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Abstract Perfect nonlinear functions from a finite group G to another one H are
those functions f : G → H such that for all nonzero α ∈ G, the derivative dα f :
x �→ f (αx) f (x)−1 is balanced. In the case where both G and H are Abelian groups,
f : G → H is perfect nonlinear if, and only if, f is bent, i.e., for all nonprincipal
character χ of H, the (discrete) Fourier transform of χ ◦ f has a constant magnitude
equals to |G|. In this paper, using the theory of linear representations, we exhibit
similar bentness-like characterizations in the cases where G and/or H are (finite)
non Abelian groups. Thus we extend the concept of bent functions to the framework
of non Abelian groups.

Keywords Bent functions · Perfect nonlinearity · Finite non Abelian groups ·
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1 Introduction

Let G and H be two finite groups (in multiplicative representation). Perfect non-
linear functions from G to H are those ideal functions f : G → H that match the
less possible with the pattern of group homomorphism, i.e., such that for all nonzero
α ∈ G and for all β ∈ H,

|{x ∈ G| f (αx) f (x)−1 = β}| = |G|
|H| . (1)
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When G and H are both (finite-dimensional) vector spaces over Z2 = {0, 1}, these
functions, originally introduced by Nyberg [9], exhibit the maximal resistance against
the differential attack [1]. Also in the Boolean case, this notion is known to be
equivalent to bent functions: f : Z

m
2 → Z

n
2 is bent if for all α ∈ Z

m
2 and for all nonzero

β in Z
n
2 ,
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= 2m (2)

where χ
β

Z
n
2
: Z

n
2 → {±1} is defined at y by (−1)β.y (the point in exponent is the natural

dot-product of Z
n
2) and

φ̂(α) =
∑

x∈Z
m
2

φ(x)(−1)α.x (3)

is the Fourier transform of φ : G → C (this time α.x is the dot-product in Z
m
2 ). These

functions, introduced by Rothaus [15] (see also [3]), exhibit the maximal resistance
against the linear attack [8].

The equivalence between bentness and perfect nonlinearity has been recently
extended by Carlet and Ding [2] and Pott [14] to the general case: f : G → H (where
G and H are two finite Abelian groups) is perfect nonlinear if, and only if, for all
α ∈ G and for all nonprincipal character χ of H,

∣
∣
∣(̂χ ◦ f )(α)

∣
∣
∣

2 = |G| (4)

where for φ : G → C, φ̂ is its discrete Fourier transform (see Section 3.2).
In this paper, we exhibit the same kind of dual characterizations in the case

where at least one of the two finite groups G and H is non Abelian. This gives a
general equivalence between perfect nonlinearity and bentness. Actually the notion
of bentness is defined to be equivalent to perfect nonlinearity in those non Abelian
cases.

Outline of the paper Next section contains the general notations used in the
paper. In Section 3 are recalled some of the main results on the duality of finite
groups. In particular, we present several kind of Fourier transforms used in the new
characterizations of perfect nonlinearity in the non Abelian cases. The notion of
perfect nonlinearity is exposed in the general framework of finite groups in Section 4.
Also in this section is given the dual characterization—i.e., the notion of bentness—
of Carlet and Ding [2] and Pott [14] of perfect nonlinear functions in the Abelian
groups setting. Finally our own results of non Abelian bentness are developed in
Section 5.

2 Notations

|S| is the cardinality of any finite set S and if S is nonempty (possibly infinite), IdS

denotes its identity map.
In this paper, the capital letters “G” and “H” always denote finite groups in

multiplicative representation, eG is the neutral element and G∗ is defined as G \ {eG}
(note that C

∗ = C \ {0}).
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The vector spaces considered are always finite-dimensional complex vector
spaces. For a (complex) vector space V, 0V is its zero, dimC(V) is its dimension and
GL(V) denotes the linear group of V which is a subset of the vector space of all linear
endomorphisms of V, denoted End(V). Now, suppose that V comes equipped with
an inner-product 〈·, ·〉V (so that (V, 〈·, ·〉V is an Hermitian space). With respect to
this Hermitian structure, if λ is any linear map, λ∗ denotes its adjoint and the unitary
group of V is U(V).

By convention, for each known result recalled in this paper, the proof has been
intentionally omitted and a reference—not necessarily the original reference—is
given. On the contrary, our own results are obviously given with their proofs and
without any reference.

3 On the duality of finite groups

3.1 Introduction

This paper is dedicated to the establishment of a dual characterization of the concept
of perfect nonlinearity—similar to the one given by Carlet and Ding [2] and Pott [14]
concerning Abelian groups—in the non Abelian groups setting, using some harmonic
analysis techniques. So in this section, we recall some basics about the duality of finite
groups and the Fourier transform. Most of the definitions and results given in this
section are well-known and can be found in any book on finite groups ([4, 10] for
instance).

3.2 The Abelian case

3.2.1 The theory of characters

Definition 1 Let G be a finite group. A character (also called one-dimensional
representation or linear character) χ of G is a group homomorphism from G to the
multiplicative group C

∗. We denote by Ĝ the set of all characters, called dual of G.

The set Ĝ is actually a group under the point-wise multiplication of characters and
its elements belong to the group of the |G|th complex roots of the unity. In particular,

∀χ ∈ Ĝ, ∀x ∈ G, |χ(x)| = 1 and χ(x−1) = χ(x) (5)

where |z| is the complex modulus and z is the conjugate of z ∈ C.

Proposition 1 ([5] p. 367, [10] p. 8) Let G be a f inite Abelian group. Then G and Ĝ
are isomorphic.

In the remainder of this paper, when a finite Abelian group G is considered, we
always implicitly suppose that an isomorphism from G to G∗ has been fixed and
we use χα

G to denote the image of α under this isomorphism. In particular, ∀x ∈ G,
χ

eG
G (x) = 1 (this character is called trivial or principal). Finally the characters satisfy

the well-known orthogonality properties.
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Lemma 1 ([2] p. 214, [10] pp. 9–10) Let G be a f inite Abelian group. For all α ∈ G
we have

∑

x∈G

χα
G(x) =

{

0 if α ∈ G∗,
|G| if α = eG.

(6)

For all x ∈ G, we have

∑

α∈G

χα
G(x) =

{

0 if x ∈ G∗,
|G| if x = eG.

(7)

3.2.2 The (discrete) Fourier transform

Definition 2 Let G be a finite Abelian group. The Fourier transform of φ : G → C

is the map φ̂ : G → C defined for α ∈ G by

φ̂(α) =
∑

x∈G

φ(x)χα
G(x). (8)

Some well-known and useful results are summarized below for G a finite Abelian
group.

Proposition 2 ([2] p. 215, [10] p. 15) Let φ : G → C.

1. We have the inversion formula

φ = 1

|G|
∑

α∈G

φ̂(α)χα
G; (9)

2. We have the Parseval’s equation

∑

x∈G

|φ(x)|2 = 1

|G|
∑

α∈G

∣
∣φ̂(α)

∣
∣
2 ; (10)

3. φ(x) = 0 ∀x ∈ G∗ if, and only if, φ̂ is constant;
4. φ̂(α) = 0 ∀α ∈ G∗ if, and only if, φ is constant.

The third and fourth points are stated in [2] p. 215.

3.2.3 The multidimensional (discrete) Fourier transform

In Section 5.2 of Section 5, we consider some V-valued functions, where V is a
finite-dimensional vector space, defined on a finite Abelian group G, and we need
to compute their “Fourier transforms” in some natural sense. That is the reason
why we now introduce a natural extension of the discrete Fourier transform, called
multidimensional Fourier transform, to deal with V-valued functions rather than C-
valued ones. This is a straightforward extension of the usual Fourier transform which,
at our knowledge, is not presented in any mathematical textbooks. However more
details on this transform may be found in [12, 13].
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Definition 3 Let G be a finite Abelian group, V a finite-dimensional vector space
over C and φ : G → C. The multidimensional Fourier transform of φ is defined as

φ̂MD : G → V
α �→

∑

x∈G

χα
G(x)φ(x). (11)

Let us fix a basis B of V. For each e ∈ B, we define the component function φe of
φ : G → V in direction e as the map

φe : G → C

x �→ πe(φ(x)).
(12)

where πe : V → C is the orthogonal projection onto C ∼= Ce with respect to the direct

sum decomposition V =
(

⊕

e′∈B\{e}
Ce′

)

⊕ Ce. According to properties of bases, we

have ∀x ∈ G,

φ(x) =
∑

e∈B

φe(x)e. (13)

We can easily check that the multidimensional Fourier transform is actually a
component-wise discrete Fourier transform given by the following equation (for
α ∈ G)

φ̂MD(α) =
∑

e∈B

φ̂e(α)e. (14)

Indeed,

φ̂MD(α) =
∑

x∈G

χα
G(x)φ(x)

=
∑

x∈G

χα
G(x)

∑

e∈B

φe(x)e

=
∑

e∈B

(
∑

x∈G

χα
G(x)φ(x)

)

e

(since both sums have only finitely many terms)

=
∑

e∈B

φ̂e(α)e . (15)

Note that according to the uniqueness of the decomposition in a basis, from equality
(14), we obtain (φ̂ MD)e = φ̂e. Note also that whenever V is one-dimensional, we
recover the usual definition of the Fourier transform.

Example 1

1. Suppose that we have φ : G → C
n. Then for every x ∈ G, φ(x) = (φ1(x),

· · · , φn(x)). Therefore, for every α ∈ G, φ̂ MD(α) = (φ̂1(α), · · · , φ̂n(α)) which
explains the term “component-wise Fourier transform” used above.
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2. Suppose that we have φ : G → C
2×2, where, for any non-negative integers m, n,

C
m×n denotes the vector space of m by n matrices. For every x ∈ G, φ(x) =

(

φ1,1(x) φ1,2(x)

φ2,1(x) φ2,2(x)

)

and for every α ∈ G, φ̂ MD(α) =
(

φ̂1,1(α) φ̂1,2(α)

φ̂2,1(α) φ̂2,2(α)

)

.

Note that, despite equality (14), the multidimensional Fourier transform is inde-
pendent of the choice of the basis B as showed by its definition. Using the equa-
tion (14), we can establish an inversion formula for the multidimensional Fourier
transform. Let x ∈ X.

φ(x) =
∑

e∈B

φe(x)e

=
∑

e∈E

(

1

|G|
∑

α∈G

φ̂e(α)χα
G(x)

)

e

(by the inversion formula applied on φe)

= 1

|G|
∑

α∈G

χα
G(x)

(
∑

e∈B

φ̂e(α)e

)

= 1

|G|
∑

α∈G

χα
G(x)φ̂ MD(α). (16)

This inversion formula is also independent of the choice of the basis. Finally this
transform satisfies a result similar to the third point of Proposition 2.

Proposition 3 Let G be a f inite Abelian group, V a f inite-dimensional vector space
over C and φ : G → V. We have φ(x) = 0V for all x ∈ G∗ if, and only if, φ̂ MD(α) =
φ(eG) for all α ∈ G.

Proof

⇒) Suppose that for all x ∈ G∗, φ(x) = 0V . Then we have ∀α ∈ G, φ̂ MD(α) =
∑

x∈G
χα

G(x)φ(x) = φ(eG).

⇐) Suppose that φ̂ MD(α) = φ(eG) for all α ∈ G. Using the inversion formula

(16), we get that for x ∈ G, φ(x) = 1
|G|

(
∑

α∈G
χα

G(x)

)

φ(eG) =
{

0V if x ∈ G∗,
φ(eG) if x = eG,

according to the orthogonality relations (Lemma 1). ��

3.3 The non Abelian case

3.3.1 The theory of linear representations

In this subsection are recalled some basics on the theory of linear representations.
The definitions and results may be found in any textbooks on the subject (see for
instance [6, 16]).

Definition 4 Let V be a finite-dimensional complex vector space. A linear represen-
tation of a finite group G on V is a group homomorphism from G to GL(V).
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For each linear representation ρ : G → GL(V), it is possible to find a basis of V
in which for all x ∈ G, ρ(x) is a unitary operator of V, i.e., ρ : G → U(V). Indeed, we
can check that for a linear representation ρ of G on V, for each x ∈ G, ρ(x) leaves
invariant the following inner-product in V

〈u, v〉G,ρ,V =
∑

x∈G

〈ρ(x)(u), ρ(x)(v)〉V (17)

where (u, v) ∈ V2 and 〈., .〉V denotes any inner-product of V (linear in the first
variable and anti-linear in the second). Then in the remainder, without loss of
generality, we only consider unitary representations and we denote by 〈·, ·〉G,ρ,V a
fixed inner-product on V which is kept invariant under ρ.

The linear representations of G on C can be identified with the characters of G
since C

∗ and GL(C) are isomorphic groups.

Definition 5 A linear representation ρ of a finite group G on V is said to be
irreducible if there is no subspace W ⊂ V, other than {0V} and V, such that ∀x ∈ G,
∀w ∈ W, ρ(x)(w) ∈ W.

Actually if G is a finite Abelian group then the notion of irreducible linear
representation gives nothing new because it is equivalent to the notion of character
(by the trace).

Definition 6 Two linear representations ρ and ρ ′ of a finite group G on respectively
V and V ′ are isomorphic if there exists a linear isomorphism 	 : V → V ′ such that
for all x ∈ G,

	 ◦ ρ(x) = ρ ′(x) ◦ 	. (18)

(A linear map that satisfies equality (18) is called equivariant map and is easily seen
to be a morphism from V to V ′ seen as left G-modules, see [6, 16].)

The notion of isomorphism is an equivalence relation for linear representations.1

Definition 7 For a finite group G, the dual of G, denoted G̃, is a set that contains
exactly one and only one representative of each equivalence class of isomorphic
irreducible representations of G.

By definition, if (ρ, ρ ′) ∈ G̃2 are distinct, then ρ and ρ ′ are nonisomorphic irre-
ducible representations of G. In the remainder, the notation

ρ = ρV ∈ G̃ (19)

means that ρ : G → U(V) is an irreducible representation of G.
If G is a finite Abelian group, then G̃ is equal to Ĝ (up to a group isomorphism

from GL(C) to C
∗). If G is a finite non Abelian group, the two notions of duality

1Even if the collection of all linear representations of a given finite group does not form a set but
rather a proper class, it is an easy exercise to check that the collection of representatives of each of
the isomorphism classes of linear representations really does form a set.
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become distinct (in particular, G̃ is not a group). By abuse of notation, G̃∗ is defined
as the set G̃ \ {ρ0} where ρ0 is the trivial or principal representation of G, i.e., ∀x ∈ G,
ρ0(x) = IdC.

When dealing with linear representations, a major result, know as Schur’s lemma
(see for instance chapter 9 of [6]), should be kept in mind.

Lemma 2 ([6, 10], [7] p. 25) Let G be a f inite group. Let ρ = ρV ∈ G̃ and λ ∈ End(V).
If ∀x ∈ G, λ ◦ ρ(x) = ρ(x) ◦ λ then λ is a multiple of the identity, i.e., there exists k ∈ C

such that λ = kIdV.

As direct consequences of the Schur’s lemma, we can state the two following
results that will be use in the sequel. (The first one is also given in [16] p. 18 as
Corollary 2.)

Lemma 3 ([10]) Let G be a f inite group. For x ∈ G∗,

∑

ρV∈G̃

dimC(V)tr(ρV(x)) = 0 (20)

where “tr” denotes the usual trace of endomorphisms.

Lemma 4 Let G be a f inite group. Let ρ = ρV ∈ G̃∗. Then

∑

x∈G

ρ(x) = 0End(V). (21)

Proof Let λ ∈ End(V) defined as λ =
∑

x∈G

ρ(x). Let x0 ∈ G. We have

λ =
∑

x∈G

ρ(x) =
∑

x∈G

ρ(x0x) = ρ(x0) ◦
∑

x∈G

ρ(x) = ρ(x0) ◦ λ

but also

λ =
∑

x∈G

ρ(x) =
∑

x∈G

ρ(xx0) =
(

∑

x∈G

ρ(x)

)

◦ ρ(x0) = λ ◦ ρ(x0).

In particular λ ◦ ρ(x0) = ρ(x0) ◦ λ. As it is true for any x0 ∈ G, λ commutes with all
ρ(x). By Schur’s lemma, λ is a multiple of the identity: there exists k ∈ C such that
λ = kIdV . Now suppose λ �= 0End(V), then k ∈ C

∗. Using the first part of the proof,
we know that λ = ρ(x) ◦ λ (for each x ∈ G). Then (IdV − ρ(x)) ◦ λ = 0End(V). As λ =
kIdV , we have (IdV − ρ(x)) ◦ (kIdV) = 0End(V). Since k �= 0, we have IdV − ρ(x) =
0End(V) or also ρ(x) = IdV which is a contradiction with the assumption that ρ is non
trivial. ��

Example 2 It is a good exercice to show that the symmetric group S3 of degree 3
has two one-dimensional representations (obviously irreducible), namely the trivial
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one and the sign morphism σ , and one two-dimensional irreducible representation θ

given in a suitable basis by

θ(id) =
(

1 0
0 1

)

, θ(23) =
(

1 0
0 −1

)

, θ(13) =
(

cos( 2π
3 ) sin( 2π

3 )

sin( 2π
3 ) − cos(−2π

3 )

)

,

θ(12) =
(

cos(−2π
3 ) sin(−2π

3 )

sin(−2π
3 ) − cos(−2π

3 )

)

, θ(123) =
(

cos(−2π
3 ) − sin(−2π

3 )

sin(−2π
3 ) cos(−2π

3 )

)

and

θ(132) =
(

cos( 2π
3 ) − sin( 2π

3 )

sin( 2π
3 ) cos( 2π

3 )

)

.

3.3.2 The representation-based Fourier transform

By substituting irreducible linear representations to characters, it is possible to define
a kind of Fourier transform for finite non Abelian groups.2

Let G be any finite group.

Definition 8 Let φ : G → C. The (representation-based) Fourier transform of φ is
defined for ρ = ρV ∈ G̃ as

φ̃(ρ) =
∑

x∈G

φ(x)ρ(x) ∈ End(V). (22)

This notion is a generalization of the classical discrete Fourier transform.

Example 3 Using the representations given in Example 2, the following values for
the representation-based Fourier transform of a map φ : S3 → C are obtained.

φ̃(ρ0) = φ(id) + φ(12) + φ(13) + φ(23) + φ(123) + φ(132) ∈ C

φ̃(σ ) = φ(id) + φ(123) + φ(132) − (φ(12) + φ(13) + φ(23)) ∈ C (23)

and φ̃(θ) =
(

aφ bφ

cφ dφ

)

∈ C
2×2 where

aφ = φ(id) + φ(23) + (φ(13) + φ(132)) cos

(
2π

3

)

+ (φ(12) + φ(123)) cos

(−2π

3

)

bφ = (φ(13) − φ(132)) sin

(
2π

3

)

+ (φ(12) − φ(123)) sin

(−2π

3

)

cφ = (φ(13) + (φ(132)) sin

(
2π

3

)

+ (φ(12) + φ(123)) sin

(−2π

3

)

dφ = φ(id)− φ(23)−(φ(13)+ φ(12)−φ(123)) cos

(−2π

3

)

+φ(132) cos

(
2π

3

)

. (24)

2The following definition, and many subsequent results, come from the textbook [10] which is written
in French. An English source for the same subject is [4].
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This transform is invertible so we have also an inversion formula (the original
proof comes from [4] p. 209 and from [10] p. 213; it has been reproduced in [11]
p. 179).

Proposition 4 ([4, 10]) Let φ : G → C. Then for all x ∈ G we have,

φ(x) = 1

|G|
∑

ρV∈G̃

dimC(V)tr(ρV(x−1) ◦ φ̃(ρV)). (25)

A last technical lemma is given below.

Lemma 5 Let φ : G → C. We have

1. φ(x) = 0 ∀x ∈ G∗ if, and only if, ∀ρ = ρV ∈ G̃, φ̃(ρ) = φ(eG)IdV;
2. φ̃(ρ) = 0End(V) ∀ρ = ρV ∈ G̃∗ if, and only if, φ is constant.

Proof

1. ⇒) For ρ = ρV ∈ G̃, we have

φ̃(ρ) =
∑

x∈G

φ(x)ρ(x) (by definition)

= φ(eG)ρ(eG) (by assumption on φ)

= φ(eG)IdV

(since ρ is a group homomorphism).

⇐) For x ∈ G, the inversion formula gives

φ(x) = 1

|G|
∑

ρV∈G̃

dimC(V)tr(ρV(x−1) ◦ φ̃(ρV))

= 1

|G|
∑

ρV∈G̃

dimC(V)tr(ρV(x−1) ◦ φ(eG)IdV)

(by hypothesis)

= φ(eG)

|G|
∑

ρV∈G̃

dimC(V)tr(ρV(x−1))

= φ(eG)

|G|
∑

ρV∈G̃

dimC(V)tr(ρV(x)−1)

(since ρV is a group homomorphism)
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= φ(eG)

|G|
∑

ρV∈G̃

dimC(V)tr(ρV(x)∗)

(since ρV(x) is unitary)

= φ(eG)

|G|
∑

ρV∈G̃

dimC(V)tr(ρV(x))

= φ(eG)

|G|
∑

ρV∈G̃

dimC(V)tr(ρV(x))

= 0 if x �= eG (according to Lemma 3).

2. ⇒) By the inversion formula, ∀x ∈ G,

φ(x) = 1

|G|
∑

ρV∈G̃

dimC(V)tr(ρV(x−1) ◦ φ̃(ρV))

= 1

|G| tr(φ̃(IdC)) (by hypothesis). (26)

⇐) Let ρV ∈ G̃, we have φ̃(ρV) = k
∑

x∈G

ρV(x) (with φ(x) = k ∀x ∈ G). Accord-

ing to Lemma 4, we deduce that φ̃(ρV) = 0End(V) for all ρV ∈ G̃∗. ��

4 On perfect nonlinear functions

4.1 Some basic definitions

Perfect nonlinearity must be seen as the fundamental notion on which our results are
based. Actually our ambition in this paper is to describe this combinatorial concept
in terms of Fourier transforms. Thus it is necessary to briefly present this topic.

Definition 9 Let X and Y be two finite nonempty sets. A function f : X → Y is said
to be balanced if the cardinal of f ibers function

φ f : Y → N

y �→ |{x ∈ X| f (x) = y}| (27)

is constantly equal to |X|
|Y| .

Definition 10 Let G and H be two finite groups and f : G → H. The left derivative
of f in direction α ∈ G is here defined as the map

d(l)
α f : G → H

x �→ f (αx) f (x)−1.
(28)

Symmetrically, the right derivative of f in direction α ∈ G is the map

d(r)
α f : G → H

x �→ f (x)−1 f (xα).
(29)
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The left-translation actions of both G and H are each equivalent to right-
translation actions of G and H. Then it is easy to see that each result concerning
right-translation action is symmetric to a result on left-translation action. So in this
paper, we only focus on the left version and in the remainder we forgot the noun left:
the derivative of f in direction α ∈ G, will be simply denoted by dα f and will be the
same as d(l)

α f .

Definition 11 Let G and H be two finite groups and f : G → H. The map f is said to
be perfect nonlinear if for each α ∈ G∗, dα f is balanced, i.e., for each (α, β) ∈ G∗ × H,

|{x ∈ G| f (αx) f (x)−1 = β}| = |G|
|H| . (30)

When G and H are Z
m
2 and Z

n
2 , perfect nonlinearity is a very relevant crypto-

graphic property because it ensures the maximal resistance against the so-called
differential cryptanalysis of Biham and Shamir [1]. When |G| = |H|, these functions
are also known as planar functions in finite geometry.

4.2 Bent functions in finite Abelian groups

When considering the case of finite Abelian groups, it is possible to characterize
the notion of perfect nonlinearity using the (discrete) Fourier transform; this dual
characterization leading to an equivalent notion of bent functions. This work has
been done recently and independently by Carlet and Ding [2] and Pott [14]. This
subsection is then devoted to the presentation of these results.

For the remainder of this subsection, we suppose given a pair (G, H) of finite
Abelian groups. The main result obtained by the three authors is essentially based
on the following lemma (which is an obvious generalization of Proposition 14, p. 215
of [2]).

Lemma 6 ([2] p. 215) Let X be a f inite nonempty set and f : X → H. The map f is
balanced if, and only if, for each β ∈ H∗, we have

∑

x∈X

(χ
β

H ◦ f )(x) = 0. (31)

In particular, if X is a (finite Abelian) group G, the previous lemma can be
re-written as follows: f : G → H is balanced if, and only, if for each β ∈ H∗,
̂

(χ
β

H ◦ f )(eG) = 0. This technical result gives a link between balancedness and the
Fourier transform which is used to prove the main result given below.

Theorem 1 ([2] p. 216) Let f : G → H. The map f is perfect nonlinear if, and only
if, for each β ∈ H∗, we have ∀α ∈ G,

∣
∣
∣
∣

̂
(χ

β

H ◦ f )(α)

∣
∣
∣
∣
= √|G|. (32)

When G and H are Z
m
2 and Z

n
2 , a function f : Z

m
2 → Z

n
2 that satisfies the equalities

(32) is called a Boolean bent function. As perfect nonlinearity, this notion is very
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important in cryptography because it characterizes the Boolean functions that exhibit
the best resistance against the linear cryptanalysis of Matsui [8]. By analogy with the
Boolean case, we will say that a function f : G → H that satisfies (32) is an (Abelian)
bent function. The theorem above means that Abelian bentness is strictly equivalent
to perfect nonlinearity. In the remainder of this paper, we establish the same kind of
dual characterization in the cases where G and/or H can be non Abelian.

5 Bent functions in finite non Abelian groups

5.1 Case where G is non Abelian and H is Abelian

In this subsection, G is a finite non Abelian group and H is a finite Abelian group.
We first generalize Lemma 6 in this context where a non Abelian group occurs.

Lemma 7 Let f : G → H and ρ0 ∈ G̃ the principal irreducible representation of G.
The map f is balanced if, and only if, for each β ∈ H∗,

˜
(

χ
β

H ◦ f
)

(ρ0) = 0End(C). (33)

Proof First let compute the representation-based Fourier transform of the function
χ

β

H ◦ f : G → C at ρ0.

˜
(

χ
β

H ◦ f
)

(ρ0) =
∑

x∈G

χ
β

H( f (x))ρ0(x)

=
∑

x∈G

χ
β

H( f (x))IdC

=
∑

γ∈H

φ f (γ )χ
β

H(γ )IdC

= φ̂ f (β)IdC (34)

where we recall that φ f (γ ) is defined as |{x ∈ G| f (x) = γ }|.
⇒) Let β ∈ H∗ and suppose that f is balanced. Then ∀γ ∈ H, φ f (γ ) = |G|

|H|

(by definition of balancedness). According to (34), we find ˜
(χ

β

H ◦ f )(ρ0) =
|G|
|H|

∑

γ∈H
χ

β

H(γ )IdC. Since for each β ∈ H∗, we have
∑

γ∈H
χ

β

H(γ ) = 0 (by

Lemma 1), we have ˜
(χ

β

H ◦ f )(ρ0) = 0End(C).

⇐) Suppose that for each β ∈ H∗, ˜
(χ

β

H ◦ f )(ρ0) = 0End(C). According to (34), we
have for each β ∈ H∗, φ̂ f (β)IdC = 0End(C) and then for each β ∈ H∗, φ̂ f (β) = 0.
The fourth point of Proposition 2 implies then that φ f is constant. Then
using the inversion formula, we obtain that for all β ∈ H, φ f (β) = 1

|H| φ̂ f (eH) =
1

|H|
∑

γ∈H
φ f (γ ) = |G|

|H| (by definition of φ f ). Then f is balanced. ��
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As in the Abelian case, the previous lemma is fundamental for the dual character-
ization of perfect nonlinearity. Nevertheless before using it, we need an intermediary
result.

Proposition 5 Let f : G → H and β ∈ H. We def ine the autocorrelation function
of f by

AC f,β : G → C

α �→
(

˜
(

χ
β

H ◦ dα f
)

(ρ0)

)

(1).

Then for all ρ = ρV ∈ G̃,

ÃC f,β(ρ) =
(

˜
(

χ
β

H ◦ f
)

(ρ)

)

◦
(

˜
(

χ
β

H ◦ f
)

(ρ)

)∗
. (35)

Proof Let ρ = ρV ∈ G̃.

ÃC f,β(ρ) =
∑

α∈G

AC f,β(α)ρ(α)

=
∑

α∈G

(

˜
(

χ
β

H ◦ dα f
)

(ρ0)

)

(1)ρ(α)

=
∑

α∈G

∑

x∈G

χ
β

H ◦ dα f (x)ρ0(x)(1)ρ(α)

=
∑

α∈G

∑

x∈G

χ
β

H

(

f (αx) f (x)−1
)

ρ(α)

(by definition of ρ0)

=
∑

α∈G

∑

x∈G

χ
β

H( f (αx))χ
β

H( f (x))ρ(α)

=
∑

α∈G

∑

x∈G

χ
β

H( f (αx))χ
β

H( f (x))ρ
(

αxx−1
)

=
∑

α∈G

∑

x∈G

χ
β

H( f (αx))χ
β

H( f (x))ρ(αx) ◦ ρ(x−1)

(ρ is a morphism)

=
∑

α∈G

∑

x∈G

χ
β

H( f (αx))χ
β

H( f (x))ρ(αx) ◦ ρ(x)−1
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=
∑

α∈G

∑

x∈G

χ
β

H( f (αx))χ
β

H( f (x))ρ(αx) ◦ ρ(x)∗

(ρ is unitary)

=
∑

x∈G

(
∑

α∈G

χ
β

H( f (αx))ρ(αx)

)

◦
(

χ
β

H( f (x))ρ(x)∗
)

(by linearity)

=
∑

x∈G

(

˜
(

χ
β

H ◦ f
)

(ρ)

)

◦
(

χ
β

H( f (x))ρ(x)∗
)

=
(

˜
(

χ
β

H ◦ f
)

(ρ)

)

◦
(

∑

x∈G

χ
β

H( f (x))ρ(x)∗
)

=
(

˜
(

χ
β

H ◦ f
)

(ρ)

)

◦
(

˜
(

χ
β

H ◦ f
)

(ρ)

)∗
.

��

The dual characterization of perfect nonlinearity in this context is given below.
This result generalizes the one of Carlet, Ding and Pott.

Theorem 2 Let f : G → H. The map f is perfect nonlinear if, and only if, ∀ρ = ρV ∈
G̃ and ∀β ∈ H∗, we have

(

˜
(

χ
β

H ◦ f
)

(ρ)

)

◦
(

˜
(

χ
β

H ◦ f
)

(ρ)

)∗
= |G|IdV . (36)

Proof The map f is perfect nonlinear

⇔ ∀α ∈ G∗, dα f is balanced (by definition)

⇔ ∀α ∈ G∗, ∀β ∈ H∗, ˜
(χ

β

H ◦ dα f )(ρ0) = 0End(C) (according to Lemma 7)

⇔ ∀z ∈ C, ∀α ∈ G∗, ∀β ∈ H∗, (
˜

(χ
β

H ◦ dα f )(ρ0))(z) = 0

⇔ ∀z ∈ C, ∀α ∈ G∗, ∀β ∈ H∗, zAC f,β(α) = 0 (by definition of AC f,β)
⇔ ∀α ∈ G∗, ∀β ∈ H∗, AC f,β(α) = 0

⇔ ∀ρ = ρV ∈ G̃, ∀β ∈ H∗, ÃC f,β(ρ) = AC f,β(eG)IdV (according to the first point
of Lemma 5).
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We have

AC f,β(eG) =
(

˜
(

χ
β

H ◦ deG f
)

(ρ0)

)

(1)

=
∑

x∈G

χ
β

H(eH)ρ0(x)(1)

=
∑

x∈G

χ
β

H(eH)

= |G|. (37)

Then f is perfect nonlinear ⇔ ∀β ∈ H∗, ∀ρ = ρV ∈ G̃, ÃC f,β(ρ) = |G|IdV

⇔ ∀β ∈ H∗, ∀ρ ∈ G̃, (
˜

(χ
β

H ◦ f )(ρ)) ◦ (
˜

(χ
β

H ◦ f )(ρ))∗ = |G|IdV (according to Propo-
sition 5). ��

Example 4 Let us consider f : S3 → H where H is a finite Abelian group whose
order divides 6. Let β ∈ H∗ and let us define φβ = χ

β

H ◦ f . According to Example 3
and Theorem 2, f is perfect nonlinear if, and only if, for every β ∈ H∗,

∑

(x,y)∈S2
3

φβ(x)φβ(y) = 6

|Sβ |2 = 6
(38)

(the equalities above are equivalent) where Sβ = φβ(id) + φβ(123) + φβ(132) −
(φβ(12) + φβ(13) + φβ(23)) and finally,

(

aφβ
bφβ

cφβ
dφβ

) (
aφβ

cφβ

bφβ
dφβ

)

=
(

6 0
0 6

)

. (39)

This example shows that the combinatorial constraints on bent functions in this non
Abelian setting are much stronger than in the usual case.

By definition, functions that satisfy formula (36) are called bent functions in this
particular context where G is a finite non Abelian group and H is a finite Abelian
group, and therefore are perfect nonlinear.

We can note that this version of bentness is very similar to the one given in
Theorem 1: the discrete Fourier transform is replaced by its representation-based
version, the complex-conjugate is replaced by the adjoint of endomorphisms, the
multiplication of complex numbers by the composition of operators and the factor
IdV is added (which is equal to 1 in the case V = C). The discrete Fourier transform
of Carlet, Ding and Pott’s bent functions is, up to a factor |G|, U(C)-valued.
Regarding this last notion of bentness, the representation-based Fourier transform,
also up to the factor |G|, is now U(V)-valued. It is possible to deduce from this
theorem a result really similar to the traditional notion of bentness.
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Corollary 1 Let f : G → H. If the map f is perfect nonlinear then we have ∀ρ = ρV ∈
G̃ and ∀β ∈ H∗,

∥
∥
∥
∥
∥

˜
(

χ
β

H ◦ f
)

(ρ)

∥
∥
∥
∥
∥

2

End(V)

= |G| dimC(V), (40)

where ‖ λ ‖2
End(V)= tr(λ ◦ λ∗) for λ ∈ End(V).

Proof The result is obvious by using on each member of (36) the trace tr of
endomorphisms of V. ��

An interesting question, kept open in this paper, is to know if, whether or not, the
reciprocal assertion of the previous corollary is true. Therefore, as pointed out by one
of the reviewers, our definition of a bent function in this context seems stronger than
the one obtained by functions that satisfy equation (40) for every ρ ∈ G̃ and every
β ∈ H∗. But our choice for the definition of bent functions has the obvious property,
from its definition, to be equivalent to perfect nonlinearity.

5.2 Case where G is Abelian and H is non Abelian

In this subsection, G is a finite Abelian group and H is a finite non Abelian group.
Another time a technical result similar to both Lemmas 6 and 7 is needed to establish
a dual characterization of perfect nonlinearity in this context.

Lemma 8 Let X be a f inite nonempty set and f : X → H. Then f is balanced if, and
only if, for each ρ = ρV ∈ H̃∗, we have

∑

x∈X

(ρ ◦ f )(x) = 0End(V). (41)

Proof Let ρ = ρV ∈ H̃. We have
∑

x∈X

(ρ ◦ f )(x) =
∑

γ∈H

|{x ∈ X| f (x) = γ }|ρ(γ )

=
∑

γ∈H

φ f (γ )ρ(γ )

= φ̃ f (ρ). (42)

⇒) Suppose that f is balanced and let ρ ∈ H̃∗, then we have
∑

x∈X

(ρ ◦ f )(x) = |X|
|H|

∑

γ∈H

ρ(γ ) = 0End(V)

(according to Lemma 4).
⇐) Suppose that for all ρ = ρV ∈ H̃∗,

∑

x∈X
(ρ ◦ f )(x) = 0End(V). Then the

representation-based Fourier transform of φ f : H → N ⊂ C is

ρV �→
{

0End(V) if ρV ∈ H̃∗,
|X| if ρV = ρ0.

(43)
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According to Lemma 5, we know that φ f is constant and more precisely
(according to the proof of the lemma), ∀β ∈ H, φ f (β) = 1

|X| tr(φ̃ f (IdC)). But
φ̃ f (IdC) = ∑

γ∈H
φ f (γ )IdC = |X|IdC (by definition of φ f ). Then ∀β ∈ H, φ f (β) =

|X|
|H| and f is balanced. ��

As in the previous case, we introduce a kind of autocorrelation functions and we
compute its discrete Fourier transform.

Proposition 6 Let f : G → H and ρ = ρV ∈ H̃. We def ine the autocorrelation func-
tion of f by

AC f,ρ : G → End(V)

α �→
∑

x∈G

(ρ ◦ dα f )(x).

Then for all α ∈ G,

ÂC f,ρ
MD

(α) =
(

(̂ρ ◦ f )
MD

(α)

)

◦
(

(̂ρ ◦ f )
MD

(α)

)∗
. (44)

Proof Let α ∈ G.

ÂC f,ρ
MD

(α) =
∑

x∈G

χα
G(x)AC f,ρ(x)

=
∑

x∈G

χα
G(x)

∑

y∈G

(ρ ◦ dx f )(y)

=
∑

x∈G

∑

y∈G

χα
G(x)ρ( f (xy)) ◦ (ρ( f (y)))∗

(since ρ(x) is unitary)

=
∑

x∈G

∑

y∈G

χα
G(xyy−1)ρ( f (xy)) ◦ (ρ( f (y)))∗

=
∑

x∈G

∑

y∈G

χα
G(xy)ρ( f (xy)) ◦ χα

G(y)(ρ( f (y)))∗

=
∑

y∈G

ρ̂ ◦ f
MD

(α) ◦ (χα
G(y)ρ( f (y)))∗

=
(

(̂ρ ◦ f )
MD

(α)

)

◦
(

(̂ρ ◦ f )
MD

(α)

)∗
. (45)

��

The corresponding notion of bentness in this context is given by the following
theorem (in such a way that we obtain the conservation of the equivalence with
perfect nonlinearity).



Cryptogr. Commun. (2012) 4:1–23 19

Theorem 3 Let f : G → H. The map f is perfect nonlinear if, and only if, ∀α ∈ G,
∀ρ = ρV ∈ H̃∗,

(

(̂ρ ◦ f )
MD

(α)

)

◦
(

(̂ρ ◦ f )
MD

(α)

)∗
= |G|IdV . (46)

Proof

f is perfect nonlinear ⇔ ∀α ∈ G∗, dα f is balanced

⇔ ∀α ∈ G∗, ∀ρ = ρV ∈ H̃∗,
∑

x∈G

(ρ ◦ dα f )(x) = 0End(V)

(according to Lemma 8)

⇔ ∀α ∈ G∗, ∀ρ ∈ H̃∗, AC f,ρ(α) = 0End(V)

(by definition of AC f,ρ)

⇔ ∀α ∈ G, ∀ρ ∈ H̃∗, ÂC f,ρ
MD

(α) = AC f,ρ(eG)

(according to Proposition 3). (47)

But AC f,ρ(eG) =
∑

x∈G

(ρ ◦ deG f )(x) =
∑

x∈G

ρ(eH) =
∑

x∈G

IdV = |G|IdV . Then according

to (45) and (47), f is perfect nonlinear ⇔ ∀α ∈ G, ∀ρ = ρV ∈ H̃∗,

(

(̂ρ ◦ f )
MD

(α)

)

◦
(

(̂ρ ◦ f )
MD

(α)

)∗
= |G|IdV . (48)

��

Example 5 Let G be a finite Abelian group such that 6 divides its order. Let f : G →
S3. Then, f is perfect nonlinear if, and only if, for every α ∈ G,

∣
∣
∣σ̂ ◦ f (α)

∣
∣
∣

2 = |G| (49)

and

(

Â(α) B̂(α)

Ĉ(α) D̂(α)

) (

Â(α) Ĉ(α)

B̂(α) D̂(α)

)

=
(|G| 0

0 |G|
)

(50)

where θ(x) =
(

A(x) B(x)

C(x) D(x)

)

for every x ∈ S3.

Another time, by using the trace on both sides of (46), we deduce the following
corollary. As in the previous case, an interesting question should be to check if this
result is or not a sufficient condition for bentness in this particular context.
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Corollary 2 Let f : G → H. If the map f is perfect nonlinear then ∀α ∈ G and ∀ρ =
ρV ∈ H̃∗,

∥
∥
∥
∥
(̂ρ ◦ f )

MD
(α)

∥
∥
∥
∥

2

End(V)

= |G| dimC(V). (51)

5.3 Case where G and H are both non Abelian

In this subsection, G and H are both finite non Abelian groups.
Let ρ ′ = ρ ′

W ∈ H̃ and B = {ei}dimC(W)

i=1 be an orthonormal basis of W (for the scalar
product 〈., .〉H,ρ ′,W of W as introduced by (17)) such that for all y ∈ H, ρ ′(y) is
a unitary operator. For (i, j) ∈ {1, . . . , dimC(W)}2, let us define the representative
functions

ρ ′
ij : H → C

y �→ 〈ρ ′(ei), e j〉H,ρ ′,W .
(52)

In other terms, for each y ∈ H, ρ ′
ij(y) is simply the coefficient (i, j) of the dimC(W) ×

dimC(W) unitary matrix that represents ρ ′(y) in the basis B.
Let see some obvious results on ρ ′

ij for (i, j) ∈ {1, . . . , dimC(W)}2.

1. Let (y1, y2) ∈ H2. We have ρ ′(y1 y2) = ρ ′(y1) ◦ ρ ′(y2). Therefore ρ ′
ij(y1 y2) =

dimC(W)
∑

k=1

ρ ′
ik(y1)ρ

′
kj(y2);

2. Let y ∈ H. Since ρ ′(y−1) = ρ ′(y)∗ then we deduce that ρ ′
ij(y−1) = ρ ′

ji(y).

Note also that the identity map IdW is written in any orthonormal basis of W as the
identity matrix and 0End(W) is associated, in any basis of W, with the all-zero matrix.

As in the previous subsections, we introduce some kind of autocorrelation func-
tions for f : G → H.

Proposition 7 Let f : G → H, ρ ′ = ρ ′
W ∈ H̃ and (i, j) ∈ {1, . . . , dimC(W)}2. We

def ine the autocorrelation function of f

AC f,ρ ′,i, j : G → C

α �→
∑

x∈G

(ρ ′
ij ◦ dα f )(x). (53)

Then for all ρ = ρV ∈ G̃,

ÃC f,ρ ′,i, j(ρ) =
dimC(W)

∑

k=1

(

˜
(

ρ ′
ik ◦ f

)

(ρ)

)

◦
(

˜
(

ρ ′
jk ◦ f

)

(ρ)

)∗
. (54)
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Proof Let ρ = ρV ∈ G̃.

ÃC f,ρ ′,i, j(ρ) =
∑

x∈G

AC f,ρ ′,i, j(x)ρ(x)

=
∑

x∈G

∑

y∈G

(ρ ′
ij ◦ dx f )(y)ρ(x)

=
∑

x∈G

∑

y∈G

ρ ′
ij

(

f (xy) f (y)−1
)

ρ(x)

=
∑

x∈G

∑

y∈G

dimC(W)
∑

k=1

ρ ′
ik( f (xy))ρ ′

jk( f (y))ρ(x)

=
dimC(W)

∑

k=1

∑

x∈G

∑

y∈G

ρ ′
ik( f (xy))ρ ′

jk( f (y))ρ
(

xyy−1
)

=
dimC(W)

∑

k=1

∑

x∈G

∑

y∈G

ρ ′
ik( f (xy))ρ ′

jk( f (y))ρ(xy) ◦ ρ(y)∗

=
dimC(W)

∑

k=1

∑

x∈G

∑

y∈G

ρ ′
ik( f (xy))ρ(xy) ◦

(

ρ ′
jk( f (y))ρ(y)∗

)

=
dimC(W)

∑

k=1

(

˜
(

ρ ′
ik ◦ f

)

(ρ)

)

◦
∑

y∈G

(

ρ ′
jk( f (y))ρ(y)

)∗

=
dimC(W)

∑

k=1

(

˜
(

ρ ′
ik ◦ f

)

(ρ)

)

◦
(

˜
(

ρ ′
jk ◦ f

)

(ρ)

)∗
. (55)

��

Using this autocorrelation function and its Fourier transform we can exhibit the
appropriate notion of bentness for this context where both groups G and H are non
Abelian.

Theorem 4 Let f : G → H. The map f is perfect nonlinear if, and only if, ∀ρ = ρV ∈
G̃, ∀ρ ′ = ρ ′

W ∈ H̃∗, ∀(i, j) ∈ {1, . . . , dimC(W)}2,

dimC(W)
∑

k=1

(

˜
(

ρ ′
ik ◦ f

)

(ρ)

)

◦
(

˜
(

ρ ′
jk ◦ f

)

(ρ)

)∗
=

{ |G|IdV if i = j,
0End(V) if i �= j.

(56)
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Proof

f is perfect nonlinear ⇔ ∀α ∈ G∗, dα f is balanced

⇔ ∀α ∈ G∗, ∀ρ ′ = ρ ′
W ∈ H̃∗,

∑

x∈G

(ρ ′ ◦ dα f )(x) = 0End(W)

(according to Lemma 8)

⇔ ∀α ∈ G∗, ∀ρ ′ ∈ H̃∗, ∀(i, j) ∈ {1, . . . , dimC(W)}2,
∑

x∈G

(ρ ′
ij ◦ dα f )(x) = 0

⇔ ∀α ∈ G∗, ∀ρ ′ ∈ H̃∗, ∀(i, j) ∈ {1, . . . , dimC(W)}2,

AC f,ρ ′,i, j(α) = 0

⇔ ∀ρV ∈ G̃, ∀ρ ′ ∈ H̃∗, ∀(i, j) ∈ {1, . . . , dimC(W)}2,

ÃC f,ρ ′,i, j(ρV) = AC f,ρ ′,i, j(eG)IdV

(by Lemma 5). (57)

But AC f,ρ ′,i, j(eG) = ∑

x∈G
(ρ ′

ij ◦ deG f )(x) = ∑

x∈G
ρ ′

ij(eH). Since we know that ρ ′(eH) =
IdW , then ρ ′(eH) is written in the orthonormal basis B of W as the identity matrix
and then ∀(i, j) ∈ {1, . . . , dimC(W)}2,

ρ ′
ij(eH) =

{

1 if i = j,
0 if i �= j.

(58)

From this last result, the equality (55) and the equivalence (57), it follows the
expected result. ��

This case where both groups G and H are non Abelian involves some kind of
tensor (or at least of block-matrix) notion of bentness. This is essentially due to the
lack of commutativity of both groups.

6 Summary

The different notions of bentness, depending on the fact that the finite groups G and
H are Abelian or not, are summarized below.

A function f : G → H is bent (or equivalently perfect nonlinear) if, and only if,

1. If G and H are Abelian [2, 14]: ∀(α, β) ∈ G × H∗,

∣
∣
∣
∣

̂
(χ

β

G ◦ f )(α)

∣
∣
∣
∣

2

= |G|.
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2. If G is non Abelian and H is Abelian: ∀(ρ, β) ∈ G̃ × H∗ (with ρ : G → U(V)),
(

˜
(

χ
β

H ◦ f
)

(ρ)

)

◦
(

˜
(

χ
β

H ◦ f
)

(ρ)

)∗
= |G|IdV .

3. If G is Abelian and H is non Abelian: ∀(α, ρ ′) ∈ G × H̃∗ (with ρ ′ : H → U(W)):
(

̂(ρ ′ ◦ f )
MD

(α)

)

◦
(

̂(ρ ′ ◦ f )
MD

(α)

)∗
= |G|IdW .

4. If G and H are both non Abelian groups: ∀(ρ, ρ ′, (i, j)) ∈ G̃ × H̃∗ ×
{1, . . . , dimC(W)}2 (with ρ : G → U(V) and ρ ′ : H → U(W)),

dimC(W)
∑

k=1

(

˜
(

ρ ′
ik ◦ f

)

(ρ)

)

◦
(

˜
(

ρ ′
jk ◦ f

)

(ρ)

)∗
=

{ |G|IdV if i = j,
0End(V) if i �= j.

A continuation of this paper should be to construct some families of perfect nonlinear
maps in one of these non Abelian settings.

Acknowledgements The author thanks the reviewers for their helpful comments, especially con-
cerning some of the examples, which make the paper clearer.
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