (q − b )qm−2

points, we have

k(q − b )qm−2 + (q + 1 − k)(q − 1)(q − b + 1)qm−3 ≤ (q − 1)(q − b + 1)qm−2

which implies that k ≥ q − b + 2. For all H′ hyperplane through R such that
#(S ∩ H′) = (q − b )qm−2, S ∩ H′ is the union of (q − b ) affine subspaces of
codimension 2 parallel to R and then #(S ∩ H′ ∩ G1) = (q − b )qm−3 which is
absurd (see Fig. 6).

– So, there exists H an affine hyperplane such that H does not meet S.
Then, by Lemma 3, either S meets (q − 1) hyperplanes parallel to H in (q − b +
1)qm−2 points or S meets (q − b + 1) hyperplanes parallel to H in (q − 1)qm−2

points.
If S meets (q − b + 1) hyperplanes parallel to H in (q − 1)qm−2 points, then , for
all H′ hyperplane parallel to H such that S ∩ H′ �= ∅, S ∩ H′ is the support of a
minimal weight codeword of Rq(q, m) and is the union of (q − 1) parallel affine
subspaces of codimension 2. Let H′ be an affine hyperplane parallel to H such
that S ∩ H′ �= ∅. We denote by P the affine subspace of codimension 2 of H′
which does not meet S. Consider H1 an affine hyperplane which contains P and
a point not in S of an affine hyperplane H" parallel to H which meets S. Then

#(H1 \ S) ≥ bqm−2 + 1.

However, if S ∩ H1 �= ∅, #(H1 \ S) ≤ bqm−2. So, S ∩ H1 = ∅ and we are in
configuration A.
If S meets (q − 1) hyperplanes parallel to H in (q − b + 1)qm−2 points. Then for
all H′ parallel to H different from H, S ∩ H′ is the support of a minimal weight
codeword of Rq((q − 1) + b − 1, m) and is the union of (q − b + 1) parallel
affine subspaces of codimension 2. Let H1 be an affine hyperplane parallel to H

Fig. 6 Proposition 6, case
where S meets all affine
hyperplanes, for all Gi, S ∩ Gi
is of type B

H
R

G1

•

H 1
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Fig. 7 Proposition 6, case
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different from H and consider P an affine subspace of codimension 2 included
in H1 such that

#(S ∩ P) = (q − b + 1)qm−3.

Assume there exists H2 an affine hyperplane through P such that #(S ∩ H2) =
(q − b )qm−2. Then S ∩ H2 is the support of a minimal weight codeword of
Rq(q − 1 + b , m) and is the union of (q − b ) parallel affine subspaces of codi-
mension 2 which is absurd since S ∩ H2 meets H1 in S ∩ P (see Fig. 7).
Then, for all H′ through P #(S ∩ H′) ≥ (q − 1)(q − b + 1)qm−3. Furthermore,

(q − b + 1)qm−2 + q.(q − 1)(q − b + 1)qm−3 − q.(q − b + 1)qm−3

= (q − 1)(q − b + 1)qm−2.

So for all H′ hyperplane through P different from H1,

#(S ∩ H′) = (q − 1)(q − b + 1)qm−3.

By applying the same argument to all affine subspaces of codimension 2 included
in H1 parallel to P, we get q parallel hyperplanes (Gi)1≤i≤q such that for
all 1 ≤ i ≤ q, #(S ∩ Gi) = (q − b + 1)(q − 1)qm−3 and #(S ∩ Gi ∩ H1) = (q − s +
1)qm−3. By induction hypothesis, for all 1 ≤ i ≤ q, either S ∩ Gi is of type A or
S ∩ Gi is of type B.
Assume there exists i0 such that S ∩ Gi0 is of type A. Consider F an affine
hyperplane containing Q an affine subspace of codimension 2 included in H1

which does not meet S and the affine subspace of codimension 2 included in Gi0
which does not meets S but meets Q. Assume S meets all hyperplanes parallel
to F in at least (q − b )qm−t−2. If for all F ′ parallel to F, #(S ∩ F ′) > (q − b )qm−2

then

#(S ∩ F ′) ≥ (q − 1)(q − b + 1)qm−3.

So S ∩ F ′ is the support of a second weight codeword of Rq(b , m − 1) and is
either of type A or of type B which is absurd is we consider an hyperplane
parallel to F which meets S ∩ H1 and S ∩ Gi0 . So, there exits F1 an affine
hyperplane parallel to F such that #(S ∩ F1) = (q − b )qm−2. Then, S ∩ F1 is the
union of (q − b ) parallel affine subspaces of codimension 2, which is absurd.
Finally, there exists an affine hyperplane parallel to F which does not meet S.
By Lemma 3, either S meets (q − b + 1) hyperplanes parallel to F in (q − 1)qm−2

points and we have already seen that in this case S is of type A or S meets (q − 1)

hyperplanes parallel to F in (q − b + 1)qm−2 points. In this case, for all F ′ parallel
to F such that S ∩ F ′ �= ∅, S ∩ F ′ is the support of a minimal weight codeword of
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Rq(q − 1 + b − 1, m) and is the union of q − b + 1 parallel affine subspaces of
codimension 2, which is absurd since S ∩ Gi0 is of type A (see Fig. 8).
Now, assume for all 1 ≤ i ≤ q, Gi ∩ S is of type B. Let Q be an affine subspace of
codimension 2 included in H1 which does not meets S. Assume S meets all affine
hyperplanes through Q and denote by k the number of these hyperplanes which
meet S in (q − b )qm−2 points. Then,

k(q − b )qm−2 + (q + 1 − k)(q − 1)(q − b + 1)qm−3 ≤ (q − 1)(q − b + 1)qm−2

which means that k ≥ q − b + 2. These (q − b + 2) hyperplanes are minimal
weight codewords of Rq(q − 1 + b , m). So, they meet S in (q − b ) affine sub-
spaces of codimension 2 parallel to Q, that is to say, they meet S ∩ G1 in (q −
b )qm−3 points. This is absurd since S ∩ G1 is of type B and so there are at most
(q − b + 1) affine hyperplanes through Q which meet S ∩ G1 in (q − b )qm−3

points (see Fig. 9). So there exists an affine hyperplane through Q which does
not meet S.
By applying the same argument to all affine subspaces of codimension 2 included
in H1 which does not meet S, since S ∩ Gi is of type B for all i, we get that S is of
type B. �

5.2 The support is included in an affine subspace of codimension t.

The two following lemmas are proved in [8].

Lemma 5 Let m ≥ 2, q ≥ 3, 1 ≤ t ≤ m − 1, 1 ≤ s ≤ q − 2. Assume f ∈ Rq(t(q − 1) +
s, m) is such that ∀x = (x1, . . . , xm) ∈ F

m
q ,

f (x) = (1 − xq−1
1 ) f̃ (x2, . . . , xm)

and that g ∈ Rq(t(q − 1) + s − k), 1 ≤ k ≤ q − 1, is such that (1 − xq−1
1 ) does not

divide g. Then, if h = f + g, either |h| ≥ (q − s + k)qm−t−1 or k = 1.

Fig. 9 Proposition 6, case
where there exists an affine
hyperplane which does not
meet S, for all Gi, S ∩ Gi is
of type B

H 1

Q

G1

H
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Lemma 6 Let m ≥ 2, q ≥ 3, 1 ≤ t ≤ m − 1, 1 ≤ s ≤ q − 2 and f ∈ Rq(t(q − 1) +
s, m). For a ∈ Fq, the function fa of Bq

m−1 def ined for all (x2, . . . , xm) ∈ Fm
q by

fa(x2, . . . , xm) = f (a, x2, . . . , xm). Assume for a, b ∈ Fq fa is dif ferent from the zero
function and (1 − xq−1

2 ) divides fa and that

0 < | fb | < (q − s + 1)qm−t−2.

Then there exists T an af f ine transformation, f ixing xi for i �= 2 such that (1 − xq−1
2 )

divides ( f ◦ T)a and ( f ◦ T)b .

Lemma 7 Let m ≥ 3, q ≥ 4, 1 ≤ t ≤ m − 2 and 2 ≤ s ≤ q − 2. If f ∈ Rq(t(q − 1) +
s, m) is such that | f | = (q − s + 1)(q − 1)qm−t−2, then the support of f is included in
an af f ine hyperplane of F

m
q .

Proof We denote by S the support of f . Assume S is not included in an affine
hyperplane. Then, by Lemma 2, there exists an affine hyperplane H such that either
H does not meet S or H meets S in (q − s)qm−t−2. Now, by Lemma 3, since S is not
included in an affine hyperplane, either S meets all affine hyperplanes parallel to H
or S meets (q − 1) affine hyperplanes parallel to H in (q − s + 1)qm−t−2 or S meets
(q − s + 1) affine hyperplanes parallel to H in (q − 1)qm−t−2 points. By applying an
affine transformation, we can assume x1 = λ, λ ∈ Fq is an equation of H. We define
fλ ∈ Bq

m−1 by

∀(x2, . . . , xm) ∈ F
m−1
q , fλ(x2, . . . , xm) = f (λ, x2, . . . , xm).

We set an order λ1, . . . , λq on the elements of Fq such that

| fλ1 | ≤ . . . ≤ | fλq |.
Then either | fλ1 | = 0 or | fλ1 | = (q − s)qm−t−2, that is to say either fλ1 is null or fλ1 is
the minimal weight codeword of Rq(t(q − 1) + s, m − 1) and its support is included
in an affine subspace of codimension t + 1. Since t ≥ 1, in both cases, the support of
fλ1 is included in an affine hyperplane of F

m
q different from the hyperplane parallel

to H of equation x1 = λ1. By applying an affine transformation that fixes x1, we can
assume (1 − xq−1

2 ) divides fλ1 . Since S is not included in an affine hyperplane, there
exists 2 ≤ k ≤ q such that 1 − xq−1

2 does not divide fλk . We denote by k0 the smallest
such k.

Assume S meets all affine hyperplanes parallel to H and that

| fλk0
| ≥ (q − s + k0 − 1)qm−t−2.

Then

| f | =
q∑

k=1

| fλk |

≥ (q − s)qm−t−2(k0 − 1) + (q − k0 + 1)(q − s + k0 − 1)qm−t−2

= (q − s)qm−t−1 + (k0 − 1)(q − k0 + 1)qm−t−2

> (q − s)qm−t−1 + (s − 1)qm−t−2
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which gives a contradiction. In the cases where S meets (q − s′), s′ = 1 or s′ = s − 1,
for 1 ≤ i ≤ s′, | fλi | = 0 and the support of fλs′+1

is S ∩ Hλs′+1
, where Hλs′+1

is the
hyperplane of equation x1 = λs′+1. Since S ∩ Hλs′+1

is the support of a minimum
weight codeword of Rq((t + 1)(q − 1) + s′, m), it is included in affine subspace of
codimension t + 1. So in those cases, we can assume k0 ≥ s′ + 2. Finally, | fλk0

| <

(q − s + k0 − 1)qm−t−2.
We write

f (x1, x2, x3, . . . , xm) =
q−1∑

i=0

xi
2gi(x1, x3, . . . , xm)

= h(x1, x2, x3, . . . , xm) + (1 − xq−1
2 )g(x1, x3, . . . , xm).

Since for all 1 ≤ i ≤ k0 − 1, 1 − xq−1
2 divides fλi , for all (x2, . . . , xm) ∈ F

m−1
q , for all

1 ≤ i ≤ k0 − 1, h(λi, x2, . . . , xm) = 0. So, by Lemma 1,

f (x1, x2, x3, . . . , xm) = (x1 − λ1) . . . (x1 − λk0−1)̃h(x1, x2, x3, . . . , xm)

+(1 − xq−1
2 )g(x1, x3, . . . , xm)

with deg(̃h) ≤ r − k0 + 1. Then by applying Lemma 5 to fλk0
, since

| fλk0
| < (q − s + k0 − 1)qm−t−2,

k0 = 2. This gives a contradiction in the cases where S does not meet all hyperplanes
parallel to H. In the case where S meets all hyperplanes parallel to H, by applying
Lemma 6, there exists T an affine transformation which fixes x1 such that (1 − xq−1

2 )

divides ( f ◦ T)λ1 and ( f ◦ T)λ2 , we set k′
0 the smallest k such that (1 − xq−1

2 ) does not
divide ( f ◦ T)λk . Then k′

0 ≥ 3 and by applying the previous argument to f ◦ T, we get
a contradiction. �

Proposition 7 Let m ≥ 3, q ≥ 4, 1 ≤ t ≤ m − 2 and 2 ≤ s ≤ q − 2. If f ∈ Rq(t(q −
1) + s, m) is such that | f | = (q − 1)(q − s + 1)qm−t−2, then the support of f is included
in an af f ine subspace of codimension t.

Proof We denote by S the support of f . By Lemma 7, S is included in H an
affine hyperplane. By applying an affine transformation, we can assume x1 = 0 is
an equation of H. Let g ∈ Bq

m−1 defined by

∀x = (x2, . . . , xm) ∈ F
m−1
q , g(x) = f (0, x2, . . . , xm)

and denote by P ∈ Fq[X2, . . . , Xm] its reduced form. Since

∀x = (x1, . . . , xm) ∈ F
m
q , f (x) =

(
1 − xq−1

1

)
P(x2, . . . , xm),

the reduced form of f ∈ Rq(t(q − 1) + s, m) is
(

1 − Xq−1
1

)
P(X2, . . . , Xm).

Then g ∈ Rq((t − 1)(q − 1) + s, m − 1) and

|g| = | f | = (q − s + 1)(q − 1)qm−t−2 = (q − 1)(q − s + 1)qm−1−(t−1)−2.
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Then, by Lemma 7, if t ≥ 2, the support of g is included in an affine hyperplane of
Fm−1

q . By iterating this argument, we get that S is included in an affine subspace of
codimension t. �

5.3 Proof of Theorem 9

Let 0 ≤ t ≤ m − 2, 2 ≤ s ≤ q − 2 and f ∈ Rq(t(q − 1) + s, m) such that

| f | = (q − s + 1)(q − 1)qm−t−2;
we denote by S the support of f . Assume t ≥ 1. By Proposition 7, S is included in
an affine subspace G of codimension t. By applying an affine transformation, we can
assume

G = {x = (x1, . . . , xm) ∈ F
m
q : xi = 0 for 1 ≤ i ≤ t}.

Let g ∈ Bq
m−t defined for all x = (xt+1, . . . , xm) ∈ Fm−t

q by

g(x) = f (0, . . . , 0, xt+1, . . . , xm)

and denote by P ∈ Fq[Xt+1, . . . , Xm] its reduced form. Since

∀x = (x1, . . . , xm) ∈ F
m
q , f (x) =

(
1 − xq−1

1

)
. . .

(
1 − xq−1

t

)
P(xt+1, . . . , xm),

the reduced form of f ∈ Rq(t(q − 1) + s, m) is
(

1 − Xq−1
1

)
. . .

(
1 − Xq−1

t

)
P(Xt+1, . . . , Xm).

Then g ∈ Rq(s, m − t) and |g| = | f | = (q − s + 1)(q − 1)qm−t−2. Thus, using the case
where t = 0, we finish the proof of Theorem 9.

6 Case where s = 0

6.1 The support is included in an affine subspace of dimension m − t + 1

Proposition 8 Let q ≥ 3, m ≥ 2 and f ∈ Rq((m − 1)(q − 1), m) such that | f | =
2(q − 1). Then, the support of f is included in an af f ine plane.

In order to prove this proposition, we need the following lemma.

Lemma 8 Let m ≥ 3, q ≥ 4 and f ∈ Rq((m − 1)(q − 1), m) such that | f | = 2(q − 1).
If H is an af f ine hyperplane of F

m
q such that S ∩ H �= S, #(S ∩ H) = N, 3 ≤ N ≤ q −

1 and S ∩ H is not included in a line then there exists H1 an af f ine hyperplane of F
m
q

such that S ∩ H1 �= S, #(S ∩ H1) ≥ N + 1 and S ∩ H1 is not included in a line

Proof Since S ∩ H �= S, by Lemma 3, either S meets (q − 1) hyperplanes parallel
to H or S meets two hyperplanes parallel to H or S meets all affine hyperplanes
parallel to H. If S does not meet all affine hyperplanes parallel to H then S ∩ H is
the support of a minimal weight codeword of Rq((m − 1)(q − 1) + s′, m), s′ = 1 or
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s′ = q − 2. In both cases, S ∩ H is included in a line which is absurd. So, S meets all
affine hyperplanes parallel to H.

By applying an affine transformation, we can assume x1 = 0 is an equation
of H. Let I := {a ∈ Fq : #({x1 = a} ∩ S) = 1} and k := #I. Since #S = 2(q − 1) and
#(S ∩ H) = N, k ≥ N. We define

∀x = (x1, . . . , xm) ∈ F
m
q , g(x) = f (x)

∏

a �∈I

(x1 − a).

Then, deg(g) ≤ (m − 1)(q − 1) + q − k and |g| = k. So, g is a minimal weight code-
words of Rq((m − 1)(q − 1) + q − k, m) and its support is included in a line L which
is not included in H. We denote by −→u a directing vector of L. Let b be the
intersection point of H and L and ω1, ω2, ω3 3 points of S ∩ H which are not
included in a line. Then there exists −→v and −→w ∈ {−−→bω1,

−−→
bω2,

−−→
bω3} which are linearly

independent. Since L is not included in H, {−→u , −→v ,−→w } are linearly independent.
We choose H1 an affine hyperplane such that b ∈ H1, b + −→v ∈ H1, L ⊂ H1 but
b + −→w �∈ H1. �

Now we can prove the proposition

Proof If m = 2, we have the result. Assume m ≥ 3. Let S be the support of f . Since
#S = 2(q − 1) > q, S is not included in a line. Let ω1, ω2, ω3 be 3 points of S not
included in a line. Let H be an hyperplane such that ω1, ω2, ω3 ∈ H. Assume S ∩ H �=
S. Then there exists an affine hyperplane H1 such that #(S ∩ H1) ≥ q, S ∩ H1 is not
included in a line and S ∩ H1 �= S. Indeed, if q = 3, we take H1 = H and for q ≥ 4, we
proceed by induction using the previous Lemma. Then by Lemma 3 either S meets
two hyperplanes parallel to H1 in 2 points or S meets two hyperplanes parallel to H1

in q − 1 points or S meets all affine hyperplanes parallel to H1. Since #(S ∩ H1) ≥ q,
S meets all hyperplanes parallel to H1. Then, we must have

q + q − 1 ≤ 2(q − 1)

which is absurd. �

The two following lemmas are proved in [8].

Lemma 9 Let m ≥ 2, q ≥ 3, 1 ≤ t ≤ m and f ∈ Rq(t(q − 1), m) such that | f | = qm−t

and g ∈ Rq((t(q − 1) − k, m), 1 ≤ k ≤ q − 1, such that g �= 0. If h = f + g then either
|h| = kqm−t or |h| ≥ (k + 1)qm−t.

Lemma 10 Let m ≥ 2, q ≥ 3, 1 ≤ t ≤ m − 1 and f ∈ Rq(t(q − 1), m). For a ∈ Fq,
we def ine the function fa of Bq

m−1 by for all (x2, . . . , xm) ∈ Fm
q , fa(x2, . . . , xm) =

f (a, x2, . . . , xm). If for some a, b ∈ Fq, | fa| = | fb | = qm−t−1, then there exists T an
af f ine transformation f ixing x1 such that

( f ◦ T)a = ( f ◦ T)b .

Proposition 9 Let q ≥ 3, m ≥ 2, 1 ≤ t ≤ m − 1. If f ∈ Rq(t(q − 1), m) is such that
| f | = 2(q − 1)qm−t−1 then the support of f is included in an af f ine subspace of
dimension m − t + 1.
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Proof For t = 1, this is obvious. For the other cases we proceed by recursion on t.
Proposition 8 gives the case where t = m − 1.

If m ≤ 3 we have considered all cases. Assume m ≥ 4. Let 2 ≤ t ≤ m − 2. Assume
for f ∈ Rq((t + 1)(q − 1), m) such that | f | = 2(q − 1)qm−t−2 the support of f is
included in an affine subspace of dimension m − t. Let f ∈ Rq(t(q − 1), m) such that
| f | = 2(q − 1)qm−t−1. We denote by S the support of f .

Assume S is not included in an affine subspace of dimension m − t + 1. Then
there exists H an affine hyperplane of Fm

q such that S ∩ H �= S and S ∩ H is not
included in an affine space of dimension m − t. By Lemma 3, either S meets all affine
hyperplanes parallel to H or S meets (q − 1) affine hyperplanes parallel to H in
2qm−t−1 or S meets two affine hyperplanes parallel to H in (q − 1)qm−t−1 points.

If S does not meet all hyperplanes parallel to H then S ∩ H is the support of a
minimal weight codeword of Rq(t(q − 1) + s′, m), s′ = 1 or s′ = q − 2. So S ∩ H is
included in an affine subspace of dimension m − t which gives a contradiction.

So, S meets all affine hyperplanes parallel to H in at least qm−t−1 points. If for
all H′ parallel to H, #(S ∩ H′) > qm−t−1 then for all H′ parallel to H, #(S ∩ H′) ≥
2(q − 1)qm−t−2. So, for reason of cardinality, S ∩ H is the support of a second weight
codeword of Rq((t + 1)(q − 1), m) and by recursion hypothesis S ∩ H is included in
an affine subspace of dimension m − t which gives a contradiction. So, there exists
H1 an affine hyperplane parallel to H such that #(S ∩ H1) = qm−t−1.

By applying an affine transformation, we can assume x1 = λ, λ ∈ Fq is an equation
of H. For λ ∈ Fq, we define fλ ∈ Bq

m−1 by

∀(x2, . . . , xm) ∈ F
m−1
q , fλ(x2, . . . , xm) = f (λ, x2, . . . , xm).

We set an order λ1, . . . , λq on the elements of Fq such that

| fλ1 | ≤ . . . ≤ | fλq |.

Since #(S ∩ H1) = qm−t−1 and S meets all hyperplanes parallel to H,

| fλ1 | = qm−t−1

and fλ1 is a minimum weight codeword of Rq(t(q − 1), m − 1). Let k0 be the smallest
integer such that | fλk0

| > qm−t−1. Since | f | > qm−t, k0 ≤ q. Then by Lemma 10 and
applying an affine transformation that fixes x1, we can assume for all 2 ≤ i ≤ k0 − 1,
fλi = fλ1 . If we write for all x = (x1, . . . , xm) ∈ F

m
q ,

f (x) = fλ1 (x2, . . . , xm) + (x1 − λ1) f̂ (x1, . . . , xm).

Then for all 2 ≤ i ≤ k0 − 1, for all x = (x2, . . . , xm) ∈ F
m−1
q ,

fλi(x) = fλ1 (x) + (λi − λ1) f̂λi (x).

Since for all 2 ≤ i ≤ k0 − 1, fλi = fλ1 , by Lemma 1, we can write for all x =
(x1, . . . , xm) ∈ F

m
q ,

f (x) = fλ1(x2, . . . , xm) + (x1 − λ1) . . . (x1 − λk0−1) f (x1, . . . , xm)
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with deg( f ) ≤ t(q − 1) − k0 + 1. Now, we have fλk0
= fλ1 + λ′ f λk0

, λ′ ∈ F
∗
q. Then,

by Lemma 9, either | fλk0
| ≥ k0qm−t−1 or | fλk0

| = (k0 − 1)qm−t−1. Assume | fλk0
| ≥

k0qm−t−1. Then

| f | =
q∑

i=1

| fλi |

≥ (k0 − 1)qm−t−1 + (q + 1 − k0)k0qm−t−1

= qm−t + (k0 − 1)(q − k0 + 1)qm−t−1

> 2(q − 1)qm−t−1.

So, | fλk0
| = (k0 − 1)qm−t−1. Since | fλk0

| > qm−t−1, k0 ≥ 3. Now, we have

| f | ≥ (k0 − 1)qm−t−1 + (q + 1 − k0)(k0 − 1)qm−t−1 = (k0 − 1)(q − k0 + 2)qm−t−1.

So either k0 = q or k0 = 3.

– Assume k0 = q.
Since fλ1 = . . . = fλq−1 are minimum weight codeword of Rq(t(q − 1), m − 1),
there exists A an affine subspace of dimension m − t of F

m
q such that for all

1 ≤ i ≤ q − 1, S ∩ Hi ⊂ A, where Hi is the hyperplane parallel to H of equation
x1 = λi. Since S is not included in an affine subspace of dimension m − t + 1 and
t ≥ 2, there exists an affine hyperplane G containing A such that S ∩ G �= S and
there exists x ∈ S ∩ G, x �∈ A. Then #(S ∩ G) ≥ (q − 1)qm−t−1 + 1, S ∩ G �= S
and S ∩ G is not included in an affine subspace of dimension m − t. Applying
to G the same argument than to H, we get a contradiction.

– So, k0 = 3.
Then fλ1 = fλ2 are minimum weight codeword of Rq(t(q − 1), m − 1) and for
reason of cardinality, for all 3 ≤ i ≤ q, | fλi | = 2qm−t−1. So, there exists A an affine
subspace of dimension m − t of Fm

q such that for all 1 ≤ i ≤ 2, S ∩ Hi ⊂ A, where
Hi is the hyperplane parallel to H of equation x1 = λi. Since S is not included
in an affine subspace of dimension m − t + 1 and t ≥ 2, there exists an affine
hyperplane G containing A such that S ∩ G �= S and there exists x ∈ S ∩ G,
x �∈ A. Then #(S ∩ G) ≥ 2qm−t−1 + 1, S ∩ G �= S and S ∩ G is not included in an
affine subspace of dimension m − t. Applying to G the same argument than to
H, we get a contradiction.

Finally, S is included in an affine subspace of dimension m − t + 1. �

6.2 Proof of Theorem 10

Let 1 ≤ t ≤ m − 1 and f ∈ Rq(t(q − 1), m) such that

| f | = 2(q − 1)qm−t−1;
we denote by S the support of f . Assume t ≥ 2. By Proposition 9, S is included in
an affine subspace G of codimension t − 1. By applying an affine transformation, we
can assume

G = {x = (x1, . . . , xm) ∈ F
m
q : xi = 0 for 1 ≤ i ≤ t − 1}.
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Let g ∈ Bq
m−t+1 defined for all x = (xt, . . . , xm) ∈ F

m−t+1
q by

g(x) = f (0, . . . , 0, xt, . . . , xm)

and denote by P ∈ Fq[Xt, . . . , Xm] its reduced form. Since

∀x = (x1, . . . , xm) ∈ F
m
q , f (x) =

(
1 − xq−1

1

)
. . .

(
1 − xq−1

t−1

)
P(xt, . . . , xm),

the reduced form of f ∈ Rq(t(q − 1) + s, m) is
(

1 − Xq−1
1

)
. . .

(
1 − Xq−1

t−1

)
P(Xt, . . . , Xm).

Then g ∈ Rq(q − 1, m − t + 1) and |g| = | f | = 2(q − 1)qm−t−1. Thus, using the case
where t = 1, we finish the proof of Theorem 10.

7 Case where 0 ≤ t ≤ m − 2 and s = 1

7.1 Case where q ≥ 4

Lemma 11 Let m ≥ 2, q ≥ 4, 0 ≤ t ≤ m − 2 and f ∈ Rq(t(q − 1) + 1, m) such that
| f | = qm−t . We denote by S the support of f . Then, if H is an af f ine hyperplane of
F

m
q such that S ∩ H �= ∅ and S ∩ H �= S, S meets all af f ine hyperplanes parallel to H.

Proof By applying an affine transformation, we can assume x1 = 0 is an equation of
H. Let Ha be the q affine hyperplanes parallel to H of equation x1 = a, a ∈ Fq. We
denote by I := {a ∈ Fq : S ∩ Ha = ∅}. Let k := #I and assume k ≥ 1. Since S ∩ H �= ∅
and S ∩ H �= S, k ≤ q − 2. For all c �∈ I we define

∀x = (x1, . . . , xm) ∈ F
m
q , gc(x) = f (x)

∏

a∈Fq\I,a �=c

(x1 − a).

Then | f | =
∑

c �∈I

|gc|.

– Assume k ≥ 2.
Then for all c �∈ I, deg(gc) ≤ t(q − 1) + q − k and 2 ≤ q − k ≤ q − 2. So, |gc| ≥
kqm−t−1. Let N = #{c �∈ I : |gc| = kqm−t−1}. If |gc| > kqm−t−1, |gc| ≥ (k + 1)(q −
1)qm−t−2. Hence

qm−t ≥ Nkqm−t−1 + (q − k − N)(k + 1)(q − 1)qm−t−2.

Since k ≥ 2, we get that N ≥ q − k. Since (q − k)kqm−t−1 �= qm−t, we get a
contradiction.

– Assume k = 1.
Then, for all c �∈ I, deg(gc) ≤ t(q − 1) + 1 + q − 2 = (t + 1)(q − 1). So |gc| ≥
qm−t−1. Let N = #{c �∈ I : |gc| = qm−t−1}. If |gc| > qm−t−1, |gc| ≥ 2(q − 1)qm−t−2.
Since for q ≥ 4, 2(q − 1)2qm−t−2 > qm−t , N ≥ 1. Furthermore, since (q −
1)qm−t−1 < qm−t, N ≤ q − 2. For λ ∈ Fq, we define fλ ∈ Bq

m−1 by

∀(x2, . . . , xm) ∈ F
m−1
q , fλ(x2, . . . , xm) = f (λ, x2, . . . , xm).
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We set λ1, . . . , λq an order on the elements of Fq such that for all i ≤ N, | fλi | =
qm−t−1, | fλN+1 | = 0 and qm−t−1 < | fλN+2 | ≤ . . . ≤ | fλq |.
Since fλN+1 = 0, we can write for all (x1, . . . , xm) ∈ Fm

q ,

f (x1, . . . , xm) = (x1 − λN+1)h(x1, . . . , xm)

with deg(h) ≤ t(q − 1). Then, for all 1 ≤ i ≤ q, i �= N + 1 and (x2, . . . , xm) ∈
Fm−1

q ,

fλi (x2, . . . , xm) = (λi − λN+1)hλi(x2, . . . , xm).

So deg( fλi ) ≤ t(q − 1) and hλi = fλi
λi−λN+1

.
Since h ∈ Rq(t(q − 1), m), by Lemma 10, there exists an affine transformation
such that for all i ≤ N, hλi = hλ1 . Then, for all (x1, . . . , xm) ∈ Fm

q ,

h(x1, . . . , xm) = hλ1(x2, . . . , xm) + (x1 − λ1) . . . (x1 − λN )̃h(x1, . . . , xm)

with deg(̃h) ≤ t(q − 1) − N. Hence, for all (x1, . . . , xm) ∈ Fm
q ,

f (x1, . . . , xm) = x1 − λN+1

λ1 − λN+1
fλ1 (x2 . . . , xm)+(x1−λ1) . . . (x1−λN+1)̃h(x1, . . . , xm).

Then, for all (x2, . . . , xm) ∈ F
m−1
q ,

fλN+2(x2, . . . , xm) = λ fλ1(x2 . . . , xm) + λ′h̃λn+2(x2, . . . , xm)

with λ, λ′ ∈ F
∗
q.

Since fλ1 ∈ Rq(t(q−1), m − 1) and h̃λn+2 ∈ Rq(t(q−1)−N, m − 1), by Lemma 9,
either | fλN+2 | = Nqm−t−1 or | fλN+2 | ≥ (N + 1)qm−t−1.
If N = 1, since | fλN+2 | > qm−t−1, we get

qm−t−1 + (q − 2)2qm−t−1 ≤ qm−t

which means that q ≤ 3. So N ≥ 2. Then,

Nqm−t−1 + (q − 1 − N)Nqm−t−1 ≤ qm−t.

Since N(q − N) ≥ 2(q − 2), we get that q ≤ 4. So, the only possibility is q = 4
and N = q − 2 = 2.
If t = 0, Hλ4 contains 2.4m−1 points which is absurd. Assume t ≥ 1. Since hλ1 =
hλ2 and for i ∈ {1, 2}, fλi = (λi − λ3)hλi , S ∩ Hλ1 and S ∩ Hλ2 are both included
in A an affine subspace of dimension m − t. If t = 1, by applying an affine
transformation which fixes x1, we can assume x2 = 0 is an equation of A. If S
is included in A, then

#(S ∩ Hλ4 ∩ A) = 2.4m−2

which is absurd since Hλ4 ∩ A is an affine subspace of codimension 2. So there
exists an affine hyperplane H′ containing A but not S. By applying an affine
transformation which fixes x1, we can assume x2 = 0 is an equation of H′. Now,
consider g defined for all (x1, . . . , xm) ∈ F

m
q by g(x1, . . . , xm) = x2 f (x1, . . . , xm).

Then |g| ≤ 2.4m−t−1. Furthermore, since S is not included in H′ and deg(g) ≤
3t + 2, |g| ≥ 2.4m−t−1. So g is a minimum weight codeword of R4(3t + 2, m) and
its support is the union of two parallel affine subspace of codimension t + 1
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Fig. 10 Lemma 11, case where
k = 1

H H

G

G

included in an affine subspace of codimension t. Then, since H′ ∩ Hλ4 = ∅, there
exists H′

1 an hyperplane parallel to H′ such that S ∩ H′
1 = ∅. Now, consider G

the hyperplane through Hλ4 ∩ H′
1 and H′ ∩ Hλ3 and G′ the hyperplane through

H′ ∩ Hλ4 parallel to G (see Fig. 10).
Then G and G′ does not meet S but S is not included in an hyperplane parallel
to G which is absurd by the previous case. �

Lemma 12 For m ≥ 3, if f ∈ R4(3(m − 2) + 1, m) is such that | f | = 16, the support
of f is an af f ine plane.

Proof We denote by S the support of f .
First, we prove the case where m = 3. To prove this case, by Lemma 11, we only

have to prove that there exists an affine hyperplane which does not meet S.
Assume S meets all affine hyperplanes. Let H be an affine hyperplane. Then for

all H′ affine hyperplane parallel to H, #(S ∩ H′) ≥ 3. Assume for all H′ hyperplane
parallel to H, #(S ∩ H′) ≥ 4. For reason of cardinality , for all H′ parallel to H
#(S ∩ H′) = 4. Since q = 4, there exists a line in H which does not meet S. Since
3.4 + 4 = 16, S meets four hyperplanes through this line in 3 points and the last one
in 4 points. So, there exists H1 an affine hyperplane such that #(S ∩ H1) = 3. We
denote by H2, H3, H4 the hyperplanes parallel to H1. Then, S ∩ H1 is the support
of a minimal weight codeword of R4(3(m − 1) + 1, m) so S ∩ H1 is included in L a
line. Consider L′ a line in H1 parallel to L. Then there is four hyperplanes through
L′ which meets S in 3 points and one H′

1 which meets S in 4 points. Let H′ be
an affine hyperplane through L′ which meets S in 3 points; S ∩ H′ is minimum
weight codeword of R4(3(m − 1) + 1, m) which does not meet H1. So either S ∩ H′ is
included in an affine hyperplane parallel to H1 or S ∩ H′ meets all affine hyperplane
parallel to H1 but H1 in 1 point. Then we consider four cases:

1. H1 is the only hyperplane through L′ such that #(S ∩ H1) = 3 and S ∩ H1 is
included in one of the affine hyperplane parallel to H1.
Since S ∩ H1 ∩ H′

1 = ∅ there exists an affine hyperplane parallel to H1 which
meets S ∩ H′

1 in at least 2 points. Assume for example it is H2. Since m = 3,
these 2 points are included in L1 a line which is a translation of L. Consider
H the hyperplane containing L1 and L. Then, H meets S ∩ H3 and S ∩ H4 in 1
point (see Fig. 11a). So #(S ∩ H) = 7
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(a) Case 1 (b) Case 2

(c) Case 3

(d) Case 4 (e) Case 4’

Fig. 11 Lemma 12, case where m = 3

2. There are exactly two hyperplanes through L′ which meets S in 3 points and such
that its intersection with S is included in one of the affine hyperplane parallel to
H1.
Assume H2 contains S ∩ Ĥ where Ĥ is the hyperplane through L′ different from
H1 such that #(S ∩ Ĥ) = 3 and S ∩ Ĥ is included in an hyperplane parallel to H1,
say H2. We denote by L1 = Ĥ ∩ H2. Since for all H′ hyperplane #(S ∩ H′) ≥ 3,
S ∩ H′

1 meets H3 and H4 in at least one point. Then consider H the hyperplane
through L and L1. Since H is different from the hyperplane through L′ and L1,
H meets H3 and H4 in at least 1 point each (see Fig. 11b). So #(S ∩ H) ≥ 7.

3. There are exactly three hyperplanes through L′ which meets S in 3 points and
such that its intersection with S is included in one of the affine hyperplane
parallel to H1.
If two such hyperplanes have their intersection with S included in the same
hyperplane parallel to H1, say H2, then #(S ∩ H2) ≥ 7. Now, assume they are
included in two different hyperplanes, H2 and H3. If S ∩ H′

1 is included in H4

then we consider H the hyperplane through L and S ∩ H′
1 and #(S ∩ H) ≥ 7.

Otherwise, we can assume S ∩ H′
1 meets H2 in at least 1 point. Let H be the

hyperplane through L and L1 the line containing the minimum weight codeword
included in H3. Since H is different from the hyperplane through L′ and L1, H
meets S ∩ H2 in at least 1 point and #(S ∩ H) ≥ 7 (see Fig. 11c).
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4. There are four hyperplanes through L′ which meets S in 3 points and such that
its intersection with S is included in one of the affine hyperplane parallel to H1.
If three such hyperplanes have their intersection with S included in the same
hyperplane parallel to H1, say H2, then #(S ∩ H2) ≥ 7. Assume two such hyper-
planes have their intersection included in the same hyperplane parallel to H1,
say H2 and the last one has its intersection with S included in H3. Then, since
#(S ∩ H4) ≥ 3, #(S ∩ H′

1 ∩ H4) ≥ 3.
If #(S ∩ H4 ∩ H′

1) = 4, we consider H the hyperplane through L and S ∩ H′
1 and

#(S ∩ H) ≥ 7. Otherwise, there is one point of S ∩ H4 included in H2 or H3. If
this point is included in H2 then #(S ∩ H2) ≥ 7. If it is included in H3, we consider
L1 and L2 the two lines in H2 containing S which are a translation of L. Then
either the hyperplane through L and L1 or the hyperplane through L and L2

meets S ∩ H3 or S ∩ H4 (see Fig. 11d). So there is an hyperplane H such that
#(S ∩ H) ≥ 7.
Now assume for each hyperplane H′ parallel to H1, there is only one hyperplane
through L′ which meets S in 3 points such that its intersection with S included in
H′. If S ∩ H′

1 is included in an affine hyperplane parallel to H1 then we consider
H the hyperplane through L and S ∩ H′

1 and #(S ∩ H) ≥ 7. Otherwise, S ∩ H′
1

meets at least two hyperplanes parallel to H1, say H2 and H3 in at least 1 point.
For i ∈ {2, 3, 4}, we denote by H′

i the hyperplane through L′ such that S ∩ H′
i ⊂

Hi. If Ĥ the hyperplane through L and S ∩ H′
4 does not meet S ∩ H2 and S ∩ H3,

then H̃ the hyperplane through S ∩ H′
4 and S ∩ H′

3 meets S ∩ H2. Indeed, if Ĥ
does not meet S ∩ H2 we consider four hyperplanes through S ∩ H′

4 different
from H4, which intersect H2 in 4 distinct parallel lines. However two of these
lines meet S (see Fig. 11e). So there is an hyperplane H such that #(S ∩ H) ≥ 7.

In all cases, there exists an affine hyperplane H such that #(S ∩ H) ≥ 7. If #(S ∩
H) > 7, since S meets all affine hyperplanes in at least 3 points, #S > 7 + 3.3 = 16
which gives a contradiction. If #(S ∩ H) = 7, then for all H′ parallel to H different
form H #(S ∩ H′) = 3. By applying an affine transformation, we can assume x1 =
0 is an equation of H. Then g = x1 f ∈ R4(3(m − 2) + 2, m) and |g| = 9. So, g is a
second weight codeword of R4(3(m − 2) + 2, m) and by Theorem 9, the support of g
is included in a plane P. Since S meets all hyperplanes, S is not included in P. Then,
S meets all hyperplanes parallel to P in at least 3 points. However 3.3 + 9 = 18 > 16
which is absurd.

Now, assume m ≥ 4. Assume S is not included in an affine subspace of dimension
3. Then there exists H an affine hyperplane such that S ∩ H is not included in a plane
and S is not included in H. So, by Lemma 11, S meets all affine hyperplanes parallel
to H in at least 3 points.

Assume for all H′ parallel to H, #(S ∩ H′) ≥ 4, then for reason of cardinality,
#(S ∩ H) = 4. So S ∩ H is the support of a second weight codeword of R4(3(m −
1) + 1, m) and is included in a plane which is absurd. So there exists H1 an affine
hyperplane parallel to H such that #(S ∩ H1) = 3. Then, S ∩ H1 is the support of the
minimum weight codeword of R4(3(m − 1) + 1, m) and is included in a line L. We
denote by −→u a directing vector of L and a the point of L which is not in S.

Let w1, w2, w3 be 3 points of S ∩ H which are not included in a line. Then, there
are at least 2 vectors of {−−−→w1w2,

−−−→w1w3,
−−−→w2w3} which are not collinear to −→u . Assume

they are −−−→w1w2 and −−−→w1w3. Let a be an affine subspace of codimension 2 included in
H1 which contains a, a + −−−→w1w2, a + −−−→w1w3 but not a + −→u . Then S does not meet A.
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Assume S does not meet one hyperplane through A. Then S is included in an affine
hyperplane parallel to this hyperplane which is absurd by definition of A. So, S meets
all hyperplanes through A and since 3.4 + 4 = 16, There exists H2 an hyperplane
through A such that #(S ∩ H2) = 4 and S ∩ H2 is included in a plane. For all H′
hyperplane through A different from H2, #(S ∩ H′) = 3 and S ∩ H′ is included in a
line. Consider H′

2 the hyperplane through A such that w1 ∈ H′
2. Then w1, w2, w3 ∈

H′
2. Since for all H′ hyperplane through A different from H2, S ∩ H′ is included in

a line and w1, w2, w3 are not included in a line H′
2 = H2. Further more S ∩ H2 is

included in a plane, so S ∩ H′
2 ⊂ H.

For all H′ hyperplane through A different from H2, S ∩ H′ is the support of
a minimum weight codeword of R4(3(m − 1) + 1, m) which does not meet H1, so
either S ∩ H′ is included an affine hyperplane parallel to H1 or S ∩ H′ meets all
affine hyperplanes parallel to H but H1 in 1 point. Since S ∩ H2 is included in H
and all hyperplanes parallel to H meets S in at least 3 points, there are only three
possibilities:

1. For all H′
2 hyperplane through A, S ∩ H′

2 is included in an affine hyperplane
parallel to H.

2. For H′
2 hyperplane through A different from H2 and H1, S ∩ H′

2 meets all affine
hyperplanes parallel to H different from H1 in 1 points.

3. There is four hyperplanes through A such that their intersection with S is
included in an affine hyperplane parallel to H and one hyperplane through A
which meets all hyperplanes parallel to H but H1 in 1.

In the two first cases, since S ∩ H is not included in a plane and S meets all
hyperplanes parallel to H in at least 3 points, #(S ∩ H) = 7 and for all H′ parallel
to H different form H, #(S ∩ H′) = 3. By applying an affine transformation, we can
assume x1 = 0 is an equation of H. Then g = x1 f ∈ R4(3(m − 2) + 2, m) and |g| = 9.
So, g is a second weight codeword of R4(3(m − 2) + 2, m) and by Theorem 9, the
support of g is included in a plane P. Since S is not included in P, there exists H′

1 an
affine hyperplane which contains P but not S. Then, S meets all hyperplanes parallel
to H′

1 in at least 3 points. However 3.3 + 9 = 18 > 16 which is absurd.
Assume we are in the third case. Since S ∩ H is the union of a point and

S ∩ H2 which is included in a plane and m ≥ 4, there exist B an affine subspace of
codimension 2 included in H such that S does not meet B and S ∩ H is not included
in affine hyperplane parallel to B. Then S meets all affine hyperplanes through B in
at most 4 points which is a contradiction since #(S ∩ H) = 5.

So S is included in G an affine subspace of dimension 3. By applying an affine
transformation, we can assume

G := {(x1, . . . , xm) ∈ F
m
q : x4 = . . . = xm = 0}.

Let g ∈ Bq
3 defined for all x = (x1, x2, x3) ∈ F

3
q by

g(x) = f (x1, x2, x3, 0, . . . , 0)

and denote by P ∈ Fq[X1, X2, X3] its reduced form. Since

∀x = (x1, . . . , xm) ∈ F
m
q , f (x) = (1 − xq−1

4 ) . . . (1 − xq−1
m )P(x1, x2, x3),
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the reduced form of f ∈ Rq(3(m − 2) + 1, m) is

(1 − Xq−1
4 ) . . . (1 − Xq−1

m )P(X1, X2, X3).

Then g ∈ Rq(4, 3) and |g| = | f | = 16. Thus, using the case where m = 3, we finish the
proof of Lemma 12. �

Theorem 12 For q ≥ 4, m ≥ 2, 0 ≤ t ≤ m − 2, if f ∈ Rq(t(q − 1) + 1, m) is such that
| f | = qm−t , the support of f is an af f ine subspace of codimension t.

Proof If t = 0, the second weight is qm and we have the result.
For other cases, we proceed by recursion on t.
If q ≥ 5, we have already proved the case where t = m − 1 (Theorem 8); if m = 2

and t = m − 2 = 0, we have the result. Assume m ≥ 3.
For q = 4, if m = 2, t = m − 2 = 0 and we have the result. If m ≥ 3, we have

already proved the case t = m − 2 (Lemma 12). Furthermore, if m = 3 we have
considered all cases. Assume m ≥ 4

Let 1 ≤ t ≤ m − 2 (or for q = 4, 1 ≤ t ≤ m − 3). Assume the support of f ∈
Rq((t + 1)(q − 1) + 1, m) such that | f | = qm−t−1 is an affine subspace of codimension
t + 1.

Let f ∈ Rq(t(q − 1) + 1, m) such that | f | = qm−t. We denote by S its support.
Assume S is not included in an affine subspace of codimension t. Then there exists
H an affine hyperplane such that S ∩ H is not included in an affine subspace of codi-
mension t + 1 and S ∩ H �= S. Then, by Lemma 11, S meets all affine hyperplanes
parallel to H and for all H′ hyperplane parallel to H,

#(S ∩ H′) ≥ (q − 1)qm−t−2.

If for all H′ hyperplane parallel to H, #(S ∩ H′) > (q − 1)qm−t−2 then, for reason of
cardinality, #(S ∩ H) = qm−t−1. So S ∩ H is the support of a second weight codeword
of Rq((t + 1)(q − 1) + 1, m) and is included in an affine subspace of codimension
t + 1 which is a contradiction.

So there exists H1 parallel to H such that #(S ∩ H1) = (q − 1)qm−t−2. Then S ∩ H1

is the support of a minimal weight codeword of Rq((t + 1)(q − 1) + 1, m). Hence,
S ∩ H1 is the union of q − 1 affine subspaces of codimension t + 2 included in an
affine subspace of codimension t + 1.

Let A be an affine subspace of codimension 2 included in H1 such that A meets
the affine subspace of codimension t + 1 which contains S ∩ H1 in the affine subspace
of codimension t + 2 which does not meet S. Assume there is an affine hyperplane
through A which does not meet S. Then, by Lemma 11, S is included in an affine
hyperplane parallel to this hyperplane which is absurd by construction of A. So, S
meets all hyperplanes through A. Furthermore,

qm−t = qm−t−1 + q(q − 1)qm−t−2.

So S meets one of the hyperplane through A in qm−t−1 points, say H2, and all the
others in (q − 1)qm−t−2 points.

Since H2 �= H1, H2 ∩ H1 = A and S ∩ H2 ∩ H1 = ∅. So, S ∩ H2 is the support
of a second weight codewords of Rq((t + 1)(q − 1) + 1, m) which does not meet
H1. Hence, S ∩ H2 is included in one of the affine hyperplanes parallel to H.
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Furthermore, for all H′
2 hyperplane through A different from H2 and H1, S ∩ H′

2 is
the support of a minimum weight codeword of Rq((t + 1)(q − 1) + 1, m) which does
not meet H1, so it meets all affine hyperplanes parallel to H1 different from H1 in
qm−t−2 points or is included in an affine hyperplane parallel to H1. Since S ∩ H2 is
included in one of the affine hyperplanes parallel to H and all hyperplanes parallel
to H meets S in at least (q − 1)qm−t−2 points, there are only three possibilities:

1. For all H′
2 hyperplane through A, S ∩ H′

2 is included in an affine hyperplane
parallel to H.

2. For H′
2 hyperplane through A different from H2 and H1, S ∩ H′

2 meets all affine
hyperplanes parallel to H different from H1 in qm−t−2 points.

3. There is q hyperplanes through A such that their intersection with S is included
in an affine hyperplane parallel to H and one hyperplane through A which meets
all hyperplanes parallel to H but H1 in qm−t−2.

In the two first cases, if S ∩ H2 is not included in H′ parallel to H, #(S ∩ H′) = (q −
1)qm−t−2 and S ∩ H′ is the support of a minimum weight codewords of Rq((t + 1)(q −
1) + 1, m). So S ∩ H′ is included in an affine subspace of codimension t + 1. Then,
necessarily, S ∩ H2 is included in H. For all H′ parallel to H but H, #(S ∩ H′) =
(q − 1)qm−t−2. In the third case, for all H′ hyperplane parallel to H different from
H1 which does not contain S ∩ H2, #(S ∩ H′) = qm−t−1. So S ∩ H′ is the support of a
second weight codeword of Rq((t + 1)(q − 1) + 1, m) and is an affine subspace of di-
mension m − t − 1. Then, S ∩ H2 ⊂ H and #(S ∩ H) = qm−t−2 + qm−t−1, #(S ∩ H1) =
(q − 1)qm−t−2. So if we are in the last case for reason of cardinality, for all A′ affine
subspace of codimension 2 included in H1 such that A′ meets the affine subspace
of codimension t + 1 which contains S ∩ H1 in the affine subspace of codimension
t + 2 which does not meet S we are also in case 3. Then S is the union of affine
subspaces of dimension m − t − 2 which are a translation of the affine subspace of
codimension t + 2 which does not meet S in S ∩ H1. Then, since S ∩ H2 is the support
of a second weight codeword of Rq((t + 1)(q − 1) + 1, m), it is an affine subspace
of dimension m − t − 1. So S ∩ H is the union of an affine subspace of dimension
m − t − 1 and an affine subspace of dimension m − t − 2. Since S is the union of
affine subspaces of dimension m − t − 2 which are a translation of an affine subspace
of codimension t + 2, there exists B an affine subspace of codimension 2 such that
B does not meet S and S ∩ H is not included in an affine subspace of codimension
2 parallel to B. Now, we consider all affine hyperplanes through B. Assume there
exists G an affine hyperplane through B which does not meet S. Then, S is included
in an affine hyperplane parallel to G which is absurd by construction of B. So, S
meets all hyperplanes through B and there exists G1 hyperplane through B such that
#(S ∩ G1) = qm−t−1 and for all G through B but G1, #(S ∩ G) = (q − 1)qm−t−2 which
is absurd since #(S ∩ H) = qm−t−1 + qm−t−2. Finally, we are in case 1 or 2.

By applying an affine transformation, we can assume x1 = 0 is an equation of H.
Now, consider g the function defined by

∀x = (x1, . . . , xm) ∈ F
m
q g(x) = x1 f (x).

Then deg(g) ≤ t(q − 1) + 2 and |g| = (q − 1)2qm−t−2. So, g is a second weight code-
word of Rq(t(q − 1) + 2, m) and by Theorem 9, the support of g is included in an
affine subspace of codimension t.
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Let H3 be an affine hyperplane containing the support of g but not S. Then, #(S ∩
H3) ≥ (q − 1)2qm−t−2. Furthermore, since S �⊂ H3, S meets all affine hyperplanes
parallel to H3 in at least (q − 1)qm−t−2. Finally,

#S ≥ 2(q − 1)2qm−t−2 > qm−t.

We get a contradiction. So S is included in an affine subspace of codimension t.
For reason of cardinality, S is an affine subspace of codimension t. �

7.2 Case where q = 3, proof of Theorem 5

Lemma 13 Let m ≥ 2, 0 ≤ t ≤ m − 2, f ∈ R3(2t + 1, m) such that | f | = 8.3m−t−2. If
H is an af f ine hyperplane of F

m
q such that S ∩ H �= ∅ and S ∩ H �= S then either

S meets two hyperplanes parallel to H in 4.3m−t−2points or S meets all af f ine
hyperplanes parallel to H.

Proof By applying an affine transformation, we can assume x1 = 0 is an equation
of H. We denote by Ha the affine hyperplanes parallel to H of equation x1 = a,
a ∈ Fq. Let I := {a ∈ Fq : S ∩ Ha = ∅} and k := #I. Since S ∩ H �= ∅ and S ∩ H �= S,
k ≤ q − 2 = 1. Assume k = 1. For all c �∈ I we define

∀x = (x1, . . . , xm) ∈ F
m
q , fc(x) = f (x)

∏

a �∈I,a �=c

(x1 − a).

Then deg( fc) = (t + 1)2 and | fc| ≥ 3m−t−1. Assume there exists H′ an affine hyper-
plane parallel to H such that #(S ∩ H′) = 3m−t−1 and S ∩ H′ is the support of a
minimal weight codeword of R3(2(t + 1), m). Then consider A an affine subspace
of codimension 2 included in H′ containing S ∩ H′ and A′ an affine subspace
of codimension 2 included in H′ parallel to A. We denote by k the number of
hyperplanes through A which meet S and by k′ the number of affine hyperplanes
through A′ which meet S in 3m−t−1 points. Then

k′3m−t−1 + (k − k′)4.3m−t−2 ≤ 8.3m−t−2.

Since #S > #(S ∩ H′) and k′ ≤ k, we get k = 2. Then, if we denote by H′′ the other
hyperplane parallel to H′ which meets S, S ∩ H′′ is included in an affine subspace
of codimension 2 which is a translation of A. By applying this argument to all affine
subspaces of codimension 2 included in H′ and containing S ∩ H′, we get that S ∩ H′′
is included in a an affine subspace of dimension m − t − 1. For reason of cardinality
this is absurd. If | fc| > 3m−t−1 then | fc| ≥ 4.3m−t−2. For reason of cardinality, we have
the result. �

Now, we prove Proposition 5.

– First, we prove the case where t = 1. Obviously, S is included in an affine
subspace of dimension m. Assume S meets all affine hyperplanes of F

m
q . Then

for all H′ affine hyperplane of F
m
q , #(S ∩ H′) ≥ 2.3m−3 and by Lemma 2, there

exists H an affine hyperplane such that

#(S ∩ H) = 2.3m−3.
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Then S ∩ H is the support of a minimum weight codeword of R3(5, m). So it is
the union of P1, P2 2 parallel affine subspaces of dimension m − 3 included in an
affine subspace of dimension m − 2. Let A be an affine subspace of codimension
2 included in H, containing P1 and different from the affine subspace of
codimension 2 containing S ∩ H. Then there exists A′ an affine hyperplane of
codimension 2 included in H parallel to A which does not meet S. We denote by
k the number of affine hyperplanes through A′ which meet S in 2.3m−3 points.
Then, if m ≥ 4,

k2.3m−3 + (4 − k)8.3m−4 ≤ 8.3m−3

which means that k ≥ 4. If m = 3, 2k + (4 − k)3 ≤ 8 which also means that
k ≥ 4. Then for all H′ hyperplane through A different from H, S ∩ H′ is a
minimal weight codeword of R3(5, m) which does not meet H and either S ∩ H′
is included in one of the hyperplanes parallel to H or S ∩ H′ meets the two
hyperplanes parallel to H different from H. In all cases, S is the union of eight
affine subspace of dimension m − 3. By applying this argument to all affine
subspaces of codimension 2 included in H, containing P1 and different from the
affine subspace of codimension 2 containing S ∩ H, we get that these 8 affine
subspaces are a translation of P1.
Choose H1 one of the hyperplanes through A′ and consider H2 and H3 the
two hyperplanes parallel to H1. Since #(S ∩ H1) = 2.3m−3 and S meets all
hyperplanes in at least 2.3m−3 points, either #(S ∩ H2) = 3.3m−3 and #(S ∩ H3) =
3.3m−3 or #(S ∩ H2) = 2.3m−3 and #(S ∩ H3) = 4.3m−3.
First consider the case where #(S ∩ H2) = 3.3m−3 and #(S ∩ H3) = 3.3m−3. Then
there exists an affine subspace of codimension 2 in H2 which does not meet S.
We denote by k′ the number of hyperplanes through A which meet S in 2.3m−3

points. Then , we have k′ ≥ 4 which is absurd since #(S ∩ H2) = 3.3m−3.
Now, consider the case where #(S ∩ H2) = 2.3m−3 and #(S ∩ H3) = 4.3m−3. By
applying an affine transformation, we can assume x1 = 0 is an equation of H3.
Then x1. f is a codeword of R3(4, m) and |x1. f | = 4.3m−3. So, by Theorem 10,
its support is included in an affine hyperplane H′

1 and S ∩ H′
1 ∩ H3 = ∅. So S

is included H′
1 and H3 and there exists an affine hyperplane through H′

1 ∩ H3

which does not meet S which is absurd.
Finally there exists an affine hyperplane G1 which does not meet S. So, by
Lemma 13, S meets G2 and G3 the two hyperplanes parallel to G1 in 4.3m−3

points. Then, Theorem 10, G2 \ S and G3 \ S are the union of two non parallel
affine subspaces of codimension 2. Consider A one of the affine subspaces
of codimension 2 in G2 \ S. Assume all hyperplanes through A meet S. So
for all G′ hyperplane through A, #(G′ \ S) ≤ 7.3m−3. Furthermore, one of the
hyperplanes through A, say G, meets G3 \ S in at least 2.3m−3, then #(G \ S) ≥
2.3m−2 + 2.3m−3 which is absurd (see Fig. 12). So there exists G′ through A which
does not meet S. By applying the same argument to the other affine subspace of
dimension 2 of G2 \ S, we get the result for t = 1.

– We prove by recursion on t that S is included in an affine subspace of dimension
m − t + 1. Consider first the case where t = m − 2. If m = 3 then t = 1 and we
have already considered this case. Assume m ≥ 4. Let f ∈ R3(2(m − 2) + 1, m)

such that | f | = 8. Assume S is not included in an affine subspace of dimension
3. Let w1, w2, w3, w4 be 4 points of S which are not included in a plane. Since
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Fig. 12 Proposition 5, case
where t = 1

G2 G1 G3

•

• •

•

S is not included in an affine subspace of dimension 3, there exists H an affine
hyperplane such that H contains w1, w2, w3, w4 but S is not included in H. Then
by Lemma 13 either S meets two hyperplanes parallel to H in 4 points or S meets
all hyperplanes parallel to H.
If S meets two hyperplanes parallel to H then S ∩ H is the support of a second
weight codeword of R3(2(m − 1), m) so is included in a plane which is absurd
since w1, w2, w3, w4 ∈ S ∩ H. So S meets all hyperplanes parallel to H and for
all H′ hyperplane parallel to H, #(S ∩ H′) ≥ 2. Since #S = 8 and #(S ∩ H) ≥
4, for all H′ hyperplane parallel to H different from H #(S ∩ H′) = 2 and
#(S ∩ H) = 4.
By applying an affine transformation, we can assume x1 = 0 is an equation of H.
Then x1. f ∈ R3(2(m − 1), m) and |x1. f | = 4 so x1. f is a second weight codeword
of R3(2(m − 1), m) and its support is included in a plane P not included in H. Let
H′ be an affine hyperplane which contains P and a point of (S ∩ H) \ P but not
all the points of S ∩ H. Then, #(S ∩ H′) ≥ 5 and S ∩ H′ �= S. By applying the
same argument to H′ than to H we get a contradiction for reason of cardinality.

– If m ≤ 4, we have already considered all the possible values for t. Assume m ≥ 5.
Let 2 ≤ t ≤ m − 3. Assume if f ∈ R3(2(t + 1) + 1, m) is such that | f | = 8.3m−t−3

then its support is included in an affine subspace of dimension m − t. Let f ∈
R3(2t + 1, m) such that | f | = 8.3m−t−2 and denote by S its support. Assume S
is not included in an affine subspace of dimension m − t + 1. Then, there exists
H an affine hyperplane such that S ∩ H �= S and S ∩ H is not included in an
affine subspace of dimension m − t. So, by Lemma 13, either S meets two affine
hyperplanes parallel to H in 4.3m−t−2 points or S meets all affine hyperplanes
parallel to H.
If S meets two affine hyperplanes in 4.3m−t−2 points, S ∩ H is the support of a
second weight codeword of R3(2(t + 1), m) and is included in an affine subspace
of dimension m − t which is absurd. So S meets all affine hyperplanes parallel to
H and for all H′ hyperplane parallel to H,

#(S ∩ H′) ≥ 2.3m−t−2.

Assume for all H′ parallel to H, #(S ∩ H′) > 2.3m−t−2. Then, for reason of
cardinality #(S ∩ H) = 8.3m−t−3 and S ∩ H is the support of a second weight
codeword of R3(2(t + 1) + 1, m) which is absurd since S ∩ H is not included in
an affine subspace of dimension m − t. So there exists H1 parallel to H such that
#(S ∩ H1) = 2.3m−t−2 and S ∩ H1 is the support of a minimal weight codeword of
R3(2(t + 1) + 1, m) so S ∩ H1 is the union of P1 and P2 2 parallel affine subspaces
of dimension m − t − 2 included in an affine subspace of dimension m − t − 1.
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Let A be an affine subspace of codimension 2 included in H1 and containing
P1 and such that A ∩ P2 = ∅. Let A′ be an affine subspace of codimension 2
included in H1 parallel to A which does not meet S. Assume there exists H′

1
an affine hyperplane through A′ which does not meet S. Then, S meets H′

2 and
H′

3 the two hyperplanes parallel to H′
1 different from H′

1 in 4.3m−t−2 points. For
example, we can assume A ⊂ H′

2. Then, S ∩ H′
3 is the support of a second weight

codeword of R3(2(t + 1), m). So S ∩ H′
3 meets H in 0, 3m−t−2, 2.3m−t−2 or 4.3m−t−2

points. Since S meets all hyperplanes parallel to H in at least 2.3m−t−2 points, if

#(S ∩ H ∩ H′
3) = 4.3m−t−2,

S ∩ H ∩ H′
2 = ∅. So S ∩ H is included in an affine subspace of dimension m − t

which is absurd. So S ∩ H′
2 and S ∩ H′

3 are the support of second weight code-
words of R3(2(t + 1), m) not included in H, then their intersection with H is the
union of at most two disjoint affine subspaces of dimension m − t − 2.
Now assume S meets all hyperplanes through A′. We denote by k the number of
the hyperplanes through A which meet S in 2.3m−t−2 points. Then

k2.3m−t−2 + (4 − k)8.3m−t−3 ≤ 8.3m−t−2

which means that k ≥ 4. So for all H′ affine hyperplane through A′ different from
H1, S ∩ H′ is the support of minimum weight codeword of R3(2(t + 1) + 1, m)

which does not meet H1. So either S ∩ H′ is included in H or S ∩ H′ meets S in
an affine subspace of dimension m − t − 2. In both cases , S ∩ H is the union of
at most four disjoint affine subspaces of dimension m − t − 2. By applying this
argument to all affine subspaces of dimension 2 included in H1 containing P1

but not P2, we get that S ∩ H is the union of four affine subspaces of dimension
m − t − 2 which are a translation of P1. This gives a contradiction since S ∩ H
is not included in an affine subspace of dimension m − t. So S is included in an
affine subspace of dimension m − t + 1.

– Let f ∈ R3(2t + 1, m) such that | f | = 8.3m−t−2 and A the affine subspace of
dimension m − t + 1 containing S. By applying an affine transformation, we can
assume

A := {(x1, . . . , xm) ∈ F
m
q : x1 = . . . = xt−1 = 0}.

Let g ∈ B3
m−t+1 defined for all x = (xt, . . . , xm) ∈ F

m−t+1
3 by

g(x) = f (0, . . . , 0, xt, . . . , xm)

and denote by P ∈ F3[Xt, . . . , Xm] its reduced form. Since

∀x = (x1, . . . , xm) ∈ F
m
3 , f (x) = (

1 − x2
1

)
. . .

(
1 − x2

t−1

)
P(xt, . . . , xm),

the reduced form of f ∈ R3(t(q − 1) + s, m) is

(
1 − X2

1

)
. . .

(
1 − X2

t−1

)
P(Xt, . . . , Xm).

Then g ∈ R3(3, m − t + 1) and |g| = | f | = 8.3m−t−2. Thus, using the case where
t = 1, we finish the proof of Proposition 5.
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Appendix: Blocking sets

Blocking sets have been studied by Erickson in [8] in the case of affine planes and by
Bruen in [3–5] in the case of projective planes.

Definition 1 Let S be a subset of the affine space F2
q. We say that S is a blocking set

of order n of F
2
q if for all line L in F

2
q, #(S ∩ L) ≥ n and #((F2

q \ S) ∩ L) ≥ n.

Proposition 10 (Lemma 4.2 in [8]) Let q ≥ 3, 1 ≤ b ≤ q − 1 and f ∈ Rq(b , 2). If f
has no linear factor and | f | ≤ (q − b + 1)(q − 1), then the support of f is a blocking
set of order (q − b ) of F2

q.

In [8] Erickson make the following conjecture. It has been proved by Bruen in [5].

Theorem 13 (Conjecture 4.14 in [8]) If S is a blocking set of order n in F2
q, then #S ≥

nq + q − n.
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