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Abstract
Background  Cancer driver genes (CDGs) have been reported as key factors influencing the progression of lung adenocar-
cinoma (LUAD). However, the role of CDGs in LUAD prognosis has not been fully elucidated.
Methods  LUAD transcriptome data and CDG-related data were obtained from public databases and literature. Differentially 
expressed CDGs (DE-CDGs) greatly associated with LUAD survival (P < 0.05) were identified to establish a prognostic 
model. In addition, immune analysis of high-risk (HR) and low-risk (LR) groups was conducted by utilizing the CIBERSORT 
and single sample gene set enrichment analysis (ssGSEA) algorithms to assess immune differences. Subsequently, mutation 
analysis was conducted using maftools. Finally, candidate drugs were identified using the CellMiner database.
Results  40 DE-CDGs significantly associated with LUAD survival and 11 DE-CDGs associated with prognosis were identi-
fied through screening. Regression analysis revealed that risk score can independently predict LUAD prognosis (P < 0.05). 
Immune landscape analysis revealed that compared to the HR group, the LR group had higher immune scores and high 
infiltration of various immune cells such as follicular helper B cells and T cells. Mutation landscape analysis demonstrated 
that missense mutation was the most common mutation type in both risk groups. Drug prediction analysis revealed strong 
correlations of fulvestrant, S-63845, sapacitabine, lomustine, BLU-667, SR16157, motesanib, AZD-9496, XK-469, dimeth-
ylfasudil, P-529, and imatinib with the model genes, suggesting their potential as candidate drugs targeting the model genes.
Conclusion  This study identified 11 effective biomarkers, DE-CDGs, which can predict LUAD prognosis and explored the 
biological significance of CDGs in LUAD prognosis, immunotherapy, and treatment.

Keywords  Lung adenocarcinoma · Cancer driver genes · Biomarkers · Tumor microenvironment · Mutation landscape · 
Drug sensitivity

Introduction

As a subtype of non-small cell lung cancer (NSCLC), lung 
adenocarcinoma (LUAD) primarily occurs in the bronchial 
mucosal epithelium of the lungs [1, 2]. With a high inci-
dence and mortality rate, it has a younger onset age [3]. 
Though most LUAD patients do not exhibit obvious symp-
toms in the early stages, as the disease progresses, patients 

often experience symptoms such as dry cough, hemoptysis, 
chest pain, dyspnea, and weight loss [4, 5]. The etiology of 
LUAD is not yet clear, but extensive medical research has 
found that smoking, age, radon exposure, and environmental 
pollution are risk factors for LUAD [6]. Fiberoptic bron-
choscopy, serum tumor marker examination, lung X-ray, and 
chest CT examination are common diagnostic measures for 
LUAD [7–10]. Currently, although progress has been made 
in detection methods and targeted therapies, most cases 
of LUAD are diagnosed at an advanced stage, with poor 
prognosis and a 5 year survival rate of less than 20% [11]. 
Therefore, identifying more potential biomarkers may aid in 
improving the prognosis of LUAD.

Mutations or abnormal expression of cancer driver genes 
(CDGs), including oncogenes and tumor suppressor genes, 
can drive tumor formation [12, 13]. Studies have pointed out 
that mutations in oncogenes can increase the proliferation 
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and survival ability of tumor cells, while mutations in tumor 
suppressor genes can lead to uncontrolled cell proliferation 
[14, 15]. Currently, some known tumor driver genes (such 
as TP53, EGFR, and HER2, etc.) have been confirmed to 
be linked with the malignant progression of tumors. Akira 
Mogi et al. [16] revealed that the tumor suppressor gene 
TP53 frequently mutates in human cancers, leading to a 
poorer prognosis and relatively stronger resistance to chem-
otherapy and radiotherapy in NSCLC. EGFR mutations 
are the second most common oncogenic driver events in 
NSCLC, with most EGFR-mutated NSCLC patients exhibit-
ing exon 19 deletions or L858R substitutions, which are con-
sidered predictive of sensitivity to EGFRTKI treatment and 
have significant implications for the treatment and prognosis 
of EGFR mutation subtypes [17, 18]. Alterations in human 
epidermal growth factor receptor 2 (HER2, or ERBB2) have 
been identified as oncogenic drivers and potential therapeu-
tic targets in various cancers, including lung cancer (LC), 
breast cancer (BC), and metastatic urothelial carcinoma 
[19–21]. M Riudavets et al. [22] found in their study on 
NSCLC that HER2 activation occurs through three mecha-
nisms: gene mutations, gene amplification, and protein over-
expression, each with different implications and predictive 
outcomes. Therefore, the study suggested adopting differ-
ent treatment approaches for different types of HER2 altera-
tions to improve patients’ survival outcomes [22]. Therefore, 
based on these analyses, targeting CDGs has the potential to 
alter the cancer progression of patients to varying degrees. 
However, the relationship between CDGs and LUAD has not 
been fully illuminated at present.

This study explored the biological significance of CDGs 
in LUAD patients based on differentially expressed CDGs 
(DE-CDGs), seeking potential biomarkers for LUAD and 
revealing prognosis, immune, and candidate drugs for 
LUAD. This project can deepen the understanding of the 
pathogenesis of LUAD from the perspective of CDGs. The 
flowchart of this study is displayed in Fig. 1.

Materials and methods

Acquisition of public data

The gene expression profiles and clinical data information 
(age, gender, tumor grade, TMN stage) of the training set 
LUAD samples were obtained from The Cancer Genome Atlas 
database (TCGA, https://​portal.​gdc.​cancer.​gov/), including 
541 cancer samples and 59 normal samples. The GSE72094 
(386 cancer samples) dataset was downloaded from the 
Gene Expression Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​
gov/) database as the validation set. Samples with complete 
survival information and survival time greater than 30 days 
were retained in both the training set and validation set for 

subsequent analysis. A total of 568 CDGs were obtained from 
the literature [23] (Table S1).

Identification of DE‑CDGs in LUAD

In the training set, differential expression analysis was car-
ried out by utilizing the edgeR package with parameters of 
FDR < 0.05 and |log(FC)|> 1. Finally, the intersection of the 
differentially expressed genes (DEGs) obtained from differ-
ential expression analysis and the CDGs obtained from the 
literature resulted in DE-CDGs.

Construction and validation of DE‑CDGs related 
prognostic model

To detect genes associated with LUAD survival in DE-CDGs. 
We used univariate Cox regression to screen for genes with 
P < 0.05 for further analysis. In LASSO regression analysis, 
we narrowed down the range of survival-related genes and 
adjusted the optimal parameter λ through tenfold cross-valida-
tion. Based on the optimal cutoff values calculated by the sur-
vminer R package, we performed multivariate Cox regression 
analysis on the selected genes to establish the final prognostic 
model. The formula is as follows:

We calculated the sample risk scores for the training set and 
validation set using the model formula and analyzed the sur-
vival outcomes of patients with different risk scores. Accord-
ing to the median risk score, we grouped the patients into high-
risk (HR) and low-risk (LR) groups. We compared the survival 
differences between different risk groups using K-M analysis. 
By plotting the ROC curve, we evaluated the sensitivity and 
specificity of the model. Finally, we drew a heatmap to display 
the differential gene expression between different risk groups.

Independent prognostic analysis of prognostic 
model related to DE‑CDGs

To select independent prognostic factors, we carried out uni-
variate/multivariate Cox regression analyses. In addition, a 
prognostic nomogram was constructed to generate a calibra-
tion curve to evaluate the deviation between the nomogram 
and actual outcomes. Age, TNM stage, and model risk score 
were considered in the above analyses.

Identification and analysis of DEGs in HR and LR 
groups

Between the HR and LR groups, differential expression 
analysis was carried out by utilizing the edgeR package with 
parameters of FDR < 0.05 and |log (FC)|> 1. Subsequently, 

Model =
∑

Coefficient(gene) ∗ Expression value(gene).

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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the DEGs protein–protein interaction (PPI) network was set 
up using the Search Tool for the Retrieval of Interacting 
Genes (STRING) database for the HR and LR groups. Inter-
actions with confidence scores higher than 0.9 were selected 
as the basis for constructing the PPI network. KEGG and 
GO enrichment analyses of DEGs were performed by utiliz-
ing the clusterProfiler package, with enrichplotR package 
applied to visualize the results.

Immune landscape assessment and prediction 
of immune therapy response in the HR and LR 
groups

With the application of the estimate algorithm, we assessed 
the tumor microenvironment of each sample in the HR and 
LR groups, calculated the immune score, stromal score, and 
ESTIMATE score for each sample, performed the Wilcoxon 
test, and plotted violin plot for the HR and LR groups. We 

employed the CIBERSORT method and single sample gene 
set enrichment analysis (ssGSEA) method to respectively 
compare differences in immune-related cell infiltration and 
infiltration abundance related to immune function between 
the HR and LR groups.

To predict the immune therapy response of the HR and 
LR groups, the TIDE score was introduced. Furthermore, 
we performed the Wilcoxon test and plotted the violin plot. 
The immunophenoscore (IPS) of each patient was obtained 
from The Cancer Immunome Atlas (TCIA) database (https://​
tcia.​at/​home). We further investigated the differences in IPS 
between the HR and LR groups.

Tumor mutation analysis of the HR and LR groups

The maftools was employed to analyze and plot the muta-
tion situation of HR and LR groups for LUAD SNV muta-
tion data. By comparing and analyzing the similarities and 

Fig. 1   The flowchart

https://tcia.at/home
https://tcia.at/home
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differences in mutation types, SNV class, and mutation rates 
between HR and LR groups, we selected the top ten genes 
with the highest mutation rates in the two different risk 
groups. Furthermore, we drew the waterfall plot displaying 
the mutation situation of model genes in the two groups.

Screening of potential drugs

We utilized the CellMiner database (https://​disco​ver.​nci.​nih.​
gov/​cellm​iner/​home.​do) to dig out drugs related to the model 
genes. To visualize the results, the ggplot2 R package was 
employed.

Cell culture

The cell lines used in this study mainly included the human 
LUAD cell line A549, Calu-3, NCI-H1975 and the human 
normal lung epithelial cell line (BEAS-2B). The cells were 
cultured in DMEM (Gibco, USA) supplemented with 10% 
fetal bovine serum (Gibco, USA) and 1% penicillin–strepto-
mycin (Yeasen, China) and placed in an incubator at 37 °C 
and 5% CO2.

Real‑time fluorescence quantitative PCR (qRT‑PCR)

First, the total RNA in the cells was extracted using the TRI-
zol reagent (Invitrogen, USA) according to the manufac-
turer's instructions. cDNA was then synthesized by reverse 
transcription using PrimeScript RT kit (Takara, Japan). 
qRT-PCR analysis was performed using SYBR Green PCR 
premix (Takara, Japan) on the Applied Biosystems 7500 
sequence detection system (Applied Biosystem), and the 
relative mRNA expression was calculated using the 2−ΔΔCt 
method. GAPDH was used as the internal parameter. The 
primer sequence is shown in Table 1.

Western blot

First, the total protein was extracted with RIPA lysis buffer 
(Beyotime, China) and quantified with BCA kit (Thermo 
Fisher Scientific, USA). The protein samples were then 
isolated by 10%SDS-PAGE and transferred to PVDF 
membranes. After sealing with 5% skim milk for 1 h, the 
membrane was incubated with primary antibody at 4 °C 

overnight. After TBST washing for 3 times, goat anti-rabbit 
horseradish peroxidase secondary antibody (HRP, ab6721, 
1:2000) was incubated at room temperature for 1 h. The blot 
was then observed with an enhanced chemiluminescence 
(ECL) solution. Protein expression was detected by ImageJ. 
Beta-actin was selected as the sample control. The primary 
antibodies are as follows: HOXD13 (ab19866, 1:1000, 
Abcam), FANCD2 (ab108928, 1:1000, Abcam), EGR2 
(ab108399, 1:1000, Abcam), KLF4 (ab215036, 1:1000, 
Abcam).

Statistical analysis

SPSS 23.0 (USA) was used for data analysis. Data are 
expressed as mean ± standard deviation. The Student-t test 
was selected to compare the differences between the two 
groups. Univariate analysis of variance was used to evalu-
ate the differences between groups. All experiments were 
repeated three times. P < 0.05 was considered statistically 
significant.

Results

Identification of DE‑CDGs and construction 
and validation of the prognostic model

Through differential analysis, we obtained a total of 5576 
DEGs related to LUAD. We intersected them with CDGs, 
obtaining 123 intersecting genes, namely 123 DE-CDGs 
(Fig. 2A). Subsequently, we obtained 40 genes strongly asso-
ciated with LUAD survival through univariate Cox regres-
sion analysis (threshold: P < 0.05) (Table S2). Then, LASSO 
regression analysis was performed to eliminate genes that 
may have multiple collinearity (Fig. 2B). Finally, multivari-
ate Cox regression analysis was carried out to determine 
the final prognostic model (Fig. 2C). The formula for the 
prognostic model is as follows:

Table 1   Primer sequences Gene Forward Reverse

HOXD13 5’-TCC​TCT​TCT​GCC​GTT​GTA​GC-3’ 5’-GTA​GTA​GCC​GTT​GCC​GAA​GT-3’
FANCD2 5’-CGA​CGG​CTT​CTC​GGA​AGT​AA-3’ 5’-GTC​GGA​GGC​TTG​AAA​GGA​CA-3’
EGR2 5’-AGA​GAG​TCA​GTG​GCA​AAT​AGA​CAT​-3’ 5’-CTC​CCT​CGC​TAC​CTG​GAG​T-3’
KLF4 5’-ATG​CTC​ACC​CCA​CCT​TCT​TC-3’ 5’-GGT​GGT​CCG​ACC​TGG​AAA​AT-3’
GAPDH 5’-AAT​GGG​CAG​CCG​TTA​GGA​AA-3’ 5’-GCG​CCC​AAT​ACG​ACC​AAA​TC-3’

https://discover.nci.nih.gov/cellminer/home.do
https://discover.nci.nih.gov/cellminer/home.do
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Based on the formula, we calculated the risk scores for 
all patients in the training set and validation set. Mean-
while, we recorded the clinical outcomes (survival/death) 

Riskscore = − 0.1842 ∗ ZNF93 + 0.1648 ∗ COL1A1

+ 0.0934 ∗ MET + 0.0295 ∗ HOXD13

− 0.2248 ∗ EGR2 + 0.1791 ∗ PABPC1

+ 0.0787 ∗ FBN2 − 0.1296 ∗ CBFA2T3

+ 0.2293 ∗ FANCD2 − 0.1084 ∗ ZNF208

+ 0.1812 ∗ KLF4.

of all patients and compared the survival outcomes of 
patients in different risk groups, finding different risk 
scores for different LUAD patients in the training set 
and validation set. Patients with higher risk scores had 
higher mortality rates. The survival rate of the HR group 
(patients with risk scores higher than the median) was 
considerably lower than that of the LR group (patients 
with risk scores lower than the median) (Fig. 3A-D). ROC 
curve revealed that the prognostic model constructed in 
this study had good predictive performance in both the 
training set and validation set, with AUC values greater 

Fig. 2   A Venn diagram identified DE-CDGs. B Plot of LASSO regression analysis based on DE-CDGs. C Multivariate Cox regression analysis 
based on DE-CDGs. * P < 0.05, ** P < 0.01
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Fig. 3   A-B risk scores and survival outcomes of different patients in the training set A and the validation set B. C-D K–M curve of the training 
set C and the validation set D. E–F ROC curve of the training set E and the validation set F 
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than 0.67 for 1-year, 3-year, and 5-year survival (Fig. 3E-
F). Finally, the results of the expression heatmap demon-
strated that CBFA2T3, EGR2, ZNF93, and ZNF208 had 
elevated expression levels in the LR group, while KLF4, 
MET, COL1A1, FBN2, PABPC1, HOXD13, and FANCD2 
had elevated expression levels in the HR group (Fig. 4). 
The good prediction performance of the model was also 
verified in the validation set GSE13213 (Supplementary 
Fig. 1).

Selection of independent prognosis factor in LUAD

The results of univariate and multivariate Cox regres-
sion analyses demonstrated that the T stage, N stage, and 
risk score can all serve as independent prognostic factors 

for LUAD (P < 0.05) (Fig. 5A-B). Based on the age, gen-
der, tumor stage, TNM stage, and risk score, the results of 
nomogram analysis allowed us to predict the 1-year, 3-year, 
and 5-year survival rates of LUAD patients (Fig. 5C). The 
calibration curves demonstrated a high consistency between 
the predicted 1-year, 3-year, and 5-year survival rates gener-
ated by our nomogram model and the actual survival rates 
of the patients in the dataset (Fig. 5D-F).

To further validate the predictive power of the model, 
we analyzed the association between the HR and LR 
groups and clinical features. The results showed that 
the risk score was significantly correlated with gender, 
stage, stage T, and stage N (P < 0.05, Fig. 6A). At the 
same time, to verify the predictive power of the prog-
nostic model for patients with different clinical features, 
we performed subgroup survival analysis of the clinical 
features of the HR and LR group. Significant differences 

Fig. 4   A-B Heatmap of the gene expression levels of the model in the training set A and the validation set B 
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in prognosis were observed for different age groups 
(≤ 65 years and > 65 years) (Fig. 6B), different gender 
groups (female and male) (6C), different stages (stage I-П 
and stage Ш-IV) (Fig. 6D), different T stages (T1 + T2 
and T3 + T4) (Fig. 6E), different N stages (N0 and N1) 
(Fig. 6F), and different M stages (M0 and M1) (Fig. 6G), 
which implied that the prognostic model of the present 
study had a good predictive and discriminatory ability in 
clinical practice.

Identification and analysis of DEGs between HR 
and LR groups

Firstly, differential expression analysis was performed on the 
data of the HR and LR groups using the training set data, and 
481 differentially up-expressed genes and 461 differentially 
down-expressed genes were obtained, totaling 942 DEGs 
(Table S3). Based on the constructed PPI network using the 
STRING database, it was found that among the 942 DEGs, 
938 DEGs have interactions with each other, forming 387 
pairs of interacting relationships (Fig. 7A). In addition, GO 

Fig. 5   A-B Univariate A and multivariate B Cox regression analyses identified the independent prognosis factor for LUAD. C Nomogram con-
structed based on age, gender, tumor stage, TNM staging, and risk score. D-F 1-year, 3-year, and 5-year calibration curves of the nomogram
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Fig. 6   A Correlation analysis between HR and LR groups and clini-
cal data of LUAD patients. B K–M analysis for different age groups 
(65- and 65 + years). C K–M analysis of gender-specific (male and 
female) groups. D K–M analysis for different stages (stage I–II and 

stage III–IV). E K–M analysis of different T-stages (T1 + T2 and 
T3 + T4). F K–M analysis for different N stages (N0 and N1). G K–M 
analysis of different M stages (M0 and M1)
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Fig. 7   A PPI network of DEGs between the HR and LR groups. B-C GO B and KEGG C Enrichment of DEGs between the HR and LR groups
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enrichment analysis revealed that DEGs between the HR 
and LR groups may be associated with biological processes 
including antimicrobial humoral immune response medi-
ated by antimicrobial peptides, epidermis development, and 
keratinocyte differentiation, as well as cellular component 
such as ion channel complex, collagen-containing extracel-
lular matrix, and intermediate filament cytoskeleton. DEGs 
were also related to molecular functions such as hormone 
activity, receptor ligand activity, neurotransmitter receptor 
activity, channel activity, passive transmembrane transporter 
activity, and solute: sodium symporter activity (Fig. 7B). 
Furthermore, through KEGG enrichment analysis, these 
DEGs were revealed to be related to the regulation of sign-
aling pathways such as neuroactive ligand–receptor inter-
action, Metabolism of xenobiotics by cytochrome P450, 
estrogen signaling pathway, cAMP signaling pathway, Wnt 
signaling pathway, etc. (Fig. 7C).

Evaluation of the difference in immune levels 
between the HR and LR groups and prediction 
of the possibility of immune therapy response

Based on the immune characteristic data in the training set, 
the score analysis of the main components in the immune 
microenvironment of the HR and LR groups showed that the 
LR group had higher immune score and ESTIMATE score 
than the HR group (P < 0.05) (Fig. 8A), indicating a poten-
tially higher immune level. As evidenced by CIBERSORT, 
only  CD4 memory T cells activated, macrophages M0, and 
neutrophils were highly infiltrated in the HR group, while 
other immune cells such as memory B cells, follicular helper 
T cells, and regulatory T cells (Tregs) were highly infiltrated 
in the LR group (P < 0.05) (Fig. 8B). ssGSEA revealed that 
the infiltration levels of immune cells such as dendritic 
cells (aDCs, iDCs, and pDCs), B cells, and mast cells were 
higher in the LR group. The abundance of immune func-
tions such as APC co-stimulation, CCR, HLA, and T cell co-
stimulation was also higher in the LR group, while the HR 
group had a lower abundance of immune cells and immune 
functions (P < 0.05) (Fig. 8C-D). In terms of IPS and TIDE 
scores, the LR group had higher IPS and lower TIDE scores, 
indicating that compared with the HR group, patients in the 
LR group may have a more sensitive immune response to 
immunotherapy and a reduced likelihood of immune escape 
(P < 0.05) (Fig. 8E-F).

Genetic mutation assessment of the HR and LR 
groups

Based on the training set data, analysis of the mutation land-
scape in the HR and LR groups revealed that missense muta-
tion had the highest number of mutations in both groups, 
with the HR group having a greater number of missense 

mutation than the LR group (Fig. 9A–C). Furthermore, sta-
tistical analysis of the gene mutation status in each sample 
of the HR and LR groups demonstrated that among the 242 
samples in the LR group, 69 cases of gene mutation were 
observed, with FBN2, ZNF208, and COL1A1 having the 
highest mutation frequency (Fig. 9B). In the HR group, 
analysis of the 245 samples also revealed 69 cases of gene 
mutation, with FBN2, ZNF208, and MET being the three 
genes with the highest mutation frequency (Fig. 9D). In 
addition, based on the important role of driver genes in the 
development of LUAD, we further analyzed the correlation 
between risk score and common LUAD driver genes. The 
results showed that risk score was significantly negatively 
correlated with driver genes ROS1 and ALK, and signifi-
cantly positively correlated with EGFR, MET, and NTRK2 
(P < 0.05, Fig. 9E).

Prediction of candidate drugs and drug sensitivity 
analysis for LUAD

Fulvestrant, S-63845, sapacitabine, lomustine, BLU-667, 
SR16157, motesanib, AZD-9496, XK-469, dimethyl-
fasudil, P-529, and imatinib are candidate drugs identi-
fied in this study that have significant correlations with 
model genes. Among them, CBFA2T3 is greatly posi-
tively correlated with fulvestrant (Cor = 0.587),  sapaci-
tabine (Cor = 0.568),  SR16157 (Cor = 0.526), AZD-
9496 (Cor = 0.517), XK-469 (Cor = 0.516), and imatinib 
(Cor = 0.502) (P < 0.05). MET is considerably negatively 
correlated with S-63845 (Cor = −0.570)  and lomustine 
(Cor = −0.534) (P < 0.05). COL1A1 is significantly posi-
tively correlated with BLU-667 (Cor = 0.533), dimethyl-
fasudil (Cor = 0.508), and P-529 (Cor = 0.504) (P < 0.05). 
EGR2 is significantly positively correlated with motesanib 
(Cor = 0.519) (P < 0.05) (Fig. 10). The box plot displayed 
that the MET high-expression group was more sensitive to 
S-63845 and lomustine, and the COL1A1 low-expression 
group was more sensitive to BLU-667 and dimethylfasudil 
(P < 0.05) (Fig. 11).

Verification of model gene expression levels

By referring to relevant literature, we selected model genes 
HOXD13, FANCD2, EGR2, and KLF4 to verify their 
expression levels. Firstly, qRT-PCR results showed that com-
pared with the control group, the mRNA expression levels 
of HOXD13 and FANCD2 in LUAD cells were significantly 
higher (P < 0.05), while the expression levels of EGR2 and 
KLF4 were significantly lower (P < 0.05, Fig. 12A). Further, 
the trend of protein expression level showed by western blot 
was consistent with qRT-PCR (Fig. 12B).
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Discussion

LC is a common malignant tumor of the respiratory sys-
tem, and CDGs are considered important factors affecting 
tumor progression and patient survival [24, 25]. Edouard 
Dantoing et al. [26] found that mutations in CDGs can 
alter tumor immune microenvironment and may promote 
resistance to PD1/PD-L1 in NSCLC. Therefore, target-
ing CDGs may be a promising alternative approach for 

treating LUAD patients [26]. In addition, Zou et al. [23] 
also elucidated the biological role of CDGs in hepato-
cellular carcinoma survival and tumor immunity, result-
ing in multiple CDG-related biomarkers that can predict 
hepatocellular carcinoma prognosis, and found that these 
CDGs are linked with different immune cell infiltrations 
in the tumor microenvironment. However, the mechanism 
of action of CDGs in LUAD remains unexplored. There-
fore, exploring the effects of CDGs on LUAD prognosis, 

Fig. 8   A Scores of major components in the HR and LR group 
immune  microenvironment. B-D Immune levels of the HR and LR 
groups shown by the CIBERSORT B and ssGSEA C-D algorithms. 

E–F IPS and TIDE scores of the HR and LR groups. * P < 0.05, ** 
P < 0.01, *** P < 0.001, **** P < 0.0001, ns P > 0.05
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Fig. 9   A Mutation landscape of the LR group. B Gene mutation profiles of individual samples in the LR group. C Mutation landscape of the HR 
group. D Gene mutation profiles of individual samples in the HR group. E Correlation between the risk score and LUAD driver gene
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immunity, and treatment is of great biological significance. 
We herein investigate the relationship between CDGs and 
LUAD to reveal their association with the malignancy of 
LUAD and prognosis.

CBFA2T3, EGR2, ZNF93, ZNF208, KLF4, MET, 
COL1A1, FBN2, PABPC1, HOXD13, and FANCD2 were 
identified as 11 CDGs associated with LUAD prognosis 
in this study. Among them, CBFA2T3, EGR2, ZNF93, 
and ZNF208 showed elevated expression levels in the LR 
group, while KLF4, MET, COL1A1, FBN2, PABPC1, 

HOXD13, and FANCD2 had elevated expression levels in 
the HR group. Previous studies have found that CBFA2T3 
can facilitate the occurrence and development of tumors in 
different cancers. In LC, CBFA2T3 is a protective gene, with 
its high expression promoting the survival of LC patients 
[27]. In BC, research has found that CBFA2T3 acts as a 
transcriptional repressor when connected to the binding 
domain of GAL4 DNA, thus identifying it as a potential 
candidate gene for BC tumor suppression [28]. As a mem-
ber of the zinc finger transcription factor family, EGR2 

Fig. 10   Correlation analysis between model genes and drugs predicted by the CellMiner database
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is considered an important regulatory factor for systemic 
autoimmunity [29]. Recent studies by Liu et al. [30] have 
unearthed that inhibiting the expression of EGR2 can pro-
mote the proliferation of NSCLC cells. ZNF93 and ZNF208 
are also members of the zinc finger protein family [31, 32]. 
Currently, research in ovarian cancer (OC) has pointed 
out that ZNF93 can facilitate the migration and prolifera-
tion of OC cells. Moreover, high expression of ZNF93 is 
tightly linked to the clinical staging of patients, indicating 
poor prognosis [33]. In the exploration of LC risk factors, a 

strong association has been found between ZNF93 and sus-
ceptibility to LC [31]. Although the correlation of ZNF208 
with LC has not been discovered yet, multiple studies have 
already found its close association with disease progression 
in various tumors such as laryngeal cancer, esophageal can-
cer, and pancreatic cancer [32, 34, 35]. KLF4 is a transcrip-
tion factor that can regulate cell proliferation, differentia-
tion, and self-renewal of stem cells. It mainly participates 
in suppressing the differentiation and proliferation of cancer 
cells in lung tumors, thus being considered an important 

Fig. 11   Statistics of drug IC50 values corresponding to groups with model genes high or low expressed
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tumor suppressor [36]. Former studies have elucidated that 
the MET is overexpressed in many human cancers, includ-
ing LC [37]. In preclinical and clinical studies of NSCLC, 
MET activation has been identified as a major oncogenic 
driver in a subset of LC, mediating malignant progression 
by influencing cancer cell invasion, survival, and growth 
[38]. Moreover, MET is also considered a secondary driver 
of acquired resistance to targeted therapy [38]. COL1A1 has 
been identified as a key biomarker and potential drug target 
in LC, with its expression exhibiting an obvious correlation 

with overall survival (OS) and progression-free survival of 
LC patients [39]. Wang et al. [40] found through experi-
mental research that elevated expression of COL1A1 can 
drive LUAD cells to grow, migrate, and invade. As a novel 
pathogenic gene, FBN2 has been found by Hong et al. [41] 
to be highly expressed in LC cells and to facilitate the pro-
liferation, invasion, and migration of LC cells. More and 
more projects suggest that PABPC1 is aberrantly expressed 
in various tumor tissues and cancers, such as LC [42], gastric 
cancer [43], and esophageal squamous cell carcinoma [44], 

Fig. 12   The expression levels 
of HOXD13, FANCD2, EGR2, 
and KLF4 in LUAD cells were 
detected using A qRT-PCR and 
B western blot
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etc. Li et al. [45] found in their study on LC that enhancing 
the ubiquitination of PABPC1 represses the proliferation of 
cancer cells. HOXD13 is a member of the HOX family and 
has the function of regulating organ development. Xu et al. 
[46] found that low expression of HOXD13 promotes the 
progression of prostate tumors. At present, there is relatively 
little investigation on the correlation between HOXD13 and 
the progression of LC, but Han et al. [47] have suggested 
that HOXD13 can be a promising prognosis biomarker for 
the diagnosis and treatment of LUAD. FANCD2 is consid-
ered a gene associated with autophagy-depended ferroptosis, 
with higher expression levels in LUAD patients compared to 
normal tissue specimens, and has been revealed to be asso-
ciated with TNM staging advantages, lower chemotherapy 
sensitivity, and lower immune scores in LUAD [48]. Based 
on these analyses, 11 genes identified in this study are linked 
to the occurrence and progression of tumors, especially LC.

Next, through immune analysis, we identified immune 
landscape differences between different risk groups. The 
results revealed that the LR group had elevated immune 
scores compared to the HR group, with high infiltration of 
many immune cells such as follicular helper B cells and 
T cells. Studies have shown that both follicular helper B 
cells and T cells are important immune cells in the immune 
system, and their high infiltration in the tumor microenvi-
ronment has been proven to mediate tumor progression [49, 
50]. According to the research by Tu et al. [51], the high 
infiltration of B cells in LUAD is linked with a higher OS of 
patients. In addition, Cui et al. [52] found that antigen-driven 
follicular helper B cells and CD4T cells collaborate to effec-
tively facilitate the response of anti-tumor CD8+ T cells. 
Therefore, we speculated that the highly infiltrated follicular 
helper B cells and T cells in the LR group may be associated 
with their better response to prognosis. Furthermore, the 
prediction of immune therapy response and immune escape 
revealed that the LR group has higher IPS scores and lower 
TIDE scores, revealing that LR patients may be more sensi-
tive to immune therapy and less likely to experience immune 
escape, making them more prone to benefit from immune 
therapy compared to the HR group. However, due to the 
lack of corresponding experimental verification, in-depth 
research is still required regarding the actual benefits of 
immune therapy for the HR and LR groups.

Our study also identified some candidate drugs that 
are greatly related to the model genes, such as fulves-
trant, S-63845, and aapacitabine. In addition, based on the 
comparison of IC50 values, it is speculated that the MET 
high-expression group is more sensitive to S-63845 and 
lomustine, while the COL1A1 low-expression group is 
more sensitive to BLU-667 and dimethylfasudil. Despite 
the encouraging results of targeted therapy research in LC 
in recent years, most patients eventually develop resistance 
to targeted drugs, mainly due to changes in carcinogenic 

drivers, the most common of which include epidermal 
growth factor receptor (EGFR), anaplastic lymphoma kinase 
(ALK), and TP53 mutations [53, 54]. This study is expected 
to explore as many driver genes as possible and to explore 
the prognosis, immunity, and drug candidates of LUAD 
by constructing a prognostic model to analyze the poten-
tial pathogenesis. In this study, we found that the risk score 
model was correlated with the common LUAD driver genes 
to varying degrees, which may provide certain reference 
and research direction for the drug resistance and off-target 
problems of targeted therapy in LUAD driver gene positive 
patients. For example, the model gene KLF4 is a controver-
sial gene. As reported by Liu et al. [55], KLF4 is signifi-
cantly underexpressed in cisplatin-resistant LC cell lines, 
and overexpression of KLF4 inhibits the viability, EMT 
process, and migration and invasion of drug-resistant cells, 
and promotes apoptosis. However, Zheng et al. [56] revealed 
that KLF4 overexpression caused by circUBAP2 dysregu-
lation has a facilitating effect on NSCLC proliferation and 
chemotherapy resistance. In gefitinib-resistant NSCLC cells 
and tissues mediated by c-Met amplification, KLF4 is over-
expressed and favors tumor progression [57]. At the same 
time, the study also showed that KLF4 can enhance gefitinib 
resistance by inhibiting β-catenin expression and interfer-
ing with β-catenin inhibition of c-Met phosphorylation to 
activate the c-Met/Akt signaling pathway. The carcinogenic 
or anticancer effect of KLF4 in NSCLC may be related to 
the subcellular localization of KLF4 [58]. For the recog-
nized resistance driver gene MET, the TAGTON clinical 
trial demonstrated that osimertinib (EGFR-TKI) combined 
with volitinib (MET inhibitor) is a promising therapy for 
advanced NSCLC patients with MET-amplified/overex-
pressed EGFRm who have developed disease progression 
following previous EGFR-TKI screening. Therefore, we 
speculate that the combined action of model genes KLF4 
and Met may be a potential mechanism leading to chemo-
therapy or targeted drug resistance to LUAD. The model 
gene COL1A1 has been reported to help solid tumors adapt 
to the hypoxic conditions of the tumor microenvironment, 
thereby promoting tumor aggressiveness and drug resistance 
[59]. At the same time, the drug resistance mechanism of 
COL1A1 in LUAD is usually carried out as a downstream 
regulatory gene, such as the regulatory axis miR-150/
NOTCH3/COL1A1 [60], LINC00313/miR-218-5p/COL1A1 
[61] and miR-29b-3p/COL1A1[62]. Therefore, the model 
genes and drugs screened in this study can provide not only 
new exploration ideas for the resistance mechanism of tar-
geted therapy in LUAD patients, but also a reliable research 
direction for future drug research.

At present, certain limitations still exist in this study. 
First, the risk profile was constructed based on the TCGA-
LUAD dataset, and clinical trials were needed to further 
validate the prognostic value of the risk score model and 
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the nomogram. Second, although the expression level of the 
model gene has been verified experimentally, its prognostic 
mechanism in LUAD remains to be further explored. Third, 
the prognostic model constructed in this study needs to be 
further explored in terms of drug resistance or off-target of 
LUAD. Our investigation identified the biological value of 
CDGs in LUAD prognosis, immune response, and treatment, 
proffering new prospects for future LUAD research.
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