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Abstract A multivalued function is a function from a set En
q to a set Em, where

Ek is a set which contains k elements. These functions are used in cryptography:
cipher design, hash function design and in theoretical computer science. In this
paper, we study the representation of these functions with Multivalued Decision
Diagrams (MDD). This representation can be used both to measure complexity and
to implement efficiently the functions in hardware. We are especially interested in
symmetric functions. We show that symmetric functions MDDs have much lower
size than classical functions MDDs. One major result is to determine exactly their
MDD’s maximum size. Notably, we highlight the links between De Bruijn sequences
and the most complex symmetric functions and new functions are exhibited in the
case q = 2 and any m. Enumeration of these functions are supplied, they are shown
to be sufficiently numerous to allow many applications.

Keywords Symmetric functions · Functions over finite sets ·
Hardware implementation · MDD · De Bruijn sequences

1 Introduction

Today cryptography is spreading everywhere in a lot of devices and especially small,
mobile, low energy and low cost pieces of equipment such as Bluetooth earpieces,
RFID tags, sensors. To design and implement cipher algorithms on these devices,
there is an eager need of small footprint Boolean or finite functions achieving
a good trade-off in term of complexity and cryptographic properties [7]. Other
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discrete algorithms may also take advantage of these finite functions like hash tables
computation for storing and sorting data.

Some works already deal with complexity issues of the partially symmetric
Boolean functions [8] and the symmetric multivalued functions [6, 11, 12]. They show
that decision diagrams [4, 15] are well suited to benefit from symmetries and we
enhance this further on with excellent results for symmetric multivalued functions.
Decision Diagrams (either binary or multivalued) are able both to provide a measure
of the complexity of these functions and to achieve an efficient implementation. This
is why our analysis makes huge use of this tool.

On general functions the size of the MDD is highly dependent on the order of the
variables as can be shown with the direct storage access Boolean function of k + 2k

variables, whose BDD size varies from 2k+1 + 1 [5] to 22k+1
[10]. Due to the symmetry,

the MDD of symmetric functions have the same size whatever is the variables’ order.
So, their study gives directly the best size of any MDD representation. Another asset
of symmetric functions is that their MDD have bounds [6, 12] of small order, but no
result expresses exactly the maximum size. No result provides functions achieving
this maximum either. We investigate these points in order to establish the exact
maximum value of these MDD, with different levels of reductions [4].

The balanced symmetric functions are already in use in some existing crypto-
graphic algorithms like for instance θ function of SHA3 third round finalist Keccak
[2]. Their use is also proposed in the tweaked version of SFINKS [3] and in the
generic study on symmetric Boolean functions [7]. This shows that when properly
combined with other functions they allow good results. The trade-off in term of
complexity of the symmetric functions can help to withstand BDD based attacks
[9, 14], especially with symmetric functions that maximise the MDD sizes.

In this paper, we study the structure of symmetric functions MDD and prove their
maximum size. We exhibit the functions reaching this maximum value (the “hard”
symmetric functions) and give an external characterization of such functions linked
to De Bruijn sequences. We then derive some properties and counting results on
these “hard” symmetric functions. Annexes provide tables of experimental results.

2 Definitions and notations

Let us consider Ek = {0, 1, . . . , k − 1} a set of k elements, and n, q, m which are
positive integers. Let Ck

n be the choose k among n binomial coefficient. Card(E)

stands for the cardinal of the set E.

2.1 Multivalued functions

Definition 1 Given any positive integers n, q, m, we call multivalued function any
function from En

q to Em. The set of multivalued functions is denoted by Mn(q, m).

This set Mn(q, m) contains mqn
functions. A function f ∈ Mn(q, m) is character-

ized by a vector fv ∈ Eqn

m called its value vector, consisting in the evaluations of the
function at every qn possible input:

fv = ( f (0, . . . , 0), f (0, . . . , 0, 1), f (0, . . . , 0, 2), . . . , f (q − 1, . . . , q − 1)) . (1)
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2.2 Partitions

Definition 2 [1] A partition π = (π1, . . . , πk) of an integer N bounded by an integer
b is a sequence of numbers 0 ≤ π1 ≤ . . . ≤ πk ≤ b such that N = ∑k

i=1 πi.

A partition can also be represented by its “number of repetitions”:

π = 〈r0, . . . , rb 〉 where ri := Card
{
π j = i; j ∈ {1, . . . , k}} . (2)

Thus, we have N = ∑b
i=0 i × ri and k = ∑b

i=0 ri. The two representations are
equivalent.

We denote by Part(b , k, N) the set of all partitions of all integers lower or equal
to N. For all x ∈ En

q, there is a single partition π(x) ∈ Part(q − 1, n, n(q − 1)) which
represents x.

Example 1 n = 5, q = 3.
Let x = (2, 1, 1, 0, 1) ∈ En

q, then π(x) = (0, 1, 1, 1, 2) = 〈1, 3, 1〉.

Remark that two vectors which have the same partition, have the same compo-
nents up to a permutation.

The Lemma of Andrew [1] gives the number of elements of the set Part(b , a, ab).

Lemma 1 Card(Part(b , a, ab)) = Ca
a+b = Cb

a+b .

2.3 Symmetric multivalued functions

Definition 3 A multivalued function f : En
q −→ Em, is symmetric, if f is invariant

under any permutation of its input’s variables:

∀σ ∈ Sn, f (x1, . . . , xn) = f
(
xσ(1), . . . , xσ(n)

)
.

The set of these symmetric multivalued functions is denoted by SMn(q, m).

Definition 4 We call symmetry class of x ∈ En
q, the set Pn,q(x) of vectors obtained by

permuting the coordinates of x defined by:

Pn,q(x) :=
{

y ∈ En
q ; there exists a partition π such that y = π(x)

}
. (3)

According to the lemma of Andrew, we deduce that there are Cq−1
n+q−1 symmetry

classes in En
q. We designate as representative of a class of symmetry, the smallest

element in the lexicographical order, s j = (
0r0, 1r1, . . . iri, . . . (q − 1)r(q−1)

)
. We call

jth symmetry class of En
q the class of symmetry whose representative s j is classified

jth among all representatives according to the lexicographical order.
A symmetric multivalued function can be represented by a vector with values in

Em, whose length equals Cq−1
n+q−1. The components of the vector are the evaluations
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of the function for each representative of the symmetry classes. We call this vector a
simplif ied value vector of the function:

fsv = ( f (0, . . . , 0), . . . , f (0, . . . , 0, q − 1), f (0, . . . , 0, 1, 1), . . . , f (q − 1, . . . , q − 1))

=
(

f (s0) , f (s1), . . . , f (sq−1), f
(
sq

)
, . . . , f

(
sCq−1

n+q−1−1

))
(4)

2.4 Multivalued decision diagrams

A Multivalued Decision Diagram (MDD) [15] is a generalization of a Binary
Decision Diagram (BDD) [4]. In the same manner as the BDD represents and
implements the Boolean functions, the MDD also represents and implements the
multivalued functions.

Definition 5 A multivalued decision diagram (MDD) is a rooted directed acyclic
graph G = (U, E) with two types of nodes:

– the non-terminal nodes u which are labeled with a variable xi and have q
outgoing edges eb labeled with the q possible values b in Eq i.e. q children.

– the terminal nodes u which are labeled with a value c in Em and have no outgoing
edge.

A MDD is ordered if the variables labeling nodes in any path from the root to any
terminal node are in the same order. Bryant [4] has defined a procedure reduce which
reduces a BDD in a single and optimal way. This procedure applies two rules: the
fusion rule and the suppression rule. Bryant’s procedures can easily be generalized
to deal with the MDD.

Definition 6 The fusion rule says that two nodes are merged if their subgraphs are
isomorphic (Fig. 1). The suppression rule says that a node is deleted if it has only one
child node (Fig. 2).

Fig. 1 The fusion rule applied on a MDD producing a QROMDD
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Definition 7 A Reduced Ordered Multivalued Decision Diagram (ROMDD) is a
MDD reduced by the full reduction procedure (i.e. fusion and suppression rules)
(Figs. 1 and 2).

Definition 8 A Quasi Reduced Ordered Multivalued Decision Diagram
(QROMDD) is a MDD reduced by using only the fusion rule.

2.5 Complexity

The number of nodes of a MDD (both terminal and non-terminal nodes) is called the
size of the MDD. We call height of a node its distance to the top. The set of nodes
having a same height k ∈ {0, 1, . . . , n} is called level k of the MDD.

Definition 9 Let f be in Mn(q, m), we define:

– its complexity, noted cQ( f ), the size of its QROMDD.
– its reduced complexity, noted cR( f ), the size of its ROMDD.

Definition 10 We define SCQn(q, m) and SCRn(q, m) as the largest complexities
of the functions in SMn(q, m): SCQn(q, m) := max

{
cQ( f ), f ∈ SMn(q, m)

}
and

SCRn(q, m) := max {cR( f ), f ∈ SMn(q, m)}.

3 Symmetric functions representation by simplified MDD

We put forward an optimized representation of symmetric functions by MDD called
a simplif ied MDD which is a partially reduced MDD using the fusion rule. The idea
is to associate a symmetry class to each node of the MDD. So it is linked to the
simplified value vector of the function.

The simplif ied MDD of a symmetric function f in SMn(q, m) is defined as follows.
Let uk, j be the jth node from the left of level k ∈ {0, . . . , n} and j ∈ {1, . . . , Cq−1

k+q−1},
then uk, j represents the jth symmetry class of the set Ek

q.

• If k = n then uk, j is terminal. Its value is equal to f (s j) where s j ∈ En
q is the

representative of the jth class of symmetry of the set En
q. So these terminal nodes

show the simplified value vector of f .
• Else, uk, j is not terminal and it has q distinct children. Each child represents a

distinct symmetry class of the set Ek+1
q .

Fig. 2 The suppression rule
applied on a QROMDD
producing a ROMDD
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A simplified MDD has a height equal to n + 1 and has Cq−1
k+q−1 nodes on each of its

levels k.

Example 2 Let f ∈ SM3(3, 4). The nodes are labeled by the variable number and
have 3 children with edges tagged by values in E3. The terminal nodes are labeled by
values in E4 (Fig. 3).

The hockey sticks property on Pascal’s triangle enables us to infer the number of
nodes of a simplified MDD, it says that:

∑n
i=k Ck

i = Ck+1
n+1.

Thus, the simplified MDD has Cq
q+n nodes, which enables us to deduce an upper

bound for the complexity of any symmetric multivalued function.

Lemma 2 [6] Let f be in SMn(q, m), then cQ( f ) ≤ Cq
n+q.

We notice that the representation of a symmetric function by a simplified MDD is
significantly smaller than by a generic MDD since for large n, we have:

– the number of nodes of a simplified MDD is:

Cq
q+n ≈ 2q+n

e
(n+q−2q)2

2(n+q)

√
π(n+q)

2

. (5)

– the number of nodes of a generic MDD is:

qn+1 − q
q − 1

≈ qn . (6)

Fig. 3 Simplified MDD of f in SM3(3, 4)



Cryptogr. Commun. (2011) 3:207–225 213

4 Symmetric functions of maximum complexity

Definition 11 A symmetric multivalued function f in SMn(q, m) is called hard
symmetric if its complexity attains SCQn(q, m), i.e. if: cQ( f ) = SCQn(q, m).

We denote by HSMn(q, m) the set of hard symmetric multivalued functions:

HSMn(q, m) := {
f ∈ SMn(q, m); cQ( f ) = SCQn(q, m)

}
. (7)

Definition 12 A symmetric multivalued function f in SMn(q, m) is called super
hard symmetric if its complexity attains SCRn(q, m), i.e. if: cR( f ) = SCRn(q, m). We
denote by SHSMn(q, m) the set of super hard symmetric multivalued functions:

SHSMn(q, m) := { f ∈ SMn(q, m); cR( f ) = SCRn(q, m)} . (8)

In the multivalued case, we notice that:

– Cq−1
k+q−1 is the number of nodes of a simplified MDD on the level k,

– mCq−1
n−k+q−1 is the number of symmetric functions with n − k variables.

To compute the complexity for all integer k ∈ {0, 1, . . . , n}, we define SRn,q,m(k) by:

SRn,q,m : {0, 1, . . . , n} 	−→ N

k 	−→ min
(

Cq−1
k+q−1, mCq−1

n−k+q−1

)
.

(9)

Definition 13 We call symmetric inf lection level, h(n, q, m), the integer h such that
h(0, q, m) = 0, h(1, q, m) = 1 and when n ≥ 2 then h is the unique integer verifying:

⎧
⎪⎪⎨

⎪⎪⎩

0 < h ≤ n

Cq−1
h+q−2 < mCq−1

n−h+q

Cq−1
h+q−1 ≥ mCq−1

n−h+q−1

(10)

i.e.
⎧
⎨

⎩

SRn,q,m(h − 1) = Cq−1
h+q−2

SRn,q,m(h) = mCq−1
n−h+q−1

(11)

Theorem 1

∀n ≥ 1, SCQn(q, m) =
n∑

k=0

SRn,q,m(k)

= Cq
q+h(n,q,m)−1 +

n∑

k=h(n,q,m)

mCq−1
n−k+q−1

Proof We compute the maximum number of nodes that can appear in the
QROMDD of a symmetric function. We start from its simplified MDD. By applying
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the fusion rule to a MDD, we know that there is fusion of nodes if and only if sub-
graphs are isomorphic. The remaining nodes counts are then summed. Then apply
the hockey sticks formula to the h(n, q, m) − 1 first terms of the sum. The terms

mCq−1
n−k+q−1 after inflection point are then summed up also. ��

5 Simplified value vector in the case q = 2 and any m

5.1 General results for any n

For the particular case q = 2 , the simplified value vector can be read directly on the
last level of the simplified MDD for any m.

Theorem 2 Given an integer a when n takes all the values between a + ma − 2
and a + ma+1 − 1, i.e. n = a + ma + b − 2, for all b ∈ {0, . . . , (m − 1)ma}, then the
symmetric inf lection level h(n,2,m) has the following properties:

(i) h(n, 2, m) = ma + b − 1 = n − a + 1,
(ii) SRn,2,m(h(n, 2, m)) is equal to ma,

(iii) SRn,2,m(h(n, 2, m) − 1) is equal to h(n, 2, m).

Proof In the case q = 2,

SRn,q,m(k) = min
(

C1
k+1, mC1

n−k+1

)
= min

(
k + 1, mn−k+1) . (12)

For (i), it is sufficient to check that the value n − a + 1 satisfies the condi-
tions (10) on h(n, 2, m). For (ii) and (iii), the pair of inflection is calculated
with the new value of h(n, 2, m) in (i): SRn,2,m(h(n, 2, m)) = SRn,2,m(n − a + 1),
SRn,2,m(h(n, 2, m) − 1) = SRn,2,m(n − a). ��

Example 3 Let f ∈ SM10(2, 2). In this case, n = 10, a = 3 (Fig. 4).
Let G f be the simplified MDD associated to the symmetric function

f ∈ SMn(q, m). We call sub-graph sG f of G f any sub-graph of height equals to
n + 1 − h(n, 2, m) = a and whose root is of level h(n, 2, m) in G f . We call terminal
vector into a sub-graph sG f , the values of the terminal nodes read from left to right.
The terminal vector of a subgraph has a length equal to a.

By definition, a simplified MDD has C1
h(n,2,m)+1 = h(n, 2, m) + 1 sub-graphs sG f

in the case q = 2.

Lemma 3 A function is hard if and only if the number of its sub-graphs sG f being not
isomorphic is maximum.

Proof Let us consider the simplified MDD of a hard symmetric function, then by
applying the fusion rule, there will be fusion of nodes for the levels k with k bigger
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h 

Sub-graph

Terminal Vector 

Fig. 4 Simplified MDD and sub-graph of f

or equal to the symmetric inflection point. However we know that there is fusion of
nodes if and only if the nodes are the roots of isomorphic sub-graphs. ��

Corollary 1 Let n = a + ma + b − 2 where a ≥ 0, b ∈ {0, . . . , (m − 1)ma}. If a func-
tion f in SMn(2, m) is hard then in its simplif ied value vector, it appears ma consecu-
tive letter patterns of length a.

Proof According to the Theorem 2, we know that a hard symmetric function has
exactly ma nodes at its symmetric inflection level h(n, 2, m). Thus the simplified
MDD of a hard function must have ma non-isomorphic sub-graphs sG f . The sub-
graphs sG f have exactly the same structure, so we deduce from it that two sub-graphs
are isomorphic if and only if their terminal vectors are identical. Terminal vectors
length of these sub-graphs is equal to a, hence the result. ��
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5.2 De Bruijn sequences and terminal vectors

According to the previous theorem, for n = ma + a − 2, h(n, 2, m) + 1 = ma, i.e. the
simplified MDD of a hard symmetric function has the same number of nodes at the
level h(n, 2, m) as its QROMDD. So we deduce the following theorem.

Theorem 3 Let n and a be two positive integers such that n = a + ma − 2 and let
f ∈ SMn(2, m). Then f is hard if and only if in its simplif ied value vector, it appears
exactly ma distinct subsequences with length equal to a.

This property is typical of De Bruijn sequences [13]. Let A be an alphabet of
m letters, then a De Bruijn sequence B(m, a) is a cyclic sequence such that each
subsequence with length equal to a appears exactly once. Each sequence B(m, a)

has a length equal to ma. De Bruijn sequences can be constructed using a De Bruijn

graph or by using finite fields [13]. There are m!ma−1

ma distinct sequences B(m, a) [13].
A simplified MDD of a symmetric function with n = ma + a − 2 variables contains

ma + a − 1 terminal nodes. The following theorem settles the link between the De
Bruijn sequences and the simplified value vectors of hard symmetric functions.

Theorem 4 Let n ≥ 1 and a ≥ 0 be integers such that n = a + ma − 2. Then the sim-
plif ied value vector of f ∈ HSMn(2, m) is a rotation of a De Bruijn sequence B(m, a)

at the end of which one the (a − 1) f irst letters of the sequence are concatenated.

Example 4 Simplified value vector read in the simplified MDD of a function
f ∈ HSM9(2, 3), i.e. a = 2 (Fig. 5).

In this example, we can read 32 = 9 subsequences whose lengths are equal to 2:
00, 01, 10, 02, 21, 11, 12, 22, 20. They never appear more than once.

Corollary 2 Let n ≥ 1 and a ≥ 0 be integers such that n = a + ma − 2, the number of
hard symmetric functions of parameters (n, 2, m) is equal to m!ma−1

.

Proof It is sufficient to note that the number of hard symmetric functions is equal
to the total number of sequences obtained by all possible rotations of the De Bruijn
sequences B(m, a), i.e. the number of all the sequences multiplied by their size. ��

Conjecture 1 Let a ≥ 0 and n such that n = a + 2a − 4 or n = a + 2a − 5. Then the
number of super hard symmetric Boolean functions of parameters (n, 2, 2) is equal
to 22a−1 − 22a−1−a+1.

To enforce the first results obtained from computer search up to the value of a = 5
(see Table 3 Appendix B) we can notice that the simplified value vectors of these

Fig. 5 Simplified value vector of f
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functions look like truncated De Bruijn sequences among which some are discarded.
This point is emphasised by the observation that they are all hard functions. Other
questions are; why n = a + 2a − 4 and n = a + 2a − 5 produce the same number of
super hard functions, or can we easily link those two sets?

5.3 Algebraic degree of hard symmetric boolean functions

The following theorem links the periodicity of the simplified value vector of a
symmetric Boolean function and its algebraic degree [7].

Theorem 5 [7] Let f be in SMn(2, 2), then the simplif ied value vector of
f , vs = (vs(0), . . . , vs(n)) is periodic with period 2t, 2t < n, if and only if
deg( f ) ≤ 2t − 1.

For n = a + 2a − 2, the simplified value vector vs of a hard symmetric Boolean
function is periodic with period 2a, and by properties of De Bruijn sequence this
vector cannot be periodic with period 2k, where k < a. Thus, according to the
theorem 5 and its contraposition, we obtain the following result.

Theorem 6 The hard symmetric Boolean functions with n = a + 2a − 2 variables have
degree belonging to integer interval

{
2a−1, . . . , 2a − 1

}
when a > 2.

6 Conclusion

We were interested primarily in the multivalued symmetric functions and their
representations by QROMDD and ROMDD. We initially set out an efficient way
to represent these functions by a MDD, then we gave a formula for the exact value
of the complexity of the hard symmetric functions. For q = 2 (and any m) we could
generalise the results concerning the simplified value vectors of these hard functions.
We highlighted the links between De Bruijn sequences and the simplified value
vectors of the hard symmetric functions with n = a + ma − 2 variables. We thus could
count these hard functions in this particular case. For some other singular cases we
could only conjecture the number of functions. The generalisation of our results to
higher values of q would be interesting.

These hard symmetric functions can be a good compromise for a use in cryp-
tography; being symmetric they have a low number of nodes but being hard they
also appear among the most robust particularly against BDD based cryptanalysis.
We have also shown that in the binary case their algebraic degree takes interesting
values. For odd values of n, except 17 and 19, a significant number of balanced
hard symmetric functions exists. The further characterisation of more detailed
cryptographic properties of these functions will be of great interest.

Acknowledgements We thank Boris Batteux for his computations on functions enumeration. We
also thank the anonymous referees for excellent suggestions which greatly improved the clarity of
this paper.
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Appendix A: Algebraic degree distribution

These tables give the distribution of the algebraic degree of super hard symmetric
functions and hard symmetric functions.

Table 1 Algebraic degree of super hard symmetric functions for n = 3, . . . , 23

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 8 6 4 2 4 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0
5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 8 6 12 20 16 0 0 0 0 0 0 0 0 0 0 0 0 0
7 4 8 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 32 30 20 20 20 16 12 8 4 8 32 32 0 0 0 0
9 64 46 28 14 4 0 0 0 0 0 0 0 0 0 0
10 104 64 32 14 0 0 0 0 0 0 0 0 0 0
11 140 92 60 40 28 20 40 136 128 0 0 0 0
12 136 46 24 12 4 8 32 32 0 0 0 0
13 148 72 32 16 40 192 192 0 0 0 0
14 116 48 20 48 200 192 0 0 0 0
15 96 32 64 32 0 0 0 0 0
16 128 336 448 444 372 324 328 296
17 608 720 772 736 644 516 340
18 1,408 1,540 1,560 1,264 916 666
19 3,560 3,378 2,856 2,308 1,664
20 6,688 5,856 4,804 3,584
21 10,368 7,806 5,464
22 16,896 12,340
23 24,324

Total 8 14 14 12 12 56 126 194 252 294 288 264 224 224 1,152 3,200 6,892 12,734 21,312 33,574 48,678

Table 2 Algebraic degree of hard symmetric functions for n = 2, . . . , 20

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 2 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0
5 12 10 4 0 0 0 0 0 0 0 0 0 0 0 0 0
6 24 22 16 16 16 0 0 0 0 0 0 0 0 0 0
7 20 8 0 0 0 0 0 0 0 0 0 0 0 0
8 16 0 4 12 16 12 12 8 4 0 0 0 0
9 0 12 28 30 24 8 4 0 0 0 0 0
10 48 66 64 44 20 10 4 0 0 0 0
11 104 100 100 92 84 84 64 64 64 0
12 192 136 88 42 8 0 0 0 0
13 328 236 148 88 64 64 64 0
14 396 248 164 128 128 128 0
15 384 144 64 0 0 0
16 416 128 0 16 44
17 256 0 64 184
18 0 208 532
19 800 1,128
20 2,056

Total 6 8 4 18 38 48 40 16 80 210 402 644 852 928 912 704 256 1,344 3,944
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Appendix B: Maximum complexities of symmetric functions from En
2 to E2

This table gives the cardinal of the sets HSMn(q, m), SHSMn(q, m) and
HSMn(q, m) ∩ SHSMn(q, m) for any n up to 35. The special cases n = a + 2a − 2
are in bold.

Table 3 Complexity of symmetric functions from En
2 to E2

n max cR( f ) Number of max cQ( f ) Number Number of functions
super hard of hard both hard and
functions functions super hard

1 3 2 3 2 2
2 5 2 5 6 2
3 7 8 8 8 6
4 10 14 12 4 4
5 14 14 16 18 10
6 19 12 21 38 12
7 25 12 27 48 12
8 31 56 34 40 28
9 38 126 42 16 16
10 46 194 50 80 48
11 55 252 59 210 94
12 65 294 69 402 162
13 76 288 80 644 224
14 88 264 92 852 232
15 101 224 105 928 224
16 115 224 119 912 224
17 129 1,152 134 704 480
18 144 3,200 150 256 256
19 160 6,892 166 1,344 832
20 177 12,734 183 3,944 1,992
21 195 21,312 201 9,276 4,428
22 214 33,574 220 19,448 8,560
23 234 48,678 240 37,090 15,446
24 255 65,040 261 65,602 25,964
25 277 81,348 283 107,388 39,716
26 300 9,4376 306 160,760 54,848
27 324 103,944 330 220,200 70,104
28 349 107,744 355 276,456 80,288
29 375 99,744 381 318,368 85,920
30 402 95,232 408 341,024 87,040
31 430 81,408 436 339,456 77,312
32 459 61,440 465 305,920 61,440
33 489 61,440 495 263,168 61,440
34 519 326,680 526 188,416 126,976
35 550 954,368 558 65,536 65,536
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Appendix C: Number of balanced symmetric Boolean functions
hard and super hard

This table gives the number of balanced hard and super hard symmetric Boolean
functions for any odd n up to 53. There is no balanced hard nor super hard symmetric
Boolean functions when n is even except 2 for n = 2.

Table 4 Number of balanced
symmetric Boolean functions
of maximum complexity

n Number of hard Number of super Number of balanced
balanced hard balanced functions both hard
functions functions and super hard

1 2 2 2
3 2 4 2
5 2 4 2
7 6 4 4
9 4 8 4
11 8 6 4
13 8 4 4
15 4 0 0
17 0 0 0
19 0 8 0
21 8 26 8
23 26 52 18
25 70 76 52
27 132 104 80
29 164 96 80
31 212 128 128
33 256 128 128
35 128 352 128
37 352 616 224
39 616 1,052 392
41 1,132 1,500 740
43 1,836 1,848 1,096
45 2,512 2,302 1,416
47 3,092 2,396 1,676
49 3,712 2,232 2,040
51 3,576 1,536 1,536
53 1,920 384 384
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