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Abstract
Immune cells infiltrating the tumor microenvironment are physiologically important in controlling cancers. However, emerg-
ing studies have shown that cancer cells can evade immune surveillance and establish a balance in which these immune 
cells support tumor progression and therapeutic resistance. The signaling lymphocytic activation molecule family members 
have been recognized as mediators of tumor microenvironment interactions, and a promising therapeutic target for cancer 
immunotherapy. This review is focused on the role of SLAM family in tumor and immune cell interactions and discusses 
how such crosstalk affects tumor behavior. This will shed insight into the next step toward improving cancer immunotherapy.
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Introduction

Cancer immunotherapies, particularly immune checkpoint 
inhibitors, have revolutionized the landscape of cancer treat-
ment and are promising curative treatments across several 
cancer types. Nevertheless, a significant number of patients 
do not respond and even those who respond relapse with 
time leading to disease progression [1, 2]. Accordingly, stud-
ies exploring mechanisms of resistance and new strategies to 
boost the efficacy of immunotherapies have emerged [3–5].

Components of the tumor microenvironment undergo 
complex interplay with cancer cells via cell-to-cell interac-
tion or the release of soluble factors that can shape the tumor 
microenvironment [6–8]. Particularly, studies have shown 
that the dynamic and continuous interaction between tumor 
and their tumor immune microenvironment have a decisive 
role in dictating the fate of tumors and therapeutic outcomes 
[9–12]. Accumulating evidence has shown that the immuno-
suppressive milieu generated in the tumor microenvironment 

is associated with impaired anti-tumor response immunity 
leading to treatment failure [13–15]. As a result, increas-
ing interest in understanding the immunosuppressive tumor 
microenvironment has begun to evolve as it could lead to the 
development of combined therapies that could enhance the 
efficacy of immunotherapies [16–18].

Accumulating evidence has shown that the signaling lym-
phocytic activation molecule (SLAM) family receptors are 
critically involved in the pathophysiology of several solid 
and hematologic malignancies [19–21]. Notably, SLAM 
family receptors can bridge tumor cells and their microen-
vironment [22, 23], revealing SLAM family receptors as 
communicators that can mediate possible crosstalk between 
tumors and their surrounding niche, particularly immune 
cells. Recently, studies have found that SLAM family recep-
tors can regulate the expression of checkpoint molecules, 
suggesting the therapeutic potential of SLAM family recep-
tors in cancer immunotherapy, though our understanding in 
this regard is incomplete [24]. Therefore, this review dis-
cusses the role of SLAM family in regulating the interaction 
between tumor and immune cells and describes how such 
interaction promotes tumor progression. Also, the potential 
of exploring SLAM family receptors in cancer immunother-
apy will be discussed.
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Structure and signaling of SLAM family 
receptors

SLAM family receptors, broadly expressed on immune 
cells, are type 1 membrane receptors composed of nine 
members: SLAMF1 (CD150), SLAMF2 (CD48), SLAMF3 
(CD229, Ly9), SLAMF4 (CD244,2B4), SLAMF5 (CD84), 
SLAMF6 (CD352, NTB-A), SLAMF7 (CD319, CS1, 
CRACC), SLAMF8 (CD353) and SLAMF9 (CD84H1, 
CD2F10) [25–28]. Except for SLAMF4 and SLAMF2 
which act reciprocal toward each other, SLAM family 
receptors are activated by homophilic interaction and, 
therefore act as self-ligand [29–32]. SLAM family recep-
tors are composed of an extracellular segment with two 
Ig-like domains, a transmembrane segment and cytoplas-
mic tail-bearing immunoreceptor tyrosine-based signal-
ing motifs (ITSMs) [33]. In contrast to this are SLAMF2, 
SLAMF8 and SLAMF9 which lack ITSMs [34–36]. Addi-
tionally, SLAMF3 has four Ig-like domains in its extra-
cellular segment [37]. In SLAMFs with ITSMs in their 
cytoplasmic tail, SLAMF engages with SLAM-associated 
proteins (SAP) and Ewing sarcoma-associated transcript-2 
(EAT-2) to directly interact with the Src family kinase Fyn 
and phospholipase C respectively, thus inducing immune 
cell activation [38, 39] (Fig. 1).

SLAM family receptors are instrumental in the modula-
tion of immune responses of innate and adaptive immune 
systems[40, 41]. However, increasing evidence has impli-
cated SLAM family receptors in the pathophysiology 
of both solid and hematologic malignancies. Notably, 
SLAMF activation has been linked with tumor metas-
tasis[42, 43], therapeutic resistance [44–46], apoptosis 
resistance [45, 46], and tumor proliferation. Evidence 
strongly supports that SLAM family receptors secreted 
by tumor cells are in involved the polarization of immune 

cells toward pro-tumor phenotype to support tumor pro-
gression. On the other hand, documentation shows that 
SLAM family receptors secreted by immune cells can 
potentiate the immune evasion mechanisms of tumor cells, 
revealing SLAM family receptors as mediators of tumor 
microenvironment (TME) interactions.

SLAM family receptors‑mediated interaction 
between tumor cells and macrophages 
in TME

Tumor-associated macrophages can be activated and polar-
ized by factors in the tumor microenvironment to promote 
tumor progression [1, 10]. It has been demonstrated that can-
cer expressing SLAM family can directly promote the immu-
nosuppressive functions of macrophages by inducing M2 
macrophages with high expression of SLAMF [47]. Accord-
ing to Dolt et al., interferon-gamma and macrophage colony-
stimulating factor secreted by melanoma tumor-conditioned 
media can upregulate SLAMF9 expression in bone marrow-
derived macrophages and human peripheral blood mono-
cytes. Additionally, melanoma-induced SLAMF9 + mac-
rophages impaired the wound-healing capacity of RAW 
264.7 cells [47]. Li et al. injected lymphoma cells express-
ing SLAMF3 and SLAMF4 into mice and found significant 
tumor growth. In these mice, downregulation of SLAMF3 
and SLAMF4 potentiated macrophage-induced phagocytosis 
leading to tumor regression [48] suggesting that SLAMF3 
and SLAMF4 expressed by tumor cells are associated with 
impaired phagocytosis of macrophages.

A mechanistic study has demonstrated that SLAMF6 
expression in hepatocellular carcinoma (HCC) cells can 
induce M2 macrophage polarization with high expres-
sion of SLAMF6 to enhance the migration, invasion and 
growth of HCC. Notably, silencing SLAMF6 suppressed 

Fig. 1   Structure and signal-
ing of SLAM family recep-
tors. IgC2 and IgV domains 
are found in the extracellular 
space. Through the IgV domain, 
SLAMF receptors attach to 
their respective ligands. Except 
SLAMF2, SLAMF8 and 
SLAMF9, all the other members 
have a cytoplasmic tail (ITSMs)
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M2 macrophage polarization which in turn thereby impaired 
migration, invasion and growth of HCC [49]. In the same 
study, SLAMF6 levels in CD14 + monocytes were higher in 
HCC patients compared to healthy donors, and this increase 
was associated with worse clinical outcomes [49]. Tumor-
associated macrophage expressing SLAMF7 can upregulate 
PD-1 and TOX expression on CD8 + T cells, implying an 
exhausted phenotype. Furthermore, deficiency of SLAMF7 
in tumor-bearing mice rejuvenated CD8 + T cells, lead-
ing to inhibition of tumor growth [50]. In breast cancer, 
high expression of SLAMF7 is associated with impaired 
phagocytic activities of macrophages [51]. A recent study 
has shown that SLAMF4 downregulation on macrophages 
could be used as a potential combination therapeutic strat-
egy with checkpoint inhibitors to restore antitumor immu-
nity [52]. Kim et al. found that high expression of SLAMF4 
on monocytes infiltrating melanoma tumors impaired the 
maturation of antitumor macrophages and dampened anti-
gen-specific action of T cells leading to tumor progression. 
Furthermore, antitumor immunity was restored in mice lack-
ing SLAMF4 + macrophages, increasing the sensitivity of 
tumors to anti-PD-L1 therapies [52].

Documentations have shown that increased expression 
of SLAMF can boost immunogenicity, hence improving 
treatment response. For example, SLAMF7 expressed on 
macrophages and tumor cells in lymphoma has been found 
to play a critical role in mediating anti-CD47-induced 
macrophage phagocytosis. Specifically, in the presence of 
anti-CD47, SLAMF7 synergizes with Mac-1 expressed on 
macrophages to promote phagocytosis of tumor cells [53]. 
Similarly, high expression of SLAMF8 on macrophages 

in gastric cancer was associated with enhanced cytotoxic 
capacity of T cells, resulting in an improved response to 
anti-PD-1 immunotherapy [54]. Using liver-specific knock-
out mice, SLAMF7 deficiency has been shown to induce 
immunosuppressive tumor microenvironment by increas-
ing M2 macrophage infiltration and polarization, enhancing 
PD-1 expression on CD8 + T cells leading to immune check-
point blockade resistance and HCC growth and metastasis 
[55] (Fig. 2).

SLAM family receptors‑mediated interaction 
between tumor cells and Myeloid‑derived 
suppressor cells (MDSCs) in TME

MDSCs are regarded as one of the potent immunosuppres-
sive cells known to promote tumor progression by sup-
pressing the antitumor functions of T cells [3, 56]. This 
immunosuppressive capacity of MDSCs is in part attrib-
uted to the expression of SLAMF in the tumor microen-
vironment [57, 58]. In breast cancer, high expression of 
SLAMF5 was detected on MDSCs derived from human 
peripheral blood mononuclear cells (PBMCs) and vari-
ous organs of tumor-bearing mice [59]. Functionally, high 
SLAMF5 + MDSCs impaired the proliferation of CD8 + T 
cells [59]. In multiple myeloma (MM), macrophage inhibi-
tory factor (MIF) secreted by MM cells enhanced SLAMF5 
expression in the tumor microenvironment to facilitate 
tumor progression [22]. Delving further, upregulation of 
SLAMF5 induced high expression of PD-L1 expression on 
MDSCs, which in turn impaired the cytotoxic capacity of 

Fig. 2   SLAM family receptors mediate interaction between tumor 
cells and macrophages in TME. A, B Tumor cells induced M1 mac-
rophages to express SLAMF7 and SLAMF8 to improve the efficacy 
of anti-PD-1 and anti-CD47 respectively. C M2 macrophages induced 
by SLAMF3 and SLAMF4 derived from tumor cells suppressed 

phagocytosis. D Tumor cell-induced M2 macrophage expressed 
SLAMF4 to foster immunosuppression. D, E Also, SLAMF6 and 
SLAMF7 derived from tumor cells induced M2 macrophages to 
express SLAMF6 and SLAMF7, leading to tumor growth and immu-
nosuppression respectively
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CD8 + T cells. Additionally, interfering with SLAMF5 func-
tions using anti-SLAMF5 antibody blocking in vivo sup-
pressed MDSCs infiltration, and enhanced the anti-tumor 
functions of CD8 + T cells, thus attenuating tumor growth 
[22]. In clinical samples from neck and head squamous cell 
carcinoma (HNSCC), high expression of SLAMF4 corre-
sponded to high expression of PD-1 + T cells demonstrat-
ing, an exhausted phenotype [60]. Additionally, SLAMF4 
was found to be highly expressed on MDSCs and DC 
cells, and this was associated with increased expression of 
PD-L1 and immunosuppression [60]. In established syn-
geneic tumors, therapeutic inhibition of SLAMF4 using 
monoclonal SLAMF4 antibody increased CD8 + T cell 
infiltration which resulted in impaired tumor growth [60]. 
Using a colon cancer mouse model, Sugita et al. showed 
that SLAMF2 + polymorphonuclear neutrophils (PMNs)-
MDSCs contributed significantly to tumor dissemination to 
the peritoneal and that in vivo depletion of PMN-MDSCs 
using anti-Ly6G monoclonal antibody increased antitumor 
capacity of CD4 + and CD8 + T cells, hence inhibiting peri-
toneal dissemination [61].

SLAM family receptors‑mediated interaction 
between tumor cells and Natural Killer (NK 
cells) in TME

NK-mediated cytotoxicity against tumor cells can be regu-
lated by SLAMFs expressed on either tumor cells or NK 
cells. This has not only revealed the critical role of SLAMFs 
in NK immunity regulation but has provided the rationale for 
evaluating SLAMFs as biomarkers for NK cell-based cancer 
immunotherapies [62].

Accumulating studies have shown that upregulation of 
SLAMFs in the tumor cells improves the killing abilities 
of NK cells, and this has been shown across several can-
cer types. In non-small cell lung cancer cells (NSCLC), 
high expression of SLAMF4 in cancer cells renders them 
more susceptible to NK-mediated killing of tumor cells 
[63]. Mechanistically, SLAMF4 expression in cancer cells 
mediated a stable contact between NSCLC and NK cells 
which enhanced the efficient killing of cancer cells [63]. 
Furthermore, inhibiting SLAMF4 impaired the killing of 
tumor cells by NK cells [63]. Consistently, low levels of 
SLAMF1 and SLAMF7 in chronic lymphocytic leukemia 
(CLL) patients were found to be associated with decreased 
degradation of NK cells suggesting anti-tumor suppression. 
Delving further, overexpression of SLAMF1 and SLAMF7 
in CLL cells boosted NK-mediated cytotoxicity against CLL, 
hence reducing their proliferation [64]. According to Sun 
et al. transmembrane 4 L six family member 5 (TM4SF5) 
can promote HCC by inducing NK cell exhaustion [65]. 
Notably, TM4SF5 expression in HCC cells downregulated 

stimulatory ligands and receptors associated with NK cell 
cytotoxicity including SLAMF6, SLAMF7 and major his-
tocompatibility complex 1 related chain (MICA) leading to 
tumor progression [65]. Furthermore, TM4SF5 suppression 
recovered these receptor ligands and boosted the cytotoxic-
ity capacity of NK cells against HCC cells [65]. In adult 
T cell leukemia/lymphoma (ATLL), IL2/STAT5-mediated 
downregulation of SLAMF4 rendered cancer cells resistant 
to NK cytotoxicity [62]. Similarly, Huang et al. showed that 
TGF-β derived from leukemia can downregulate SLAMF4 
expression on the surface of leukemia cells to promote their 
escape from NK cell-killing [66]. Furthermore, choriocar-
cinoma cells lacking SLAMF4 escape killing by NK cells 
[67]. Furthermore, AML1-ETO/P300-mediated acetylation 
can increase the expression of SLAMF2 in acute myeloid 
leukemia cells (AML) to boost NK cell-killing of AML cells 
[68], supporting the notion that downregulation of SLAMF2 
on the surface of AML cells can promote their escape from 
NK-mediated immune surveillance [69].

On the other hand, the upregulation of SLAMFs in tumor 
cells impairs the cytotoxic capacity of NK cells. According 
to Hosen et al., high expression of SLAMF2 in multiple 
myeloma cells promotes tumor growth. Additionally, treat-
ing mice with anti-SLAMF2 enhanced antibody-dependent 
cell-mediated cytotoxicity (ADCC) and complement-
dependent cytotoxicity (CDC) of NK cells against MM cells 
[70]. The cytotoxic capacity of NK cells can be impaired 
by monocytes expressing SLAMF2 [71]. According to Wu 
et al., monocytes infiltrating HCC cells express high levels 
of SLAMF2 and the exposure of these monocytes to NK 
cells induced their exhaustion. Furthermore, in vitro experi-
ments showed that blocking SLAMF2 ligand SLAMF4 on 
NK cells attenuated NK cell dysfunction [71]. Consistent 
with the above, clinical samples from clear cell renal carci-
noma patients showed overexpression of inhibitory pheno-
type including PD-1 and SLAMF2 [72] in both circulating 
and tumor-infiltrating NK cells, suggesting anti-tumor sup-
pression (Fig. 3).

SLAM family receptors‑mediated interaction 
between tumor cells and T cells in the TME

Evidence has shown that SLAM family receptors expressed 
either by tumor cells or T cells can suppress antitumor 
function, hence promoting tumor progression. Specifically, 
SLAMFs are critically involved in the exhaustion of T cells.

In melanoma, leukemia, and lymphoma cells, inhibi-
tion of SLAMF6 reversed the exhausted phenotype of 
PD1 + T cells resulting in tumor regression [73]. Delv-
ing deeper, a study has found the constitutive expres-
sion of SLAMF6 on CD8 + T cells to be associated with 
impaired CD8 + T cell-mediated killing of tumors, thus 
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promoting tumor growth [74]. Similarly, Hajaj et al. have 
CD8 + T cells expressing SLAMF4 produce low levels of 
IFNγ and IL-2, demonstrating an exhausted phenotype 
[75]. In support of this, Chen et al. administered PD-1 
blockade therapy and anti-SLAMF4 in lung cancer sepsis 

model and found anti-SLAMF4 but not PD-1 blockade 
to be associated with improved survival [76]. According 
to Binsky et al., SLAMF5 activation protects CLL cells 
from apoptosis through upregulation of anti-apoptotic 
genes Bcl-2 and Mcl-1[20]. Through in vitro and in vivo, 
SLAMF5 activation induced PD-L1 expression, attenu-
ating antitumor activity of CD8 + T cells. Furthermore, 
incubation of CD8 + T cells with CLL cells deficient in 
SLAMF5 restored the cytotoxic capacity of CD8 + T cells 
[77]. A bioinformatic analysis in glioma has shown that 
high expression of SLAMF8 is associated with reduced 
overall survival and chemoresistance. Additionally, high 
expression of SLAMF8 correlated positively with T cell 
suppressive markers, such as PD-1, T cell immunoglobulin 
and mucin domain 3 (TIM-3), cytotoxic T lymphocyte-
associated protein (CTLA-4), B7 Homolog 3 (B7-H3), and 
PD-L2 [78].

On the other hand, SLAMF signaling can act as a T cell 
activator to promote tumor rejection. Using a human colon 
cancer model, Mehrle et al. found the adoptive transfer of 
SLAMF1 overexpressing lymphocytes can increase Th1 
response to suppress tumor growth [79]. In melanoma and 
hepatocellular carcinoma tumor bed, Zhang et al. found 
PD-1 + SLAMF6 + TIM3 to be associated with improved 
efficacy to anti-PD-1 blockade compared with termi-
nally exhausted tumor-infiltrating lymphocytes which are 
defined as PD-1 + SLAMF6-TIM3 + [80] (Fig. 4).

Fig. 3   SLAM family receptors mediate interaction between tumor 
cells and NK cells in TME. A Downregulation of SLAMF1, 
SLAMF2, SLAMF4, SLAMF6 and SLAMF7 in tumor cells impairs 
the cytotoxic capacity of natural killer cells. B Tumor cells can upreg-
ulate SLAMF2 on monocytes to impair the cytotoxic capacity of nat-
ural killer cells

Fig. 4   SLAM family receptors 
mediate interaction between 
tumor cells and T cells in TME. 
A SLAMF5 and SLAMF6 
released by tumor cells directly 
suppressed the cytotoxic capac-
ity of T cells. Also, Tumor cell-
induced SLAMF4 and SLAMF6 
on T cells suppressed their 
cytotoxic capacity. B Tumor 
cell-induced SLAMF1 and 
SLAMF6 on T cells enhanced 
their cytotoxic capacity
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Concluding remarks

This review has elucidated the role of SLAM family recep-
tors in tumor microenvironment interactions, particularly 
between tumor and immune cells. The insights have dem-
onstrated that some members of the SLAM family receptors 
can act as inhibitory immune checkpoints and can serve as 
a biomarker associated with the pathophysiology of solid 
and hematologic malignancies. Given the fact that cur-
rent immune checkpoint blockade therapies are designed 
to target receptor-ligand interaction, SLAM family recep-
tors represent an appealing strategy that can be combined 
with other immune checkpoint therapies to overcome tumor 
immune evasive mechanisms and inform the generation of 
novel immunotherapy approaches that can translated into 
the clinic.
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