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Abstract In this paper the possibilities of an iterative concatenation method towards
construction of Boolean functions resistant to algebraic cryptanalysis are investi-
gated. The notion of AAR (Algebraic Attack Resistant) function is introduced as
a unified measure of protection against classical algebraic attacks as well as fast alge-
braic attacks. Then, it is shown that functions that posses the highest resistance to fast
algebraic attacks are necessarily of maximum algebraic immunity, thus opposing a
maximum resistance to algebraic cryptanalysis in general. The developed theoretical
framework allows us to iteratively construct functions with maximum AI , and of
almost optimized resistance to fast algebraic cryptanalysis. This infinite class for the
first time, apart from almost optimal resistance to algebraic cryptanalysis, in addition
generates functions that allow an extremely efficient hardware implementation,
possess high nonlinearity and maximum algebraic degree; thus unifying most of the
relevant cryptographic criteria.

Keywords Boolean function · Fast algebraic attacks · Algebraic immunity ·
Annihilators · Algebraic attack resistant · High degree product

Mathematics Subject Classification (2010) 94A60

This is an extended and modified version of the manuscript presented at the 11th International
Conference on Information Security and Crytpology, ICISC 2008, Seoul, Korea, 3–5 December,
2008. An extremely efficient hardware implementation is given in due details and more
simulation results are added. For completeness, most of the theoretical results of the original
paper are kept without some major modifications.

E. Pasalic (B)
University of Primorska, FAMNIT and PINT, Glagoljaška 8, Koper, Slovenia
e-mail: enes.pasalic6@gmail.com



26 Cryptogr. Commun. (2012) 4:25–45

1 Introduction

The design of LFSR-based stream ciphers traditionally resides on the use highly
nonlinear Boolean functions as filtering functions; the two major representatives
being nonlinear filter generators and nonlinear combiners [22]. For instance, in the
case of nonlinear filter generators n stages of a single Linear Feedback Shift Registers
(LFSRs) (whose initial state consists of the secret key) are filtered by a nonlinear
Boolean function f : GF(2)n → GF(2) to provide the keystream sequence.

Apart from already established cryptographic criteria such as nonlinearity, alge-
braic degree, and resiliency, it turned out that the Boolean function must also have
a certain order of algebraic immunity. This is due to recently introduced algebraic
attacks based on the low degree annihilation of Boolean functions [9, 12]. These
attacks reflect the property of certain cipher schemes for which the selection of
function f of high algebraic degree that follows early ideas of Shannon’s concept
of confusion [25], and linear complexity attacks [22], is not a sufficient criterion
any longer. Due to algebraic attacks, instead of setting up a system of equations of
degree determined by the degree of function f , the attacker can consider a lower
degree system if there either exists a low degree function g (called annihilator) such
that fg = 0 or alternatively (1 + f )g = 0 [12, 20]. The minimum degree of nonzero
annihilators g of either f or 1 + f is called algebraic immunity (AI). Algebraic
attacks currently present one of the most efficient cryptanalytic tool in stream cipher
cryptanalysis; the applications include many prominent algorithms such as Bluetooth
encryption algorithm E0 analyzed in e.g. [11].

A few construction methods that generate functions reaching the upper bound
on algebraic immunity � n

2 � (maximum AI) functions) has recently been proposed
[4, 6, 13, 14, 19]. However, all these methods do not succeed in optimization of
other cryptographic criteria at the same time. Furthermore, though a high order of
AI implies resistance to classical algebraic attacks this property is only a necessary
but not sufficient criterion. The emergence of fast algebraic cryptanalysis [1, 10] still
successfully invalidates any design for which there exists low degree function g such
that fg = h is of relatively low degree as well. For instance, fast algebraic attack was
successfully applied to eSTREAM [15] proposal Sfinks [3], though the cipher was
designed to withstand classical algebraic attacks. Denoting by e and d the degree
of g and h respectively, the resistance to fast algebraic cryptanalysis is optimized if
e + d ≥ n for any non-annihilating g and e ∈ [1, � n

2 � − 1].
Very recently a new design approach based on the modification of the so-called

partial spread class of bent functions has been employed in e.g. [29–31]. Apart from
this approach, several other design ideas (using minimal polynomials), have been
recently proposed in e.g. [32, 33]. These classes of functions satisfy most of the
cryptographic criteria, but still none of the methods ensure in a deterministic way
either optimized or suboptimized resistance to fast algebraic attacks, including the
construction method of Carlet and Feng [8]. Furthermore, an efficient hardware
implementation of the new classes of cryptographically significant functions is not
achievable.

This work is mainly motivated by the fact that for the time being the construction
methods fail to provide functions unifying all the important cryptographic criteria.
This is especially true when the fast algebraic attacks and the efficiency of imple-
mentation are taken into account. The reader should recall that the main advantage
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of certain LFSR-based encryption schemes (e.g. filter generators) is their small
hardware footprint, which was actually emphasized during the recent eSTREAM
project [15]. While a hardware implementation of an LFSR is very efficient, the
implementation of a Boolean functions with a moderate number of inputs may
require an unacceptable amount of circuitry. A straightforward implementation
using a table look-up or logical gates will require O(2n) memory cells (flip-flops for
instance) for an n-variable function. This amount should be compared with hardware
efficient designs such as stream ciphers TRIVIUM and GRAIN-128 that require
approximately 2000–4000 logical gates.

The construction method proposed here, based on the concatenation of small
initial functions proves to be very efficient in terms of hardware implementation. For
instance, for a 20-variable function that uses 6-variable initial functions only ca. 900
flip-flops are required which is a tremendous improvement compared to the other
methods. In general, the implementation cost only grows linearly (not exponentially)
with the number of variables. In addition, the infinite class of functions proposed
here optimizes almost all the cryptographic criteria, apart from achieving very high
nonlinearity and offering a suboptimized resistance to fast algebraic attacks. This
makes the functions in this class more vulnerable to (fast) correlation attacks (due
to a lower nonlinearity) than other good classes. On the other hand, the class is
characterized by an extremely efficient implementation, and there is a room for
further improvements regarding its nonlinearity.

It should be noticed that the class of functions discussed in this manuscript is a class
of balanced functions of maximum algebraic degree, and therefore these functions
cannot be resilient (this is due to the Siegenthaler [26] trade-off which claims that
the order of resiliency t satisfies t ≤ n − deg( f ) − 1). Nevertheless, the resiliency
criterion is in the first place important in the design of nonlinear combiners and
nonlinear filter generators. For the former design approach a divide-and-conquer
method of Siegenthaler [27] and the fast correlation attacks of Meier and Stafellbach
[21] may be directly applied to a subset of the combining LFSRs (the cardinality
of the subset is strictly larger than the resiliency order) by utilizing the statistical
properties of the observed keystream sequence. In the case of nonlinear filter
generators there is no possibility for applying a divide-and-conquer method directly.
Thus, one first transforms a given filter generator scheme into an equivalent system
(a nonlinear combiner generating the same running key sequence as the filter gener-
ator), and then such a system is attacked using the similar techniques as above. The
technique of finding the equivalent system, using a Walsh orthogonal expansion of
the state filter function, was suggested by Siegenthaler [28]. Later, the fast correlation
algorithm of Meier and Stafellbach was also modified to be applicable to filter
generators [16].

Nevertheless, it is not clear whether the process of finding an equivalent system
is feasible for the typical lengths of LFSRs used in real-life applications. While
Sigenthaler in [28] concludes that the maximum length of LFSR is ca. 50, there is
no exact estimate for a maximum length of the LFSR for which modification of fast
correlation attacks is applicable to filter generators, see [16]. The complexity of the
algorithm in [16] seems to grow exponentially with the LFSR length, and only under
certain statistical assumptions concerning the filtering function the experiments
could be successfully carried out for an LFSR of length 100 (assuming further a
sparse connection polynomial). We notice, that in a recent work [17] a detailed
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analysis of correlation attacks and their applicability to various design schemes has
been conducted. In brief, when the security of filter generators is of concern the
authors deduce that a sufficient condition for protection against correlation attacks
is a property of first order “quasi-immunity”. For further details regarding this result,
and for exact definition of the first order quasi-immunity (which is a concept closely
related to first order resiliency) the reader is referred to [17].

Due to impossibility of attaining the maximum algebraic degree and certain
resiliency order at the same time, we only focus on the degree optimized functions
thus indirectly referring to the applications for which the above attacks cannot
be applied in a straightforward manner (but also referring to the design of filter
generators that use an LFSR of sufficient length).

To reach our goal of designing functions that oppose a maximum resistance to
algebraic cryptanlysis, some theoretical results that relate the notions of algebraic
immunity and resistance to fast algebraic attacks are first derived. A unified measure
against both fast and classical cryptanalysis is introduced, the notion that we name
AAR (algebraic attack resistance). The notion of AAR includes the maximum AI
property per definition, but it is shown that another related concept high degree
product actually includes the maximum AI property. This framework is then used in
deriving the set of sufficient conditions for a certain recursive, concatenation-based
construction to generate AAR functions. These conditions being extremely hard to
satisfy, the optimum requirement e + d ≥ n is slightly relaxed (e + d ≥ n − 1 is used
instead) which then enables an iterative method for constructing functions satisfying
all the relevant cryptographic criteria in the design of nonlinear filter generators.

The rest of the paper is organized as follows. Basic definitions and notations are
introduced in Section 2. Section 3 gives a thorough treatment regarding the algebraic
properties of the iterative construction technique based on the concatenation of
four functions. Furthermore, the new notion of AAR functions is introduced, and
the relationship between the optimal resistance to fast and to classical algebraic
attacks is deduced. These results are then utilized in Section 4 for proposing an
iterative method for generation of suboptimized AAR functions, with overall good
cryptographic properties. The cryptographic properties are discussed in details, both
from the security and implementation point of view. Some concluding remarks are
given in Section 5.

2 Preliminaries

We denote the Galois field of order 2n by F2n and the corresponding vector space by
F

n
2 . For the rest of this paper, if otherwise not stated, x will denote a vector containing

n input binary variables, that is x = (x1, . . . , xn) ∈ F
n
2 . A Boolean function f : F

n
2 →

F2 is usually represented via so called algebraic normal form (ANF),

f (x1, . . . , xn) =
∑

u∈F
n
2

λu

(
n∏

i=1

xui
i

)
, λu ∈ F2 , u = (u1, . . . , un). (1)

Then the algebraic degree of f , denoted by deg( f ) or sometimes simply d, is the
maximal value of the Hamming weight of u such that λu �= 0. A Boolean function
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f (x1, . . . , xn) is also interpreted as the output column of its truth table f , i.e., a binary
string of length 2n,

f = [ f (0, 0, · · · , 0), f (1, 0, · · · , 0), . . . , f (1, 1, · · · , 1)].
The set of all Boolean functions in n variables is denoted by Bn, and functions of

degree at most one are called af f ine functions, whose associated set is denoted An.

Definition 1 The nonlinearity of an n-variable function f is defined as,

N f = ming∈An(dH( f, g)), (2)

where dH is the Hamming distance between two binary vectors, that is

dH( f, g) = #{x ∈ F
n
2 : f (x) �= g(x)}.

The support set of function f ∈ Bn, denoted by supp( f ), is the set of input values
where f has a nonzero evaluation, that is,

supp( f ) = {x ∈ F
n
2 | f (x) = 1}.

A function f is said to be balanced if it outputs equal number of zeros and ones,
that is

#{x ∈ F
n
2 : f (x) = 1} = #{x ∈ F

n
2 : f (x) = 0}.

In the context of algebraic cryptanalysis related to Boolean functions, an annihilator
of f is a non-zero function g such that f (x)g(x) = 0, which is most often written as
fg = 0. The notion of algebraic immunity was introduced in [20] as a measure of
resistance to algebraic attacks.

Definition 2 The algebraic immunity AI( f ) is the minimum value of d such that f
or f + 1 admits an annihilating function of degree d.

In this context, for arbitrary f ∈ Bn, the set of functions that annihilate f respec-
tively 1 + f may be defined as,

An( f ) = {g ∈ Bn, g �= 0 | fg = 0}; An(1 + f ) = {g ∈ Bn, g �= 0 | (1 + f )g = 0}.
The following notation is then useful,

deg(An( f )) = min
g∈An( f )

deg(g); deg(An(1 + f )) = min
g∈An(1+ f )

deg(g).

3 Theoretical framework towards resistance to algebraic attacks

A construction method based on the concatenation of functions from smaller vari-
able space has been frequently used as an efficient tool in the design of cryptograph-
ically strong Boolean functions. Nevertheless, the known methods have failed so far
in providing good functions resistant to both fast and classical algebraic cryptanalysis.
These classes of functions are also attractive in terms of an efficient hardware
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implementation. In this section we study the algebraic properties of an iterative
concatenation method involving four subfunctions. In addition, a general relation
that interlinks the optimum resistance to fast and classical algebraic cryptanalysis is
derived.

3.1 Some properties of functions with maximum AI

The purpose of this section is to identify some basic conditions that any function
with maximum AI must satisfy with respect to its subfunctions. For the rest of
this manuscript we focus on the representation of f ∈ Bn+2 as a concatenation of
four functions, that is, f = f1|| f2|| f3|| f4 ∈ Bn+2, where each fi ∈ Bn has maximum
AI . Using the shortened notation ( fi denoting fi(x)), the ANF of function f is
given by:

f = xn+1xn+2 ( f1 + f2 + f3 + f4) + xn+1 ( f1 + f2) + xn+2 ( f1 + f3) + f1. (3)

A similar expression is then valid for any annihilator g of f ,

g = xn+1xn+2(g1 + g2 + g3 + g4) + xn+1(g1 + g2) + xn+2(g1 + g3) + g1, (4)

where gi is arbitrary annihilator of fi (including the trivial annihilation gi = 0). Let gi

denote any minimum degree nonzero annihilator of fi ∈ Bn. If deg(gi) = d then we
also use,

gi(x) = Td(gi(x)) + Td−1(gi(x)) + · · · + T0(gi(x)),

where each Tr(gi), for 0 ≤ r ≤ d, contains only degree r monomial terms. Then in
connection to the representation of annihilator g of f given in (4), the following
simple properties are deduced.1

Lemma 1 Let f = f1|| f2|| f3|| f4, where fi ∈ Bn are functions with maximum AI .
Then any nonzero annihilator g of f represented as in (4) satisf ies the following :

(i) If any gi = 0 then deg(g) ≥ � n
2 � + 1.

(ii) If any gi is such that deg(gi) > � n
2 � then deg(g) ≥ � n

2 � + 1.
(iii) If there exists g such that deg(g) < � n

2 � + 1 then deg(gi) = � n
2 � for all i ∈ [1, 4]

and furthermore,

Td(g1) = Td(g2) = Td(g3) = Td(g4); Td−1

(
4∑

i=1

gi

)
= 0. (5)

Proof

(i) Without loss of generality assume g1 = 0, then xn+1(g1 + g2) is of degree at
least � n

2 � + 1 unless g2 = 0. But g1 = g2 = 0 implies that g3 = 0 due to the term
xn+2(g1 + g3), as otherwise deg(g) ≥ � n

2 � + 1.

1This result was independently derived in [2, Ch. 4]. The author of this article made this result
available on Cryptology eprint archive in 2005, but the paper was soon withdrawn due to one
erroneous result.
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(ii) The similar idea is used here. Taking any gi so that deg(gi) > � n
2 �, implies that

deg(g) ≥ � n
2 � + 1.

(iii) Assuming deg(g) < � n
2 � + 1 gives that,

Td

(
4∑

i=1

gi

)
= 0 Td−1

(
4∑

i=1

gi

)
= 0 Td(g1 + g2) = 0 Td(g1 + g3) = 0,

and the result easily follows. 	


The result of Lemma 1, in particular item (iii), is a useful tool for establishing
the algebraic properties of given function. Showing that subfunctions f1, . . . , f4 of
maximum AI are chosen so that item (iii) above cannot be satisfied for neither f
nor 1 + f is equivalent to proving f = f1|| f2|| f3|| f4 has a maximum AI . It has been
used in [2], where the iterative method of designing the maximum AI functions was
proposed. The construction requires three suitable input functions f 0

1 , f 0
2 , f 0

3 ∈ F
n0
2

to iteratively generate maximum AI functions on f i
1, f i

2, f i
3 ∈ F

n0+2i
2 ,

f i
1 = f i−1

1 || f i−1
2 ||1 + f i−1

3 || f i−1
1

f i
2 = f i−1

2 ||1 + f i−1
3 || f i−1

1 || f i−1
2 i ≥ 1

f i
3 = 1 + f i−1

3 || f i−1
1 || f i−1

2 || f i−1
3 . (6)

This method generates the maximum AI functions with relatively good nonlin-
earity, at least the nonlinearity value is superior compared to the constructions in
[4, 6, 7, 13, 14, 19], but in general slightly worse when compared to the method in [8].
A set of initial functions satisfying the conditions for the above recursion to generate
maximum AI is e.g. f 0

1 = x1x2 + x3, f 0
2 = x2x3 + x4, f 0

3 = x2x4 + x1 [2]. The main
problem with this construction is its unknown susceptibility to fast algebraic attacks.

The conditions on the input functions may be significantly relaxed if we only allow
one iteration step. This means that starting with four maximum AI functions on F

n
2

(with an additional condition on one function) we may generate a maximum AI
function on F

n+2
2 using the following construction method.

Proposition 1 Let f = f1|| f2|| f3|| f4 be a function in Bn+2, n even, whose subfunctions
fi ∈ Bn have maximum AI , that is AI( fi) = � n

2 �. Furthermore, let f3 = 1 + f1, and f1

is such that for any function g̃ of deg(g̃) = e, e ∈ [1, � n
2 � − 1], we have deg( f1g̃) = d ≥

AI( f1), and e + d ≥ n. Then AI( f ) = � n
2 � + 1, i.e. f has maximum AI .

Proof We have to show that any nonzero function g that annihilates either f or
(1 + f ) is of degree deg(g) ≥ � n

2 � + 1. If g1, . . . , g4 are annihilators of respectively
f1, . . . , f4 then figi = 0 for i ∈ [1, 4], where deg(gi) ≥ � n

2 � or some of gis are zero.
Furthermore,

g = xn+1xn+2(g1 + g2 + g3 + g4) + xn+1(g1 + g2) + xn+2(g1 + g3) + g1.

Assume on contrary that deg(g) < � n
2 � + 1, implying also deg(gi) < � n

2 � + 1. Then
obviously deg(g1 + g3) < � n

2 � due to the term xn+2(g1 + g3) in the ANF of g above.
On the other hand

f1g1 = 0,

f3g3 = (1 + f1)g3 = 0,
=⇒ f1(g1 + g3) = g3.
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Since f1 has maximum AI , the condition deg( f1(g1 + g3)) = d ≥ AI( f1) and e + d ≥
n, together with deg(g1 + g3) < � n

2 �, then implies deg(g3) = d ≥ � n
2 � + 1. This contra-

dicts the assumption that deg(g) < � n
2 � + 1, unless g1 = g3 = 0. The case g1 = g3 �= 0

gives f1 · 0 = g3, a contradiction. Thus, if deg(g) < � n
2 � + 1 we must necessarily have

g1 = g3 = 0, which then implies g2 = 0 due to the term xn+1(g1 + g2). Then similarly,
to have deg(g) < � n

2 � + 1 the degree of g4 should be less than � n
2 � − 1, violating

the assumption that AI( f4) = � n
2 �. Hence, nonzero annihilators of f are of degree

≥ � n
2 � + 1.

For the reasons of symmetry the annihilators of the complement function 1 + f
are of the same degree as for f . The same reasoning as above applies to 1 + f =
1 + f1||1 + f2|| f1||1 + f4 as the position of f1 and 1 + f1 are just interchanged. Thus
f has maximum AI . 	


The main problem here is that the construction idea above cannot be easily turned
into an iterative design method. It is interesting to note that the condition on f4

may be relaxed, i.e. it is sufficient to have AI( f4) = � n
2 � − 1. Also, the condition that

f1 satisfies the degree relation deg( fg) = d for the above specified parameters e, d
actually implies that AI( f1) = � n

2 �. This important result will be proved in the next
section.

3.2 Functions resistant to (fast) algebraic attacks

It was already mentioned that functions optimizing the algebraic immunity does
not protect from fast algebraic attacks in case there exists a degree e function g
such that fg = h is of degree d, and e + d < n. The efficiency of the fast algebraic
attack depends on both parameters and finding a tuple (e, d) so that e + d is
substantially smaller than n will result in an overall lower attack complexity. A more
elaborate description of how fast algebraic attacks work can be found in e.g. [1, 10].
For convenience, the main steps of algorithm and corresponding complexities are
summarized here.

1. Search for relations. Finding the low-valued (e, d) equation[s] for f of type fg =
h (sometimes also denoted zXe + Xd [1]). The complexity is roughly

(n
d

)
and is

negligible in comparison to other steps.
2. Pre-computation step. For a given LFSR of length L and known characteristic

polynomial, a universal binary string α of length D = ∑d
i=0

(L
i

)
can be computed

in D log2 D operations [1, 10, 18].
3. Substitution step. The original degree d equations are rewritten via substitution

process to yield degree e equations. This step takes about 2ED log2 D operations
[18], where E = ∑e

i=0

(L
i

)
.

4. Solving step. The degree e system of equations is solved by linearization; this
requires Eω operations, where ω is the complexity of solving linear system
(usually ω = 3 as a conservative estimate).

Assuming the existence of small e, the dominating step in terms of complexity is
the so-called substitution step that takes about 2ED log2 D operations [18], where
D = ∑d

i=0

(L
i

)
, E = ∑e

i=0

(L
i

)
. Therefore the fast algebraic attacks imply reduced

computational complexity ( compared to classical algebraic attacks) whenever there
exists (e, d) tuple(s) such that 2ED log2 D < Dω

AI , where DAI = ∑AI( f )
i=0

(L
i

)
.
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In [10], it was proved that there always exists a tuple (e, d) (denoting the degree
of functions g and h respectively) if e, d satisfy the bound e + d ≥ n.

A straightforward relationship between the existence of (e, d)-relations and the
degree of function f can be easily deduced [2, 10].

Theorem 1 [2, Ch.3] [10] If f is of degree k then f satisf ies a (k, k + i)-relation for
any i < k.

Proof For any functions f and g of degree k respectively i, deg( fg) ≤ k + i. 	


For a properly chosen algebraic immunity (to resist classical algebraic attacks),
ensuring that (e, d) satisfy e + d ≥ n for any choice of e, d will imply protection
against fast algebraic attacks partially due to the following result:

Lemma 2 [2, Ch.3] For any functions f, g ∈ Bn such that g �= 0 is not an annihilator
of f we have deg( fg) = d ≥ AI( f ).

The sufficiency of the condition e + d ≥ n comes from the complexity estimate of
the substitution step given below.

Proposition 2 The complexity of the substitution step in the fast algebraic attack is
approximately the same (up to a logarithmic constant) for any choice of e, d satisfying
e + d = n, e ∈ [1,AI( f ) − 1], d ∈ [AI( f ), n − 1].

Proof For a given state size S, the complexity of substitution step is 2ED log2 D,
where D = ∑d

i=0

(S
i

)
, and E = ∑e

i=0

(L
i

)
. Neglecting the logarithmic term, and ap-

proximating
∑u

i=0

(S
i

) ≈ Su (for u 
 S) we have,

2ED log2 D ≈ 2ED = 2SeSd = 2Se+d = 2Sn.

	


Note that in case n is odd, for a function f of maximum AI there will always exist
a tuple (e, d) = (� n

2 � − 1, � n
2 �) and therefore the upper bound on the security for an

LFSR based stream cipher application is estimated through the complexity of fast
algebraic attacks with above (e, d). The goal is to ensure that (e, d) satisfies e + d ≥ n
for any 1 ≤ e ≤ AI( f ) − 1, and d ≥ AI( f ).

The constant behavior of 2ED log2 D is illustrated in the following practical
context of usage. Assume that a nonlinear filtering generator uses an LFSR of length
160 and a filtering Boolean function f : F

16
2 → F2. In case the generator is designed

for 80 bits security and e + d ≥ 16 then the complexity of the substitution step is
given in Table 1. Thus, it seems to be well-motivated to introduce a new quantity

Table 1 Complexity of the substitution step for various (e, d); L = 160 and n = 16

(e, d) (1,15) (2,14) (3,13) (4,12) (5,11) (6,10) (7,9)

2ED log2 D 288 291 293 295 296 296.7 297
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that would measure the resistance of function to both algebraic and fast algebraic
attacks.

Definition 3 Let f be a Boolean function on F
n
2 , with n of arbitrary parity. Then the

function f is called algebraic attack resistant (AAR) if f has a maximum AI , that
is AI( f ) = � n

2 �, and furthermore for any non-annihilating function g of degree e,
1 ≤ e ≤ � n

2 � − 1, we necessarily have that deg( fg) = d satisfies e + d ≥ n. The latter
property is referred to as HDP (High Degree Product) of order n, denoted HDP (n).

The property of HDP (n) is irrelevant to the complement operation.

Proposition 3 If function f ∈ Bn satisf ies the HDP property of order n so does the
function 1 + f .

Proof By assumption for any non-annihilating function g of degree e and h = fg of
degree d, we have e + d ≥ n. Then for any deg(g) = e function g,

(1 + f )g = fg + g = h + g,

and consequently deg((1 + f )g = deg(g + h). Since deg(h) ≥ n − e, then for any e ∈
[1, � n

2 � − 1] we have n − e > e and therefore deg(g + h) = deg(h). 	


The AAR property appears to be somewhat related to the concept of algebraic
immunity through the result given by Lemma 2. Indeed, there is an explicit relation-
ship connecting the notions of AI and HDP (n) (the upper bound on the e + d). It
turns out that the functions satisfying the HDP (n) property automatically achieve
the maximum AI .

Theorem 2 Let f ∈ Bn. Assume that fg = h satisf ies e + d ≥ n for any choice of non-
annihilating function g of degree e, and h of degree d, for e ∈ [1,AI( f )], and d ∈
[AI( f ), n − 1]. Then f has maximum AI .

Proof On contrary assume that AI( f ) < � n
2 �, i.e. f has not maximum AI( f ).

When n is odd AI( f ) = n+1
2 if and only if deg(An( f )) = n+1

2 , that is deg(An( f )) =
deg(An(1 + f )) = n+1

2 [5] (for even n the relationship between the degrees of An( f )
and An(1 + f ) is an open problem). Let g̃ ∈ An(1 + f ) such that deg(g̃) < � n

2 �. Then,

(1 + f )g̃ = 0 =⇒ f g̃ = g̃.

Since deg(g̃) < � n
2 � we have actually found (e, d) not satisfying e + d ≥ n (as e = d =

deg(g̃) < � n
2 �), contradicting the assumption on f .

For n even we consider two cases. If g̃ ∈ An(1 + f ) such that deg(g̃) < � n
2 � then

the proof is exactly the same as above. For g̃ ∈ An( f ) such that deg(g̃) < � n
2 �, by

Proposition 3 function (1 + f ) satisfy the HDP property. That is, for any g, h of
degree e and d respectively, e + d ≥ n in the product (1 + f )g = h. Then consid-
ering the product (1 + f )g̃ = g̃, as f g̃ = 0, would contradict the HDP property if
deg(g̃) < � n

2 �. 	
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This result states that HDP (n) ⇒ AI , therefore the criteria for optimum AI
and resistance to fast algebraic analysis is unified through the HDP property, that
is AAR ⇔ HDP (n). Still, a simple attempt to generate AAR function in n + 1
variables by relating the AAR subfunctions in n variables will fail as demonstrated
by the example below.

Example 1 Let f ∈ Bn be an AAR function, for n odd. Since f is an AAR function
then it is easy to show that f ′ = f ||1 + f has maximum AI . Now for any non-
annihilating function g of fixed degree e we have to prove that d ≥ n + 1 − e,
where deg( f ′g) = d. Note that e ∈ [1, n+1

2 − 1], as trivially there is a tuple (e, d) =
( n+1

2 , n+1
2 ), and we are interested in cases e < d, with d ≥ AI( f ′) = n+1

2 . Any function
g ∈ Bn+1 can be written as,

g(x, xn+1) = xn+1(g1(x) + g2(x)) + g1(x), g1, g2 ∈ Bn.

Then, f ′g = xn+1[g2 + f (g1 + g2)] + fg1 and taking g1 = g2 gives f ′g = [xn+1 + f ]g1

which only satisfies the relation e + d ≥ n but not e + d ≥ n + 1. Hence the function
f ′ = f ||1 + f is of maximum AI but not necessarily an AAR function.

4 An iterative design of almost optimal AAR functions

In general, when f and g are represented as a concatenation of four functions (cf. (3)
and (4)), the product fg ∈ Bn+2 can be after some simplification written as,

fg = xn+2xn+1

⎡

⎣g4

4∑

j=1

f j + ( f1 + f2 + f3)

4∑

j=1

g j + ( f1 + f2)(g1 + g3)

+ ( f1 + f3)(g1 + g2)

⎤

⎦

+xn+1( f1g1 + f2g2) + xn+2( f1g1 + f3g3) + f1g1. (7)

The only way to analyze the behavior of the above product is to put certain restric-
tions on the form of the subfunctions f j. In order to simplify the above expression
we select three distinct function on F

n
2 , denoting them f1, f2, f4 and introduce the

dependency on f3, that is f3 = 1 + f1. Then, the derived class of functions on F
n+2
2 is

closely related to the construction given by (6).

Theorem 3 Let f = f1|| f2|| f3|| f4 be a function on F
n+2
2 , n even, whose subfunctions

fi ∈ Bn satisfy the following:

1. f1, . . . , f4 are AAR functions with f3 = 1 + f1

2. For any function g = g1||g2||g3||g4 of degree e, the functions f2, f4 satisfy deg(g3 +
f2g2 + f4g4) ≥ n − e, where not both functions g2, g4 are zero and e ∈ [1, � n

2 �].
Then, f ∈ Bn+2 is an AAR function.

Proof To prove the AAR property, by Theorem 2 we only need to show that f
satisfies degree relation e + d ≥ n + 2.
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Due to the AAR assumption on fi, we have deg( fig j) ≥ n − e for any degree e
function g j, e ∈ [1, � n

2 �]. Using the relation f3 = 1 + f1 the product fg in (7) may be
written as,

fg = xn+2xn+1[g3 + f4g4 + f1(g1 + g3) + f2g2] + xn+1[ f1g1 + f2g2]
+xn+2[g3 + f1(g1 + g3)] + f1g1.

We want to show that any nonzero choice of function g of fixed degree e, e ∈ [1, � n
2 �],

implies that deg( fg) = d ≥ n + 2 − e. Recall that,

g = xn+1xn+2(g1 + g2 + g3 + g4) + xn+1(g1 + g2) + xn+2(g1 + g3) + g1.

implying deg(gi) ≤ e. Consider the coefficient g3 + f1(g1 + g3) of xn+2 in the product
fg. Obviously, we must have deg(g1 + g3) ≤ e − 1 as otherwise the degree of g is
greater than e, due to the term xn+2(g1 + g3). The AAR condition on f1 implies that
deg( f1ga) ≥ n − e for any nonzero degree e function ga. By Lemma 2, n − e ≥ � n

2 �.
We now show that deg( f1(g1 + g3)) > deg(g3) for any choice of g1, g3 such that

g1 + g3 �= 0. The condition deg(g1 + g3) ≤ e − 1 implies deg( f1(g1 + g3)) ≥ n − (e −
1) = n + 1 − e, and therefore deg( fg) ≥ n − e + 2. Since f1 is an AAR function
n − e ≥ � n

2 �. Then n + 1 − e > � n
2 � and consequently deg( f1(g1 + g3)) > deg(g3), as

deg(g3) ≤ � n
2 �. Hence, the degree of g3 + f1(g1 + g3) is governed by f1(g1 + g3), and

because deg( f1(g1 + g3)) ≥ n + 1 − e the function fg is an AAR function unless
g1 = g3.

The subcase g1 = g3 = 0 results in an AAR function f due to the following. The
term xn+1(g1 + g2) in function g implies that deg(g2) ≤ e − 1 assuming g1 = 0. Con-
sequently deg( f2g2) ≥ n + 1 − e and fg is of degree ≥ n + 2 − e due to xn+1[ f1g1 +
f2g2]. Thus, g1 = g3 = 0 would imply g2 = 0, implying restriction deg(g4) = e − 2
(because g is of degree e), so that deg( fg) ≥ n + 4 − e due to the term xn+2xn+1[g3 +
f4g4 + f1(g1 + g3) + f2g2].

Hence if f is not an AAR function we must necessarily have g1 = g3 �= 0, and we
get somewhat simplified expressions for g and fg,

g = xn+1xn+2(g2 + g4) + xn+1(g1 + g2) + g1,

fg = xn+2xn+1[g3 + f4g4 + f2g2] + xn+1[ f1g1 + f2g2] + xn+2g3 + f1g1. (8)

By assumption deg(g3 + f2g2 + f4g4) ≥ n − e, implying fg ≥ n + 2 − e. 	


Remark 1 The second condition in Theorem 3 may be slightly relaxed by requiring
that deg( f2g2 + f4g4) ≥ n − e. In this case the above result holds for any e ∈ [1, � n

2 � −
1] except for the case e = � n

2 �, as there may exist g1, . . . , g4, deg(gi) = � n
2 � such

that deg(g3 + f2g2 + f4g4) < n − e = � n
2 �. This would imply the possibility of finding

tuple (e, d) = (� n
2 �, � n

2 � + 1), thus violating e + d ≥ n + 2.

4.1 Iterative construction of maximum AI functions with e + d ≥ n − 1

To use the result of Theorem 3 recursively the conditions on initial functions turn out
to be extremely hard to satisfy. Note first, that a similar set of constraints is obtained
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after the replacement f1 ← f2, f2 ← 1 + f2, f3 ← f1, f4 ← f3, thus referring to the
function f i

2 in (6). The product f i
2g can then be written as,

f i
2g = xn+2xn+1[g2 + f1g3 + f3g4 + f2(g1 + g2)] + xn+1[ f2(g1 + g2) + g2]

+xn+2[ f2g1 + f1g3] + f2g1.

Similarly to the proof of Theorem 3, we get that the condition g1 = g2 �= 0 from the
term xn+1[ f2(g1 + g2) + g2] then implies that deg(g2 + f1g3 + f3g4) ≥ n − e for any
choice of g3 and g4. Thus, a very similar condition as in Theorem 3 applies here, only
different subfunctions being involved.

The main question now is what kind of conditions the set of initial functions must
satisfy so that the AAR property is preserved in the recursion given by (6). In other
words, assuming that the functions f i−1

1 , f i−1
2 , f i−1

3 satisfy particular set of conditions
we would like to show that the AAR property holds also for f i

1, f i
2, f i

3. One can
show that these conditions for f i

1, f i
2, f i

3 become rather complicated involving the
all three subfunctions and multiplicand g as well, yielding the degree constraint of
the form,

deg

⎡

⎣
4∑

j=1

a jgi−1
j + f i−1

1

⎛

⎝
4∑

j=1

b jgi−1
j

⎞

⎠ + f i−1
2

⎛

⎝
4∑

j=1

c jgi−1
j

⎞

⎠ + f i−1
3

⎛

⎝
4∑

j=1

d jg j

⎞

⎠

⎤

⎦ ≥ n − e,

(9)
for some binary coefficients ai, . . . , di.

However, the main obstacle in satisfying such initial conditions turns out to be
the term

∑4
j=1 a jgi−1

j . As already indicated in Remark 1 the conditions are “slightly”
relaxed if we allow a small deviation from optimality. That is, allowing the initial
functions to satisfy e + d ≥ n − 1 (instead of e + d ≥ n) in the product fg = h, we
may much easier find suitable initial functions to be used in a recursive manner. The
condition that e + d ≥ n − 1 implies that the degree of the expression gi + f jgk for
functions gi, f j, gk ∈ Bn is always dominated by f jgk. This is because we now only
consider e ∈ [1, � n

2 � − 1] and regardless the parity of n we have,

deg( f jgk) ≥ AI( f j) =
⌈n

2

⌉
> e.

We notice that allowing the suboptimized case of degree relation e + d ≥ n − 1,
Theorem 2 is not applicable any longer and we are now forced to induce the
optimality of AI through the construction. A class of function achieving maximum
AI and satisfying the relation e + d ≥ n − 1 is then called suboptimized AAR class.
Therefore, we utilize the design ideas given in (6) but in a different manner. We
slightly refine the construction to enable the usage of nonbalanced functions as
initial functions too, though generating balanced functions in subsequent iterations.
This modification will have a great impact on the cryptographic properties of the
functions. In the first place the nonlinearity is improved, the functions are of
maximum algebraic degree, optimized AI and they satisfy the HDP property of
order n − 1.
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The most suitable configuration of subfunctions that allows the use of nonbal-
anced initial functions seems to be the following one,

f i
1 = f i−1

1 || f i−1
2 ||1 + f i−1

1 || f i−1
3

f i
2 = f i−1

2 ||1 + f i−1
3 || f i−1

1 ||1 + f i−1
2

f i
3 = 1 + f i−1

3 || f i−1
1 || f i−1

2 || f i−1
3 . (10)

One may readily check that selecting f 0
i ∈ Bn such that their Hamming weight

equal to wt( f 0
1 ) = wt( f 0

3 ) = 2n−1 − c, and wt( f 0
2 ) = 2n−1 + c will result in balanced

functions f i
j. It remains to show that a suitable selection of the input functions will

initiate the recursion so that any f i
j, i ≥ 0 and j = 1, 2, 3, is a maximum AI satisfying

e + d ≥ n − 1.

Theorem 4 Let f 0
1 , f 0

2 , f 0
3 ∈ Bn be maximum AI functions satisfying the set of condi-

tions given in Lemma 1 (iii) with respect to the conf iguration in (10). In addition, let
for any g = g0

1||g0
2||g0

3||g0
4 ∈ Bn+2 of degree e ∈ [1, � n

2 � − 1] the following is satisf ied,

deg

⎡

⎣f 0
1

⎛

⎝
4∑

j=1

b jg0
j

⎞

⎠ + f 0
2

⎛

⎝
4∑

j=1

c jg0
j

⎞

⎠ + f 0
3

⎛

⎝
4∑

j=1

d jg0
j

⎞

⎠

⎤

⎦ ≥ n − e − 1; b j, c j, d j ∈ F2.

(11)
Then the function f i

j ∈ Bn+2i, i ≥ 0 and j = 1, 2, 3, def ined by (10), are maximum AI
functions with almost optimized HDP , that is satisfying e + d ≥ n + 2i − 1 for e ∈
[1, � n

2 � + i − 1].

Proof The fact that f i
j have maximum AI follows from hypothesis. The result

concerning the e + d relation is proved by induction. The case i = 0 follows directly
from the assumption. Suppose the conditions are satisfied for all k < i. We show that
the conditions hold for k + 1 as well. By assumption, the functions f k

1 , f k
2 , f k

3 ∈ Bn+2k

are such that,

deg

⎡

⎣f k−1
1

⎛

⎝
4∑

j=1

b jgk−1
j

⎞

⎠+ f k−1
2

⎛

⎝
4∑

j=1

c jgk−1
j

⎞

⎠+ f k−1
3

⎛

⎝
4∑

j=1

d jgk−1
j

⎞

⎠

⎤

⎦ ≥ n + 2k − e − 1,

(12)
where f k−1

j , gk−1
j ∈ Bn+2k−2. W.l.o.g. we consider the function f k+1

1 = f k
1 || f k

2 ||1 +
f k
1 || f k

3 . Then for a degree e function gk+1 ∈ Bn+2k+2 we need to show that,

deg( f k+1
1 gk+1) ≥ n + 2k − e + 1,

for any e ∈ [1, � n
2 � + k − 1]. Consider the highest degree term in the product

f k+1
1 gk+1, i.e.,

xn+2k+1xn+2k+2
[
gk

3 + f k
4 gk

4 + f k
1 (gk

1 + gk
3) + f k

2 gk
2

]
,

where we represent gk+1 = gk
1 ||gk

2 ||gk
3 ||gk

4 . Now since deg(gk
3) ≤ e < n + 2k − e − 1 for

any e ∈ [1, � n
2 � + k − 1], the degree of the terms in the brackets above is dominated

by the sum f k
4 gk

4 + f k
1 (gk

1 + gk
3) + f k

2 gk
2 . This sum when written in terms of the
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subfunctions f k−1
j and gk−1

j gives the condition (12) which is satisfied by induction
hypothesis. Thus,

deg{xn+2k+1xn+2k+2[gk
3 + f k

4 gk
4 + f k

1 (gk
1 + gk

3) + f k
2 gk

2]} ≥ n + 2k − e + 1,

which proves the statement. 	


4.2 Cryptographic properties of the construction

Through computer simulations (very non-exhaustive) we have found many sets of
initial functions on F

4
2 satisfying the conditions of Theorem 4, of which one instance

is given below.2

f1 = x1 + x1x2 + x3x4 + x1x2x3 + x1x2x3x4,

f2 = x2 + x4 + x1x2 + x2x4 + x3x4 + x1x2x3 + x1x3x4 + x2x3x4 + x1x2x3x4,

f3 = x2 + x3 + x1x2 + x2x3 + x3x4 + x1x2x3 + x1x2x3x4.

Remark 2 Though the conditions of Theorem 4 seem to be hard to satisfy, computer
simulations indicate that a great majority of input functions over F

4
2 does fulfil these

conditions. Therefore a great variety of functions resistant to algebraic cryptanalysis
may be found; the only remianing task being the nonlinearity optimization.

Algebraic degree of f i
j Any f i

j in the iteration is of optimized algebraic degree, i.e.
deg( f i

j = n − 1 for f i
j ∈ Bn. For instance, by inspecting the ANF of f 1

1 (using f3 =
1 + f1), the degree of f1 is dominated by xn+1xn+2(1 + f 0

2 + f 0
3 ) Also, the highest

degree terms cannot be canceled out in further iterations which justifies the above
statement.

Resistance to probabilistic algebraic attacks Probabilistic algebraic attacks, formally
introduced as scenarios S4 and S6 in [12], are based on a low degree approximation of
state equations (or filtering function), so that relatively simple equations that are true
with probability close to 1 (preferably) are derived. This approach was successfully
applied in cryptanalysis of Toyocrypt [9] due to a serious design flaw of Toyocrypt.3

A low degree approximation to a filtering function constructed using the iterative
method described above seems to be rather unrealistic. This is due to the fact that
each iteration step essentially combine/add the monomials of two different functions,
the sum being multiplied by new variables, cf. (3). Thus, it can be easily verified that
the algebraic normal form of the resulting function will contain many high order
terms, and therefore approximating these relations would require guessing many
variables which in turn would reduce the probability that these relations hold.

2We have only performed a local search by selecting the three random functions and then manually
modifying few bits in the truth tables of functions. An exhaustive search would imply checking
around 245 different choices for f 0

1 , f 0
2 , f 0

3 .
3Notice that an application of classical algebraic attack on Toyocrypt yields even lower time
complexity compared to probabilistic algebraic attacks.
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Nonlinearity A rather loose lower bound on nonlinearity was derived in [2], the
minimum value is estimated as

N f ≥ n( f1,1+ f1) · N f1 + n( f2,1+ f2) · N f2 + n( f3,1+ f3) · N f3 ,

where n( fi,1+ fi) denotes the number of times the tuple ( fi, 1 + fi) appears in the over-
all concatenation. Actually, we may derive a simple lower bound on the nonlinearity
reasoning as follows. Let f 0

1 , f 0
2 , f 0

3 be the initial functions with the nonlinearities
N f 0

1
,N f 0

2
,N f 0

3
, and let furthermore N f 0 = mini N f 0

i
. In terms of the Walsh spectra

the maximum absolut value in the spectra of any initial function satisfies W f 0
i
(α) ≤

2n0−1 − N f 0 , for any α ∈ F
n0
2 . Consequently, for the functions f i

1, f i
2, f i

3 ∈ Bn0+2i,
constructed in the i-th iteration step, the following is valid,

N f i
j
≥ 2n0+2i−1 − 1

2
22i(2n0−1 − N f 0) = 2n0+2i−2 + 22i−1N f 0 . (13)

Remark 3 Starting with bent functions on F
4
2 with nonlinearity N f 0

j
= 6 the first

two iteration steps give N f j ≥ 26 + 8 × 6 = 112, which corresponds to an optimal
value of nonlinearity 2n−1 − 2n/2 for n = 8. However, in the subsequent iterations the
nonlinearity value will detorate from the optimal value. The lower bound, computed
via (13), for n = 10, 12 is 448 and 1792 respectively (cf. Table 2)

A comparison in terms of relevant cryptographic criteria to the iterative construc-
tion methods in [7] and in [2] is given in Table 2. Here the functions φn and f n are
optimized AI functions obtained through the methods in [7] and [2] respectively,
and f n∗ and corresponding bold face entries denotes our design. Obviously, both f n

and f n∗ are favorable to φn in terms of the nonlinearity, and degree. Nevertheless, our
class is superior to f n, providing functions satisfying the HDP property of order n − 1
thus providing a better resistance to fast algebraic attacks, having better nonlinearity
and optimized algebraic degree. The nonlinearity values related to our construction
are obtained by running a computer program, whereas the algebraic properties (also
confirmed by computer simulations) follows from Theorem 4 and above discussion
on the algebraic degree.

The construction has a rather irregular behavior in terms of nonlinearity value. For
instance, starting with another initial set of functions one may obtain the following
sequence of nonlinearities 104/448/1888/7800/31948 resulting in lower values for
small n but higher values for larger n. Further examples and improvements are
provided in the next subsection.

Table 2 Comparison of relevant cryptographic criteria

Function Degree Nonlinearity AI (e, d)

φ8/ f 8/ f 8∗ 5/6/7 88/104/104 4 all ?/(2,4)/e + d ≥ 7
φ10/ f 10/ f 10∗ 8/8/9 372/452/452 5 all ?/(3,5)/e + d ≥ 9
φ12/ f 12/ f 12∗ ?/10/11 ?(low)/1884/1890 6 all ?/(1,9)/e + d ≥ 11
φ14/ f 14/ f 14∗ ?/12/13 ?(low)/7696/7780 7 all ?/(2,10)/e + d ≥ 13
φ16/ f 16/ f 16∗ ?/14/15 ?(low)/31296/31766 8 all ?/(1,13)/e + d ≥ 15
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Remark 4 The results given above only consider the construction for even n. Though
the same technique is applicable when n is odd, good initial functions seem to be
harder to find then. The function space B3 is quite insufficient in this context, whereas
selecting f 0

j ∈ B5 gives on the other hand far too many possibilities. A suitable
set, that generates highly nonlinear functions, is therefore to be found through
sophisticated computer program.

Implementation In the view of a new version of algebraic attacks introduced in [23],
whose running time is significantly lower than for the fast/classical algebraic attacks,
an efficient implementation of filtering function seems to be of great importance.
Since the running time of this attack is approximately O(D), where D = ∑deg( f )

i=0

(L
i

)

(L being as before the length of LFSR), the functions of more than 20 variables
are required to guard against different modes of algebraic analysis (note however
that the data complexity is much larger when compared to standard algebraic
attacks). Then the implementation issue actually contradicts the fundamental ideas
behind the design of filter generators, as these are designed for restricted hardware
environments. This implies that the filtering function must have a sufficient algebraic
structure for the ease of implementation, especially if the input space of the function
is as large as some 20 variables.

The functions in the i-th iteration step of our construction given by (10) (this is
of course true for the original construction of [2]) are the concatenation of 22i

initial
functions F = { f 0

1 , f 0
2 , f 0

3 , 1 + f 0
1 , 1 + f 0

2 , 1 + f 0
3 } is needed. Given the input value

x = (x1, . . . , xn, xn+1, . . . , xn+2i) it can be shown that a simple loop of i iterations is
required to compute the output value. For instance, evaluating the function f 2

1 ∈
B8, choosing the initial functions f 0

1 , f 0
2 , f 0

3 ∈ B4, for a given input x = (x1, . . . , x8) ∈
F

8
2 is done by computing the integer value of (x5, . . . , x8) and then evaluating the

function enumerated by this number on the input (x1, . . . , x4) in the concatenated
sequence,

f 2
1 = f 0

1 || f 0
2 || f̄ 0

1 || f 0
3 || f 0

2 || f̄ 0
3 || f 0

1 || f̄ 0
2 || f̄1

0|| f̄ 0
2 || f 0

1 || f̄ 0
3 || f̄ 0

3 || f 0
1 || f 0

2 || f 0
3 , (14)

where f̄i = 1 + fi. For simplicity, let (x5, x6, x7, x8) = (0, 0, 0, 0). Then (x7, x8) =
(0, 0) indicates that the evalution is done among the first four functions in the
concatenated sequence, and (x5, x6) = (0, 0) finally would specify the first function
f 0
1 .

This approach, of iteratively identifying the initial function, is depicted in Fig. 1.
We assume that the initial functions are k-variable functions, and due to the con-
struction n − k is even. For a given k-tuple of inputs (x1, . . . , xk) the circuit performs
a look-up operation and evaluates the output for the three initial functions f 0

1 , f 0
2

and f 0
3 , along with their complemented values. At the same time, the logic circuit

processes n − k variables (xk+1, . . . , xn) in r = (n − k)/2 steps, starting with the most
significant tuple (xn−1, xn).

To implement efficiently the logic circuit we need some kind of coding for
identifying the initial function used (or its complement). Let us assign 3 bits to encode
the initial functions as follows:

f i
1 ← 000 f i

2 ← 001 f i
3 ← 010

1 + f i
1 ← 111 1 + f i

2 ← 110 1 + f i
3 ← 101
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Fig. 1 High-scaled implementation circuit

Notice that the first bit of such an encoding will provide us with the information
whether a particular function or its complement is identified. The r = (n − k)/2
boxes that take two input bits together with the three bits from the previous
iteration are fixed with respect to the particular placement of subfunctions (cf. the
configuration given by (10). Let us assume that the function f r

1 is used as a combining
function. In the very first iteration the initial values are set to zero, and therefore
only the input bits (xn−1, xn) determine the choice of initial function. For instance, the
input (xn−1, xn) = (0, 1) must give (1, 1, 1) as the output, so that the function 1 + f r−1

1
is identified. The triple (1, 1, 1) is now passed to the next iteration that processes the
input variables (xn−3, xn−2). Depending on the input values the next subfunction is
identified but inside the concatenation rule valid for the previous function. That is,

1 + f r−1
1 = 1 + f r−2

1 ||1 + f r−2
2 || f r−2

1 ||1 + f r−2
3 ,

and if for instance (xn−3, xn−2) = (1, 1) the subfunction is 1 + f r−2
3 . Therefore the

corresponding output would be 101. The computation continues to the last round
that finally outputs 3 bits used as the selector bits in the multiplexor.

A total hardware complexity is estimated as follows. To store the 3 look-up tables
that implement the initial functions, 3 × 2k memory cells (e.g. flip-flops) are needed.
Apart from a six-input multiplexor, we additionally need 3 × 32 × (n − k)/2 many
flip-flops to implement the logic circuit. This is justified by viewing the computation
in each round as a realization of a 5-input 3-output binary function. Hence, if these
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blocks are also implemented as look-up tables (though there might be more efficient
implementations) we get the following estimate,

Mem. cost = 1 × 6-input MUX + (3 × 2k + 3 × 32 × (n − k)/2) flip-flops.

For instance, to implement a 20-variable function using the 6-variable initial func-
tions only one multiplexor and 3 × 26 + 3 × 25 × 7 = 27 × 32 = 864 flip-flops are
required.

In this context it is of importance to compare the concatenation method to the
recently proposed approach by Carlet and Feng [8]. In their approach the function f
is specified by its support set which is taken as supp( f ) = {0, 1, α, α2, . . . , α2n−1−2},
α being a primitive element in F2n . Then the ANF of f is expected to contain
a large number of terms, most likely this number is around 2n−1 as for a ran-
domly generated function. This implies that an efficient hardware implementation
is extremely impractical for the values of n needed in real-life applications, for
n > 20. Nevertheless, our method compares favourably to most of the known design
methods. One of a few exceptions is a Maiorana-McFarland class of functions which
can be efficiently implemented as described in [24]. Furthermore, our method is
efficiently implemented in software as well, as there is no need to store gigabytes
of data to represent the truth table of the function.

4.3 Finding good initial functions

We have already noticed that the lower bounds on the nonlinearity given in Sec-
tion 4.2 are rather lose, especially in case the gap between k and n is large (many
iterations are used). A straightforward method of extending our ideas is to use initial
functions from a larger variable space. In this way, the nonlinearity of the iterated
functions may increase, but on the other hand there are two main problems with such
an approach. In the first place, increasing the size of initial functions results in a larger
complexity of implementation (it grows exponentially with the number of variables
of initial functions). Secondly, the conditions in Theorem 4 are harder to check, if
not infeasible for relatively large k. Nevertheless, for moderate sizes of the input
space of initial functions the iteration may yield functions with better nonlinearity,
and hopefully with same algebraic properties.

In Table 3 we give the nonlinearity and algebraic properties for some selections of
initial functions with different input sizes. The algebraic immunity of these functions
is not specified since in all the cases it attains the maximum value n/2. The initial
functions seem to satisfy the same set of conditions in Theorem 4, though the
condition given there is further relaxed so that the functions satisfy the relation
e + d ≥ n − 2 instead of e + d ≥ n − 1. We have only conducted a restricted local

Table 3 Nonlinearity of
iterated functions for initial
functions from B4 and B8

Function k = 4/k = 8 Degree Nonlinearity c : e + d ≥ c

f 8
(4)/ f 8

(8) 7/7 104/116 7/6
f 10
(4)/ f 10

(8) 9/9 452/478 9/8
f 12
(4)/ f 12

(8) 11/11 1890/1918 11/10
f 14
(4)/ f 14

(8) 13/13 7780/7898 13/12
f 16
(4)/ f 16

(8) 15/15 31766/31878 15/14
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search for good initial functions, thus the above results are likely to be improved
further.

5 Conclusion

This paper proposes an iterative construction method for designing almost fully
optimized Boolean functions satisfying most of the cryptographic criteria. The con-
struction is very efficient from the implementation point of view making it attractive
even when the input space exceeds some 30 variables. It remains to find some optimal
set of initial functions (especially for odd n) to further increase the nonlinearity, thus
making the functions (ciphers) more resistant to fast correlation and distinguishing
attacks.
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