Second weight codewords of generalized Reed-Muller codes

Elodie Leducq

Received: 4 December 2012 / Accepted: 12 May 2013 / Published online: 5 June 2013 © Springer Science+Business Media New York 2013

Abstract Recently, the second weight of generalized Reed-Muller codes have been determined (Erickson [1974;](#page-35-0) Bruen [2010;](#page-35-0) Geil, Des. Codes Cryptogr. 48(3):323–330, [2008;](#page-35-0) Rolland, Cryptogr. Commun. 2(1):19–40, [2010\)](#page-35-0). In this paper, we give the second weight codewords of the generalized Reed-Muller codes.

Keywords Generalized Reed-Muller codes**·** Second weight codewords**·** Hyperplane **·** Affine geometry

Mathematics Subject Classifications (2010) 11-T-71

1 Introduction

In this paper, we want to characterize the second weight codewords of generalized Reed-Muller codes.

We first introduce some notations:

Let *p* be a prime number, *n* a positive integer, $q = p^n$ and \mathbb{F}_q a finite field with *q* elements.

If *m* is a positive integer, we denote by B_m^q the \mathbb{F}_q -algebra of the functions from \mathbb{F}_q^m to \mathbb{F}_q and by $\mathbb{F}_q[X_1,\ldots,X_m]$ the \mathbb{F}_q -algebra of polynomials in *m* variables with coefficients in \mathbb{F}_q .

We consider the morphism of \mathbb{F}_q -algebras $\varphi : \mathbb{F}_q[X_1, \ldots, X_m] \to B_m^q$ which associates to $P \in \mathbb{F}_q[X_1, \ldots, X_m]$ the function $f \in B_m^q$ such that

$$
\forall x=(x_1,\ldots,x_m)\in\mathbb{F}_q^m,\,f(x)=P(x_1,\ldots,x_m).
$$

The morphism φ is onto and its kernel is the ideal generated by the polynomials X_1^q − *X*₁,..., X_m^q − *X_m*. So, for each $f \in B_m^q$, there exists a unique polynomial *P* ∈

E. Leducq (\boxtimes)

Institut de Mathématiques de Jussieu, 175 rue du Chevaleret, 75013 Paris, France e-mail: elodieleducq@math.jussieu.fr

 $\mathbb{F}_q[X_1,\ldots,X_m]$ such that the degree of *P* in each variable is at most $q-1$ and $\varphi(P)=$ *f*. We say that *P* is the reduced form of *f* and we define the degree deg(f) of *f* as the degree of its reduced form. The support of *f* is the set $\{x \in \mathbb{F}_q^m : f(x) \neq 0\}$ and we denote by | *f*| the cardinal of its support (by identifying canonically B_m^q and $\mathbb{F}_q^{q^m}$, | *f*| is actually the Hamming weight of *f*).

For $0 \le r \le m(q-1)$, the *r*th order generalized Reed-Muller code of length q^m is

$$
R_q(r, m) := \{ f \in B_m^q : \deg(f) \le r \}.
$$

For $1 \le r \le m(q-1) - 2$, the automorphism group of generalized Reed-Muller codes $R_q(r, m)$ is the affine group of \mathbb{F}_q^m (see [\[2\]](#page-35-0)).

For more results on generalized Reed-Muller codes, we refer to [\[7](#page-35-0)].

In the following of the article, we write $r = t(q - 1) + s$, $0 \le t \le m - 1$, $0 \le s \le$ $q - 2$.

In [\[10\]](#page-35-0), interpreting generalized Reed-Muller codes in terms of BCH codes, it is proved that the minimal weight of the generalized Reed-Muller code $R_q(r, m)$ is $(q - s)q^{m-t-1}$.

The following theorem gives the minimum weight codewords of generalized Reed-Muller codes and is proved in [\[7\]](#page-35-0) (see also [\[12\]](#page-35-0)).

Theorem 1 *Let* $r = t(q-1) + s < m(q-1)$, $0 \le s \le q-2$. The minimal weight code*words of* $R_q(r, m)$ *are codewords whose support is the union of* $(q - s)$ *distinct parallel af fine subspaces of codimension t* + 1 *included in an af fine subspace of codimension t.*

In his Ph.D thesis [\[8\]](#page-35-0), Erickson proves that if we know the second weight of $R_q(s, 2)$, then we know the second weight for all generalized Reed-Muller codes. From a conjecture on blocking sets, Erickson conjectures that the second weight of $R_q(s, 2)$ is $(q - s)q + s - 1$. Bruen proves the conjecture on blocking set in [\[5](#page-35-0)]. Geil also proves this result in [\[9](#page-35-0)] using Groebner basis. An altenative approach can be found in [\[13](#page-35-0)] where the second weight of most $R_q(r, m)$ is established without using Erickson's results.

Theorem 2 *For m* ≥ 3 *, q* ≥ 3 *and q* $\leq r \leq (m-1)(q-1)$ *the second weight* W_2 *of the generalized Reed-Muller codes Rq*(*r*, *m*) *satisfies:*

1. *if* $1 \le t \le m - 1$ *and* $s = 0$,

$$
W_2 = 2(q-1)q^{m-t-1};
$$

2. *if* $1 < t < m - 2$ *and* $s = 1$ *,*

(a) if
$$
q = 3
$$
, $W_2 = 8 \times 3^{m-t-2}$,

- (b) *if q* \geq 4*,* $W_2 = q^{m-t}$,
- 3. *if* $1 \le t \le m 2$ *and* $2 \le s \le q 2$ *,*

$$
W_2 = (q - s + 1)(q - 1)q^{m-t-2}.
$$

In [\[6\]](#page-35-0), Cherdieu and Rolland prove that the codewords of $R_q(s, m)$ of weight $(q - s + 1)(q - 1)q^{m-2}$, $2 \le s \le q - 2$, which are the product of *s* polynomials of degree 1 are of the following form.

Theorem 3 *Let* $m \ge 2$, $2 \le s \le q - 2$ *and* $f \in R_q(s, m)$ *such that* $|f| = (q - s + 1)$ $1)(q-1)q^{m-2}$; we denote by S the support of f. Assume f is the product of s poly*nomials of degree 1 then either S is the union of q* − *s* + 1 *parallel af fine hyperplanes minus their intersection with an af fine hyperplane which is not parallel or S is the union of* (*q* − *s* + 1) *af fine hyperplanes which meet in a common af fine subspace of codimension* 2 *minus this intersection.*

In [\[14\]](#page-35-0), Sboui proves that the only codewords of $R_q(s, m)$, $2 \le s \le \frac{q}{2}$ whose weight is $(q - s + 1)(q - 1)q^{m-2}$ are these codewords. The case where $q = 2$ is proved in [\[11\]](#page-35-0). In [\[1](#page-35-0)], Ballet and Rolland prove that a codeword with an irreducible but not absolutely irreducible factor of degree greater than 1 over \mathbb{F}_q is not a second weight codeword.

All the results proved in this paper are summarized in Section 2 and their proofs are in the following sections.

2 Results

2.1 Description of second weight codewords of generalized Reed-Muller codes

The following theorems and propositions describe the second weight codewords of generalized Reed-Muller code $R_q(r, m)$ for $q \ge 3, m \ge 2$, and $1 \le r \le m(q - 1) - 1$. We recall that we write $r = t(q - 1) + s$ where $0 \le t \le m - 1$ and $0 \le s \le q - 2$.

2.1.1 Case where $t = m - 1$ and $s \neq 0$

Theorem 4 *Let* $m \geq 2$, $q \geq 5$, $1 \leq s \leq q-4$ *. Up to affine transformation, the second weight codewords of* $R_q((m-1)(q-1) + s, m)$ *are of the form*

$$
\forall x = (x_1, \dots, x_m) \in \mathbb{F}_q^m \quad f(x) = \alpha \prod_{i=1}^{m-1} \left(1 - x_i^{q-1} \right) \prod_{j=1}^{s-1} (x_m - b_j)
$$

where $\alpha \in \mathbb{F}_q^*$ *and* $b_j \in \mathbb{F}_q$ *are such that if* $j \neq k$, $b_j \neq b_k$.

Proposition 1 *Let* $m \geq 2$ *and* $q \geq 4$ *. Up to affine transformation, the second weight codewords of* $R_q((m-1)(q-1)+q-3, m)$ *are either of the form*

$$
\forall x = (x_1, \dots, x_m) \in \mathbb{F}_q^m \quad f(x) = \alpha \prod_{i=1}^{m-1} \left(1 - x_i^{q-1} \right) \prod_{i=1}^{q-4} (x_m - b_i)
$$

 \forall *where* $\alpha \in \mathbb{F}_q^*$ *and* $b_j \in \mathbb{F}_q$ *are such that if* $j \neq k$, $b_j \neq b_k$ *or*

$$
\forall x = (x_1, \dots, x_m) \in \mathbb{F}_q^m \quad f(x) = \alpha \prod_{i=1}^{m-2} \left(1 - x_i^{q-1}\right) \prod_{i=1}^{q-1} (a_i x_{m-1} + b_i x_m) \prod_{i=1}^{q-3} (x_m - c_i)
$$

 \mathcal{D} Springer

 $where \alpha \in \mathbb{F}_q^*, (a_j, b_j) \in \mathbb{F}_q^2 \setminus \{(0, 0)\}$ and $c_j \in \mathbb{F}_q^*$ are such that if $j \neq k$ $c_j \neq c_k$ or of the *form* $\forall x = (x_1, \ldots, x_m) \in \mathbb{F}_q^m$

$$
f(x) = \alpha \prod_{i=1}^{m-2} \left(1 - x_i^{q-1} \right) \prod_{i=1}^{q-1} (a_i x_{m-1} + b_i x_m) \prod_{i=1}^{q-4} (x_m - c_i) (ax_{m-1} + bx_m + c)
$$

 $where \alpha \in \mathbb{F}_{q}^{*}, (a_j, b_j) \in \mathbb{F}_{q}^{2} \setminus \{(0, 0)\}, c_j \in \mathbb{F}_{q}^{*}$ are such that if $j \neq k c_j \neq c_k$ and $a \in \mathbb{F}_{q}^{*}$ $b \in \mathbb{F}_q, c \in \mathbb{F}_q^*$

Proposition 2 *Let* $m \geq 2$ *and* $q \geq 3$ *. If* $q \geq 3$ *, up to affine transformation, the second weight codewords of* $R_q((m-1)(q-1)+q-2, m)$ *are of the form* $\forall x =$ $(x_1, \ldots, x_m) \in \mathbb{F}_q^m$

$$
f(x) = \alpha \prod_{i=1}^{m-2} \left(1 - x_i^{q-1}\right) \prod_{i=1}^{q-2} (x_{m-1} - b_i) \prod_{i=1}^{q-2} (x_m - c_i)(ax_{m-1} + bx_m + c)
$$

 $where \alpha \in \mathbb{F}_q^*, a \in \mathbb{F}_q^*, b \in \mathbb{F}_q^*, c \in \mathbb{F}_q and b_j \in \mathbb{F}_q, c_j \in \mathbb{F}_q are such that if j \neq k, b_j \neq j$ b_k *and* $c_j \neq c_k$

2.1.2 Case where $0 \le t \le m - 2$ *and* $2 \le s \le q - 2$

Theorem 5 *Let* $q \ge 4$ *,* $m \ge 2$ *,* $0 \le t \le m-2$ *,* $2 \le s \le q-2$ *. Up to affine transformation, the second weight codewords of* $R_a(t(q-1) + s, m)$ *are either of the form*

$$
\forall x = (x_1, \dots, x_m) \in \mathbb{F}_q^m \quad f(x) = \alpha \prod_{i=1}^t \left(1 - x_i^{q-1}\right) \prod_{j=1}^{s-1} (x_{t+1} - b_j)(x_{t+2} - c)
$$

 $where \alpha \in \mathbb{F}_q^*, b_j \in \mathbb{F}_q$ are such that if $j \neq k$, $b_j \neq b_k$ and $c \in \mathbb{F}_q$ or of the form

$$
\forall x = (x_1, \ldots, x_m) \in \mathbb{F}_q^m \quad f(x) = \alpha \prod_{i=1}^t \left(1 - x_i^{q-1}\right) \prod_{j=1}^s (a_j x_{t+1} + b_j x_{t+2} + c_j)
$$

 $where \alpha \in \mathbb{F}_q^*$ and $(a_j, b_j) \in \mathbb{F}_q^2 \setminus \{(0, 0)\}, c_j \in \mathbb{F}_q$ such that

$$
A = \bigcap_{j=1}^{s} \{ (x_{t+1}, x_{t+2}, \dots, x_m) : a_j x_{t+1} + b_j x_{t+2} + c_j = 0 \} \neq \emptyset
$$

and $dim(A) = m - t - 2$.

2.1.3 Case where $s = 0$

Theorem 6 *Let* $m \geq 2$, $q \geq 3$, $1 \leq t \leq m-1$. Up to affine transformation, the second *weight codewords of Rq*(*t*(*q* − 1), *m*) *are either of the form*

$$
\forall x = (x_1, \dots, x_m) \in \mathbb{F}_q^m \quad f(x) = \alpha \prod_{i=1}^{t-1} \left(1 - x_i^{q-1}\right) \prod_{j=1}^{q-2} (x_t - b_j)(x_{t+1} - c)
$$

 $where \alpha \in \mathbb{F}_{q}^{*}, b_{j} \in \mathbb{F}_{q}$ are such that if $j \neq k$, $b_{j} \neq b_{k}$ and $c \in \mathbb{F}_{q}$ or of the form

$$
\forall x = (x_1, \dots, x_m) \in \mathbb{F}_q^m \quad f(x) = \alpha \prod_{i=1}^{t-1} \left(1 - x_i^{q-1} \right) \prod_{j=1}^{q-1} (a_j x_t + b_j x_{t+1} + c_j)
$$

 $where \alpha \in \mathbb{F}_q^*$ and $(a_j, b_j) \in \mathbb{F}_q^2 \setminus \{(0, 0)\}, c_j \in \mathbb{F}_q$ such that

$$
A = \bigcap_{j=1}^{q-1} \{ (x_t, x_{t+1}, \dots, x_m) : a_j x_t + b_j x_{t+1} + c_j = 0 \} \neq \emptyset
$$

and $dim(A) = m - t - 1$.

2.1.4 Case where $0 \le t \le m - 2$ *and* $s = 1$

Theorem 7 *Let* $q \geq 4$ *,* $m \geq 1$ *,* $0 \leq t \leq m-1$ *. Up to affine transformation, the second weight codewords of* $R_a(t(q-1)+1, m)$ *are of the form*

$$
\forall x = (x_1, ..., x_m) \in \mathbb{F}_q^m
$$
 $f(x) = \alpha \prod_{i=1}^t (1 - x_i^{q-1})$

where $\alpha \in \mathbb{F}_q^*$.

Proposition 3 *Let* $m \geq 3$, $q = 3$, $1 \leq t \leq m - 2$. Up to affine transformation, the *second weight codewords of* $R_3(2t + 1, m)$ *are of the form*

$$
\forall x = (x_1, \ldots, x_m) \in \mathbb{F}_q^m \quad f(x) = \alpha \prod_{i=1}^{t-1} (1 - x_i^2) x_t x_{t+1} x_{t+2}
$$

where $\alpha \in \mathbb{F}_3^*$.

Remark 1 For $q = 3$, in the case where $r = 1$, the second weight of $R_3(1, m)$ is 3^m and the second weight codewords are degree zero codewords.

Remark 2 From the above theorems, it follows that second weight codewords of generalized Reed-Muller codes are product of degree 1 factors.

2.2 Strategy of proof

In the following, except when another affine space is specified, a hyperplane or a subspace is, respectively, an affine hyperplane or an affine subspace of \mathbb{F}_q^m .

It is easy to verify that the codewords described above are second weight codewords. Using the following lemma and its corollary from [\[7\]](#page-35-0), we deduce that these codewords are exactly the second weight codewords from the results on the structure of the support of second weight codewords below.

Lemma 1 *Let* $m \ge 1$, $q \ge 2$, $f \in B_m^q$ *and* $a \in \mathbb{F}_q$. If for all $(x_2, ..., x_m)$ *in* \mathbb{F}_q^{m-1} , *f*(*a*, *x*₂, ..., *x_m*) = 0 *then for all* (*x*₁, ..., *x_m*) $\in \mathbb{F}_q^m$,

$$
f(x_1,\ldots,x_m)=(x_1-a)g(x_1,\ldots,x_m)
$$

 $with \deg_{x_1}(g) \leq deg_{x_1}(f) - 1.$

Corollary 1 *Let* $m \geq 1$, $q \geq 2$, $f \in B_m^q$ *and* $a \in \mathbb{F}_q$. If for all (x_1, \ldots, x_m) in \mathbb{F}_q^m such *that* $x_1 \neq a$, $f(x_1, ..., x_m) = 0$ *then for all* $(x_1, ..., x_m) \in \mathbb{F}_q^m$, $f(x_1, ..., x_m) = (1 - \frac{1}{n})$ $(x_1 - a)^{q-1}$ *g* (x_2, \ldots, x_m) .

2.2.1 Case where t = $m - 1$ *and s* $\neq 0$

Theorem 4 comes from

Theorem 8 *Let* $m \ge 2$, $q \ge 5$, $1 \le s \le q - 4$ *and* $f \in R_q((m-1)(q-1) + s, m)$ *such that* $|f| = q - s + 1$ *. Then the support of f is included in a line.*

Propositions 1 and 2 come from

Proposition 4 *Let* $m \ge 2$ *. If* $q \ge 4$ *and* $f \in R_q((m-1)(q-1) + q - 3, m)$ *such that* | *f*| = 4 *or q* ≥ 3 *and f* ∈ *Rq*((*m* − 1)(*q* − 1) + *q* − 2, *m*) *such that* | *f*| = 3*, then the support of f is included in an af fine plane.*

Indeed, in both cases, since the support of *f* is included in an affine plane, up to affine transformation, $\forall x = (x_1, ..., x_m) \in \mathbb{F}_q^m$,

$$
f(x) = \prod_{i=1}^{m-2} \left(1 - x_i^{q-1}\right) g(x_{m-1}, x_m)
$$

where $g \in R_q(u, 2), u \in \{2q - 4, 2q - 3\}.$

Consider the case of Proposition 1. If the support of *f* is included in a line then *f* is a minimum weight codeword of $R_q((m-1)(q-1)+q-4, m)$ and we get the first case of the Proposition. Assume that 3 points of the support are included in a line *L*. We denote by *A* the point of the support which is not in *L* and by *B*, *C* , *D* the 3 other points. We define a point *E* such that *ABDE* is a parallelogram.

Then considering the lines parallel to (*AB*) and those parallel to (*AD*) which do not contain any point of the support, the line parallel to (*BD*) through *E* and the line *L* and *L* (see Fig. [1\)](#page-6-0), we get that up to affine transformation *g* is of the form *q* $\mathsf \Pi$ −3 that if $j \neq k$, $b_j \neq b_k$, $c_j \neq c_k$ and $\alpha_i \in \mathbb{F}_q^*, \beta_i \in \mathbb{F}_q^*, \gamma_i \in \mathbb{F}_q$. So $f \in R_q((m-1)(q-1))$ $(x_{m-1} - b_i)$ *q* $\mathop{\Pi}\nolimits$ −3 $(x_m - c_i)$ $\prod_{i=1}^{3} (\alpha_i x_{m-1} + \beta_i x_m + \gamma_i)$ where $b_i \in \mathbb{F}_q$, $c_i \in \mathbb{F}_q$ are such $+q-2, m$ and this case is not possible.

In the other cases, the four points of the support form a quadrilateral, we denote by *M* the intersection of the diagonals of this quadrilateral. By applying an affine transformation, we can assume that $M = (0, 0)$.

If at least two of the edges of this quadrilateral are parallel, considering all the lines through *M* which do not contain any point of the support and all the lines parallel to

these edges which contain neither *M* nor any point of the support, we get that *f* is of the second form in Proposition 1.

In the last case, we denote by *A*, *B*, *C*, *D* the vertices of the quadrilateral and by C' (respectively D') the intersection of the diagonal (BD) (respectively (AC)) with the line parallel to (AB) through *C* (respectively *D*). Then considering all the lines through *M* which do not contain any point of the support, all the lines parallel to (AB) which do not contain any point of the support and the line $(C'D')$, we get that *f* is of the third form in Proposition 1.

Consider now the case of Proposition 2. Denote by *A*, *B*, *C* the 3 points of the support and define *D* a point such that *ABCD* is a parallelogram. Considering the line through *D* parallel to (AC) we get that *f* is of the form described in the Proposition.

2.2.2 Case where $0 \le t \le m - 2$ and $2 \le s \le q - 2$

Theorem 5 comes from

Theorem 9 *Let* $q \geq 4$ *,* $m \geq 2$ *,* $0 \leq t \leq m-2$ *,* $2 \leq s \leq q-2$ *. The second weight codewords of R_a*($t(q - 1) + s$, *m*) *are codewords whose support S is included in an affine subspace of codimension t and either S is the union of* $q - s + 1$ *parallel affine* $subspaces of codimension t+1 minus their intersection with an affine subspace$ *of codimension t* + 1 *which is not parallel or S is the union of* $(q - s + 1)$ *affine subspaces of codimension t* $+1$ *which meet in an affine subspace of codimension t* $+2$ *minus this intersection (see Fig.* [2](#page-7-0)*).*

2.2.3 Case where $s = 0$

Theorem 6 comes from:

Theorem 10 *Let* $m \geq 2$, $q \geq 3$, $1 \leq t \leq m-1$. The second weight codewords of $R_q(t(q-1), m)$ *are codewords whose support S is included in an affine subspace of codimension t* − 1 *and either S is the union of* 2 *parallel af fine subspaces of codimension t minus their intersection with an af fine subspace of codimension t which is not parallel or S is the union of two non parallel af fine subspaces of codimension t minus their intersection.*

2.2.4 Case where $0 \le t \le m - 2$ *and* $s = 1$

Theorem 7 comes from

Theorem 11 *For q* ≥ 4*, m* ≥ 1*,* 0 ≤ *t* ≤ *m* − 1*, if* $f \text{ } \in R_a(t(q-1) + 1, m)$ *is such that* $|f| = q^{m-t}$, the support of f is an affine subspace of codimension t.

Proposition 3 comes from

Proposition 5 *Let* $m \geq 3$, $q = 3$, $1 \leq t \leq m - 2$ *and* $f \in R_3(2t + 1, m)$ *such that* $|f| =$ 8.3*m*−*t*−²*. We denote by S the support of f. Then S is included in A an af fine subspace of dimension m* − *t* + 1*, S is the union of two parallel hyperplanes of A minus their intersection with two non parallel hyperplanes of A (see Fig.* 3*).*

3 A preliminary lemma

Lemma 2 *Let* $q \geq 3$ *,* $m \geq 3$ *, and S be a set of points of* \mathbb{F}_q^m *such that* $\#S = u.q^n < q^m$ *, with u* \neq 0 mod *q. Assume for all hyperplanes H either* $\#(S \cap H) = 0$ *or* $\#(S \cap H) =$ *v*.*q*^{*n*−1}, *v* < *u* or #($S \cap H$) ≥ *u*.*q*^{*n*−1} *Then there exists H* an affine hyperplane such that *S* does not meet *H* or such that $\#(S \cap H) = vq^{n-1}$.

Proof Assume for all *H* hyperplane, $S \cap H \neq \emptyset$ and $\#(S \cap H) \neq vq^{n-1}$. Consider an affine hyperplane *H*; then for all *H'* hyperplane parallel to *H*, $\#(S \cap H') \ge u.q^{n-1}$.

Since $u.q^n = #S = \sum$ *H* //*H* $\#(S \cap H')$, we get that for all *H* hyperplane, $\#(S \cap H)$ =

 $u.q^{n-1}$.

Now consider *A* an affine subspace of codimension 2 and the $(q + 1)$ hyperplanes through *A*. These hyperplanes intersect only in *A* and their union is equal to \mathbb{F}_q^m . So

$$
uq^{n} = #S = (q + 1)u.q^{n-1} - q#(S \cap A).
$$

Finally we get a contradiction if *n* = 1. Otherwise, $\#(S \cap A) = u.q^{n-2}$. Iterating this argument, we get that for all *A* affine subspace of codimension $k \le n$, $\#(S \cap A) =$ $u.q^{n-k}$.

Let *A* be an affine subspace of codimension $n + 1$ and A' an affine subspace of codimension $n-1$ containing A. We consider the $(q+1)$ affine subspace of codimension n containing A and included in A' , then

$$
u.q = \#(S \cap A') = (q+1)u - q\#(S \cap A)
$$

which is absurd since $\#(S \cap A)$ is an integer and $u \neq 0 \mod q$. So there exists H_0 an hyperplane such that $#(S \cap H_0) = vq^{n-1}$ or *S* does not meet H_0 .

Remark 3 This lemma applies in particular when *S* is the support of a second weight codeword and vq^n is the minimal weight.

4 Case where $t = m - 1$ and $s \neq 0$

4.1 Proof of Theorem 8

We recall that *S* is the support of *f*. Let $\omega_1, \omega_2 \in S$ and *H* be an affine hyperplane containing ω_1 and ω_2 . Assume $S \cap H \neq S$. We have $\#S = q - s + 1 \leq q$ and $\omega_1, \omega_2 \in$ *S* ∩ *H*, so there exists an affine hyperplane parallel to *H* which does not meet *S*. Since the affine group is the automorphism group of generalized Reed-Muller codes, we can apply an affine transformation without changing the weight of a codeword. So, we can assume $x_1 = 0$ is an equation of *H* and we denote by H_a the affine hyperplane parallel to *H* of equation $x_1 = a$, $a \in \mathbb{F}_q$. Let $I := \{a \in \mathbb{F}_q : S \cap H_a = \emptyset\}$ and denote by $k := #I; s \leq k \leq q - 2$. Let $c \notin I$, we define

$$
\forall x = (x_1, \ldots, x_m) \in \mathbb{F}_q^m, \ f_c(x) = f(x) \prod_{a \notin I, a \neq c} (x_1 - a)
$$

that is to say f_c is a function in B_m^q such that its support is $S \cap H_c$. Since $c \notin I$, f_c is not identically zero. Then $|f| = \sum$ *c*∈*I* $|f_c|$ and we consider two cases.

Assume $k > s$.

Then the reduced form of f_c has degree at most $(m-1)(q-1) + q - 1 + s - k$ and $|f_c| \geq k - s + 1$. Then,

$$
(q - s + 1) = |f| = \sum_{c \notin I} |f_c| \ge (q - k)(k - s + 1)
$$

 \mathcal{D} Springer

which gives

$$
1 \ge (q - 1 - k)(k - s)
$$

this is possible if and only if $k = q - 2 = s + 1$ and we get a contradiction since $s \leq q-4$.

Assume $k = s$.

Then *S* meets ($q - s - 1$) affine hyperplanes parallel to *H* in 1 point and *H* in 2 points. Consider the function *g* in B_m^q defined by

$$
\forall x = (x_1, ..., x_m) \in \mathbb{F}_q^m, \ g(x) = x_1 f(x).
$$

The reduced form of *g* has degree at most $(m - 1)(q - 1) + s + 1$ and

$$
|g| = (q - s - 1).
$$

So *g* is a minimum weight codeword of $R_q((m-1)(q-1) + s + 1, m)$ and its support is included in a line. This line is not included in H . So consider H_1 an affine hyperplane which contains this line but does not contain both ω_1 and ω_2 . Then $S \cap H_1 \neq S$ and H_1 contains at least 3 points of *S* since $s \leq q - 4$ which gives a contradiction by applying the previous argument to H_1 .

So *S* is included in all affine hyperplanes through ω_1 and ω_2 which gives the result.

4.2 Proof of Proposition 4

- If *f* ∈ $R_q((m-1)(q-1)+q-2, m)$ is such that $|f|=3$, we have the result since 3 points are always included in an affine plane.
- Assume *f* ∈ $R_q((m-1)(q-1) + q 3, m)$ is such that $|f| = 4$. By Corollary 1, there exist *a*, *b*, *c*, $d \in \mathbb{F}_q^*$ and $\omega^{(a)} = (\omega_1^{(a)}, \dots, \omega_m^{(a)})$, $\omega^{(b)} = (\omega_1^{(b)}, \dots, \omega_m^{(b)})$, $\omega^{(c)} = (\omega_1^{(c)}, \dots, \omega_m^{(c)})$, $\omega^{(d)} = (\omega_1^{(d)}, \dots, \omega_m^{(d)})$ 4 distinct points of \mathbb{F}_q^m such that $\forall x = (x_1, \ldots, x_m) \in \mathbb{F}_q^m$,

$$
f(x) = a \prod_{i=1}^{m} \left(1 - \left(x_i - \omega_i^{(a)} \right)^{q-1} \right) + b \prod_{i=1}^{m} \left(1 - \left(x_i - \omega_i^{(b)} \right)^{q-1} \right) + c \prod_{i=1}^{m} \left(1 - \left(x_i - \omega_i^{(c)} \right)^{q-1} \right) + d \prod_{i=1}^{m} \left(1 - \left(x_i - \omega_i^{(d)} \right)^{q-1} \right).
$$

So,

$$
f(x) = (-1)^{m} (a+b+c+d) \prod_{i=1}^{m} x_i^{q-1}
$$

+ $(-1)^{m-1} \sum_{i=1}^{m} \left(a\omega_i^{(a)} + b\omega_i^{(b)} + c\omega_i^{(c)} + d\omega_i^{(d)} \right) x_i^{q-2} \prod_{j \neq i} x_j^{q-1} + r$

with deg(*r*) ≤ (*m* − 1)(*q* − 1) + *q* − 3. Since $f \text{ } \in R_q((m-1)(q-1) + q - 3, m)$,

$$
\begin{cases} a+b+c+d = 0 \\ a\omega^{(a)} + b\omega^{(b)} + c\omega^{(c)} + d\omega^{(d)} = 0 \end{cases}
$$

So, $a\overrightarrow{\omega^{(d)}\omega^{(a)}} + b\overrightarrow{\omega^{(d)}\omega^{(b)}} + c\overrightarrow{\omega^{(d)}\omega^{(c)}} = \overrightarrow{0}$ which gives the result.

Remark 4 In both cases we cannot prove that the support of *f* is included in a line. Indeed,

- Let $\omega_1, \omega_2, \omega_3$ be 3 points of \mathbb{F}_q^m not included in a line. For $q \ge 3$ we can find *a*, $b \in \mathbb{F}_q^*$ such that $a + b \neq 0$. Let $f = a1_{\omega_1} + b1_{\omega_2} - (a+b)1_{\omega_3}$ where for $\omega \in \mathbb{F}_q^m$, 1_{ω} is the function from \mathbb{F}_q^m to \mathbb{F}_q such that $1_{\omega}(\omega) = 1$ and $1_{\omega}(x) = 0$ for all $x \neq \omega$. Then, since $\sum f(x) = a + b - (a + b) = 0, f \in R_q((m - 1)(q - 1) + q - 2, m)$. *x*∈F*^m q*
- Let $ω_1, ω_2, ω_3$ be 3 points of \mathbb{F}_q^m not included in a line and set

$$
\omega_4=\omega_1+\omega_2-\omega_3.
$$

Then $f = 1_{\omega_1} + 1_{\omega_2} - 1_{\omega_3} - 1_{\omega_4} \in R_q((m-1)(q-1) + q - 3, m).$

5 Case where $0 \le t \le m - 2$ and $2 \le s \le q - 2$

5.1 Case where $t = 0$

In this subsection, we write $r = a(q - 1) + b$ with $0 \le a \le m - 1$ and $0 < b \le q - 1$.

Lemma 3 *Let* $q \ge 3$ *,* $m \ge 2$, $0 \le a \le m-2$, $2 \le b \le q-1$ *and* $f \in R_q(a(q-1)+q)$ *b*, *m*) such that $|f| = (q - b + 1)(q - 1)q^{m-a-2}$; we denote by S the support of f. If *H* is an affine hyperplane of \mathbb{F}_q^m such that $S \cap H \neq \emptyset$ and $S \cap H \neq S$ then either S *meets all affine hyperplanes parallel to H or S meets q − b + 1 affine hyperplanes parallel to H in* (*q* − 1)*qm*[−]*a*−² *points or S meets q* − 1 *af fine hyperplanes parallel to H* in $(q - b + 1)q^{m-a-2}$ *points.*

Proof By applying an affine transformation, we can assume $x_1 = 0$ is an equation of *H* and consider the *q* affine hyperplanes H_w of equation $x_1 = w$, $w \in \mathbb{F}_q$, parallel to *H*. Let $I := \{w \in \mathbb{F}_q : S \cap H_w = \emptyset\}$ and denote by $k := \#I$. Assume $k \geq 1$. Since *S*∩ *H* \neq Ø and *S*∩ *H* \neq *S*, $k \leq q-2$. For all $c \in \mathbb{F}_q$, $c \notin I$, we define

$$
\forall x=(x_1,\ldots,x_n)\in\mathbb{F}_q^m, \ f_c(x)=f(x)\prod_{w\in\mathbb{F}_q,w\neq c,w\notin I}(x_1-w).
$$

Assume $b < k$.

Then $2 \le q - 1 + b - k \le q - 2$ and for all $c \notin I$, the reduced form of f_c has degree at most $a(q - 1) + q - 1 + b - k$. So $|f_c| \ge (k - b + 1)q^{m - a - 1}$. Hence

$$
(q-1)(q-b+1)q^{m-a-2} \ge (q-k)(k-b+1)q^{m-a-1}
$$

which means that $(b - k)q(q - k - 1) + b - 1 \ge 0$. However $(b - k) \le -1$ and $q - k - 1 \ge 1$ so $(b - k)q(q - k - 1) + b - 1 < 0$ which gives a contradiction. Assume $b > k$.

Then $0 \le b - k \le q - 2$ and for all $c \notin I$, the reduced form of f_c has degree at most $(a + 1)(q - 1) + b - k$. So $|f_c| \geq (q - b + k)q^{m - a - 2}$. Hence

$$
(q-1)(q-b+1)q^{m-a-2} \ge (q-k)(q-b+k)q^{m-a-2}
$$

with equality if and only if for all $c \notin I$, $|f_c| = (q - b + k)q^{m-a-2}$. Finally, we obtain that $(k-1)(k-b+1) \ge 0$ which is possible if and only if $k = 1$ or $1 \ge$

 $b - k > 0$. Now, we have to show that $k = s$ is impossible to prove the lemma. If $b = q - 1$, since $k < q - 2$, we have the result. Assume $b < q - 2$ and $b = k$. Then, for all $c \notin I$, $f_c \in R_q((a+1)(q-1), m)$. The minimum weight of $R_q((a+1)(q-1), m)$. 1)(q − 1), m) is q^{m-a-1} and its second weight is 2(q − 1) q^{m-a-2} . We denote by $N_1 := \#\{c \notin I : |f_c| = q^{m-a-1}\}\$. Since $k = b$, $N_1 \le q - b$. Furthermore, we have

$$
(q-b+1)(q-1)q^{m-a-2} \ge N_1 q^{m-a-1} + (q-b-N_1)2(q-1)q^{m-a-2}
$$

which means that $N_1 \ge \frac{(q-1)(q-b-1)}{q-2} > q-b-1$. Finally, $N_1 = q-b$ and for all $c \notin I$, $|f_c| = q^{m-a-1}$. However $(q-1)(q-b+1)q^{m-a-2} > (q-b)q^{m-a-1}$ which gives a contradiction.

Lemma 4 *For m* = 2*, q* \geq 3*,* 2 \leq *b* \leq *q* − 1*. The second weight codewords of R_a(<i>b*, 2) *are codewords of R_q*(*b*, 2) *whose support S is the union of* $q - b + 1$ *parallel lines minus their intersection with a line which is not parallel or S is the union of* $(q - b + 1)$ *lines which meet in a point minus this point.*

Proof To prove this lemma, we use some results on blocking sets proved by Erickson in [\[8](#page-35-0)] and Bruen in [\[5\]](#page-35-0). All these results are recalled in the [Appendix](#page-35-0) of this paper. By Theorem 3, which is also true for $b = q - 1$ (see [\[8](#page-35-0), Lemma 3.12]), it is sufficient to prove that $f \in R_q(b, 2)$ such that $|f| = (q - b + 1)(q - 1)$ is the product of linear factors.

Let *f* ∈ *R_q*(*b*, 2) such that $|f|$ ≤ (*q* − *b* + 1)(*q* − 1) = *q*(*q* − *b*) + *b* − 1. We denote by *S* its support. Then, *S* is not a blocking set of order $(q - b)$ of \mathbb{F}_q^2 (Theorem 13) and *f* has a linear factor (Lemma 10).

We proceed by induction on *b*. If $b = 2$ and $f \in R_a(b, 2)$ is such that $|f| \leq (q - 1)$ $b + 1$ ($q - 1$), then *f* has a linear factor and by Lemma 1 *f* is the product of two linear factors. Assume if $f \in R_q(b-1, 2)$ is such that $|f| \leq (q-b+2)(q-1)$ then *f* is a product of linear factors. Let $f \in R_q(b, 2)$ such that $|f| \leq (q - b + 1)(q - 1)$; then *f* has a linear factor. By applying an affine transformation, we can assume for all $(x, y) \in \mathbb{F}_q^2$, $f(x, y) = y \tilde{f}(x, y)$ with deg(\tilde{f}) $\leq b - 1$. So, *L* the line of equation $y = 0$ does not meet *S* the support of *f*. Since $(q - b + 1)(q - 1) > q$, *S* is not included in a line and by Lemma 3, either *S* meets $(q - b + 1)$ lines parallel to *L* in $(q - 1)$ points or *S* meets (q − 1) lines parallel to *L* in (q − *b* + 1) points.

In the first case, by Lemma 1, we can write for all $(x, y) \in \mathbb{F}_q^2$,

$$
f(x, y) = y(y - a_1) \dots (y - a_{b-2})g(x, y)
$$

where a_i , $1 \le i \le q - 2$ are $q - 2$ distinct elements of \mathbb{F}_q^* and $\deg(g) \le 1$ which gives the result.

In the second case, we denote by *a* ∈ \mathbb{F}_q the coefficient of x^{s-1} in \tilde{f} . Then for any $\lambda \in \mathbb{F}_q^*$, since *S* meets all lines parallel to *L* but *L* in $q - s + 1$ points, we get for all $x \in \mathbb{F}_q$,

$$
f(x, \lambda) = a\lambda(x - a_1(\lambda)) \dots (x - a_{b-1}(\lambda))
$$

So there exists $a_1, \ldots a_{b-1} \in \mathbb{F}_q[Y]$ of degree at most $q-1$ such that for all $(x, y) \in \mathbb{F}_q^2$,

$$
f(x, y) = ay(x - a_1(y)) \dots (x - a_{b-1}(y)).
$$

 \mathcal{D} Springer

Then for all $x \in \mathbb{F}_q$,

$$
\tilde{f}_0(x) = \tilde{f}(x, 0) = a(x - a_1(0)) \dots (x - a_{b-1}(0))
$$

and $|\widetilde{f}_0| \leq q - 1$. So,

$$
|\tilde{f}| \le |f| + |\tilde{f}_0| \le (q - b + 2)(q - 1).
$$

By induction hypothesis, \tilde{f} is the product of linear factors which finishes the proof of Lemma 4. $Lemma 4.$

Proposition 6 *For m* \geq 2*, q* \geq 3*,* 2 \leq *b* \leq *q* − 1*. The second weight codewords of* $R_q(b, m)$ *are codewords of* $R_q(b, m)$ *whose support S is the union of* $q - b + 1$ *parallel hyperplanes minus their intersection with an af fine hyperplane which is not parallel or S is the union of* $(q - b + 1)$ *hyperplanes which meet in an affine subspace of codimension 2 minus this intersection.*

Proof We say that we are in configuration *A* if *S* is the union of $q - b + 1$ parallel hyperplanes minus their intersection with an affine hyperplane which is not parallel (see Fig. [2a](#page-7-0)) and that we are in configuration *B* if *S* is the union of $(q - b + 1)$ hyperplanes which meet in an affine subspace of codimension 2 minus this intersection (see Fig. $2b$).

We prove this proposition by induction on *m*. The Lemma 4 proves the case where *m* = 2. Assume *m* \geq 3 and that second weight codeword of $R_q(b, m-1)$, 2 \leq *b* \leq *q* − 1 are of type *A* or type *B*. Let $f \in R_q(b, m)$ such that $|f| = (q - 1)(q - b + 1)$ 1)*qm*[−]² and we denote by *S* its support.

– Assume *S* meets all affine hyperplanes. Then, by Lemma 2, there exists an affine hyperplane *H* such that $\#(S \cap H) =$ $(q - b)q^{m-2}$. By applying an affine transformation, we can assume $x_1 = 0$ is an equation of *H*. We denote by 1_H the function in B_m^q such that

$$
\forall x = (x_1, \dots, x_m) \in \mathbb{F}_q^m, \ 1_H(x) = 1 - x_1^{q-1}
$$

then the reduced form $f \cdot 1_H$ has degree at most $(t + 1)(q - 1) + s$ and the support of $f \cdot 1_H$ is $S \cap H$ so $S \cap H$ is the support of a minimal weight codeword of $R_q(q-1+b, m)$ and $S \cap H$ is the union of $(q - b)$ parallel affine subspaces of codimension 2. Consider *P* an affine subspace of codimension 2 included in *H* such that $\#(S \cap P) = (q - b)q^{m-3}$. Assume there are at least two hyperplanes through *P* which meet *S* in $(q - b)q^{m-2}$ points. Then, there exists *H*₁ an affine hyperplane through *P* different from *H* such that $\#(S \cap H_1) = (q - b)q^{m-2}$. So, $S ∩ H_1$ is the union of $(q - b)$ parallel affine subspaces of codimension 2. Consider *G* an affine hyperplane which contains *Q* an affine subspace of codimension 2 included in *H* which does not meet *S* and the affine subspace of codimension 2 included in H_1 which meets Q but not S (see Fig. [4\)](#page-13-0).

By applying an affine transformation, we can assume $x_m = \lambda$, $\lambda \in \mathbb{F}_q$ is an equation of an hyperplane parallel to *G*. For all $\lambda \in \mathbb{F}_q$, we define $f_\lambda \in$ $B_{m-1}^{\bar{q}}$ by

$$
\forall (x_1, \ldots, x_{m-1}) \in \mathbb{F}_q^{m-1}, \qquad f_{\lambda}(x_1, \ldots, x_{m-1}) = f(x_1, \ldots, x_{m-1}, \lambda).
$$

If all hyperplanes parallel to *G* meets *S* in $(q - b + 1)(q - 1)q^{m-3}$ then for all $\lambda \in \mathbb{F}_q$, f_λ is a second weight codeword of $R_q(b, m-1)$ and its support is of type *A* or *B*. We get a contradiction if we consider an hyperplane parallel to *G* which meets *S* ∩ *H* and *S* ∩ *H*₁. So, there exits G_1 an hyperplane parallel to *G* which meets *S* in $(q - b)q^{m-2}$ points and *S* ∩ *G*₁ is the union of $(q - b)$ parallel affine subspaces of codimension 2 which is a contradiction. Then for all *H* hyperplane through *P* different from H # $(S \cap H') \ge (q - 1)(q - b + 1)q^{m-3}$. Furthermore, since

$$
(q-b)q^{m-2} + q.(q-1)(q-b+1)q^{m-3}
$$

-q.(q-b)q^{m-3} = (q-1)(q-b+1)q^{m-2},

$(S \cap H') = (q - 1)(q - b + 1)q^{m-3}$. Finally, by applying the same argument to all affine subspaces of codimension 2 included in *H* parallel to *P*, we get that all hyperplanes through an affine subspace of codimension 2 parallel to *P* but *H* meet *S* in $(q-1)(q-b+1)q^{m-3}$. Choosing *q* such hyperplanes, we get *q* parallel hyperplanes $(G_i)_{1 \leq i \leq q}$ such that for all $1 \leq i \leq q$, $\#(S \cap G_i) = (q - b + 1)$ 1)($q - 1$) q^{m-3} and #($S \cap G_i \cap H$) = ($q - b$) q^{m-3} . Then by induction hypothesis, *S* \cap *G_i* is either of type *A* or of type *B*.

If there exists i_0 such that $S \cap G_i$ is of type *A*. Consider *F* an affine hyperplane containing *R* an affine subspace of codimension 2 included in *H* which does not meet *S* and the affine subspace of codimension 2 included in G_i which does not meets *S* but meets *R*. If for all *F*['] hyperplane parallel to *F*, $\#(S \cap F') > (q$ *b*) q^{m-2} then $#(S \cap F') = (q-1)(q-b+1)q^{m-3}$. So $S \cap F'$ is the support of a second weight codeword of $R_q(b, m-1)$ and is either of type *A* or of type *B* which is absurd is we consider an hyperplane parallel to F which meets $S \cap H$. So there exits F_1 an affine hyperplane parallel to F which meets S in $(q - b)q^{m-2}$ points. So *S* ∩ *F*₁ is the union of $(q − s)$ parallel affine subspaces of codimension 2 which is absurd since $S \cap G_{i_0}$ is of type *A* (see Fig. [5\)](#page-14-0).

If for all $1 \le i \le q$, $S \cap G_i$ is of type *B*. Let H_1 be the affine hyperplane parallel to *H* which contains the affine subspace of codimension 3 intersection of the affine subspaces of codimension 2 of $S \cap G_1$. We consider R an affine subspace of codimension 2 included in *H* which does not meet *S*. Then there is $(q - b + 1)$ affine hyperplanes through *R* which meet *S* ∩ *G*₁ in $(q - b)q^{m-3}$. However, if we

denote by *k* the number of hyperplanes through *R* which meet *S* in $(q - b)q^{m-2}$ points, we have

$$
k(q-b)q^{m-2} + (q+1-k)(q-1)(q-b+1)q^{m-3} \le (q-1)(q-b+1)q^{m-2}
$$

which implies that $k \ge q - b + 2$. For all *H'* hyperplane through *R* such that $#(S \cap H') = (q - b)q^{m-2}$, $S \cap H'$ is the union of $(q - b)$ affine subspaces of codimension 2 parallel to *R* and then $\#(S \cap H' \cap G_1) = (q - b)q^{m-3}$ which is absurd (see Fig. 6).

– So, there exists *H* an affine hyperplane such that *H* does not meet *S*. Then, by Lemma 3, either *S* meets ($q - 1$) hyperplanes parallel to *H* in ($q - b +$ 1) q^{m-2} points or *S* meets ($q - b + 1$) hyperplanes parallel to *H* in ($q - 1$) q^{m-2} points.

If *S* meets (*q* − *b* + 1) hyperplanes parallel to *H* in (*q* − 1)*q*^{*m*−2} points, then, for all *H'* hyperplane parallel to *H* such that $S \cap H' \neq \emptyset$, $S \cap H'$ is the support of a minimal weight codeword of $R_q(q, m)$ and is the union of $(q - 1)$ parallel affine subspaces of codimension 2. Let H' be an affine hyperplane parallel to H such that $S \cap H' \neq \emptyset$. We denote by *P* the affine subspace of codimension 2 of *H* which does not meet *S*. Consider H_1 an affine hyperplane which contains P and a point not in *S* of an affine hyperplane *H*" parallel to *H* which meets *S*. Then

$$
\#(H_1 \setminus S) \ge b \, q^{m-2} + 1.
$$

However, if $S \cap H_1 \neq \emptyset$, $\#(H_1 \setminus S) \leq bq^{m-2}$. So, $S \cap H_1 = \emptyset$ and we are in configuration *A*.

If *S* meets (*q* − 1) hyperplanes parallel to *H* in (*q* − *b* + 1)*q*^{*m*−2} points. Then for all H' parallel to H different from H , $S \cap H'$ is the support of a minimal weight codeword of $R_q((q-1)+b-1,m)$ and is the union of $(q-b+1)$ parallel affine subspaces of codimension 2. Let H_1 be an affine hyperplane parallel to H

Fig. 6 Proposition 6, case where *S* meets all affine hyperplanes, for all G_i , $S \cap G_i$ is of type *B*

different from *H* and consider *P* an affine subspace of codimension 2 included in H_1 such that

$$
#(S \cap P) = (q - b + 1)q^{m-3}.
$$

Assume there exists H_2 an affine hyperplane through P such that $\#(S \cap H_2) =$ $(q - b)q^{m-2}$. Then $S \cap H_2$ is the support of a minimal weight codeword of $R_q(q-1+b, m)$ and is the union of $(q - b)$ parallel affine subspaces of codimension 2 which is absurd since $S \cap H_2$ meets H_1 in $S \cap P$ (see Fig. 7). Then, for all *H'* through $P \#(S \cap H') \ge (q-1)(q-b+1)q^{m-3}$. Furthermore,

$$
(q-b+1)q^{m-2} + q.(q-1)(q-b+1)q^{m-3} - q.(q-b+1)q^{m-3}
$$

=
$$
(q-1)(q-b+1)q^{m-2}.
$$

So for all *H* hyperplane through *P* different from *H*1,

$$
#(S \cap H') = (q-1)(q-b+1)q^{m-3}.
$$

By applying the same argument to all affine subspaces of codimension 2 included in H_1 parallel to *P*, we get *q* parallel hyperplanes $(G_i)_{1 \le i \le q}$ such that for all $1 \le i \le q$, # $(S \cap G_i) = (q - b + 1)(q - 1)q^{m-3}$ and # $(S \cap G_i \cap H_1) = (q - s + 1)(q - 1)q^{m-3}$ 1) q^{m-3} . By induction hypothesis, for all $1 \le i \le q$, either $S \cap G_i$ is of type *A* or $S \cap G_i$ is of type *B*.

Assume there exists i_0 such that $S \cap G_{i_0}$ is of type *A*. Consider *F* an affine hyperplane containing Q an affine subspace of codimension 2 included in H_1 which does not meet *S* and the affine subspace of codimension 2 included in G_i which does not meets *S* but meets *Q*. Assume *S* meets all hyperplanes parallel to *F* in at least $(q - b)q^{m-t-2}$. If for all *F*' parallel to *F*, $\#(S \cap F') > (q - b)q^{m-2}$ then

$$
\#(S \cap F') \ge (q-1)(q-b+1)q^{m-3}.
$$

So $S \cap F'$ is the support of a second weight codeword of $R_q(b, m-1)$ and is either of type *A* or of type *B* which is absurd is we consider an hyperplane parallel to *F* which meets $S \cap H_1$ and $S \cap G_i$. So, there exits F_1 an affine hyperplane parallel to *F* such that $#(S \cap F_1) = (q - b)q^{m-2}$. Then, $S \cap F_1$ is the union of $(q - b)$ parallel affine subspaces of codimension 2, which is absurd. Finally, there exists an affine hyperplane parallel to *F* which does not meet *S*. By Lemma 3, either *S* meets (*q* − *b* + 1) hyperplanes parallel to *F* in (*q* − 1)*q*^{*m*−2} points and we have already seen that in this case *S* is of type *A* or *S* meets ($q - 1$) hyperplanes parallel to *F* in $(q - b + 1)q^{m-2}$ points. In this case, for all *F*' parallel to *F* such that $S \cap F \neq \emptyset$, $S \cap F'$ is the support of a minimal weight codeword of

 $R_q(q-1+b-1,m)$ and is the union of $q-b+1$ parallel affine subspaces of codimension 2, which is absurd since $S \cap G_i$ is of type *A* (see Fig. 8).

Now, assume for all $1 \le i \le q$, $G_i \cap S$ is of type *B*. Let *Q* be an affine subspace of codimension 2 included in *H*¹ which does not meets *S*. Assume *S* meets all affine hyperplanes through *Q* and denote by *k* the number of these hyperplanes which meet *S* in $(q - b)q^{m-2}$ points. Then,

$$
k(q-b)q^{m-2} + (q+1-k)(q-1)(q-b+1)q^{m-3} \le (q-1)(q-b+1)q^{m-2}
$$

which means that $k \ge q - b + 2$. These $(q - b + 2)$ hyperplanes are minimal weight codewords of $R_q(q-1+b, m)$. So, they meet *S* in $(q - b)$ affine subspaces of codimension 2 parallel to *Q*, that is to say, they meet $S \cap G_1$ in (*q* − *b*) q^{m-3} points. This is absurd since $S \cap G_1$ is of type *B* and so there are at most (*q* − *b* + 1) affine hyperplanes through *Q* which meet $S \cap G_1$ in $(q - b)q^{m-3}$ points (see Fig. 9). So there exists an affine hyperplane through *Q* which does not meet *S*.

By applying the same argument to all affine subspaces of codimension 2 included in H_1 which does not meet *S*, since $S \cap G_i$ is of type *B* for all *i*, we get that *S* is of type B .

5.2 The support is included in an affine subspace of codimension *t*.

The two following lemmas are proved in [\[8](#page-35-0)].

Lemma 5 *Let* $m \ge 2$, $q \ge 3$, $1 \le t \le m - 1$, $1 \le s \le q - 2$ *. Assume* $f \in R_q(t(q-1) + 1)$ *s*, *m*) *is such that* $\forall x \in (x_1, \ldots, x_m) \in \mathbb{F}_q^m$,

$$
f(x) = (1 - x_1^{q-1}) \widetilde{f}(x_2, ..., x_m)
$$

and that $g \in R_q(t(q-1) + s - k)$, $1 \le k \le q - 1$, *is such that* $(1 - x_1^{q-1})$ *does not divide g. Then, if* $h = f + g$ *, either* $|h| \geq (q - s + k)q^{m-t-1}$ *or* $k = 1$ *.*

Fig. 9 Proposition 6, case where there exists an affine hyperplane which does not meet *S*, for all G_i , $S \cap G_i$ is of type *B*

Lemma 6 *Let* $m \ge 2$, $q \ge 3$, $1 \le t \le m-1$, $1 \le s \le q-2$ *and* $f \in R_q(t(q-1)+1)$ *s*, *m*)*. For* $a \in \mathbb{F}_q$, the function f_a of B_{m-1}^q defined for all $(x_2, \ldots, x_m) \in \mathbb{F}_q^m$ by $f_a(x_2,...,x_m) = f(a, x_2,...,x_m)$. Assume for a, $b \in \mathbb{F}_q$ *f_a is different from the zero function and* $(1 - x_2^{q-1})$ *divides* f_a *and that*

$$
0 < |f_b| < (q - s + 1)q^{m - t - 2}.
$$

Then there exists T an affine transformation, fixing x_i *for* $i \neq 2$ *such that* $(1 - x_2^{q-1})$ *divides* $(f \circ T)_a$ *and* $(f \circ T)_b$ *.*

Lemma 7 *Let* $m \geq 3$, $q \geq 4$, $1 \leq t \leq m-2$ *and* $2 \leq s \leq q-2$ *. If* $f \in R_q(t(q-1))$ *s*, *m*) *is such that* $|f| = (q - s + 1)(q - 1)q^{m-t-2}$, *then the support of f is included in an affine hyperplane of* \mathbb{F}_q^m *.*

Proof We denote by *S* the support of *f*. Assume *S* is not included in an affine hyperplane. Then, by Lemma 2, there exists an affine hyperplane *H* such that either *H* does not meet *S* or *H* meets *S* in $(q - s)q^{m-t-2}$. Now, by Lemma 3, since *S* is not included in an affine hyperplane, either *S* meets all affine hyperplanes parallel to *H* or *S* meets (*q* − 1) affine hyperplanes parallel to *H* in (*q* − *s* + 1)*q*^{*m*−*t*−2} or *S* meets $(q - s + 1)$ affine hyperplanes parallel to *H* in $(q - 1)q^{m-t-2}$ points. By applying an affine transformation, we can assume $x_1 = \lambda$, $\lambda \in \mathbb{F}_q$ is an equation of *H*. We define $f_{\lambda} \in B_{m-1}^q$ by

$$
\forall (x_2,\ldots,x_m)\in\mathbb{F}_q^{m-1},\qquad f_\lambda(x_2,\ldots,x_m)=f(\lambda,x_2,\ldots,x_m).
$$

We set an order $\lambda_1, \ldots, \lambda_q$ on the elements of \mathbb{F}_q such that

$$
|f_{\lambda_1}| \leq \ldots \leq |f_{\lambda_q}|.
$$

Then either $|f_{\lambda_1}| = 0$ or $|f_{\lambda_1}| = (q - s)q^{m-t-2}$, that is to say either f_{λ_1} is null or f_{λ_1} is the minimal weight codeword of $R_q(t(q-1) + s, m-1)$ and its support is included in an affine subspace of codimension $t + 1$. Since $t \ge 1$, in both cases, the support of f_{λ_1} is included in an affine hyperplane of \mathbb{F}_q^m different from the hyperplane parallel to *H* of equation $x_1 = \lambda_1$. By applying an affine transformation that fixes x_1 , we can assume $(1 - x_2^{q-1})$ divides f_{λ_1} . Since *S* is not included in an affine hyperplane, there exists $2 \le k \le q$ such that $1 - x_2^{q-1}$ does not divide f_{λ_k} . We denote by k_0 the smallest such *k*.

Assume *S* meets all affine hyperplanes parallel to *H* and that

$$
|f_{\lambda_{k_0}}| \ge (q - s + k_0 - 1)q^{m-t-2}.
$$

Then

$$
|f| = \sum_{k=1}^{q} |f_{\lambda_k}|
$$

\n
$$
\geq (q - s)q^{m-t-2}(k_0 - 1) + (q - k_0 + 1)(q - s + k_0 - 1)q^{m-t-2}
$$

\n
$$
= (q - s)q^{m-t-1} + (k_0 - 1)(q - k_0 + 1)q^{m-t-2}
$$

\n
$$
> (q - s)q^{m-t-1} + (s - 1)q^{m-t-2}
$$

 \mathcal{D} Springer

which gives a contradiction. In the cases where *S* meets $(q - s')$, $s' = 1$ or $s' = s - 1$, for $1 \le i \le s'$, $|f_{\lambda_i}| = 0$ and the support of $f_{\lambda_{s'+1}}$ is $S \cap H_{\lambda_{s'+1}}$, where $H_{\lambda_{s'+1}}$ is the hyperplane of equation $x_1 = \lambda_{s'+1}$. Since $S \cap H_{\lambda_{s'+1}}$ is the support of a minimum weight codeword of $R_q((t+1)(q-1) + s', m)$, it is included in affine subspace of codimension $t + 1$. So in those cases, we can assume $k_0 \geq s' + 2$. Finally, $|f_{\lambda_{k_0}}|$ < $(q - s + k_0 - 1)q^{m-t-2}$.

We write

$$
f(x_1, x_2, x_3, \dots, x_m) = \sum_{i=0}^{q-1} x_2^i g_i(x_1, x_3, \dots, x_m)
$$

= $h(x_1, x_2, x_3, \dots, x_m) + (1 - x_2^{q-1}) g(x_1, x_3, \dots, x_m).$

Since for all $1 \le i \le k_0 - 1$, $1 - x_2^{q-1}$ divides f_{λ_i} , for all $(x_2, \ldots, x_m) \in \mathbb{F}_q^{m-1}$, for all $1 \le i \le k_0 - 1, h(\lambda_i, x_2, ..., x_m) = 0$. So, by Lemma 1,

$$
f(x_1, x_2, x_3, \dots, x_m) = (x_1 - \lambda_1) \dots (x_1 - \lambda_{k_0 - 1}) \widetilde{h}(x_1, x_2, x_3, \dots, x_m)
$$

$$
+ (1 - x_2^{q-1}) g(x_1, x_3, \dots, x_m)
$$

with deg(\widetilde{h}) $\leq r - k_0 + 1$. Then by applying Lemma 5 to $f_{\lambda k_0}$, since

$$
|f_{\lambda_{k_0}}| < (q - s + k_0 - 1)q^{m - t - 2},
$$

 $k_0 = 2$. This gives a contradiction in the cases where *S* does not meet all hyperplanes parallel to *H*. In the case where *S* meets all hyperplanes parallel to *H*, by applying Lemma 6, there exists *T* an affine transformation which fixes x_1 such that $(1 - x_2^{q-1})$ divides $(f \circ T)_{\lambda_1}$ and $(f \circ T)_{\lambda_2}$, we set k'_0 the smallest *k* such that $(1 - x_2^{q-1})$ does not divide $(f \circ T)_{\lambda_k}$. Then $k'_0 \ge 3$ and by applying the previous argument to $\overline{f} \circ T$, we get a contradiction.

Proposition 7 *Let* $m \geq 3$ *,* $q \geq 4$ *,* $1 \leq t \leq m-2$ *and* $2 \leq s \leq q-2$ *. If* $f \in R_q(t(q-1))$ 1) + *s*, *m*) is such that $|f| = (q - 1)(q - s + 1)q^{m-t-2}$, then the support of f is included *in an af fine subspace of codimension t.*

Proof We denote by *S* the support of *f*. By Lemma 7, *S* is included in *H* an affine hyperplane. By applying an affine transformation, we can assume $x_1 = 0$ is an equation of *H*. Let $g \in B_{m-1}^q$ defined by

$$
\forall x = (x_2, ..., x_m) \in \mathbb{F}_q^{m-1}, g(x) = f(0, x_2, ..., x_m)
$$

and denote by $P \in \mathbb{F}_q[X_2,\ldots,X_m]$ its reduced form. Since

$$
\forall x = (x_1, \ldots, x_m) \in \mathbb{F}_q^m, \ f(x) = \left(1 - x_1^{q-1}\right) P(x_2, \ldots, x_m),
$$

the reduced form of $f \in R_q(t(q-1) + s, m)$ is

$$
\left(1-X_1^{q-1}\right)P(X_2,\ldots,X_m).
$$

Then *g* ∈ $R_q((t-1)(q-1) + s, m-1)$ and

$$
|g| = |f| = (q - s + 1)(q - 1)q^{m-t-2} = (q - 1)(q - s + 1)q^{m-1-(t-1)-2}.
$$

Then, by Lemma 7, if $t \geq 2$, the support of *g* is included in an affine hyperplane of \mathbb{F}_q^{m-1} . By iterating this argument, we get that *S* is included in an affine subspace of codimension *t*. □ codimension *t*.

5.3 Proof of Theorem 9

Let 0 ≤ *t* ≤ *m* − 2, 2 ≤ *s* ≤ *q* − 2 and *f* ∈ $R_q(t(q - 1) + s, m)$ such that

$$
|f| = (q - s + 1)(q - 1)q^{m-t-2};
$$

we denote by *S* the support of *f*. Assume $t \ge 1$. By Proposition 7, *S* is included in an affine subspace *G* of codimension *t*. By applying an affine transformation, we can assume

$$
G = \{x = (x_1, \dots, x_m) \in \mathbb{F}_q^m : x_i = 0 \text{ for } 1 \le i \le t\}.
$$

Let *g* ∈ *B*^{*q*}_{*m*−*t*} defined for all *x* = ($x_{t+1},...,x_m$) ∈ \mathbb{F}_q^{m-t} by

$$
g(x) = f(0,\ldots,0,x_{t+1},\ldots,x_m)
$$

and denote by $P \in \mathbb{F}_q[X_{t+1},..., X_m]$ its reduced form. Since

$$
\forall x = (x_1, \ldots, x_m) \in \mathbb{F}_q^m, \ f(x) = \left(1 - x_1^{q-1}\right) \ldots \left(1 - x_t^{q-1}\right) P(x_{t+1}, \ldots, x_m),
$$

the reduced form of $f \in R_q(t(q-1) + s, m)$ is

$$
\left(1 - X_1^{q-1}\right) \dots \left(1 - X_t^{q-1}\right) P(X_{t+1}, \dots, X_m).
$$

Then *g* ∈ *R_q*(*s*, *m* − *t*) and $|g| = |f| = (q - s + 1)(q - 1)q^{m-t-2}$. Thus, using the case where $t = 0$, we finish the proof of Theorem 9.

6 Case where $s = 0$

6.1 The support is included in an affine subspace of dimension $m - t + 1$

Proposition 8 *Let* $q \geq 3$ *,* $m \geq 2$ *and* $f \in R_q((m-1)(q-1), m)$ *such that* $|f| =$ $2(q-1)$. Then, the support of f is included in an affine plane.

In order to prove this proposition, we need the following lemma.

Lemma 8 *Let* $m \geq 3$, $q \geq 4$ *and* $f \in R_q((m-1)(q-1), m)$ *such that* $|f| = 2(q-1)$ *. If H* is an affine hyperplane of \mathbb{F}_q^m such that $S \cap H \neq S$, $\#(S \cap H) = N$, $3 \leq N \leq q - 1$ **1** and S∩ *H* is not included in a line then there exists H_1 an affine hyperplane of \mathbb{F}_q^m *such that* $S \cap H_1 \neq S$, #($S \cap H_1$) ≥ $N + 1$ *and* $S \cap H_1$ *is not included in a line*

Proof Since $S \cap H \neq S$, by Lemma 3, either *S* meets (*q* − 1) hyperplanes parallel to *H* or *S* meets two hyperplanes parallel to *H* or *S* meets all affine hyperplanes parallel to *H*. If *S* does not meet all affine hyperplanes parallel to *H* then $S \cap H$ is the support of a minimal weight codeword of $R_q((m-1)(q-1) + s', m), s' = 1$ or

s = *q* − 2. In both cases, *S* ∩ *H* is included in a line which is absurd. So, *S* meets all affine hyperplanes parallel to *H*.

By applying an affine transformation, we can assume $x_1 = 0$ is an equation of *H*. Let *I* := { $a \in \mathbb{F}_q$: #({ $x_1 = a$ } ∩ *S*) = 1} and $k := #I$. Since #*S* = 2($q - 1$) and $#(S \cap H) = N, k > N$. We define

$$
\forall x = (x_1, \ldots, x_m) \in \mathbb{F}_q^m, \quad g(x) = f(x) \prod_{a \notin I} (x_1 - a).
$$

Then, $\deg(g) \leq (m-1)(q-1) + q - k$ and $|g| = k$. So, g is a minimal weight codewords of $R_q((m-1)(q-1)+q-k, m)$ and its support is included in a line L which is not included in *H*. We denote by \vec{u} a directing vector of *L*. Let *b* be the intersection point of *H* and *L* and ω_1 , ω_2 , ω_3 3 points of *S* ∩ *H* which are not included in a line. Then there exists \vec{v} and $\vec{w} \in \{\vec{b}\omega_1, \vec{b}\omega_2, \vec{b}\omega_3\}$ which are linearly independent. Since *L* is not included in *H*, $\{\vec{u}, \vec{v}, \vec{v}\}$ are linearly independent. We choose H_1 an affine hyperplane such that $b \in H_1$, $b + \vec{v} \in H_1$, $L \subset H_1$ but $b + \vec{w} \notin H_1$. \Box

Now we can prove the proposition

Proof If $m = 2$, we have the result. Assume $m > 3$. Let *S* be the support of *f*. Since $\#S = 2(q-1) > q$, *S* is not included in a line. Let $\omega_1, \omega_2, \omega_3$ be 3 points of *S* not included in a line. Let *H* be an hyperplane such that $\omega_1, \omega_2, \omega_3 \in H$. Assume $S \cap H \neq$ *S*. Then there exists an affine hyperplane *H*₁ such that $#(S \cap H_1) > q$, $S \cap H_1$ is not included in a line and *S* ∩ *H*₁ \neq *S*. Indeed, if *q* = 3, we take *H*₁ = *H* and for *q* \geq 4, we proceed by induction using the previous Lemma. Then by Lemma 3 either *S* meets two hyperplanes parallel to H_1 in 2 points or *S* meets two hyperplanes parallel to H_1 in *q* − 1 points or *S* meets all affine hyperplanes parallel to *H*₁. Since $#(S \cap H_1) \geq q$, *S* meets all hyperplanes parallel to H_1 . Then, we must have

$$
q + q - 1 \le 2(q - 1)
$$

which is absurd. \Box

The two following lemmas are proved in [\[8\]](#page-35-0).

Lemma 9 *Let* $m \ge 2$, $q \ge 3$, $1 \le t \le m$ *and* $f \in R_q(t(q-1), m)$ *such that* $|f| = q^{m-t}$ *and* $g \in R_q((t(q-1) - k, m), 1 \le k ≤ q - 1, such that $g \neq 0$. If $h = f + g$ then either$ $|h| = kq^{m-t}$ *or* $|h| \geq (k+1)q^{m-t}$.

Lemma 10 *Let m* ≥ 2*, q* ≥ 3*,* 1 ≤ *t* ≤ *m* − 1 *and f* ∈ *R_q*(*t*(*q* − 1), *m*)*. For a* ∈ \mathbb{F}_q *, we define the function* f_a *of* B_{m-1}^q *by for all* $(x_2, ..., x_m) \in \mathbb{F}_q^m$, $f_a(x_2, ..., x_m) =$ *f*(*a*, *x*₂,..., *x_m*)*. If for some a, b* ∈ \mathbb{F}_q , $|f_a| = |f_b| = q^{m-t-1}$, then there exists *T* an *af fine transformation fixing x*¹ *such that*

$$
(f \circ T)_a = (f \circ T)_b.
$$

Proposition 9 *Let* $q \geq 3$ *,* $m \geq 2$, $1 \leq t \leq m-1$ *. If* $f \in R_q(t(q-1), m)$ *is such that* $| f | = 2(q-1)q^{m-t-1}$ *then the support of f is included in an affine subspace of dimension* $m - t + 1$.

Proof For *t* = 1, this is obvious. For the other cases we proceed by recursion on *t*. Proposition 8 gives the case where $t = m - 1$.

If *m* \leq 3 we have considered all cases. Assume *m* \geq 4. Let 2 \leq *t* \leq *m* − 2. Assume for *f* ∈ *R_q*((*t* + 1)(*q* − 1), *m*) such that $|f| = 2(q - 1)q^{m-t-2}$ the support of *f* is included in an affine subspace of dimension $m - t$. Let $f \text{ ∈ } R_a(t(q - 1), m)$ such that $| f | = 2(q-1)q^{m-t-1}$. We denote by *S* the support of *f*.

Assume *S* is not included in an affine subspace of dimension $m - t + 1$. Then there exists *H* an affine hyperplane of \mathbb{F}_q^m such that $S \cap H \neq S$ and $S \cap H$ is not included in an affine space of dimension $m - t$. By Lemma 3, either *S* meets all affine hyperplanes parallel to *H* or *S* meets $(q - 1)$ affine hyperplanes parallel to *H* in $2q^{m-t-1}$ or *S* meets two affine hyperplanes parallel to *H* in $(q-1)q^{m-t-1}$ points.

If *S* does not meet all hyperplanes parallel to *H* then $S \cap H$ is the support of a minimal weight codeword of $R_q(t(q-1) + s', m)$, $s' = 1$ or $s' = q - 2$. So $S \cap H$ is included in an affine subspace of dimension $m - t$ which gives a contradiction.

So, *S* meets all affine hyperplanes parallel to *H* in at least *qm*[−]*t*−¹ points. If for all *H'* parallel to *H*, $\#(S \cap H') > q^{m-t-1}$ then for all *H'* parallel to *H*, $\#(S \cap H') \ge$ $2(q-1)q^{m-t-2}$. So, for reason of cardinality, $S \cap H$ is the support of a second weight codeword of $R_q((t+1)(q-1), m)$ and by recursion hypothesis $S \cap H$ is included in an affine subspace of dimension $m - t$ which gives a contradiction. So, there exists *H*₁ an affine hyperplane parallel to *H* such that $#(S \cap H_1) = q^{m-t-1}$.

By applying an affine transformation, we can assume $x_1 = \lambda$, $\lambda \in \mathbb{F}_q$ is an equation of *H*. For $\lambda \in \mathbb{F}_q$, we define $f_{\lambda} \in B_{m-1}^q$ by

$$
\forall (x_2,\ldots,x_m)\in\mathbb{F}_q^{m-1},\qquad f_\lambda(x_2,\ldots,x_m)=f(\lambda,x_2,\ldots,x_m).
$$

We set an order $\lambda_1, \ldots, \lambda_q$ on the elements of \mathbb{F}_q such that

$$
|f_{\lambda_1}| \leq \ldots \leq |f_{\lambda_q}|.
$$

Since #($S \cap H_1$) = q^{m-t-1} and *S* meets all hyperplanes parallel to *H*,

$$
|f_{\lambda_1}| = q^{m-t-1}
$$

and f_{λ_1} is a minimum weight codeword of $R_q(t(q-1), m-1)$. Let k_0 be the smallest integer such that $|f_{\lambda_{k_0}}| > q^{m-t-1}$. Since $|f| > q^{m-t}$, $k_0 \le q$. Then by Lemma 10 and applying an affine transformation that fixes x_1 , we can assume for all $2 \le i \le k_0 - 1$, $f_{\lambda_i} = f_{\lambda_1}$. If we write for all $x = (x_1, \ldots, x_m) \in \mathbb{F}_q^m$,

$$
f(x) = f_{\lambda_1}(x_2, ..., x_m) + (x_1 - \lambda_1) \tilde{f}(x_1, ..., x_m).
$$

Then for all $2 \le i \le k_0 - 1$, for all $\overline{x} = (x_2, \ldots, x_m) \in \mathbb{F}_q^{m-1}$,

$$
f_{\lambda_i}(\overline{x}) = f_{\lambda_1}(\overline{x}) + (\lambda_i - \lambda_1) \widehat{f}_{\lambda_i}(\overline{x}).
$$

Since for all $2 \le i \le k_0 - 1$, $f_{\lambda_i} = f_{\lambda_1}$, by Lemma 1, we can write for all $x =$ $(x_1, \ldots, x_m) \in \mathbb{F}_q^m$,

$$
f(x) = f_{\lambda_1}(x_2, ..., x_m) + (x_1 - \lambda_1) \dots (x_1 - \lambda_{k_0 - 1}) \overline{f}(x_1, ..., x_m)
$$

with $\deg(\overline{f}) \le t(q-1) - k_0 + 1$. Now, we have $f_{\lambda_{k_0}} = f_{\lambda_1} + \lambda' \overline{f}_{\lambda_{k_0}}, \lambda' \in \mathbb{F}_q^*$. Then, by Lemma 9, either $| f_{\lambda_{k_0}} | \ge k_0 q^{m-t-1}$ or $| f_{\lambda_{k_0}} | = (k_0 - 1) q^{m-t-1}$. Assume $| f_{\lambda_{k_0}} | \ge$ k_0q^{m-t-1} . Then

$$
|f| = \sum_{i=1}^{q} |f_{\lambda_i}|
$$

\n
$$
\geq (k_0 - 1)q^{m-t-1} + (q + 1 - k_0)k_0q^{m-t-1}
$$

\n
$$
= q^{m-t} + (k_0 - 1)(q - k_0 + 1)q^{m-t-1}
$$

\n
$$
> 2(q - 1)q^{m-t-1}.
$$

So, $|f_{\lambda_{k_0}}| = (k_0 - 1)q^{m-t-1}$. Since $|f_{\lambda_{k_0}}| > q^{m-t-1}$, $k_0 ≥ 3$. Now, we have

$$
|f| \ge (k_0 - 1)q^{m-t-1} + (q + 1 - k_0)(k_0 - 1)q^{m-t-1} = (k_0 - 1)(q - k_0 + 2)q^{m-t-1}.
$$

So either $k_0 = q$ or $k_0 = 3$.

Assume $k_0 = q$.

Since $f_{\lambda_1} = \ldots = f_{\lambda_{q-1}}$ are minimum weight codeword of $R_q(t(q-1), m-1)$, there exists *A* an affine subspace of dimension $m - t$ of \mathbb{F}_q^m such that for all $1 \le i \le q-1$, $S \cap H_i \subset A$, where H_i is the hyperplane parallel to *H* of equation $x_1 = \lambda_i$. Since *S* is not included in an affine subspace of dimension $m - t + 1$ and *t* ≥ 2, there exists an affine hyperplane *G* containing *A* such that $S \cap G \neq S$ and there exists $x \in S \cap G$, $x \notin A$. Then $\#(S \cap G) \ge (q -1)q^{m-t-1} + 1$, $S \cap G \ne S$ and *S* ∩ *G* is not included in an affine subspace of dimension *m* − *t*. Applying to *G* the same argument than to *H*, we get a contradiction.

 $So, k_0 = 3.$

Then $f_{\lambda_1} = f_{\lambda_2}$ are minimum weight codeword of $R_q(t(q-1), m-1)$ and for reason of cardinality, for all $3 \le i \le q$, $|f_{\lambda_i}| = 2q^{m-t-1}$. So, there exists *A* an affine subspace of dimension $m - t$ of \mathbb{F}_q^m such that for all $1 \le i \le 2$, $S \cap H_i \subset A$, where *H_i* is the hyperplane parallel to *H* of equation $x_1 = \lambda_i$. Since *S* is not included in an affine subspace of dimension $m - t + 1$ and $t \ge 2$, there exists an affine hyperplane *G* containing *A* such that $S \cap G \neq S$ and there exists $x \in S \cap G$, *x* ∉ *A*. Then #($S \cap G$) ≥ 2 $q^{m-t-1} + 1$, $S \cap G \neq S$ and $S \cap G$ is not included in an affine subspace of dimension $m - t$. Applying to G the same argument than to *H*, we get a contradiction.

Finally, *S* is included in an affine subspace of dimension $m - t + 1$. $□$

6.2 Proof of Theorem 10

Let $1 \le t \le m - 1$ and $f \in R_q(t(q-1), m)$ such that

$$
|f| = 2(q-1)q^{m-t-1};
$$

we denote by *S* the support of *f*. Assume $t \ge 2$. By Proposition 9, *S* is included in an affine subspace *G* of codimension $t - 1$. By applying an affine transformation, we can assume

$$
G = \{x = (x_1, \dots, x_m) \in \mathbb{F}_q^m : x_i = 0 \text{ for } 1 \le i \le t - 1\}.
$$

 \mathcal{D} Springer

Let *g* $\in B_{m-t+1}^q$ defined for all $x = (x_t, \ldots, x_m) \in \mathbb{F}_q^{m-t+1}$ by

$$
g(x) = f(0, \ldots, 0, x_t, \ldots, x_m)
$$

and denote by $P \in \mathbb{F}_q[X_t, \ldots, X_m]$ its reduced form. Since

$$
\forall x = (x_1, \ldots, x_m) \in \mathbb{F}_q^m, \ f(x) = \left(1 - x_1^{q-1}\right) \ldots \left(1 - x_{t-1}^{q-1}\right) P(x_t, \ldots, x_m),
$$

the reduced form of $f \in R_a(t(q-1) + s, m)$ is

$$
\left(1 - X_1^{q-1}\right) \dots \left(1 - X_{t-1}^{q-1}\right) P(X_t, \dots, X_m).
$$

Then *g* ∈ *R_q*(*q* − 1, *m* − *t* + 1) and $|g| = |f| = 2(q - 1)q^{m-t-1}$. Thus, using the case where $t = 1$, we finish the proof of Theorem 10.

7 Case where $0 \le t \le m - 2$ and $s = 1$

7.1 Case where $q > 4$

Lemma 11 *Let* $m \ge 2$, $q \ge 4$, $0 \le t \le m-2$ *and* $f \in R_q(t(q-1)+1,m)$ *such that* $|f| = q^{m-t}$. We denote by S the support of f. Then, if H is an affine hyperplane of \mathbb{F}_q^m such that S∩ *H* \neq Ø and S∩ *H* \neq S, S meets all affine hyperplanes parallel to *H*.

Proof By applying an affine transformation, we can assume $x_1 = 0$ is an equation of *H*. Let H_a be the *q* affine hyperplanes parallel to *H* of equation $x_1 = a$, $a \in \mathbb{F}_q$. We denote by $I := \{a \in \mathbb{F}_q : S \cap H_a = \emptyset\}$. Let $k := \#I$ and assume $k \geq 1$. Since $S \cap H \neq \emptyset$ and *S* ∩ *H* \neq *S*, *k* ≤ *q* − 2. For all *c* \notin *I* we define

$$
\forall x=(x_1,\ldots,x_m)\in\mathbb{F}_q^m, \quad g_c(x)=f(x)\prod_{a\in\mathbb{F}_q\setminus I, a\neq c}(x_1-a).
$$

Then $|f| = \sum$ *c*∈*I* |*gc*|.

– Assume *k* ≥ 2.

Then for all $c \notin I$, $\deg(g_c) \le t(q-1) + q - k$ and $2 \le q - k \le q - 2$. So, $|g_c| \ge$ kq^{m-t-1} . Let $N = #{c \notin I : |g_c| = kq^{m-t-1}}$. If $|g_c| > kq^{m-t-1}$, $|g_c| \geq (k+1)(q -$ 1) q^{m-t-2} . Hence

$$
q^{m-t} \ge Nkq^{m-t-1} + (q-k-N)(k+1)(q-1)q^{m-t-2}.
$$

Since $k \ge 2$, we get that $N \ge q - k$. Since $(q - k)kq^{m-t-1} \ne q^{m-t}$, we get a contradiction.

Assume $k = 1$.

Then, for all $c \notin I$, $deg(g_c) \le t(q-1) + 1 + q - 2 = (t+1)(q-1)$. So $|g_c| \ge$ *q*^{*m*−*t*−1}. Let *N* = #{ $c \notin I$: | g_c | = q^{m-t-1} }. If $|g_c| > q^{m-t-1}$, $|g_c| \ge 2(q-1)q^{m-t-2}$. Since for $q \ge 4$, $2(q-1)^2 q^{m-t-2} > q^{m-t}$, $N \ge 1$. Furthermore, since $(q-1)^2 q^{m-t-2} > q^{m-t}$, $N \ge 1$. 1) $q^{m-t-1} < q^{m-t}$, $N \leq q-2$. For $\lambda \in \mathbb{F}_q$, we define $f_{\lambda} \in B_{m-1}^q$ by

$$
\forall (x_2,\ldots,x_m)\in\mathbb{F}_q^{m-1},\qquad f_\lambda(x_2,\ldots,x_m)=f(\lambda,x_2,\ldots,x_m).
$$

 \mathcal{D} Springer

We set $\lambda_1, \ldots, \lambda_q$ an order on the elements of \mathbb{F}_q such that for all $i \leq N, |f_{\lambda_i}| =$ q^{m-t-1} , $|f_{\lambda_{N+1}}| = 0$ and $q^{m-t-1} < |f_{\lambda_{N+2}}| \leq \ldots \leq |f_{\lambda_q}|$. Since $f_{\lambda_{N+1}} = 0$, we can write for all $(x_1, \ldots, x_m) \in \mathbb{F}_q^m$,

$$
f(x_1, ..., x_m) = (x_1 - \lambda_{N+1})h(x_1, ..., x_m)
$$

with deg(*h*) $\leq t(q-1)$. Then, for all $1 \leq i \leq q$, $i \neq N+1$ and $(x_2, \ldots, x_m) \in$ \mathbb{F}_q^{m-1} ,

$$
f_{\lambda_i}(x_2,\ldots,x_m)=(\lambda_i-\lambda_{N+1})h_{\lambda_i}(x_2,\ldots,x_m).
$$

So deg(f_{λ_i}) ≤ $t(q-1)$ and $h_{\lambda_i} = \frac{f_{\lambda_i}}{\lambda_i - \lambda_{N+1}}$. Since $h \in R_q(t(q-1), m)$, by Lemma 10, there exists an affine transformation such that for all $i \le N$, $h_{\lambda_i} = h_{\lambda_1}$. Then, for all $(x_1, \ldots, x_m) \in \mathbb{F}_q^m$,

$$
h(x_1,\ldots,x_m)=h_{\lambda_1}(x_2,\ldots,x_m)+(x_1-\lambda_1)\ldots(x_1-\lambda_N)\widetilde{h}(x_1,\ldots,x_m)
$$

with deg(\widetilde{h}) $\leq t(q-1) - N$. Hence, for all $(x_1, \ldots, x_m) \in \mathbb{F}_q^m$,

$$
f(x_1,...,x_m)=\frac{x_1-\lambda_{N+1}}{\lambda_1-\lambda_{N+1}}f_{\lambda_1}(x_2...,x_m)+(x_1-\lambda_1)...(x_1-\lambda_{N+1})\widetilde{h}(x_1,...,x_m).
$$

Then, for all $(x_2, \ldots, x_m) \in \mathbb{F}_q^{m-1}$,

$$
f_{\lambda_{N+2}}(x_2,\ldots,x_m)=\lambda f_{\lambda_1}(x_2\ldots,x_m)+\lambda'\widetilde{h}_{\lambda_{n+2}}(x_2,\ldots,x_m)
$$

with $\lambda, \lambda' \in \mathbb{F}_q^*$.

Since f_{λ_1} ∈ $R_q(t(q-1), m-1)$ and $\widetilde{h}_{\lambda_{n+2}}$ ∈ $R_q(t(q-1)-N, m-1)$, by Lemma 9, $| f_{\lambda_{N+2}} | = Nq^{m-t-1}$ or $| f_{\lambda_{N+2}} | \ge (N+1)q^{m-t-1}$. If $N = 1$, since $|f_{\lambda_{N+2}}| > q^{m-t-1}$, we get

$$
q^{m-t-1} + (q-2)2q^{m-t-1} \le q^{m-t}
$$

which means that $q \leq 3$. So $N \geq 2$. Then,

$$
Nq^{m-t-1} + (q-1-N)Nq^{m-t-1} \le q^{m-t}.
$$

Since $N(q - N) \ge 2(q - 2)$, we get that $q \le 4$. So, the only possibility is $q = 4$ and $N = q - 2 = 2$.

If $t = 0$, H_{λ_1} contains 2.4^{*m*−1} points which is absurd. Assume $t \ge 1$. Since $h_{\lambda_1} =$ *h*_{λ_2} and for *i* ∈ {1, 2}, *f*_{λ_i} = ($\lambda_i - \lambda_3$)*h*_{λ_i}, *S* ∩ *H*_{λ_1} and *S* ∩ *H*_{λ_2} are both included in *A* an affine subspace of dimension $m - t$. If $t = 1$, by applying an affine transformation which fixes x_1 , we can assume $x_2 = 0$ is an equation of *A*. If *S* is included in *A*, then

$$
\#(S \cap H_{\lambda_4} \cap A) = 2.4^{m-2}
$$

which is absurd since $H_{\lambda_4} \cap A$ is an affine subspace of codimension 2. So there exists an affine hyperplane *H* containing *A* but not *S*. By applying an affine transformation which fixes x_1 , we can assume $x_2 = 0$ is an equation of *H'*. Now, consider *g* defined for all $(x_1, \ldots, x_m) \in \mathbb{F}_q^m$ by $g(x_1, \ldots, x_m) = x_2 f(x_1, \ldots, x_m)$. Then $|g| \leq 2.4^{m-t-1}$. Furthermore, since *S* is not included in *H'* and deg(*g*) ≤ $3t + 2$, $|g| \geq 2.4^{m-t-1}$. So *g* is a minimum weight codeword of $R_4(3t + 2, m)$ and its support is the union of two parallel affine subspace of codimension $t + 1$

G

included in an affine subspace of codimension *t*. Then, since $H' \cap H_{\lambda_4} = \emptyset$, there exists H'_1 an hyperplane parallel to H' such that $S \cap H'_1 = \emptyset$. Now, consider G the hyperplane through $H_{\lambda_4} \cap H_1'$ and $H' \cap H_{\lambda_3}$ and G' the hyperplane through $H' \cap H_{\lambda_4}$ parallel to *G* (see Fig. 10).

Then *G* and *G'* does not meet *S* but *S* is not included in an hyperplane parallel to *G* which is absurd by the previous case.

Lemma 12 *For m* \geq 3*, if* $f \in R_4(3(m-2)+1,m)$ *is such that* $|f| = 16$ *, the support of f is an af fine plane.*

Proof We denote by *S* the support of *f*.

First, we prove the case where $m = 3$. To prove this case, by Lemma 11, we only have to prove that there exists an affine hyperplane which does not meet *S*.

Assume *S* meets all affine hyperplanes. Let *H* be an affine hyperplane. Then for all *H'* affine hyperplane parallel to *H*, $\#(S \cap H') \geq 3$. Assume for all *H'* hyperplane parallel to H , $\#(S \cap H') \geq 4$. For reason of cardinality, for all H' parallel to H $\#(S \cap H') = 4$. Since $q = 4$, there exists a line in *H* which does not meet *S*. Since 3.4 + 4 = 16, *S* meets four hyperplanes through this line in 3 points and the last one in 4 points. So, there exists H_1 an affine hyperplane such that $\#(S \cap H_1) = 3$. We denote by H_2 , H_3 , H_4 the hyperplanes parallel to H_1 . Then, $S \cap H_1$ is the support of a minimal weight codeword of $R_4(3(m-1)+1,m)$ so $S \cap H_1$ is included in L a line. Consider L' a line in H_1 parallel to L . Then there is four hyperplanes through L' which meets *S* in 3 points and one H'_1 which meets *S* in 4 points. Let H' be an affine hyperplane through L' which meets *S* in 3 points; $S \cap H'$ is minimum weight codeword of $R_4(3(m-1)+1, m)$ which does not meet H_1 . So either $S \cap H'$ is included in an affine hyperplane parallel to H_1 or $S \cap H'$ meets all affine hyperplane parallel to H_1 but H_1 in 1 point. Then we consider four cases:

1. *H*₁ is the only hyperplane through *L'* such that $\#(S \cap H_1) = 3$ and $S \cap H_1$ is included in one of the affine hyperplane parallel to H_1 . Since $S \cap H_1 \cap H_1' = \emptyset$ there exists an affine hyperplane parallel to H_1 which meets $S \cap H_1'$ in at least 2 points. Assume for example it is H_2 . Since $m = 3$, these 2 points are included in L_1 a line which is a translation of L . Consider *H* the hyperplane containing L_1 and L . Then, *H* meets $S \cap H_3$ and $S \cap H_4$ in 1 point (see Fig. [11a](#page-26-0)). So $#(S ∩ H) = 7$

Fig. 11 Lemma 12, case where $m = 3$

2. There are exactly two hyperplanes through *L* which meets *S* in 3 points and such that its intersection with *S* is included in one of the affine hyperplane parallel to $H₁$.

Assume H_2 contains $S \cap \widehat{H}$ where \widehat{H} is the hyperplane through *L'* different from *H*₁ such that $#(S \cap \hat{H}) = 3$ and $S \cap \hat{H}$ is included in an hyperplane parallel to H_1 , say H_2 . We denote by $L_1 = \widehat{H} \cap H_2$. Since for all *H*' hyperplane $\#(S \cap H') \geq 3$, *S* ∩ H'_1 meets H_3 and H_4 in at least one point. Then consider *H* the hyperplane through *L* and L_1 . Since *H* is different from the hyperplane through L' and L_1 , *H* meets H_3 and H_4 in at least 1 point each (see Fig. 11b). So $\#(S \cap H) \ge 7$.

3. There are exactly three hyperplanes through *L* which meets *S* in 3 points and such that its intersection with *S* is included in one of the affine hyperplane parallel to H_1 .

If two such hyperplanes have their intersection with *S* included in the same hyperplane parallel to H_1 , say H_2 , then $\#(S \cap H_2) \geq 7$. Now, assume they are included in two different hyperplanes, H_2 and H_3 . If $S \cap H_1'$ is included in H_4 then we consider *H* the hyperplane through *L* and $S \cap H'_1$ and $\#(S \cap H) \geq 7$. Otherwise, we can assume $S \cap H_1'$ meets H_2 in at least 1 point. Let *H* be the hyperplane through *L* and *L*¹ the line containing the minimum weight codeword included in H_3 . Since H is different from the hyperplane through L' and L_1 , H meets *S* ∩ *H*₂ in at least 1 point and $#(S ∩ H) ≥ 7$ (see Fig. 11c).

4. There are four hyperplanes through *L* which meets *S* in 3 points and such that its intersection with *S* is included in one of the affine hyperplane parallel to H_1 . If three such hyperplanes have their intersection with *S* included in the same hyperplane parallel to H_1 , say H_2 , then $\#(S \cap H_2) \geq 7$. Assume two such hyperplanes have their intersection included in the same hyperplane parallel to *H*1, say H_2 and the last one has its intersection with *S* included in H_3 . Then, since $#(S ∩ H_4) \geq 3, \#(S ∩ H'_1 ∩ H_4) \geq 3.$

If $\#(S \cap H_4 \cap H_1') = 4$, we consider *H* the hyperplane through *L* and $S \cap H_1'$ and #(*S*∩ *H*) ≥ 7. Otherwise, there is one point of *S*∩ *H*₄ included in *H*₂ or *H*₃. If this point is included in *H*₂ then #($S \cap H_2$) \geq 7. If it is included in *H*₃, we consider L_1 and L_2 the two lines in H_2 containing *S* which are a translation of *L*. Then either the hyperplane through *L* and L_1 or the hyperplane through *L* and L_2 meets *S* ∩ *H*₃ or *S* ∩ *H*₄ (see Fig. [11d](#page-26-0)). So there is an hyperplane *H* such that # $(S ∩ H) > 7$.

Now assume for each hyperplane H' parallel to H_1 , there is only one hyperplane through *L* which meets *S* in 3 points such that its intersection with *S* included in *H*'. If $S \cap H_1'$ is included in an affine hyperplane parallel to H_1 then we consider *H* the hyperplane through *L* and $S \cap H'_1$ and $\#(S \cap H) \geq 7$. Otherwise, $S \cap H'_1$ meets at least two hyperplanes parallel to H_1 , say H_2 and H_3 in at least 1 point. For $i \in \{2, 3, 4\}$, we denote by H_i' the hyperplane through L' such that $S \cap H_i' \subset$ *H_i*. If \hat{H} the hyperplane through *L* and *S* ∩ *H*₄^{\uparrow} does not meet *S* ∩ *H*₂ and *S* ∩ *H*₃, the hyperplane through *S* ⊙ *H*^{*II*} and *S* ⊙ *H*^{*I*} meets *S* ⊙ *H*_{*I*}. Indeed if \hat{H} then \widetilde{H} the hyperplane through $S \cap H_4'$ and $S \cap H_3'$ meets $S \cap H_2$. Indeed, if \widehat{H}
decents $S \cap H_4'$ we consider four hyperplanes through $S \cap H_4'$ different does not meet $S \cap H_2$ we consider four hyperplanes through $S \cap H_4'$ different from H_4 , which intersect H_2 in 4 distinct parallel lines. However two of these lines meet *S* (see Fig. [11e](#page-26-0)). So there is an hyperplane *H* such that $\#(S \cap H) > 7$.

In all cases, there exists an affine hyperplane *H* such that $\#(S \cap H) \ge 7$. If $\#(S \cap H)$ H) > 7, since *S* meets all affine hyperplanes in at least 3 points, $#S$ > 7 + 3.3 = 16 which gives a contradiction. If $\#(S \cap H) = 7$, then for all *H'* parallel to *H* different form H #($S \cap H'$) = 3. By applying an affine transformation, we can assume x_1 = 0 is an equation of *H*. Then $g = x_1 f \in R_4(3(m-2) + 2, m)$ and $|g| = 9$. So, *g* is a second weight codeword of $R_4(3(m-2)+2, m)$ and by Theorem 9, the support of *g* is included in a plane *P*. Since *S* meets all hyperplanes, *S* is not included in *P*. Then, *S* meets all hyperplanes parallel to *P* in at least 3 points. However $3.3 + 9 = 18 > 16$ which is absurd.

Now, assume $m \geq 4$. Assume *S* is not included in an affine subspace of dimension 3. Then there exists *H* an affine hyperplane such that $S \cap H$ is not included in a plane and *S* is not included in *H*. So, by Lemma 11, *S* meets all affine hyperplanes parallel to *H* in at least 3 points.

Assume for all *H'* parallel to *H*, $\#(S \cap H') \geq 4$, then for reason of cardinality, $\sharp (S \cap H) = 4$. So $S \cap H$ is the support of a second weight codeword of $R_4(3(m 1) + 1, m$ and is included in a plane which is absurd. So there exists H_1 an affine hyperplane parallel to *H* such that $\#(S \cap H_1) = 3$. Then, $S \cap H_1$ is the support of the minimum weight codeword of $R_4(3(m-1)+1, m)$ and is included in a line L. We denote by \overline{u} a directing vector of *L* and *a* the point of *L* which is not in *S*.

Let w_1, w_2, w_3 be 3 points of *S* ∩ *H* which are not included in a line. Then, there are at least 2 vectors of $\{\overline{w_1w_2}, \overline{w_1w_3}, \overline{w_2w_3}\}$ which are not collinear to \overrightarrow{u} . Assume they are $\overline{w_1w_2}$ and $\overline{w_1w_3}$. Let *a* be an affine subspace of codimension 2 included in *H*₁ which contains *a*, $a + \overline{w_1w_2}$, $a + \overline{w_1w_3}$ but not $a + \overrightarrow{u}$. Then *S* does not meet *A*.

Assume *S* does not meet one hyperplane through *A*. Then *S* is included in an affine hyperplane parallel to this hyperplane which is absurd by definition of *A*. So, *S* meets all hyperplanes through *A* and since $3.4 + 4 = 16$, There exists H_2 an hyperplane through *A* such that $\#(S \cap H_2) = 4$ and $S \cap H_2$ is included in a plane. For all *H'* hyperplane through *A* different from H_2 , $\#(S \cap H') = 3$ and $S \cap H'$ is included in a line. Consider H_2' the hyperplane through *A* such that $w_1 \in H_2'$. Then $w_1, w_2, w_3 \in$ H_2' . Since for all *H*^{\prime} hyperplane through *A* different from H_2 , $S \cap H'$ is included in a line and w_1, w_2, w_3 are not included in a line $H'_2 = H_2$. Further more $S \cap H_2$ is included in a plane, so $S \cap H'_2 \subset H$.

For all *H*^{\prime} hyperplane through *A* different from H_2 , $S \cap H'$ is the support of a minimum weight codeword of $R_4(3(m-1)+1, m)$ which does not meet H_1 , so either $S \cap H'$ is included an affine hyperplane parallel to H_1 or $S \cap H'$ meets all affine hyperplanes parallel to *H* but H_1 in 1 point. Since $S \cap H_2$ is included in *H* and all hyperplanes parallel to *H* meets *S* in at least 3 points, there are only three possibilities:

- 1. For all H_2' hyperplane through *A*, $S \cap H_2'$ is included in an affine hyperplane parallel to *H*.
- 2. For H_2' hyperplane through *A* different from H_2 and H_1 , $S \cap H_2'$ meets all affine hyperplanes parallel to H different from H_1 in 1 points.
- 3. There is four hyperplanes through *A* such that their intersection with *S* is included in an affine hyperplane parallel to *H* and one hyperplane through *A* which meets all hyperplanes parallel to H but H_1 in 1.

In the two first cases, since $S \cap H$ is not included in a plane and *S* meets all hyperplanes parallel to *H* in at least 3 points, $\#(S \cap H) = 7$ and for all *H'* parallel to *H* different form H , $\#(S \cap H') = 3$. By applying an affine transformation, we can assume $x_1 = 0$ is an equation of *H*. Then $g = x_1 f \in R_4(3(m-2) + 2, m)$ and $|g| = 9$. So, *g* is a second weight codeword of $R_4(3(m-2) + 2, m)$ and by Theorem 9, the support of *g* is included in a plane *P*. Since *S* is not included in *P*, there exists H'_1 and affine hyperplane which contains *P* but not *S*. Then, *S* meets all hyperplanes parallel to H'_1 in at least 3 points. However $3.3 + 9 = 18 > 16$ which is absurd.

Assume we are in the third case. Since $S \cap H$ is the union of a point and *S* ∩ *H*₂ which is included in a plane and $m \geq 4$, there exist *B* an affine subspace of codimension 2 included in *H* such that *S* does not meet *B* and $S \cap H$ is not included in affine hyperplane parallel to *B*. Then *S* meets all affine hyperplanes through *B* in at most 4 points which is a contradiction since $\#(S \cap H) = 5$.

So *S* is included in *G* an affine subspace of dimension 3. By applying an affine transformation, we can assume

$$
G := \{ (x_1, \ldots, x_m) \in \mathbb{F}_q^m : x_4 = \ldots = x_m = 0 \}.
$$

Let $g \in B_3^q$ defined for all $x = (x_1, x_2, x_3) \in \mathbb{F}_q^3$ by

$$
g(x) = f(x_1, x_2, x_3, 0, \dots, 0)
$$

and denote by $P \in \mathbb{F}_q[X_1, X_2, X_3]$ its reduced form. Since

$$
\forall x = (x_1, \ldots, x_m) \in \mathbb{F}_q^m, \ f(x) = (1 - x_4^{q-1}) \ldots (1 - x_m^{q-1}) P(x_1, x_2, x_3),
$$

the reduced form of $f \in R_q(3(m-2)+1,m)$ is

$$
(1 - X_4^{q-1}) \dots (1 - X_m^{q-1}) P(X_1, X_2, X_3).
$$

Then $g \in R_q(4, 3)$ and $|g| = |f| = 16$. Thus, using the case where $m = 3$, we finish the proof of Lemma 12.

Theorem 12 *For q* ≥ 4*, m* ≥ 2*,* 0 ≤ *t* ≤ *m* − 2*, if f* ∈ *R_q*(*t*(*q* − 1) + 1*, m*) *is such that* $|f| = q^{m-t}$, the support of f is an affine subspace of codimension t.

Proof If $t = 0$, the second weight is q^m and we have the result.

For other cases, we proceed by recursion on *t*.

If *q* \geq 5, we have already proved the case where *t* = *m* − 1 (Theorem 8); if *m* = 2 and $t = m - 2 = 0$, we have the result. Assume $m \geq 3$.

For $q = 4$, if $m = 2$, $t = m - 2 = 0$ and we have the result. If $m \ge 3$, we have already proved the case $t = m - 2$ (Lemma 12). Furthermore, if $m = 3$ we have considered all cases. Assume *m* ≥ 4

Let $1 \le t \le m - 2$ (or for $q = 4, 1 \le t \le m - 3$). Assume the support of $f \in$ $R_q((t+1)(q-1)+1, m)$ such that $|f| = q^{m-t-1}$ is an affine subspace of codimension $t+1$.

Let *f* ∈ *R*_q(*t*(*q* − 1) + 1, *m*) such that $|f| = q^{m-t}$. We denote by *S* its support. Assume *S* is not included in an affine subspace of codimension *t*. Then there exists *H* an affine hyperplane such that $S \cap H$ is not included in an affine subspace of codimension $t + 1$ and $S \cap H \neq S$. Then, by Lemma 11, *S* meets all affine hyperplanes parallel to *H* and for all *H* hyperplane parallel to *H*,

$$
\#(S \cap H') \ge (q-1)q^{m-t-2}.
$$

If for all *H'* hyperplane parallel to *H*, $\#(S \cap H') > (q - 1)q^{m-t-2}$ then, for reason of cardinality, $\#(S \cap H) = q^{m-t-1}$. So $S \cap H$ is the support of a second weight codeword of $R_q((t+1)(q-1)+1, m)$ and is included in an affine subspace of codimension $t + 1$ which is a contradiction.

So there exists *H*₁ parallel to *H* such that #($S \cap H_1$) = ($q - 1$) q^{m-t-2} . Then $S \cap H_1$ is the support of a minimal weight codeword of $R_q((t + 1)(q - 1) + 1, m)$. Hence, *S* ∩ *H*₁ is the union of $q-1$ affine subspaces of codimension $t+2$ included in an affine subspace of codimension $t + 1$.

Let *A* be an affine subspace of codimension 2 included in H_1 such that *A* meets the affine subspace of codimension $t + 1$ which contains $S \cap H_1$ in the affine subspace of codimension $t + 2$ which does not meet *S*. Assume there is an affine hyperplane through *A* which does not meet *S*. Then, by Lemma 11, *S* is included in an affine hyperplane parallel to this hyperplane which is absurd by construction of *A*. So, *S* meets all hyperplanes through *A*. Furthermore,

$$
q^{m-t} = q^{m-t-1} + q(q-1)q^{m-t-2}.
$$

So *S* meets one of the hyperplane through *A* in q^{m-t-1} points, say H_2 , and all the others in $(q - 1)q^{m-t-2}$ points.

Since $H_2 \neq H_1$, $H_2 \cap H_1 = A$ and $S \cap H_2 \cap H_1 = \emptyset$. So, $S \cap H_2$ is the support of a second weight codewords of $R_q((t+1)(q-1)+1, m)$ which does not meet *H*₁. Hence, $S \cap H_2$ is included in one of the affine hyperplanes parallel to *H*.

Furthermore, for all H_2' hyperplane through *A* different from H_2 and H_1 , $S \cap H_2'$ is the support of a minimum weight codeword of $R_q((t + 1)(q - 1) + 1, m)$ which does not meet H_1 , so it meets all affine hyperplanes parallel to H_1 different from H_1 in q^{m-t-2} points or is included in an affine hyperplane parallel to *H*₁. Since *S* ∩ *H*₂ is included in one of the affine hyperplanes parallel to *H* and all hyperplanes parallel to *H* meets *S* in at least $(q - 1)q^{m-t-2}$ points, there are only three possibilities:

- 1. For all H_2' hyperplane through *A*, $S \cap H_2'$ is included in an affine hyperplane parallel to *H*.
- 2. For H_2' hyperplane through *A* different from H_2 and H_1 , $S \cap H_2'$ meets all affine hyperplanes parallel to *H* different from H_1 in q^{m-t-2} points.
- 3. There is *q* hyperplanes through *A* such that their intersection with *S* is included in an affine hyperplane parallel to *H* and one hyperplane through *A* which meets all hyperplanes parallel to *H* but H_1 in q^{m-t-2} .

In the two first cases, if *S* ∩ *H*₂ is not included in *H'* parallel to *H*, $\#(S \cap H') = (q -$ 1) q^{m-t-2} and *S* ∩ *H*' is the support of a minimum weight codewords of $R_q((t+1)(q -$ 1) + 1, *m*). So *S* ∩ *H'* is included in an affine subspace of codimension *t* + 1. Then, necessarily, $S \cap H_2$ is included in *H*. For all *H'* parallel to *H* but *H*, $\#(S \cap H') =$ $(q-1)q^{m-t-2}$. In the third case, for all *H'* hyperplane parallel to *H* different from *H*₁ which does not contain *S* ∩ *H*₂, #(*S* ∩ *H*') = q^{m-t-1} . So *S* ∩ *H*' is the support of a second weight codeword of $R_q((t+1)(q-1)+1, m)$ and is an affine subspace of dimension *m* − *t* − 1. Then, $S \cap H_2 \subset H$ and $#(S \cap H) = q^{m-t-2} + q^{m-t-1}$, $#(S \cap H_1) =$ $(q-1)q^{m-t-2}$. So if we are in the last case for reason of cardinality, for all *A'* affine subspace of codimension 2 included in H_1 such that A' meets the affine subspace of codimension $t + 1$ which contains $S \cap H_1$ in the affine subspace of codimension $t + 2$ which does not meet *S* we are also in case 3. Then *S* is the union of affine subspaces of dimension $m - t - 2$ which are a translation of the affine subspace of codimension $t + 2$ which does not meet *S* in $S \cap H_1$. Then, since $S \cap H_2$ is the support of a second weight codeword of $R_q((t+1)(q-1)+1, m)$, it is an affine subspace of dimension $m - t - 1$. So $S \cap H$ is the union of an affine subspace of dimension $m - t - 1$ and an affine subspace of dimension $m - t - 2$. Since *S* is the union of affine subspaces of dimension $m - t - 2$ which are a translation of an affine subspace of codimension $t + 2$, there exists *B* an affine subspace of codimension 2 such that *B* does not meet *S* and *S* ∩ *H* is not included in an affine subspace of codimension 2 parallel to *B*. Now, we consider all affine hyperplanes through *B*. Assume there exists *G* an affine hyperplane through *B* which does not meet *S*. Then, *S* is included in an affine hyperplane parallel to *G* which is absurd by construction of *B*. So, *S* meets all hyperplanes through *B* and there exists G_1 hyperplane through *B* such that #(*S* ∩ *G*₁) = q^{m-t-1} and for all *G* through *B* but G_1 , #(*S* ∩ *G*) = $(q - 1)q^{m-t-2}$ which is absurd since $\#(S \cap H) = q^{m-t-1} + q^{m-t-2}$. Finally, we are in case 1 or 2.

By applying an affine transformation, we can assume $x_1 = 0$ is an equation of *H*. Now, consider *g* the function defined by

$$
\forall x = (x_1, \ldots, x_m) \in \mathbb{F}_q^m \quad g(x) = x_1 f(x).
$$

Then deg(*g*) $\leq t(q-1)+2$ and $|g| = (q-1)^2 q^{m-t-2}$. So, *g* is a second weight codeword of $R_q(t(q-1) + 2, m)$ and by Theorem 9, the support of *g* is included in an affine subspace of codimension *t*.

Let H_3 be an affine hyperplane containing the support of *g* but not *S*. Then, #(*S* ∩ H_3) > $(q-1)^2 q^{m-t-2}$. Furthermore, since $S \not\subset H_3$, *S* meets all affine hyperplanes parallel to H_3 in at least $(q-1)q^{m-t-2}$. Finally,

$$
\#S \ge 2(q-1)^2 q^{m-t-2} > q^{m-t}.
$$

We get a contradiction. So *S* is included in an affine subspace of codimension *t*. For reason of cardinality, *S* is an affine subspace of codimension *t*.

7.2 Case where $q = 3$, proof of Theorem 5

Lemma 13 *Let* $m \ge 2$, $0 \le t \le m - 2$, $f \in R_3(2t + 1, m)$ *such that* $|f| = 8.3^{m-t-2}$. *If H* is an affine hyperplane of \mathbb{F}_q^m such that $S \cap H \neq \emptyset$ and $S \cap H \neq S$ then either *S meets two hyperplanes parallel to H in* 4.3*m*−*t*−²*points or S meets all af fine hyperplanes parallel to H.*

Proof By applying an affine transformation, we can assume $x_1 = 0$ is an equation of *H*. We denote by H_a the affine hyperplanes parallel to *H* of equation $x_1 = a$, *a* ∈ \mathbb{F}_q . Let *I* := {*a* ∈ \mathbb{F}_q : *S* ∩ *H_a* = ∅} and *k* := #*I*. Since *S* ∩ *H* ≠ Ø and *S* ∩ *H* ≠ *S*, $k \leq q - 2 = 1$. Assume $k = 1$. For all $c \notin I$ we define

$$
\forall x = (x_1, \ldots, x_m) \in \mathbb{F}_q^m, \quad f_c(x) = f(x) \prod_{a \notin I, a \neq c} (x_1 - a).
$$

Then deg(f_c) = (t + 1)2 and $|f_c| \ge 3^{m-t-1}$. Assume there exists *H'* an affine hyperplane parallel to *H* such that $#(S \cap H') = 3^{m-t-1}$ and $S \cap H'$ is the support of a minimal weight codeword of $R_3(2(t+1), m)$. Then consider *A* an affine subspace of codimension 2 included in H' containing $S \cap H'$ and A' an affine subspace of codimension 2 included in H' parallel to A . We denote by k the number of hyperplanes through *A* which meet *S* and by *k* the number of affine hyperplanes through A' which meet S in 3^{m-t-1} points. Then

$$
k'3^{m-t-1} + (k - k')4 \cdot 3^{m-t-2} \le 8 \cdot 3^{m-t-2}.
$$

Since $\#S > \#(S \cap H')$ and $k' \leq k$, we get $k = 2$. Then, if we denote by H'' the other hyperplane parallel to H' which meets S , $S \cap H''$ is included in an affine subspace of codimension 2 which is a translation of *A*. By applying this argument to all affine subspaces of codimension 2 included in *H*' and containing $S \cap H'$, we get that $S \cap H''$ is included in a an affine subspace of dimension $m - t - 1$. For reason of cardinality this is absurd. If $|f_c| > 3^{m-t-1}$ then $|f_c| \ge 4.3^{m-t-2}$. For reason of cardinality, we have the result. □ the result. \Box

Now, we prove Proposition 5.

First, we prove the case where $t = 1$. Obviously, *S* is included in an affine subspace of dimension *m*. Assume *S* meets all affine hyperplanes of \mathbb{F}_q^m . Then for all *H'* affine hyperplane of \mathbb{F}_q^m , $\#(S \cap H') \geq 2.3^{m-3}$ and by Lemma 2, there exists *H* an affine hyperplane such that

$$
\#(S \cap H) = 2.3^{m-3}.
$$

Then *S* ∩ *H* is the support of a minimum weight codeword of $R_3(5, m)$. So it is the union of P_1 , P_2 2 parallel affine subspaces of dimension $m-3$ included in an affine subspace of dimension $m - 2$. Let A be an affine subspace of codimension 2 included in H , containing P_1 and different from the affine subspace of codimension 2 containing $S \cap H$. Then there exists A' an affine hyperplane of codimension 2 included in *H* parallel to *A* which does not meet *S*. We denote by *k* the number of affine hyperplanes through *A*^{\prime} which meet *S* in 2.3^{*m*−3} points. Then, if $m \geq 4$,

$$
k2.3^{m-3} + (4-k)8.3^{m-4} \le 8.3^{m-3}
$$

which means that $k \geq 4$. If $m = 3$, $2k + (4 - k)3 \leq 8$ which also means that $k \geq 4$. Then for all *H*^{\prime} hyperplane through *A* different from *H*, *S* ∩ *H*^{\prime} is a minimal weight codeword of $R_3(5, m)$ which does not meet *H* and either $S \cap H'$ is included in one of the hyperplanes parallel to H or $S \cap H'$ meets the two hyperplanes parallel to *H* different from *H*. In all cases, *S* is the union of eight affine subspace of dimension $m - 3$. By applying this argument to all affine subspaces of codimension 2 included in H , containing P_1 and different from the affine subspace of codimension 2 containing $S \cap H$, we get that these 8 affine subspaces are a translation of P_1 .

Choose H_1 one of the hyperplanes through A' and consider H_2 and H_3 the two hyperplanes parallel to *H*₁. Since $\#(S \cap H_1) = 2.3^{m-3}$ and *S* meets all hyperplanes in at least 2.3^{*m*−3} points, either #($S \cap H_2$) = 3.3^{*m*−3} and #($S \cap H_3$) = 3.3^{*m*−3} or #($S \cap H_2$) = 2.3^{*m*−3} and #($S \cap H_3$) = 4.3^{*m*−3}.

First consider the case where $\#(S \cap H_2) = 3.3^{m-3}$ and $\#(S \cap H_3) = 3.3^{m-3}$. Then there exists an affine subspace of codimension 2 in H_2 which does not meet *S*. We denote by *k*' the number of hyperplanes through *A* which meet *S* in 2.3^{*m*−3} points. Then, we have $k' \geq 4$ which is absurd since $\#(S \cap H_2) = 3.3^{m-3}$.

Now, consider the case where $#(S ∩ H_2) = 2.3^{m-3}$ and $#(S ∩ H_3) = 4.3^{m-3}$. By applying an affine transformation, we can assume $x_1 = 0$ is an equation of H_3 . Then *x*₁. *f* is a codeword of *R*₃(4, *m*) and $|x_1, f| = 4.3^{m-3}$. So, by Theorem 10, its support is included in an affine hyperplane H'_1 and $S \cap H'_1 \cap H_3 = \emptyset$. So *S* is included H_1' and H_3 and there exists an affine hyperplane through $H_1' \cap H_3$ which does not meet *S* which is absurd.

Finally there exists an affine hyperplane *G*¹ which does not meet *S*. So, by Lemma 13, *S* meets G_2 and G_3 the two hyperplanes parallel to G_1 in 4.3^{*m*-3} points. Then, Theorem 10, $G_2 \setminus S$ and $G_3 \setminus S$ are the union of two non parallel affine subspaces of codimension 2. Consider *A* one of the affine subspaces of codimension 2 in $G_2 \setminus S$. Assume all hyperplanes through A meet *S*. So for all *G*['] hyperplane through *A*, $\#(G' \setminus S) \leq 7.3^{m-3}$. Furthermore, one of the hyperplanes through *A*, say *G*, meets $G_3 \setminus S$ in at least 2.3^{*m*−3}, then #(*G* \ *S*) ≥ 2.3*^m*−² + 2.3*^m*−³ which is absurd (see Fig. [12\)](#page-33-0). So there exists *G* through *A* which does not meet *S*. By applying the same argument to the other affine subspace of dimension 2 of $G_2 \setminus S$, we get the result for $t = 1$.

– We prove by recursion on *t* that *S* is included in an affine subspace of dimension $m - t + 1$. Consider first the case where $t = m - 2$. If $m = 3$ then $t = 1$ and we have already considered this case. Assume $m \ge 4$. Let $f \in R_3(2(m-2)+1, m)$ such that $|f| = 8$. Assume *S* is not included in an affine subspace of dimension 3. Let w_1, w_2, w_3, w_4 be 4 points of *S* which are not included in a plane. Since

Fig. 12 Proposition 5, case where $t = 1$

S is not included in an affine subspace of dimension 3, there exists *H* an affine hyperplane such that *H* contains w_1, w_2, w_3, w_4 but *S* is not included in *H*. Then by Lemma 13 either *S* meets two hyperplanes parallel to *H* in 4 points or *S* meets all hyperplanes parallel to *H*.

If *S* meets two hyperplanes parallel to *H* then $S \cap H$ is the support of a second weight codeword of $R_3(2(m-1), m)$ so is included in a plane which is absurd since $w_1, w_2, w_3, w_4 \in S \cap H$. So *S* meets all hyperplanes parallel to *H* and for all *H'* hyperplane parallel to *H*, $\#(S \cap H') \geq 2$. Since $\#S = 8$ and $\#(S \cap H) \geq 1$ 4, for all *H'* hyperplane parallel to *H* different from *H* $\#(S \cap H') = 2$ and $#(S ∩ H) = 4.$

By applying an affine transformation, we can assume $x_1 = 0$ is an equation of *H*. Then x_1 , $f \in R_3(2(m-1), m)$ and $|x_1$, $f| = 4$ so x_1 , f is a second weight codeword of *R*3(2(*m* − 1), *m*) and its support is included in a plane *P* not included in *H*. Let *H* be an affine hyperplane which contains *P* and a point of $(S \cap H) \setminus P$ but not all the points of *S*∩ *H*. Then, $#(S ∩ H') \ge 5$ and *S*∩ *H'* \neq *S*. By applying the same argument to H' than to H we get a contradiction for reason of cardinality.

If $m \leq 4$, we have already considered all the possible values for *t*. Assume $m \geq 5$. Let $2 \le t \le m - 3$. Assume if $f \in R_3(2(t + 1) + 1, m)$ is such that $|f| = 8.3^{m-t-3}$ then its support is included in an affine subspace of dimension $m - t$. Let $f \in$ $R_3(2t + 1, m)$ such that $|f| = 8.3^{m-t-2}$ and denote by *S* its support. Assume *S* is not included in an affine subspace of dimension $m - t + 1$. Then, there exists *H* an affine hyperplane such that $S \cap H \neq S$ and $S \cap H$ is not included in an affine subspace of dimension *m* − *t*. So, by Lemma 13, either *S* meets two affine hyperplanes parallel to *H* in 4.3^{m-t-2} points or *S* meets all affine hyperplanes parallel to *H*.

If *S* meets two affine hyperplanes in 4.3^{*m*−*t*−2} points, *S* ∩ *H* is the support of a second weight codeword of $R_3(2(t+1), m)$ and is included in an affine subspace of dimension *m* − *t* which is absurd. So *S* meets all affine hyperplanes parallel to *H* and for all *H* hyperplane parallel to *H*,

$$
\#(S \cap H') \ge 2.3^{m-t-2}.
$$

Assume for all *H'* parallel to *H*, $\#(S \cap H') > 2.3^{m-t-2}$. Then, for reason of cardinality $\#(S \cap H) = 8.3^{m-t-3}$ and $S \cap H$ is the support of a second weight codeword of $R_3(2(t+1)+1, m)$ which is absurd since $S \cap H$ is not included in an affine subspace of dimension $m - t$. So there exists H_1 parallel to H such that $\#(S \cap H_1) = 2.3^{m-t-2}$ and $S \cap H_1$ is the support of a minimal weight codeword of $R_3(2(t+1)+1,m)$ so $S \cap H_1$ is the union of P_1 and P_2 2 parallel affine subspaces of dimension *m* − *t* − 2 included in an affine subspace of dimension *m* − *t* − 1.

Let *A* be an affine subspace of codimension 2 included in H_1 and containing *P*₁ and such that $A \cap P_2 = \emptyset$. Let *A*' be an affine subspace of codimension 2 included in H_1 parallel to *A* which does not meet *S*. Assume there exists H_1' an affine hyperplane through A' which does not meet *S*. Then, *S* meets H'_2 and *H*^{$'$}₃ the two hyperplanes parallel to *H*^{$'$}₁ different from *H*^{$'$}₁ in 4.3^{*m*−*t*−2} points. For example, we can assume $A \subset H_2'$. Then, $S \cap H_3'$ is the support of a second weight codeword of $R_3(2(t + 1), m)$. So $S \cap H'_3$ meets H in $0, 3^{m-t-2}, 2 \cdot 3^{m-t-2}$ or $4 \cdot 3^{m-t-2}$ points. Since *S* meets all hyperplanes parallel to *H* in at least 2.3*^m*−*t*−² points, if

$$
\#(S \cap H \cap H_3') = 4.3^{m-t-2},
$$

 $S \cap H \cap H'_2 = \emptyset$. So $S \cap H$ is included in an affine subspace of dimension *m* − *t* which is absurd. So $S \cap H'_2$ and $S \cap H'_3$ are the support of second weight codewords of $R_3(2(t+1), m)$ not included in *H*, then their intersection with *H* is the union of at most two disjoint affine subspaces of dimension $m - t - 2$.

Now assume *S* meets all hyperplanes through *A* . We denote by *k* the number of the hyperplanes through *A* which meet *S* in 2.3*m*−*t*−² points. Then

$$
k2.3^{m-t-2} + (4-k)8.3^{m-t-3} \le 8.3^{m-t-2}
$$

which means that $k \geq 4$. So for all H' affine hyperplane through A' different from *H*₁, *S* ∩ *H*^{\prime} is the support of minimum weight codeword of $R_3(2(t + 1) + 1, m)$ which does not meet H_1 . So either $S \cap H'$ is included in H or $S \cap H'$ meets S in an affine subspace of dimension $m - t - 2$. In both cases, $S \cap H$ is the union of at most four disjoint affine subspaces of dimension $m - t - 2$. By applying this argument to all affine subspaces of dimension 2 included in H_1 containing P_1 but not P_2 , we get that $S \cap H$ is the union of four affine subspaces of dimension *m* − *t* − 2 which are a translation of P_1 . This gives a contradiction since *S* ∩ *H* is not included in an affine subspace of dimension $m - t$. So *S* is included in an affine subspace of dimension $m - t + 1$.

Let $f \in R_3(2t+1, m)$ such that $|f| = 8.3^{m-t-2}$ and A the affine subspace of dimension $m - t + 1$ containing *S*. By applying an affine transformation, we can assume

$$
A := \{(x_1, \ldots, x_m) \in \mathbb{F}_q^m : x_1 = \ldots = x_{t-1} = 0\}.
$$

Let *g* $\in B_{m-t+1}^3$ defined for all *x* = (*x_t*, ..., *x_m*) $\in \mathbb{F}_3^{m-t+1}$ by

$$
g(x) = f(0, \ldots, 0, x_t, \ldots, x_m)
$$

and denote by $P \in \mathbb{F}_3[X_t, \ldots, X_m]$ its reduced form. Since

$$
\forall x = (x_1, \ldots, x_m) \in \mathbb{F}_3^m, \ f(x) = (1 - x_1^2) \ldots (1 - x_{t-1}^2) P(x_t, \ldots, x_m),
$$

the reduced form of $f \in R_3(t(q-1) + s, m)$ is

$$
(1-X_1^2)\ldots(1-X_{t-1}^2) P(X_t,\ldots,X_m).
$$

Then *g* ∈ *R*₃(3, *m* − *t* + 1) and $|g| = |f| = 8.3^{m-t-2}$. Thus, using the case where $t = 1$, we finish the proof of Proposition 5.

Appendix: Blocking sets

Blocking sets have been studied by Erickson in [8] in the case of affine planes and by Bruen in [3–5] in the case of projective planes.

Definition 1 Let *S* be a subset of the affine space \mathbb{F}_q^2 . We say that *S* is a blocking set of order *n* of \mathbb{F}_q^2 if for all line *L* in \mathbb{F}_q^2 , $\#(S \cap L) \ge n$ and $\#((\mathbb{F}_q^2 \setminus S) \cap L) \ge n$.

Proposition 10 (Lemma 4.2 in [8]) *Let* $q \geq 3$, $1 \leq b \leq q - 1$ *and* $f \in R_q(b, 2)$ *. If* f *has no linear factor and* $|f| \leq (q - b + 1)(q - 1)$ *, then the support of f is a blocking set of order* $(q - b)$ *of* \mathbb{F}_q^2 .

In [8] Erickson make the following conjecture. It has been proved by Bruen in [5].

Theorem 13 (Conjecture 4.14 in [8]) *If S is a blocking set of order n in* \mathbb{F}_q^2 , then $\#S \geq$ $nq + q - n$.

References

- 1. Ballet, S., Rolland, Robert.: Remarks on low weight codewords of generalized affine and projective reed-muller codes. In: Proceedings of the International Workshop on Coding and Cryptography (2013)
- 2. Berger, T., Charpin, P.: The automorphism group of generalized Reed-Muller codes. Discrete Math. **117**(1–3), 1–17 (1993)
- 3. Bruen, A.: Baer subplanes and blocking sets. Bull. Amer. Math. Soc. **76**, 342–344 (1970)
- 4. Bruen, A.: Blocking sets in finite projective planes. SIAM J. Appl. Math. **21**, 380–392 (1971)
- 5. Bruen, A.A.: Blocking sets and low-weight codewords in the generalized Reed-Muller codes. In: Error-Correcting Codes, Finite Geometries and Cryptography, Contemp. Math., vol. 523, pp. 161–164. Amer. Math. Soc., Providence, RI (2010)
- 6. Cherdieu, J.P., Rolland, R.: On the number of points of some hypersurfaces in **F***ⁿ ^q*. Finite Fields Appl. **2**(2), 214–224 (1996)
- 7. Delsarte, P., Goethals, J.-M., MacWilliams, F.J.: On generalized Reed-Muller codes and their relatives. Inform. Control **16**, 403–442 (1970)
- 8. Erickson, D.E.: Mathematics california institute of technology. Division of Physics, and Astronomy. Counting Zeros of Polynomials Over Finite Fields. CIT theses. California Institute of Technology (1974)
- 9. Geil, O.: On the second weight of generalized Reed-Muller codes. Des. Codes Cryptogr. **48**(3), 323–330 (2008)
- 10. Kasami, T., Lin, S., Wesley Peterson, W.: New generalizations of the Reed-Muller codes. I. Primitive codes. IEEE Trans. Inform. Theory **IT-14**, 189–199 (1968)
- 11. Kasami, T., Tokura, N.: On the weight structure of Reed-Muller codes. IEEE Trans. Inform. Theory **IT-16**, 752–759 (1970)
- 12. Leducq, E.: A new proof of Delsarte, Goethals and Mac Williams theorem on minimal weight codewords of generalized Reed-Muller codes. Finite Fields Appl. **18**(3), 581–586 (2012)
- 13. Rolland, R.: The second weight of generalized Reed-Muller codes in most cases. Cryptogr. Commun. **2**(1), 19–40 (2010)
- 14. Sboui, A.: Second highest number of points of hypersurfaces in \mathbb{F}_q^n . Finite Fields Appl. 13(3), 444–449 (2007)