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Abstract CAR30 is a new stream cipher that uses classical Rule 30 of Cellular
Automata (CA) along with a Maximum Length Linear Hybrid CA. This design can
be implemented efficiently both in hardware and software. It has a fast initialization
algorithm that makes it suitable for small messages. The generic design of the cipher
enables to scale up for any length of Key and I'V. This paper describes the cipher with
128-bit Key and 120-bit IV and evaluates the security and implementation aspects of
it. The main advantages of the proposed cipher are the flexibility of its design, good
hardware throughput in comparison with state-of-the-art hardware oriented ciphers
like Grain and Trivium and better software speed than the software oriented stream
cipher Rabbit.
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Grain family of stream ciphers
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1 Introduction

Stream ciphers provide a high encryption/decryption speed that can be used in com-
munication channels. Cellular Automata (CA), due to their speed and randomness
in their sequences, can be a very good primitive for stream ciphers. The hardware
implementation of CA is simple. Since they have a regular structure, it is possible to
find an efficient software implementation for eight, sixteen, thirty-two and sixty-four
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bits architectures. The CA structures can be extended to accommodate a bigger
key length. CA also provide parallel transformations that help to achieve more
throughput which is essential for stream ciphers. It was shown in [24] that CA
can provide resistance to correlation attacks which are one of the most devastating
attacks on stream ciphers.

The use of Cellular Automata in stream ciphers was proposed by Wolfram way
back in 1985. Wolfram used rule 30, where the next state of the CA is defined as (left-
neighbor XOR (self OR right-neighbor)), for building the stream cipher. He proposed
to extract the temporal sequence, which is the sequence generated by the middle bit
of an N bit CA with rule 30 for each cell [26, 27]. However, Meier and Staffelbach
attacked this stream cipher and showed that such a construction does not provide
the required security [20]. The weaknesses arise due to the linearity with the left-
neighbor in the temporal sequences of such a non-linear primitive.

In this paper, we present a new scalable stream cipher which is based on Cellular
Automata. Although the idea of using CA in stream ciphers is not completely new,
the proposed work provides a solution which can be easily used with Keys and IVs
of different sizes. This extensibility does not change the design and the structure
of the cipher and this can be identified as the most original feature of the work.
Further the cipher, mixing two types of CAs (linear and non-linear), and running
them for a number of cycles, appears to reduce the linearity with the adjacent
sequence (i.e. the sequences produced by the neighboring bits) at the moment of
production of the keystream. Indeed, this was an important weakness of previous
CA-based stream ciphers. Running a number of cycles in non-linear CA also acts
as an “automated boolean function generator” of desired cryptographic properties.
This stream cipher uses rule 30 as a primitive for non-linearity but with a structure
of a modern stream cipher. In this cipher, the whole block of key stream is produced
at each round that not only compensates the speed loss for running more number
of cycles but also receives more throughput than Grain [16] and Trivium [5]. The
proposed stream cipher, henceforth called CAR30, takes 128 bits Key and 120 bits
of IV as input and produces 128 bits block of key stream in each iteration. The
initialization process requires 160 cycles which is faster than Grain and Trivium that
take 256 cycles (for 128 bits version of Grain) and 1,152 cycles, respectively. The
hardware requirement of CAR30 is more than Grain and Trivium, due to the local
transformation at each bit. But the hardware cost is getting reduced day-by-day and
a little extra hardware should not increase the cost of the cipher much. However,
due to high throughput, the throughput to area ratio of CAR30 is more than both
Grain and Trivium. Recently, in CHES 2010, Badel et al. have introduced the Figure
of Merit (FOM) [1] to give a good estimation of the area/throughput tradeoff for
hardware implementations. This FOM = throughput/area® for CAR30 is better than
Grain and Trivium. Finally, due to block oriented transition functions, it provides an
easy and efficient implementation in software which is difficult in existing hardware
oriented stream ciphers. In fact, the software implementation shows that the speed
of CAR30 is better than software oriented eSTREAM [25] finalist Rabbit [4]. In
addition, CAR30 provides configurable security and extensibility to any Key/IV
length without changing the design and analysis making it future-proof.

This paper is organized as follows. First, we provide an introduction to Cellular
Automata. Section 2 describes the cipher along with the initialization process and the
variability of the cipher. The design rationale for the choice of various elements of
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the cipher is described in Section 3. The security properties of the cipher is analyzed
in Section 4. Section 5 provides the implementation aspects of the cipher for both
hardware and software. Finally, Section 6 performs comparison of CA R30 with Grain
and Trivium.

1.1 Introduction to cellular automata (CA)

The CA structure can be viewed as a lattice of cells where every cell can take values
either 0 or 1. Each cell evolves in each time step depending on some combina-
tional logic on itself and its neighbors [22], which is called three-neighborhood CA.
Throughout the paper, let <, @, | and - denote assignment, logical XOR, logical
OR and multiplication over G F(2), respectively. The next state function for a three-
neighborhood CA cell can be expressed as follows:

qit+1) = f(qi®), qis1(0), gi—1 (1)),

where, g;(t) denotes the output state of the i-th cell at the ¢-th time step and f denotes
the local transition function realized with a combination logic and is known as a rule
of the CA.

If the rule of a CA involves XOR logic only it is called a linear rule and the
corresponding CA is called a linear CA or an additive CA. Rules 90 and 150 are
examples of such a CA.

rule90 : q;(t + 1) = qi1 (1) ® qi—1 (1)
rule150 : qi(t + 1) = qi(t) ® qip1 (D) ® qi—1 ()

The rules with AND-OR combination logic are called non-additive CA. Non-
additive Cellular Automata are non-linear in nature. Rule 30 is one such non-linear
non-additive CA, which is defined as:

rule30 : q;(t + 1) = qi—1 () ® (qi(D]qir1 (D))

The characteristic matrix of a linear CA operating over GF(2) is a matrix that
describes the behavior of the CA [22]. We can calculate the next state of the CA by
multiplying the characteristic matrix by the present state of the CA. A characteristic
matrix is constructed as:

Tli, jl = 1, if the next state of the ith cell depends on jth cell
= 0, otherwise

In the next section, the proposed stream cipher CAR30 is described.

2 Description of the cipher

The construction of the stream cipher is shown in Fig. 1. It contains a non-linear
block and a linear block of size 128 bits each with a total state size of 256 bits. The
non-linear block consists of 128 cells (bits) CA where each cell is updated using rule
30 in every cycle. The linear block consist of 128-bit maximum length CA using rules
90/150 with rule 150 at bit positions 1 and 29 and rule 90 for the rest of the bits.
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Fig. 1 The cipher description

During the first 16 cycles, the outputs of the non-linear and linear block are XORed
and fed to the non-linear block. After 16 cycles, this XOR output is stored to update
the non-linear block at the beginning of the next iteration (i.e. after the key stream
is produced). In the next 16 cycles, the non-linear block runs without any XOR
feedback. The key-streams are produced directly from the second non-linear block.
The key-stream is finally XORed with the plain-text to produce the cipher-text.

The linear blocks have a null boundary condition, that is the left neighbor of the
extreme left and the right neighbor of the extreme right bits are connected to logic
zero. The non-linear block has a periodic boundary condition which means the right
side of the extreme right cell is connected to the extreme left cell of the non-linear CA
(NLCA) and vice versa. In addition, before the non-linear operation is performed,
8th, 24th, 40th, 56th, 72th, 88th, 104th and 120th bits of the linear CA (LCA) are
XORed with the 72th, 88th, 104th, 120th, 8th, 24th, 40th and 56th bits of NLCA,
respectively, to update the corresponding non-linear CA bits.

Leta = ay, - - - a;p7 denote the non-linear state bits and b = by, - - - b 127, denote the
linear state bits at the beginning of any round and ks denotes 128-bit key-stream. ¢
denotes an intermediate state. The key-stream generation algorithm can be described
alternatively as follows:

1: fori=1to 16 do

22 b<«<T-b

33 a<{apy, a0, ,a6® b7, ,an ®bgy, - ,axx® bz, - ,a54 D
big, -+ ,a10® b7, --ass® b3, ,a100 @ b3o, -+ ,a113Db7---a16} ©
({ao, - -+, a127} | {a1, - -+, a127, ao})
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4 a<adb

5: end for

6: C<—a

7: fori=1to 16 do

88 b« T-b

9:  a<{apy,ap - ,a6® b7, - a0 ®bgy, - ,azg Dbz, - ,a54 D
big, -+ ,a10®b7,---ass®bo3, - ,a100® b3g, -+ ,a113Db7---ane} ®
({ao, - -+ s ana7} | {a1, - -+, a127, ao})

10: end for

11: ks < a

12: a < ¢

Initialization The initialization algorithm is shown in Fig. 2. It is similar to the key
stream generation algorithm. The difference is that the key-streams are fed to the
linear block. The internal structure remains the same with both the non-linear CA
and the linear CA run for 16 cycles at each stage. At the beginning the 128-bit Key is
uploaded to the non-linear block. The 120-bit IV is extended to 128 bits as follows. A
logic bit 1 is added after every fifteenth position of the 120-bit IV. That is bit numbers
16 % i, (i = 1...8) are made to logic one in the 128-bit block. Since each block of the
cipher runs for sixteen cycles, the above arrangement will ensure that each linear
state bit is affected by these logic bits 1. The extended IV is uploaded in the linear
block. The initialization algorithm is iterated for five times before producing any key
stream.

1 1
! ! ! |
i 128 Bits CA with Uniform Rule 30 128 Bits Maximum Length CA (Null !
| (Periodic Boundary) Boundary) :
1
| | |
Bits No 72, 8 i !
i WA RN, 7T TR, 130 !
' 40, 56 1-128 '
! 128 Runs for 16 Cycles I |
I
i . M /ng :
: 128 L/ |
1 1
: | 128 :
T O P 1
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Fig.2 The cipher initialization
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The initialization process is mathematically shown as follows IV =
{IVy, -+, IV}, denotes 120 bits initial value):
1: a < KEY
2b < {IVo, IVy, -  IViu, 1, IVis, -, Vi, 1}
3: forj=1to 5 do
4:  fori=1to 16 do

5 b<~T-b

6: a<{ap, a0, - ,a6®b7,--- ,an®bgy, -+ ,a33B b0z, , 54 D
big, - ,a10® by, --ass® b3, ,a100 D b3g, - ,a118DD7---a6} @
(ao, - -+, a1z7} | {ay, - -+, a127, ao})

7: a<adb

8 end for

9: c<a

10:  fori=1to 16 do

11: b<T-b

12: a < {apy, a9, - ,a6®b71, - ,an ®bgy, -+, a3 ®byp3, -+, a5 D
big, -+ ,a10®b7,---ass®bo3, - ,a100 ® b3g, -+ ,a1183Db7---ape} ®
({ao, - -+ a7} | {a1, - -+, a127, ao})

13:  end for

14 b <«a

15: a<¢

16: end for

Variability The cipher is variable with the number of cycles that are run at each
stage of the cipher. This provides the configurable security and the flexibility to
tradeoff between speed and the security without changing the hardware or the
software implementation code. We have shown 16 cycles as that is required for 128-
bit security with sufficient security margin.

3 Design rationale

In this section, we describe the design rationale of the proposed stream cipher.
We used CA for both non-linear blocks and the linear blocks because CA provide
very good statistically random sequences and are easy to implement in hardware.
Note that the ease of hardware implementation is an important criterion for stream
ciphers. As stated by Meier and Staffelbach [20], an important difference between
CA and feedback shift registers is that even if CA are invertible, it is not possible
to find the predecessor of a state by simply reversing the rule to find out the next
state [9]. The problem of deducing the initial configuration from partial output is
NP-Complete [26]. However, we show later that these statements are incorrect. The
non-linear CA employing Rule-30 are subjected to inversion attack [13]. Hence
special considerations are taken in this cipher by injecting the linear bits to non-
linear CA to make this attack much more complex than brute force. The stream
cipher uses two stages of non-linear transformations. The first stage is required for
the update of the non-linear state bits with a linear masking so that a better period
is guaranteed. The second stage, on the other hand, acts as a filter to the state bits
before producing the key-streams. The injection of the linear bits in the non-linear
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block guarantees a better period, a better randomness to the sequences produced and
prevents correlation attacks by balancing the key streams. This also helps to prevent
an attacker to walk backwards from the key-streams to the state bits by increasing
the number of unknown bits. The non-linear CA is made periodic boundary so that
there is no weakness at the end bits. The bit numbers 8, 24, 40, 56, 72, 88, 104 and
120 from the linear CA are sent to the non-linear block so that maximum number of
linear bits affect the non-linear CA. These linear bits help to prevent the inversion
attack on the cipher.

The choice of number of cycles Cellular Automata perform parallel transformations
in every cycle unlike LFSRs. Hence, all the state bits are transformed in every cycle.
So CA provide a large throughput with less number of cycles. On the other hand,
each CA transformation involves only three bits which will not provide sufficient
security for the CA based primitive. Hence, to get enough security, it is important to
run the CA for a few cycles before the output is produced. So, the number of cycles
is the trade-off parameter between the speed and the security. In case of CAR30,
in each stage of the cipher sixteen cycles are used because each output bit in each
stage will depend on 33 bits from its input. Out of these 33 bits, it will depend non-
linearly on 32 bits for the non-linear CA block. We state some Theorems below for
some properties of CA with straightforward proofs which will show the reason for
choosing a total of 32 cycles between successive rounds .

Theorem 1 For non-linear n-cell periodic-boundary CA transformation with rule 30
running for p cycles (p < n/2), each state bit depends on 2p + 1 neighboring bits.

Theorem 2 For non-linear n-cell periodic-boundary CA transformation with rule 30
running for p cycles (p < n/2), each non-linear state bit depends on 2p bits non-
linearly.

Now let us prove Theorems 1 and 2, by induction.

Proof Let us assume the following at the pth (p < n/2) cycle on a periodic boundary
CA with uniform Rule 30:

1. ginp depends on 2p + 1 bits which are all bits from g;_,; to g4, This is
Theorem 1.

Due to symmetric nature, this assumption implies:

2. qi—1,+p depends on 2p + 1 bits which are all bits from g;_1_, ; t0 gi—14p-
3. qiy1,+p depends on 2p+1 bits which are all bits from g1 ; t0 qit14p,:-

Let us assume further that:

4. gi.p depends non-linearly on 2p bits which are all bits from g;_p41, t0 giyp-
This is Theorem 2.

Due to symmetric nature, this assumption implies:
5. qi—1,+p depends non-linearly on 2p bits which are all bits from g;_j_,41; to

qi—1+p,t-

@ Springer



144 Cryptogr. Commun. (2013) 5:137-162

6. qiy1,+p depends non-linearly on 2p bits which are all bits from g;yi_p41, to
qi+14p.t-

Let us make one more further assumption that:

7. In the expression of g; 4 p, the bit g;;,  has a non-linear association with all the
bits from q;_(p—1),r tO Giyp—1.-

Again, due to symmetric nature, this assumption implies:

8. In the expression of g;_; /4, the bit g;_14, , has a non-linear association with all
the bits from qi-1—(p—1).t to qi-1+p—1,-

9. In the expression of g1, the bit g; 14, , has a non-linear association with all
the bits from q;y1—(p—1),s O Giy14p—1.-

We need to prove that the assumptions hold good when p — p + 1. Now,

Qit+p+1 = Gi-1,0+p T Qistvp + Qit1.04p + Qisttp - Git1,04p (1)

First, g;_1 4+, brings an additional bit g;_i—,,=qi—(p+1), according to assumption 2
which is not present in any other terms according to assumptions 1 and 3.

Second, the term g; 1, can be expressed as: g;_,; + - - - non-linear terms involving
all the bits from q;_p41, to gitp (from assumptions 1 and 4).

The term g;y 1, can be expressed as: g;i—,; + some non-linear terms + non-
linear terms involving qiy14p..

The product term ¢q;;yp - giy1,++p can be expressed as: (qi—p,+ --- non-linear
terms) - (qiv1—p; + some non-linear terms + non-linear terms involving qii14p;) =
((Gi=p,0) - (Gix1-p,r + some non-linear terms + non-linear terms involving qiy14p.)) +
((some non-linear terms) - (qix1-p,: + some non-linear terms involving bits q;_p41 ; to
Qitp.: + non-linear terms involving qiyi+p)) = qi—p, - (non-linear terms involving
Giti+p) -+ = Qi—ps - Qix14p, - (terms involving all the bits from qiyi—p—1), to
Qit1+p—1, (from assumption 9)) + - - -.

Hence, (1) can be written as:

Qit+p+1 = Gi—p,i * Qiv1+p,: - (terms with all the bits from qiy1—(p—1), 10 Gix14p—1,0) + - -

)

None of the terms on the first part will cancel out because this is the only place so
far where product g;—, ; - i+1+p, appears in the non-linear terms.

Now let us show the assumptions 1-9 are valid when the number of cycles is p+1.

Assumption 1: Note from the above analysis, two new bits are added in the overall
expression of g; 4 p4+1 Which are g;_(p+1y,, and gy 14, Also from the
above expression the product term contain all the bits from g;_, , to
qi+14p,i- Hence, the g; 4,41 depends on all the bits from g;_ 1), to
qi+(p+1),: Whichis 2(p 4 1) + 1 number of bits.

From symmetry the assumptions 2 and 3 are also valid.

Assumption 4: From the above expression, g;,y,+1 depends non-linearly on bits
qi-p,i 10 qiy14p, Which is equivalent to bits g;—(p41)+1,¢ 1O Giypsi,
(total 2- (p + 1) bits.)

From symmetry the assumptions 5 and 6 are also valid.
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Assumption 7:  From the above expression, ¢;;(,+1), has a non-linear association
with g;_, ; and all the bits from g;_(,—1) t0 giy14p—1, 1.€. it has non-
linear association with q;_(p+1)-1) 10 Git-(p+1)—1,:-

Now, it can be easily seen in Example 1 below, that all the assumptions are valid
for p =1 and p = 2, hence the assumptions are valid for all p < n/2. O

The following example illustrates the above Theorems.

Example 1 The expression for the next state bit of Rule 30 can equivalently be
written as,

Gitr1 = qi—1+Gix + qiv1t + qirqiv1e

where all the operations are in GF(2) and g;; denotes the i-th state bit at t-th time
instant. Similarly,

Git+2 = Qi—1.0+1 T Giv+1 + Git1,+1 T Qi 1Git1,041-
Qi-1,041 = Gi21 T Gi-1,0 + Gip + i-1,1Gis
Git1,t+1 = Gir + Giv1,e + Giv2r + Git1,09i+2,
Combining the above three expressions, we get:
Git+2 = qi—2¢ + Givot + Giv1e + Qit1.0-9iv2.c + Gi-1.0-Giv1,t + Gi-1,0-Giv2.t
+qit-Giv2 + qiv1,6-9it + Gi-1,0-i+1,6-9i+2,t + Git-Giv1,6-Giv2,t

The following facts should be observed from the above equation:

—_

The non-linear state bit depends on five bits which conforms with Theorem 1.

2. The non-linear state bit depends non-linearly on four bits conforming
Theorem 2.

The algebraic degree is three.

4. With each additional cycle run with Rule 30, the output expression becomes
much more complex.

w

Lemma 1 The algebraic degree of the state bits with respect to the previous state bits,
when the n-cell periodic-boundary CA with Rule 30 runs for p cycles (p < n/2), is at
least p + (p/2).

Proof On pth cycle, the g; .+, gets multiplied by a new bit from right side, which is
qi+p,- This new bit increases the algebraic degree by one. This implies that the term
with highest algebraic degree will have the bit g, . This in turn implies that all the
bits from g;, to g}, Will be contained in the highest algebraic degree term (as we
move from the first cycle to pth cycle). Similarly, the bits g;_1 ; to g;_i4,-1,, Will be
contained in the highest algebraic degree term of g;_; ;4 ,—i1. However, this term will
be linearly added to the expression of g;,. Finally, the bits g1, to g1+, Will be
contained in the highest algebraic degree term of g; 1 4,

On the next cycle, the expression ¢; ., p+1 Will have a multiplication between the
highest algebraic degree terms of g;_ ;4p—1 (Which was linearly added in the previous
cycle in gj+p)) and giy1+p. This multiplication will add one more bit from the left
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hand side to the expression of the term with highest algebraic degree. Hence, at every
two cycles one bit from the left hand side is added to the term with highest algebraic
degree of g, 4 ,. Hence, after p cycles, the algebraic degree is at least p 4 (p/2) O

Lemma 2 For a linear CA employing rules 90/150, the boolean expression of the ith
output bit after pth (p < n/2) cycle contains (i + p)th and (i — p)th bits, provided the
bits exist.

Proof Since both Rule 90 and 150 performs XOR with both left and right neighbors,
every bit moves one bit to right and left via XOR at every cycle. After p cycles, the
bit (i + p)th will move p bits to left and the bit (i — p)th will move p bits to right
where the XOR will be performed only once. Hence these two bits will not cancel
out at pth cycle in the boolean expression. O

Property I When the non-linear CA transformation, linear CA transformation and
XOR between the two are performed and fed back to non-linear state (running for
16 cycles), in an instance of CAR30, each non-linear state bit depends on at least 33
non-linear previous state bits and 33 linear state bits.

Property 2 When each CA runs for 16 cycles, the algebraic degree of the key stream
bits with respect to the state bits in CAR30 is at least 24.

Property 3 When each CA runs for 16 cycles, the algebraic degree of the non-linear
state bits with respect to the previous state bits in CAR30 is at least 24.

Finally, let us see the choice of five rounds of initialization.

Theorem 3 At the time of initialization in CAR30, each state bit depends non-linearly
on all the Key and the IV bits within 64 cycles, i.e two rounds.

Proof After 32 cycles, each non-linear CA bit depends on 65 neighboring bits. Since
the non-linear CA is having periodic boundary condition, every bit in non-linear CA
depends on all other bits after two rounds. Again, the non-linear CA are initialized
with Key bits. This proves that the complete mixing among all the Key bits in non-
linear CA after two rounds, i.e. after 64 cycles.

During initialization, the key-stream bits (which are coming from non-linear
transformation) are fed back to linear CA. Also, after two rounds, every non-linear
state bit depends on all the Key bits. Hence, the linear CA bits will also depend on
all Key bits after the XOR feedback to linear CA at the end of second round. This
process takes 64 cycles.

The linear CA bits which are initialized with IV bits are XORed with non-linear
CA bits and the XOR output is fed back to non-linear CA bits at the first cycle itself.
Hence, all the non-linear CA bits are uploaded with IV bits at the first cycle itself.
Going by the logic in the previous two paragraphs, at the end of two rounds (i.e.
another 63 cycles after the first cycle) each non-linear state bit will depend on 127
IV bits. The only exclusion is the I'V bit at a distance of 64 from particular state bit.
However, in the first cycle, the bit at a distance 63 from a particular bit, already has
the neighboring bits (through linear CA transformation) which include the bit at a
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distance of 64 from that particular bit. Hence, each non-linear state bit will depend
on all the IV bits after two rounds. After the XOR feedback the linear CA bits also
will depend on all the IV bits.

For simplicity, we have not considered the eight individual linear state bits that
are XORed with non-linear state bits. It can be shown that if we consider those bits,
this state of dependency will be achieved even earlier. O

So, after two rounds (64 cycles) all the state bits depend on all the Key and the
IV bits. Another three rounds (96 cycles) are kept for security margin and to have
more non-linear effect on the bits. Hence, 160 cycles are kept for initialization which
translates into five rounds.

In the next section, security analysis of CAR30 is performed.

4 Security analysis

In this section, we analyze security of the cipher and show how it can resist a few
of the known attacks. To check the statistical randomness of the proposed stream
cipher NIST [21] statistical test suit was run on the key stream bits. First we show
that CAR30 can be reduced to the security model of Grain family of stream ciphers.

Proposition 1 CAR30 can be modeled equivalently with the stream cipher Grain with
respect to Algebraic and Correlation attacks.

Proof To prove this proposition, we show first how CAR30 can be reduced to a
Grain like structure and then show that the component functions are cryptographi-
cally comparable with those of Grain.

As shown in the design rationale section, each cycle in the non-linear CA
generates a boolean equation. These boolean equations can be mapped to the NFSR
feedback function g(x) and the filter function /(x) of Grain. Similarly, the linear CA
transformation function can be mapped to the LFSR feedback polynomial f(x) of
Grain. Now, if we observe Fig. 1 carefully, every key-stream bit is generated after a
non-linear transformation of a few state bits, a linear transformation of a few more
bits and finally filtered by a non-linear transformation of both linearly and non-
linearly transformed internal state bits. By the fact that CA is a special type of LFSR,
the Linear CA (LCA) can be treated as LFSR and the non-linear CA can be treated
as NFSR. The filtering by the non-linear CA (NLCA) is achieved by the automated
boolean function generator provided by the non-linear CA. Hence, the whole cipher
can be reduced to Grain family of stream cipher with parallel transformation of each
state bit.

To show the second part, the function f(x) of Grain is equivalent to linear CA
running for 16 cycles. For each individual bits, it can be argued that there is no
significant difference between LFSR and CA in terms of cryptographic properties.
The difference will be in the number of taps. The output equation of the LFSR
chosen in Grain-128 takes 6 LFSR bits as input. The output equation of a particular
bit for the maximum length CA running for 16 cycles will depend on 33 bits, but will
contain approximately 17 CA bits in the boolean equation as some of the bits will be
XORed even number of times. Some more variation can be expected depending on
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the rule vector chosen for the maximum length CA and position of the bit (leftmost
or rightmost), but in all cases, the number of input state bits in the output equation
will be more than 6.

The below are some observations on the equivalence of g(x) and A(x) of Grain
which are the basis of cryptographic strengths of Grain:

—  Balancedness: Due to the linear relation in Rule 30, after sixteen cycles there
exists one state bit which propagates linearly in the output expression of each
bit. But, the initial state of the NLCA is the XOR of LCA and NLCA state bits.
The LCA bit depends on 33 LCA state bits. Hence, the number of state bits
linearly affecting output expression is much more than Grain which translates
into more resiliency degree and balancedness compared to Grain functions.

—  Non-linearity and Bias: Since the output expression of rule 30 after 16 cycles
depends on 33 input bits, it is difficult to evaluate the non-linearity and bias
for such an expression. It is also difficult to predict the bias theoretically. This
is because at every cycle after the first cycle, the involved bits in execution
of CAR30 are not independently updated, hence the piling up lemma is not
quite applicable here. So, we evaluated them for rule 30 running for 16 cycles
experimentally. Again, due to the exponential nature of the algorithms to find
the bias and the non-linearity, it is not possible to evaluate the bias and the non-
linearity in a reasonable amount of time when the number of input bits are more
than 17. Hence, the non-linearity was evaluated only with the self and the right
side 16 bits after running 16 cycles. The non-linearity was 63,216 and the bias was
approximately 27°. The additional dependencies with the left hand side bits will
only add to the security of the resulting functions after running rule 30 for 16
cycles. Several experiments were performed with varying the number of cycles
and number of bits involved in the calculation of non-linearity. The conclusion
was that the non-linearity would be in the order of 23° after running 16 cycles
based on extrapolation. This is much more than the non-linearity of the Grain
constituent functions. The bias is also comparable (for Grain, the bias of g(x) is
278 and the bias of &(x) is 27°). In CAR30, there are 2> linear approximation
functions with such a bias (for Grain there are 2'* such linear functions for g(x)
and 2% such linear functions for /(x)). The number of equations and bias together
will make security against linear approximations much better than Grain.

—  Security Enhancement CAR30’s generic design helps to enhance the security.
In the present description of CAR30, sixteen cycles are used to generate the
functions f(x), g(x) and A(x). This will provide good enough security with
sufficient margins. But, the security can be increased to much higher if thirty-two
cycles are run to generate the above functions. This would increase the hardware
marginally as the only addition in hardware implementation is that the counter
bits are increased by one. The hardware and software speed would be about
half of what is reported in this paper. But still the hardware throughput remains
competitive with Grain and Trivium and software speed remains competitive
with Rabbit. The main advantage in that case is, it can be shown easily that
if the non-linear CA is run for thirty-two cycles then even for finding out a
linear expression and calculating the bias is more complex than brute force. This
provides a new dimension to the security of CAR30 against correlation where
finding out the correlation coefficient itself is NP-Complete. O
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4.1 Statistical tests

For any new cipher it is necessary to perform statistical tests. NIST [21] statistical test
suit was used for this purpose with 12.8 million key stream bits. NIST tool takes the
test parameters as input. After choosing appropriate parameters the statistical tests
were run. The tests run were Frequency, Runs, Serial, Rank, FFT, Cumulative Sums,
Block Frequency, Universal, Longest Run of Ones, Random Excursion, Overlapping
templates, Linear Complexity, Approximate Entropy, Non-Overlapping Templates
and Random Excursion Variant. All the tests passed with appropriate parameters.

After evaluating the statistical tests, we analyze how CAR30 can resist a few of the
classical attacks on stream ciphers. We start with an estimation of the period of the
cipher.

4.2 Period

In this cipher, the linear layer which is a maximum length hybrid CA guarantees
large period. The linear CA are run for thirty-two cycles. Hence the period is at least
(2'28 — 1)/32. The non-linear CA do not have maximum length period. Since, the
linear CA and the non-linear CAs are XORed to feed the non-linear block before
producing the key stream, the actual period will be more and depends on the Key-
IV pair used. The Key and the IV will determine the initial state of the non-linear
blocks which in turn will determine the actual period. To check this we evaluated
the cipher with a smaller version of 12-bits, no period was seen in the first 2'> blocks
of key streams. Since, both the 12-bit version and the 128-bit version are identically
updated, the observed period will extend to 128-bit version of the cipher.

It can be argued that in a filter or a combiner model, the linear block and the
non-linear block are built on so different principles that there is no real risk that the
nonlinear block can reduce the period achieved by the linear block; but here the two
blocks are both built on CA. However, even if both the linear blocks and non-linear
blocks are CA, after running a few cycles the boolean equation for each bit of the
non-linear block will be far more complex than the linear part as shown in Example 1.
This argument is also supported by the number of terms found in the ANF of the sim-
plified cipher, which is mostly contributed by the non-linear block. Hence, we state
that the period is always at least (2'?® — 1)/32 independently of the nonlinear layer.

4.3 Correlations

Since the cipher can be modeled to a Grain like structure most of the arguments
for prevention of correlation attack against Grain are applicable here [16]. The
strength of this model comes from general decoding problem [19]. Let, A,(x) and
Aj(x) be two linear approximation functions for g(x) and A(x), with biases €, and ¢,
respectively. It was shown in [19] that there exists a time invariant linear equation
with key-stream bits and the LFSR bits in a Grain like structure (for CAR30, we
should consider the linear CA bits) with a bias:

— A
€ = N(A+n(Ap—1 -Gg( ¢) 'EZ(AIZ> 3)
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where n(Ag) and n(A;) denote the number of NFSR (non-linear CA for CAR30)
bits involved.

As shown in Proposition 1 CAR30 can be modeled as a Grain like structure,
hence CAR30 will also have the existence of such an equation concerning the key
bits and the linear CA bits with such a bias. So like Grain, it is important to design
the functions g(x) and h(x) with proper security properties, so that the bias of such an
equation is extremely small. It was also shown in Proposition 1 that for CAR30, these
functions possess such security properties that correlation attacks are not applicable
for CAR30. Also, it was shown theoretically in [24], CA based mappings can provide
resistance to classical Inversion Attacks and Anderson Leakage, which aid to the
above arguments.

4.4 Algebraic attack

In CAR30 a non-linear state update function and a non-linear filter is used to
produce the key-streams. The algebraic degree of each of these non-linear functions
is 16 + 16/2 = 24 from Lemma 1. As in Grain, the algebraic degree of the output
expressions expressed in terms of initial state bits of CAR30 is time varying as well.
Even though the nonlinearity being based on the iteration of the same nonlinear
operation, additional bits are involved with every operation which themselves have
undergone non-linear operations making the algebraic relationship complex.

Another way of looking at the immunity against algebraic attack is computing the
number of equations required to approximate the output expression in linear equa-
tions, i.e. over-defined systems of equations. Although, this is not strictly applicable
for a Grain like structure since the algebraic degree is time varying, the attacker can
make an attempt by having a large set of keys and observing the first key-stream
bits. However, in CAR30 this approach will also not be possible. The number of
linear equations of 256 state bit variables with degree 24 is, 374 (3°) ~ 2!'%. These
equations cannot be solved with complexity less that 2'?%. Sometimes, it is possible
to find a low degree equivalent of a boolean function which is characterized by
algebraic immunity. However, if the number of input bits that constitute the boolean
function is high the algebraic immunity also becomes high. In this case, each output
bit depends on 33 input bits which will prevent the existence of such low degree
equivalent of the output equations. Given the above facts, the algebraic attack [8] on
this stream cipher is going to be difficult.

4.5 Cube attack

In this type of attack [10], the attacker uses the stream cipher as tweakable polyno-
mials by choosing the public variables (IV and key stream) and solve the resultant
system of polynomial equations in terms of the Key bits. The attacker requires only
black box access of the function and needs negligible memory. This attack has a
preprocessing phase with chosen Keys and chosen IVs and an online phase with
unknown Keys and chosen IVs. The factor polynomials are evaluated where the
linear terms are called superpoly and the factors are called cube.

It is known that if the cipher has a very high algebraic degree then the cube attacks
are difficult. In CAR30, the algebraic degree is at least 24. With such a high algebraic

@ Springer



Cryptogr. Commun. (2013) 5:137-162 151

degree it is difficult to perform cube attacks. To verify our assertion, we have
performed cube attack (unsuccessfully) in CAR30. We have used cube dimension
of 4, 6 and 8, with equivalent number of computations, with the first key stream bit.
Finally, we attempted with a cube size 12 and tried upto 500,000 computations which
took three days. However, we did not find any linear superpoly with the experiments
that we have performed.

4.6 Inversion attack

The inversion attack works on a non-linear filter generator and attempts to find out
the input sequence from the knowledge of an output sequence. Golic first proposed
this attack [13] and shown that such an attack is effective when the first or the last
bit of the filter input is linear. Later, Golic et al. generalized this attack [14] without
such an assumption. They showed that if the length of the LFSR is N and M bits are
used as an input to the filter function, then the inversion attack has a complexity of
2™ As a countermeasure of this attack, the input memory M of the filter function
should be close to the number of LFSR bits N.

For CAR30, the first type of attack [13] is applicable as the bits coming from left
side of Rule 30 has a linear relationship. However, we show that such an attack has
a complexity of more than brute-force. Let us consider a typical round and see how
state bits are filtered to produce the key stream bits.

As shown in Theorem 1, after 32 cycles, the non-linear CA will filter 65 non-linear
state bits into a single key stream bit. Also, due to the XOR between linear state and
the non-linear state, each non-linear state is affected by 33 linear state bits after 16 cy-
cles. Even if the linear CA bits are null-boundary, the periodic boundary condition of
non-linear CA will ensure that 33 linear state bits affect each non-linear state bit for
all bit positions. Now, let us see the effect of the bits numbers 8, 24, 40, 56, 72, 88, 104
and 120 of linear state affecting bit numbers 72, 88, 104, 120, 8, 24, 40 and 56 of non-
linear state bits, respectively. The selection of these bit positions will ensure that at
every cycle there are two new linear bits added to the corresponding non-linear state
bits. Now, for these particular bit numbers of non-linear CA, these bits will bring de-
pendency with 65 additional linear bits in 32 cycles. Hence, for these key-stream bits
the non-linear filter will have 65 4 33 + 65 = 163 internal state bits as input. Clearly,
the inversion attack is infeasible for these bits in less than brute force. Now let us
see the effect of the linear state bits on other bits. After p cycles, each non-linear bit
will affect p bits on the left and on the right side. Again at each cycle, the non-linear
state bits at the positions of XOR are affected by two additional linear bits. Now, for
any bit at a distance i < p from the above bits, it can be shown that it depends on
2 - (p — i) additional linear state bits. If p > 8, due to the positions of the above bits,
the same state bit depends on 2 - (p — (16 — i)) linear state bits from the other side.
So, in total the non-linear state bit will depend on 2 (p —i) +2-(p — (16 —i)) =
2-(2- p —16). This is irrespective of the position of the non-linear state bit. Since,
p = 32, every non-linear state bit depends on at least 96 additional state bits. Hence
any key-stream bit is filtered by 65 + 33 4+ 96 = 194 state bits. There could be some
fine tuning on the above analysis for some particular bit positions, but, nevertheless
we can conclude safely that each key-stream bit will have dependency on at least 190
bits. This makes inversion attack (with complexity 2'°°) infeasible for any bit position.
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The above analysis was performed for each individual bits on overall cipher. How-
ever, an attacker can go into details of each stage and work on the entire state and
entire 128-bit key-stream to perform the attack. In this attack, it is assumed that the
state of the nonlinear CA is known at a given time and, then, the objective is to find
its state at a time in the past. To this end, the unknown refreshing bits from the linear
CA need to be guessed. In particular, if we also guess the state of the linear CA, then
the objective would be to invert the next-state function. Can the next-state function
be effectively inverted by the inversion attack? If yes, then the effect of the first 5 dis-
carded cycles for the key-stream generation is negligible. Also, by guessing linear CA
bits, a given 128-bit keystream segment (a) can be inverted into the internal state (c)
of the nonlinear CA used for generating the next keystream segment. If this state is
known, then the generator becomes linear and so on.

We show now that an appropriate choice of the positions of the eight refreshing
bits from linear CA prevent this attack in CA R30. Let us exactly discuss how the
inversion attack applies to particular stages of the key-stream generator and the
initialization scheme. Since both the state update and filtering functions are similar,
we check how the non-linear filter function is affected by previous state bits. After
16 cycles, each non-linear state bit depends on 33 previous non-linear state bits.
Hence, the inversion attack has a complexity of 23 when inverting from key-stream
bits to the state bits. We need to guess the linear bits as well to perform the attack.
How many linear bits affect the non-linear state bits in 16 cycles? Since the linear CA
transformation is performed just before the non-linear transformation, each linear
CA bit that refreshes the non-linear state brings forth at least two linear state bits
(due to the fact that both Rule 90 and Rule 150 that the linear CA are comprised of
perform XOR with neighboring bits—see Lemma 2). So after 16 cycles, each linear
CA bit will refresh the non-linear state with 16 bits from left and 16 bits from right of
the linear CA state bits provided the bits exist. Now consider the bit positions from
linear CA that are sent to non-linear CA. They are (16-i+48)(i =0---7). So it will
put all 128 linear state bits in the non-linear CA. So the attacker needs to guess all
the 128 linear state bits in order to get to the state bits from key-stream bits. The
overall complexity is 2°3128 = 2!6! which is clearly much more than the brute force.
It can be shown in a similar manner that for the next state function (i.e state update
function) the complexity of inversion attack is much more than the brute force. Since
for both the filter and state update functions the complexity is more than brute force,
it is not possible to perform this attack during initialization.

Finally, the attacker may perform the inversion attack cycle by cycle on the non-
linear CA. In this case, in addition to the inversion complexity of non-linear CA,
the attacker has to guess eight refreshing linear CA bits per cycle. In each stage,
there are 16 cycles of the non-linear CA. Hence the attacker has to guess 128 linear
CA bits. This makes the inversion attack performed this way beyond the scope of
cryptanalysis.

The initialization follows the same method as key-stream generation. Note that
the initialization scheme should satisfy the criterion that it should be infeasible to
recover the key from the already recovered initial state of the key-stream generator.
But as shown in different cases of inversion attack above, the inversion attack
in CAR30 is always more complex than brute-force. Moreover, the initialization
process runs for five rounds without producing any key stream. Hence, the inversion
attack will be infeasible to find out the Key and the IV bits for CA R30.
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4.7 Meier’s attack

Wolfram designed the Rule 30 based stream cipher [26] by having a CA of length
2 - N + 1 employing Rule 30 and taking out the temporal bit (which is the (N + 1)th
bit) sequence produced at every cycle. Meier and Staffelbach attacked this cipher
in the following way. They generated a random seed (initial state) for all the bits
on the right half of the CA and then calculated the right adjacent sequence which
is the sequence on the right side of the temporal sequence. With the right adjacent
sequence, they move backwards to find out the left half of the seed as the left side is
linear with the temporal sequence. Then they load the computed seed on the CA to
see if there is match with the actual key-stream. There are many seeds leading to the
correct adjacent sequence which by moving backwards determine the correct seed.

Now let us see if such an attack is applicable to CAR30. First of all, note that the
main reasons of this attack are that the uncertainty of the right adjacent sequence
given the temporal sequence is very small and that the whole seed can be directly
recovered from short segments of the two sequences, by moving backwards, which is
possible due to the periodic boundary conditions. As a result, from a small number
of (wrong) guesses about the right half of the seed, the correct segment of the right
adjacent sequence can be obtained and then tested on a longer temporal sequence, by
first recovering the candidate seed as a whole, by moving backwards. To prevent this
attack, the crucial point is the decimation of CA output sequences by 16/32 cycles.
After running the CA for 16/32 cycles, the uncertainty of the right adjacent sequence
given the temporal sequence is large. Hence, this type of attack is not possible in
CAR30.

4.8 Time/Memory/Data tradeoff attack

The complexity of time/memory/data tradeoff attacks on stream ciphers is O(2"/?),
where 7 is the number of inner states of the stream cipher. Since the total number
of internal states are 256 bits, it is difficult to perform time/memory/data tradeoff. It
is known that stream ciphers with low sampling resistance have tradeoff attacks with
fewer table lookups and a wider choice of parameters [2, 3].

One such attack is proposed on Grain in [3]. We show here that such an attack
is not applicable for CAR30. In the attack on Grain, the authors perform BSW
sampling [2] on the cipher and calculate the “sampling resistance” of Grain. If the
attacker can reach a particular state of the cipher from which / subsequent cipher
bits are a fixed string by means of BSW sampling, then the “sampling resistance”
is defined as R = 27!. The smaller is the value of /, the better is the cipher. The
authors prove that if the attacker knows 133 particular state bits and 18 key stream
bits, then another 18 internal state bits can be deduced efficiently and hence the
“sampling resistance” of Grain is 27'%. Finally, with the help of Biryukov-Shamir
[2] tradeoff curve and the sampling resistance, they derive some possible time and
memory complexity values that are better than the exhaustive search.

Prevention of Time/Memory/Data tradeoff attack The sampling resistance of Grain
is low because some of the LFSR and NFSR bits of Grain do not vary in each
successive step. With the use of Cellular Automata instead of NFSR/LFSR, this
assumption is no longer true. Since Cellular Automata apply local transformations in
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each bit in each run, it is extremely difficult to fix them in each of these steps. So the
aforementioned state bits of Grain cannot be determined with reduced complexity
in CAR30. In the description of the attack, the authors have derived the sampling
resistance as 27'8 by finding out the fixed NFSR bits in a particular round. With the
use of Cellular Automata, this process of deriving the sampling resistance will not be
possible. Consequently, the sampling resistance is no longer 2-!'* and will be much
larger that will not be a matter of concern. Hence, Time/Memory/Data Tradeoff
attack cannot be performed with complexity less than brute-force attack in CAR30.

4.9 Re-synchronization and chosen IV attacks

In this type of attack, the attacker manipulates the IV and extracts the Key bits by
observing the key-stream bits [6]. A complete non-linear mixing among the Key bits
and the I'V bits is achieved in the initialization of the cipher. As shown in Theorem 3,
all the state bits are affected by all the Key bits and all the IV bits after 64 cycles of
initialization (i.e. after second round). Another 96 cycles are run for security margin
during initialization. This way the IV bits also will have non-linear dependencies
along with the Key bits; a fact that makes such an attack impossible.

The chosen IV attack sometimes takes place by keeping the same Key and
choosing the I'Vs that varies only with one byte. As stated above, due to strong non-
linear, statistically random dependency among all the Key and the IV bits, this type
of attack is not possible. The maximum entry in the difference distribution table of
the 12-bit version of the cipher reinforces this assertion.

One such attack was reported against Grain in [6]. This is an attack on the
initialization of the Grain and is based on the facts that only the last bit is updated
in both NFSR and LFSR of a LFSR/NFSR based stream cipher (like Grain) at each
round and the other bits are just shifted bit stream of the previous clock cycle. Now,
the Key-1V pair is loaded to NFSR and LFSR during initialization. After first round
of initialization, one of the state bits is updated for each LFSR/NFSR and the rest of
the state bits are shifted Key-IV bits. If the last bit of the LFSR is initialized with one
(to prevent LFSR to go into all zero state) and the updated bit is also one, then it
corresponds to another known Key-IV pair when the original key-IV pair is known.
For a NFSR/LFSR based stream cipher like Grain, the state of the LFSR and NFSR
at the start of key-stream generation using the new Key-IV pair above is same as the
state of the LFSR and NFSR after producing one key-stream bit using the original
key-IV pair if the zeroth bit of the NFSR after initialization process of the original
key-IV pair is zero. The conditions above happen with a probability of 1/4 assuming
both the conditions are independent.

Prevention of slide re-synchronization attack Now, let us try to apply the same
attack on CAR30. When we use Cellular Automata instead of NFSR/LFSR, at every
step all the bits in the Cellular Automata get updated. Hence in the initialization
phase, the content of the Cellular Automata is never a shifted initial value and
neither has it corresponded to an IV. Hence it is not possible to find a related
key. Similarly, in order that the key stream generated with the original key-IV pair
becomes a shifted key-stream generated from the related key-IV pair, the assumption
is the content of state bits is the shifted content of the previous state bits, except
the last bit. This assumption is no longer true when we use Cellular Automata. In
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Cellular Automata the next state of each bit is the XOR of its neighboring bits and
also XOR with itself depending on the rule vector. So this attack is not possible when
we replace LFSR with Cellular Automata in CAR30.

4.10 Guess and determine attack

In each iteration of the cipher, all the state bits undergo parallel transformations. It
is an advantage of CA over LFSR that all the bits in a CA undergo transformation in
each cycle. As shown previously, each output bit depends on 160 previous state bits.
Hence guessing a few bits in the state and then determining other state bits, as this
attack employs [15], is not going to be an easy task.

4.11 Fault attack

Here the attacker can introduce a fault in any of the state bits with partial control
on timings and the position of the fault. It is assumed that the attacker can reset the
device and re-introduce the fault to observe the behavior of the cipher. The CA will
make such a fault introduced impossible to track. This is because both for the non-
linear CA and the linear CA performs XOR with the neighbors and after running
for few cycles the sequences will spread statistically very well. The excellent values
of SAC obtained in the 12-bit version of the cipher support this argument.

4.12 Side channel attack

In this type of attack, the attacker observes the number of cycles or the power
consumed for different keys. Based on the power characteristics, the attacker tries
to determine the Key. One of the most important side channel attack is differential
power analysis (DPA) [17]. DPA has been performed mainly in public key cryptog-
raphy and in block cipher in the first or the last round of iteration. Highly non-linear
boolean functions and S-boxes that are used in block ciphers are particularly vulner-
able [7, 23]. There has been some work reported for stream ciphers in the literature
[11]. To prevent DPA, one of the methods is to apply linear masking during imple-
mentation [18]. In CAR30, such a linear masking can be performed in both linear CA
and non-linear CA at the implementation level to prevent DPA attack.

5 Implementation

In this section, we describe the specifics of the implementation. CAR30 can be im-
plemented easily both in hardware and software. The following subsections describe
the hardware architecture followed by the software implementation suggestions.

5.1 Hardware architecture

The hardware architecture of the proposed stream cipher is shown in Fig. 3. This
architecture uses one module each for Rule 30 CA implementation and Rule 90/150
maximum length linear CA. These two CAs run continuously in every cycle using two
flip-flop banks of 128 bits. For the linear CA, the output is fed back to the input. An
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128-bit series of 4:1 multiplexer controls the input of the Rule 30 CA. The output of
the non-linear CA is fed back to the multiplexer. The outputs of both the CAs are fed
to a module of 128-bit two input XOR gates. There is another 128-bit flip-flop bank
(feedback) that stores the output of the XOR layer of the Fig. 1. The output of this
flip-flop bank is connected to the input of the multiplexer. The output of the XOR is
connected to the feedback flip-flops and the multiplexer input. The whole circuit is
controlled by a 5-bit counter which functions as follows. After the linear CA and the
non-linear CA are run for 16 cycles, it enables the feedback flip-flop bank to store
the output of the XOR for the next iteration. After 16 more cycles, it enables the
output flip-flops to store the key-streams. In every clock cycle, it selects the required
input from the multiplexer to feed to the non-linear CA. On sixteenth cycle, the
multiplexer circuit outputs the XOR output, on thirty-second cycle it outputs the
feedback flip-flop contents and for the rest of the cycles it outputs the non-linear CA
output.

The architecture above for the key stream generation was synthesized with Xilinx
ise v7.1i, on spartan 3 FPGA device with speed as optimization goal. In synthesis
results, the total number of slices required was 499, the speed estimate was 185.05
MHz (running the CAs for 32 cyles was included in synthesis). Hence, the throughput
of the cipher is 23.7 GBPS and the throughput to area ratio is 47.5 MHz per slice.
When post place and route static analysis was performed, the area was 547 slices,
the speed was 63.5 MHz and the throughput was 8.1 GBPS. Hence, the throughput
to area ratio was 14.9 MHz per slice. The other hardware parameters on post place
and route results are number of LUTSs 936, number of bonded IOBs 258, minimum
period 15.7 ns.

5.2 Software implementation

CAR30 can be efficiently implemented in 8-bit, 16-bit, 32-bit and 64-bit architecture.
Thus, it is suitable for both small devices as well as large devices. We show here how it
is implemented in 32-bit architecture. Similar logic can be used in other architectures
for implementation. The implementation has a small foot-print with less code size.
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The cipher code when compiled and executed in Microsoft Visual Studio 2008
Version 9.0.30729.1 SP, on a IBM Lenovo T60 laptop with Intel Core Duo CPU
T2500 @2GHz, it took 9 s to generate 1.28 x 10° bits of key streams. This provides us
a very good indication on the software speed of the cipher. This was also run on HP
rp3440-4core server with OS HP-UX B.11.23 and PA8900 CPU (999MHz). There it
took 22.35 s to generate 1.28 x 10° bits of key-stream with a clock speed of 10° and
the total number of clocks elapsed was 22,350,000. To compare, we used the C-code
given for Rabbit and Grain in eSTREAM and generated the same number of bits.
Rabbit took 30 s to generate same number of key stream bits and the total number of
clocks elapsed was 30,560,000. On the other hand, Grain was much slower in software
in the same platform and it took 3,300 s to generate same number of bits with total
clocks was 3,242.,000,000. We can conclude that CAR30 is faster in software than the
software oriented stream cipher Rabbit.

6 Comparison with grain and trivium

In this section we provide comparison of CAR30 with two of the eSTREAM
finalists Grain and Trivium. The comparisons are shown in Table 1. The hardware
implementation figures are taken from [12], for the basic mode of Grain and Trivium.
We acknowledge that hardware implementation figures depend on various factors
like expertise, synthesis tools etc. But, nevertheless the table points out some distinct
advantages of CAR30 over the state of the art stream ciphers.

Firstly, on synthesis results the hardware estimation for throughput, throughput
to area ratio and FOM of CAR30 is much above both Grain and Trivium. The raw
hardware speed on the synthesis result is also quite at par with the state of the art
due to parallel transformation. As expected, the area is more again due to parallel
transformation. Normally, the hardware results go down on post place and route
results and so is the case with CAR30. Even then, the hardware throughput is four
times more than the best possible results achieved with Grain. Throughput to area
ratio and the FOM achieved with post place and route results of CAR30 is more than
Grain and is comparable with Trivium. The main advantage of CAR30 over Trivium
is the number of initialization cycles which is 160 for CAR30 and 1,152 for Trivium.

Table 1 Comparison of CAR30 with grain and trivium

Parameter CAR30 Grain Trivium
Key length 128 80/128 80

IV length 120 64/96 80

State size 256 160/256 288
Hardware area 499/547 122-356 188-388
HW speed (MHz) 185.1/63.5 (Synth/PPR) 193-155 201-190
HW throughput (Mbps) 23,692/8136 (Synth/PPR) 193-2480 201-12160
Throughput to area 47.5/14.9 (Synth/PPR) 1.58-6.97 1.07-31.34
Figure of merit [1]

(Throughput/Area?) 0.095/0.027 0.013-0.019 0.006-0.080
S/W efficiency 1.5 x Rabbit speed 0.01 x Rabbit speed -
Extensibility Easy Redesign Redesign
Initialization cycles 160 160/256 1,152
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Another advantage of CAR30 over any other hardware oriented stream cipher
is the software speed. The software speed of CAR30 is even better than software
oriented stream cipher Rabbit. We have arbitrarily chosen Rabbit for comparison
from the ESTREAM finalist software oriented stream ciphers. In this respect CAR30
is indeed a unique stream cipher that can be compared with both hardware oriented
and software oriented stream ciphers. Finally, the generic design of CAR30 helps us
to extend the cipher for a larger Key and IV size, which is another unique advantage
over any other stream ciphers.

7 Conclusions

This paper proposes a new stream cipher based on Rule 30 and Maximum Length
Cellular Automata. The cipher is shown to be scalable to any key length. This cipher
is secure and can be implemented easily in both hardware and software. The speed
and the resources required for the cipher are comparable to the existing standards.

Appendices
Experimental evaluation of security on simplified CAR30

Since, CAR30 can be scaled up and scaled down easily, we have performed an
experimental evaluation on simplified version of CAR30 with 12 bit Key size. This
is another advantage of the cipher that it keeps nothing obscure in the design. It can
be analyzed with a smaller Key size and the analysis can be extended for a larger
Key size. In this experiment, the key-streams were generated and the cipher was
initialized in the same way as shown in Figs. 1 and 2. We have used a 12-bit maximum
length CA with rule 150 on position 3 and 7 and rule 90 on the rest of the bits. Rule
30 was used for the non-linear CA. We have fixed an IV (1234 in decimal) arbitrarily
and checked the first 12-bit key stream block for each of the possible 12-bit Keys.
Each of the CA blocks (both linear CA and non-linear CA) were run for 4 cycles.
Then we defined an input/output relationship between the Key and the first key-
stream generated and analyzed this input/output with respect to different security
properties like algebraic normal form (ANF), algebraic degree (Alg Deg), linear and
differential (Diff) cryptanalysis, strict avalanche criterion (SAC) and non-linearity
(NL) etc. Since evaluation of these properties require exponential time, we evaluate
it for 12 bits only.

We select 12-bit version for evaluation because the complexity of determining
the above properties becomes high for higher number of input/output bits. We have
evaluated the algebraic normal form for the 12-bit version of cipher generated in the
above way. We found that all the output bits have the algebraic degree as eleven or
twelve which is the maximum possible for a 12-bit boolean function. The number of
terms was large with a very good distribution of the degrees. The maximum number
of terms in ANF was 2,108 for bit number 6 and the minimum number of terms was
1,969 for the bit number 12. Note that, for a random boolean function it should be
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2,048. The interaction of the algebraic normal form among the output bits was also
checked. The number of terms not occurring at all in the algebraic normal form of
all output bits was one. The number of terms occurring only once in the algebraic
normal form of all the output bits was 10.

The check the immunity against differential attacks, difference distribution table
was generated and the maximum value of in the difference distribution table was
found to be 14, showing its immunity against differential attacks. To measure the re-
sistance against fault attack or bit flipping, we have also checked the strict avalanche
criterion for the cipher. The maximum value of SAC was 2,150 and the minimum
value was 1,904, that proves that any bit flipping will spread well in this cipher.
Finally, to check how much non-linearity the rule 30 based cipher can provide, we
determined the non-linearity of the cipher. The maximum non-linearity was found to
be 1,950 for bit number 8 and the minimum non-linearity was found to be 1,920 for
bit number 12. This provides us an indication that the CAR30 generates highly non-
linear key-stream bits.

Similarly, to evaluate the interactions among the key stream bits, we fixed the Key
and the IV and produced 2'? blocks of key stream bits. The input/output relationship
is formed with iteration number and the key-stream of that iteration. We could
see excellent algebraic properties of the key stream bits. The number of terms not
occurring at all in the ANF of all the bits was 5. The number of terms occurring only
once is 13. The maximum differential value was 16. We also got good non-linearity
values and SAC values. The Table 2 summarizes the results obtained.

Some of the bits in this analysis had the algebraic degree as 12. Hence, the
relationship of Key and the first 12 bits of the cipher is not bijective. However, in
a stream cipher the bijective property is not necessary with some particular bits of
key stream because it is supposed to be random. But, the sequences of key stream
produced for each Key when the IV is fixed, must be unique. We have checked each
sequence with each Key and found that it is indeed unique. Period is another aspect
that we verified in this experimental evaluation. We checked the period in the second
experiment and there was no periodic sequences in the first 22 key stream bits.

It can be seen that excellent values of cryptographic properties were achieved in
the simplified version of the cipher with 12-bit Key size. Since the cipher has a regular
structure, the cipher can be extended by merely adding more cells to the linear and
non-linear CA. The security properties found in this section will also be automatically
extended to a larger version of the cipher if the number of cycles is also increased
linearly. It is difficult to perform experimental evaluation for the larger version of the
cipher, but still this evaluation along with the statistical tests on the 128-bit version
of the cipher provide us the confidence on the security of the larger versions.

Table 2 Security properties for 12-bit version of the cipher

Input/Output Max ANF  Min ANF Alg Max Max  Min Max  Min
term term deg diff SAC SAC NL NL

Key/1st KS 2,108 1,969 11/12 14 2,150 1,904 1,950 1,920

i-th Iteration/i-th KS 2,085 1,993 1112 16 2,150 1,932 1942 1919
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Pseudo-code

The pseudo-code for the cipher given in Algorithm 1. The 128-Bit non-linear
states and the 128-Bit linear states can be stored in (4 x 2 =) eight 32-Bit integers,

Algorithm 1 The CAR30 Software Algorithm
Require: Input Key, IV, Linear Rule and Number of Cycles
1: NLCAO=KEY0;, NLCAl1 = KEY1; NLCA2= KEY2, NLCA3 = KEY3;
/#Initialization™*/
2: LCAO=1V0; LCA1=1V1; LCA2=1V2; LCA3 = [V3; /[*Include 1 in every
16th bit.*/
3: forj=1to S do
4:  fori=1to 16 do

s: TEMPO = (LCA0 << 1)® (LCA1 >> 31) ® (RULE0&LC A0) &
(LCAO >> 1);

6: /* TEMP1, TEMP2 and TEMP3 are assigned in a similar way*/

7: LCAO---LCA3=TEMPO---TEMP3;

8: TEMPO=(((NLCAO<<1)® (NLCA1 >> 31))|[(NLCA0)) &
(NLCAO>>1)® (NLCA3 << 31)) & (LCA2&0x800080);

9: TEMP1 = (((NLCA1l <<1)® (NLCA2 >>31))[((NLCA1)) &
((NLCA1 >> 1) ® (NLCAO << 31)) & (LCA3&0x800080);

10: TEMP2 = ((NLCA2 << 1)® (NLCA3 >> 31))|[(NLCA2))®
((NLCA2 >>1)® (NLCAI << 31)) & (LCA0&0x800080);

11: TEMP3 = ((NLCA3 << 1)® (NLCAO >> 31))|(NLCA3))®
((NLCA3 >>1)® (NLCA2 << 31)) & (LC A1&0x800080);

12: NLCAO---NLCA3=TEMPO---TEMP3;

13: NLCAO---NLCA3=LCAO® NLCAO--- LCA3® NLCA3;

14:  end for

15 FEEDBACKO---FEEDBACK3 = NLCAO---NLCA3;
16:  fori=1to 16 do

17: /*Repeat the statements of lines 5 to 13%/

18:  end for

190 LCAO0---LCA3=LCA0@® NLCAO---LCA3@® NLCAS3;
20 NLCAO---NLCA3=FEEDBACKO---FEEDBACKS;
21: end for/* Initialization Complete.*/

22: while enough key stream is not generated do

23:  fori=1to 16 do

24: /* Repeat the statements line 5 to 13%/
25: NLCAO---NLCA3=LCAO® NLCAO--- LCA3® NLCA3;
26:  end for

27: FEEDBACKO---FEEDBACK3 = NLCAO---NLCA3;
28: fori=1to 16 do

29: /*Repeat the statements of lines 5 to 13*/

30:  end for

3:  KSO---KS3=NLCAO---NLCAS3;

32 NLCAO---NLCA3=FEEDBACKO---FEEDBACK3;
33: end while
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called NLCAO--- NLCA3 and LCAO--- LCA3. Four temporary variables, called
TEMPO---TEM P3, store the state bits temporarily for processing. The 128-bit Key
(KEYO0--- KEY3) and the extended IV (IVO0---IV3) are taken as inputs. Finally,
the FEEDBACKO--- FEEDBACK3 variables store the feedback for the non-
linear block. The integers RU L EO - -- RU L E3 contains the rule vector of the 128-bit
maximum length CA.

Test vectors

1.

Key=0x00000000 00000000 00000000 00000000, IV=0x00010001 00010001
00010001 00010001 (including eight fixed 1s), KS= 0x256606be 816e094b
911084a3 a8b7015f
Key=0xa9b8c92d 56cad670 05ae2175 56d347a9, IV=0x56b17787 5331bd01
6391ac65 42619871 (including eight fixed 1s), KS= 0x7dal60b6 1ef7b7f9
e419dc38 331£5531
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