
Vol.:(0123456789)

Clinical and Translational Oncology 
https://doi.org/10.1007/s12094-024-03594-2

RESEARCH ARTICLE

Unraveling the metastatic niche in breast cancer bone metastasis 
through single‑cell RNA sequencing

Xiangyu Li1  · Ziyu Gao1 · Meiling Yang2,3 · Ciqiu Yang4 · Dongyang Yang4 · Wenhui Cui1 · Dandan Wu5 · Jie Zhou5

Received: 23 February 2024 / Accepted: 1 July 2024 
© The Author(s), under exclusive licence to Federación de Sociedades Españolas de Oncología (FESEO) 2024

Abstract
Purpose Breast cancer (BRCA) is characterized by a unique metastatic pattern, often presenting with bone metastasis (BoM), 
posing significant clinical challenges. Through the study of the immune microenvironment in BRCA BoM offer perspectives 
for therapeutic interventions targeting this specific metastatic manifestation of BRCA.
Methods This study employs single-cell RNA sequencing and TCGA data analysis to comprehensively compare primary-
tumors (PT), lymph node metastasis (LN), and BoM.
Results and Conclusions Our investigation identifies a metastatic niche in BoM marked by an increased abundance of cancer-
associated fibroblasts (CAFs) and reduced immune cell presence. A distinct subtype (State 1) of BRCA BoM cells associated 
with adverse prognosis is identified. State 1, displaying heightened stemness traits, may represent aninitiation phase for BoM 
in BRCA. Complex cell communications involving tumor, stromal, and immune cells are revealed. Interactions of FN1, SPP1, 
and MDK correlate with elevated immune cells in BoM. CD46, MDK, and PTNinteractions drive myofibroblast activation 
and proliferation, contributing to tissue remodeling. Additionally, MDK, PTN,and FN1 interactions influence FAP+ CAF 
activation, impacting cell adhesion and migration in BoM. These insightsdeepen our understanding of the metastatic niche 
in breast cancer BoM.

Keywords Breast cancer · Bone metastasis · Single-cell RNA sequencing · Immune microenvironment · Myofibroblast-
immune interactions

Introduction

Breast cancer (BRCA) represents a formidable global public 
health challenge, taking the forefront in 2020 as the preemi-
nent global cancer. Approximately 5% of BRCA patients 
manifest bone metastases (BoM) at the initial diagnosis, 

with an elevated 75% risk of developing BoM over the sub-
sequent decade [1]. Advanced BRCA exhibits a strikingly 
high incidence of BRCA BoM, ranging from 65 to 75%. 
Notably, bone tissue emerges as the primary site for distant 
metastasis in BRCA, affecting 60% to 75% of all metastatic 
BRCA cases, particularly in hormone receptor-positive 
BRCA patients [2]. However, due to pathophysiological 
impairment and lack of specificity, therapeutic agents are 
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difficult to accumulate in metastatic bone [3]. Consequently, 
the analysis of pathological features and related biological 
parameters of bone metastases proves invaluable for pre-
dicting patient survival rates and recurrence risks. This pro-
found understanding not only underscores the critical need 
for effective therapeutic strategies but also sheds light on the 
intricate interplay between BRCA and its metastatic cascade.

Main treatment strategy for BoM is to inhibit the growth 
of tumor cells, while ignoring the influence of the tumor 
stromal microenvironment (TSM) on the progression of BoM 
[4]. The intricate landscape of the tumor microenvironment 
(TME) is composed of diverse non-cellular factors and a 
myriad of cell types, including cancer-associated fibroblasts 
(CAFs), immune cells, endothelial cells, pericytes, and 
adipocytes. The multifaceted crosstalk among tumor, 
stromal cells, and immune cells not only underlies 
treatment resistance but also propels tumor progression 
and progression to overt BoM [3]. Hence, a nuanced 
comprehension of these extensive interactions assumes 
paramount importance in advancing the efficacy of tumor 
treatments. Previous investigations have unveiled that CAFs, 
predominantly activated fibroblasts influenced by the tumor, 
play instrumental roles in propelling BRCA progression. 
Their involvement spans a spectrum of functions, including 
fostering tumor cell proliferation, facilitating cancer cell 
invasion and metastasis, orchestrating extracellular matrix 
remodeling and deposition, promoting angiogenesis, 
instigating drug resistance, generating circulating CAFs 
(cCAFs), and secreting pro-tumor factors. Notably, CAFs 
contribute to the establishment of an immunosuppressive 
microenvironment, thus evading immune surveillance [5–8]. 
These insights, drawn from prior studies, underscore the 
pivotal role of CAFs in shaping the complex intercellular 
network within the TME, illuminating potential avenues for 
therapeutic interventions.

As predominant stromal constituents within the TME, 
CAFs intricately engage in dynamic dialogues with diverse 
immune cells. Employing a variety of paracrine mechanisms, 
CAFs meticulously secrete soluble factors that efficaciously 
impede anti-tumor immune responses. Playing a pivotal role, 
CAFs are central to the recruitment of Tumor-Associated 
Macrophages (TAMs), fostering a pro-tumor phenotype. In 
addition, they contribute significantly to the recruitment and 
differentiation of Tumor-Associated Neutrophils (TANs). In 
advanced tumor stages, TANs facilitate metastasis through 
extracellular trap release, immune response suppression, and 
production of cytokines and proteases. Furthermore, CAFs 
actively promote the migration and generation of Myeloid-
Derived Suppressor Cells (MDSCs) via the secretion of 
cytokines and chemokines, exerting immunosuppressive 
effects on acquired and innate immunity. Integral to immune 
suppression, CAFs play a key role in converting  CD4+ T 
cells to Regulatory T cells (Tregs) and T Helper lymphocytes 

(Th) cells to Th2 cells. By regulating the differentiation and 
maturation of Dendritic Cells (DCs), CAFs inhibit antigen 
presentation, thus limiting T-cell activation. Moreover, 
CAFs hinder the infiltration of Cytotoxic T Lymphocytes 
(CTLs) into tumors, attenuating their tumoricidal potential. 
The intricate orchestration of these immunosuppressive 
mechanisms by CAFs, encompassing upregulation of 
immune checkpoint molecules, extracellular matrix 
remodeling via collagen, fibronectin, MMPs, and activation 
of the FAK signaling pathway, underscores their central 
role in mediating tumor immune escape through metabolic 
reprogramming and the production of immunosuppressive 
metabolites [9–16]. However, the precise involvement of 
CAFs in BRCA BoM remains elusive.

In this study, we utilized single-cell RNA sequencing 
(scRNA-seq) and conducted an extensive analysis of The 
Cancer Genome Atlas (TCGA) data. Through a comparative 
evaluation of primary tumors (PT), lymph node metastasis 
(LN), and bone metastasis (BoM), our investigation reveals 
a distinctive metastatic niche characterized by an increase in 
CAFs and a reduction in immune cell populations in BoM. 
Notably, we identified a unique subtype of BRCA BoM 
cells strongly associated with an adverse prognosis. Our 
analysis spans the exploration of genes, signaling pathways, 
and variations in the immune microenvironment across PT, 
LN, and BoM. By uncovering intricate cellular dialogues 
among tumor, stromal, and immune cells, we pinpoint 
pivotal interactions involving FN1, SPP1, and MDK that 
correlate with an augmented presence of immune cells in 
BoM. These findings provide insights into the complexities 
of the immune microenvironment in BRCA BoM and offer 
perspectives for therapeutic interventions targeting this 
specific metastatic manifestation of BRCA.

Materials and methods

Data acquisition

This study obtained approval from the Medical Ethics 
Committee of the Affiliated Cancer Hospital & Institute of 
Guangzhou Medical University, and all subjects provided 
informed consent preoperatively. Two separate data sets 
were employed for the scRNA-seq analysis.

Immunohistochemistry (IHC) staining assays were 
performed on formalin-fixed, paraffin-embedded tissue 
blocks retrieved from one BRCA BoM case in the eleventh 
thoracic vertebra after a thorough review of archived 
materials. This BoM data set included the expression 
profiles of 32,738 genes across 9181 individual cells.

The data set, GSE225600, was sourced from the Gene 
Expression Omnibus (GEO, https:// www. ncbi. nlm. nih. gov/ 

https://www.ncbi.nlm.nih.gov/geo
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geo) on October 17, 2023. It encompassed gene expression 
data from a total of 81,683 cells across four PT and their 
corresponding four paired LN, providing insights into the 
expression patterns of 36,601 genes.

Bulk data for BRCA patients were acquired from The 
Cancer Genome Atlas Genomic Data Commons (TCGA 
GDC) via UCSC Xena (https:// xenab rowser. net/, accessed 
on 2023/12/10, cohort: GDC TCGA Breast Cancer). This 
gene expression data set included count data for 60,488 
genes across 1217 samples. In addition, survival data for 
1260 BRCA samples and clinical data for 1248 BRCA 
samples were obtained from the same source.

Single‑cell RNA‑seq data preprocessing

High-quality sequencing reads were processed using “Cell 
Ranger” (version: 3.0.2) for tasks including sequence 
alignment, filtering, barcoding, and unique molecular index 
counting. The analysis utilized the hg19 reference genome. 
Subsequent scRNA-seq data examination was performed 
with the "Seurat" package (version: 5.0.1) in R software 
(version: 4.3.1) (https:// satij alab. org/ seurat/).

The analysis proceeded through several stages, including 
data quality control, normalization, and differential gene 
expression analysis. Each scRNA-seq data set underwent 
rigorous filtering to exclude cells with fewer than 200 
genes or more than 10% mitochondrial gene expression. In 
addition, genes detected in fewer than 10 cells were removed. 
Normalization was performed using the “NormalizeData” 
function with default parameters, followed by dimensionality 
reduction through principal component analysis (PCA), 
resulting in a 13-dimensional output for the two data sets.

Clustering analysis utilized the “FindClusters” function 
with resolutions of 10 and 7 for BoM and GEO data sets, 
respectively. The identification of doublets employed the 
“DoubletFinder” R package (version: 2.0.3; https:// github. 
com/ chris- mcgin nisuc sf/ Doubl etFin der). Batch effects were 
corrected using the "IntegrateData" function to integrate 
the two data sets. Two GEO data samples with insufficient 
cells were excluded, resulting in a final integrated data set 
of 40,333 genes in 34,375 cells from seven samples (3 PT, 
3 LN, and 1 BoM).

Cell clustering and annotation

The integrated data set values were normalized using z-score 
conversion via the “ScaleData” command. Highly variable 
genes were identified using the “FindVariableGenes” func-
tion with default parameters. Principal components were 
computed based on these selected genes and projected onto 
all other genes using the “RunPCA” function. Subsequently, 
the “FindNeighbors” and “FindClusters” commands were 

utilized to identify clusters of similar cells, creating a shared 
nearest neighbor map with a resolution empirically set.

In analyzing the integrated data set, principal components 
were utilized to capture heterogeneity, primarily reflecting 
distinctions in tissue compartments. Clustering based on the 
expression of cell type markers resulted in the categorization 
of four clusters: epithelial cells, endothelial cells, immune 
cells, and fibroblasts. The same analytical approach was 
employed for immune cells, identifying cell types by 
matching cluster-specific gene sets with known signature 
genes from relevant literature [17–24].

Clusters lacking significant marker gene expression were 
classified according to their most differentially expressed 
genes. This comprehensive method facilitated a detailed 
exploration of cellular diversity within the integrated data 
set, yielding insights into tissue-specific compartments and 
a variety of cell types within the examined samples.

Quantification of epithelial cell copy number 
variation

We employed the “infercnv” R package (v1.16.0) to assess 
copy number variation (CNV) in individual epithelial cells, 
using fibroblasts as reference normal cells. Setting a cutoff 
of 0.1 and enabling denoising, we computed CNV scores 
systematically for a comprehensive evaluation of copy 
number alterations in the epithelial cell population.

Identification and functional enrichment 
of differentially expressed genes

Differentially expressed genes (DEGs) were identified using 
the “FindMarkers” function within the “Seurat” R package, 
employing the Wilcoxon Rank Sum test with a log2 fold 
change threshold of 0.1. Stringent filtering criteria were 
applied, requiring an absolute average log2 fold change > 1 
and a p value < 0.05 to refine the results.

For Gene Ontology (GO) terms and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways enrichment 
analysis, the “clusterProfiler” R package (version: 4.8.3) 
was utilized. Significantly enriched GO terms and KEGG 
pathways were determined based on a q value < 0.05.

Cancer hallmark enrichment analysis employed a 
reference set of 50 gene sets from MSigDB (accessed on 
2023/11/01). Enrichment scores were computed using the 
“UCell” (v2.7.1; https:// github. com/ carmo nalab/ UCell) and 
“irGSEA” (v2.1.5; https:// github. com/ chuiq in/ irGSEA) R 
packages, providing a detailed exploration of the functional 
significance of differentially expressed genes in relation to 
cancer hallmarks.

https://www.ncbi.nlm.nih.gov/geo
https://xenabrowser.net/
https://satijalab.org/seurat/
https://github.com/chris-mcginnisucsf/DoubletFinder
https://github.com/chris-mcginnisucsf/DoubletFinder
https://github.com/carmonalab/UCell
https://github.com/chuiqin/irGSEA
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Pseudotime analysis and stemness inference

Pseudotime analysis using the “monocle” R package 
(v2.28.0) identified variable genes to delineate pseudotime 
stages, pinpoint trajectory differentiation genes, and 
scrutinize branch point gene alterations. This analysis 
revealed functional disparities among pseudotime stages, 
defining distinct BoM states. Stemness scores for each 
state, computed with established markers (OCT4, SOX2, 
NANOG), offered insights into associated stem cell-like 
characteristics.

Identification of markers for early stage BoM

To characterize state identities, we initiated the identification 
of DEGs specific to BoM state 1 using the “FindAllMarkers” 
function within the "Seurat" package. Significant genes were 
filtered based on a stringent threshold, requiring an absolute 
average log2 fold change exceeding 1.5 and an adjusted 
p value below 0.05. To further refine marker selection, 
we employed the R package “rpart” (version: 4.1.23) to 
construct a tree model, utilizing the method parameter 
and pruning the tree with “cp = 0.01”. This meticulous 
process resulted in the identification of markers specifically 
associated with the early state of BoM.

Prognostic values of BoM early state markers

We assessed the prognostic significance of identified markers 
in TCGA BRCA patients by calculating enrichment scores. 
These scores, obtained by multiplying gene expression 
values with weights assigned by a constructed tree model, 
were used to stratify patients into two groups based on 
median values. Prognostic effectiveness in predicting 
10-year survival was evaluated using R packages “survival” 
(version: 3.5–7) and “survminer” (version: 0.4.9). In 
addition, we investigated dynamic changes in these markers 
across various clinical features of TCGA BRCA samples.

Cell–cell interaction analysis

In examining BoM intercellular interactions, we employed 
the “CellChat” R package (v1.6.1; https:// github. com/ sqjin/ 
CellC hat/), tailored for carcinoma cells, immune cells, and 
fibroblasts. This tool includes a molecular signaling database 
with 60% paracrine/autocrine, 21% ECM-receptor, and 
19% cell–cell contact interactions. Through comprehensive 
cellular communication analysis, we gained valuable insights 
into intercellular communication networks, contributing to 
a nuanced understanding of diverse cell-type interactions 
during BRCA BoM development.

Clinical validation

Using the KM plotter (https:// www. kmplot. com/ analy sis/), 
we conducted a survival analysis of differentially expressed 
genes in the population of patients with osteosarcoma. 
Through the Kaplan–Meier analysis method, we obtained 
survival curves for the relevant genes.

Statistical analysis

All statistical analyses were conducted using R software 
(v4.3.1). Differentially expressed genes (DEGs) were iden-
tified using the Wilcoxon Rank Sum test with a log2 fold 
change threshold of 0.1 and an adjusted p value of < 0.05. 
Batch effect correction was performed using the “Integrate-
Data” function in Seurat. Functional enrichment analysis 
was conducted with significance thresholds set at q < 0.05. 
Cancer hallmark enrichment analysis was performed with 
enrichment scores calculated using the U-statistic, and sig-
nificance was determined by permutation tests. Pseudotime 
trajectory analysis was carried out, with genes identified as 
variable using a dispersion-based method, and the signifi-
cance of trajectory changes assessed using the likelihood 
ratio test. Survival analysis was conducted using log-rank 
tests. For cell–cell interaction analysis, signaling pathway 
enrichment was determined using permutation tests, with 
significance thresholds set at p < 0.01. Statistical significance 
was set at p < 0.05 unless otherwise stated. The flowchart 
shows the concise workflow of the research (Fig. 1).

Results

Single‑cell RNA‑seq profiling of BRCA primary 
tumor, lymph node, and bone metastasis

In elucidating BRCA BoM, we integrated two single-cell 
sequencing data sets and conducted a thorough analysis 
(Fig. 2A). Following rigorous quality control, we obtained 
transcriptome data from 34,375 cells, comprising 12,427 
PT cells, 15,740 LN cells, and 6208 BoM cells. Subse-
quent to dimension reduction, clustering, and cell annota-
tion (Fig. 2B–D), a predominant ratio of immune cells was 
observed in LN samples. Notably, a decrease in the ratio of 
immune cells, coupled with a noticeable increase in epi-
thelial cells and fibroblasts, was noted in comparison to PT 
and LN samples. This observation leads us to propose that 
immune cells and fibroblasts may have crucial roles in the 
BoM process.

Next, we employed the “infercnv” R package to infer copy 
number variations in epithelial cells. Comparative analysis 
with fibroblasts unveiled extensive mutations in epithelial 

https://github.com/sqjin/CellChat/
https://github.com/sqjin/CellChat/
https://www.kmplot.com/analysis/
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cells, indicating consistent characteristics with carcinoma 
across all epithelial cells (Fig. 2E).

Metabolic and immune signaling pathways 
up‑regulated in BRCA BoM

Utilizing the “FindMarkers” function in the “Seurat” R pack-
age, we identified DEGs in tumor cells originating from dis-
tinct BRCA types. Simultaneously, GSEA was performed, 
revealing significant enrichment of upregulated genes in the 
Toll-like receptor signaling pathway, PI3K/Akt/mTOR path-
way, and specific metabolic programs in BRCA cells from 
BoM, highlighting the pivotal roles of immune response and 
cell proliferation in BRCA BoM progression (Fig. 3A, B).

Employing pseudotime trajectory analysis on PT and BoM 
cells, excluding LN samples with insufficient tumor cells, 
revealed three distinct states in BRCA BoM progression 
(Fig. 3C, D). State 1, prominent at the trajectory's onset, 
exhibited the highest stemness score (Fig. 3E), while state 2, 
characterized by the lowest stemness score, predominated at 
the trajectory's conclusion. Functional enrichment analysis 
of up-regulated KEGG pathways in these states indicated 
that state 1 primarily engages in biological processes related 
to cell growth, development, proliferation, differentiation, 

and cell adhesion (Fig. 3F). As state 1 manifests in both 
PT and BoM samples early in the trajectory and displays 
heightened stemness traits, it is suggested to represent an 
initiation phase for BoM in BRCA.

Identification of marker genes for early stage BRCA 
BoM

The “rpart” R package was utilized to construct a classifi-
cation and regression tree for identifying pivotal genes in 
the progression of BRCA BoM. The recursive partitioning 
and regression tree revealed three marker genes (ZNF831, 
CTLA4, and GIMAP7) and their positions within the deci-
sion tree model (Fig. 4A). TCGA BRCA samples were 
scored based on gene expression in RNA-seq data and tree 
model-derived weights. BRCA samples were then catego-
rized into State 1 and non-State 1 based on the median score 
(Fig. 4B). Kaplan–Meier analysis demonstrated a signifi-
cantly lower overall survival for BRCA patients in State 1 
compared to non-State 1 (Fig. 4C).

BRCA status distribution across clinical features exhib-
its variable State 1 percentages (Fig. 4D), indicative of 
dynamic BRCA progression. This implies potential for 

Fig. 1  Detailed Flowchart of the Research Design, Implementation, 
and Analysis Process. Data collection: This stage involves the acqui-
sition and preparation of data. Quality control: Ensuring the integrity 
and reliability of the collected data. Data combination: Integrating 
different data sets to create a comprehensive data set. Dimensionality 
reduction: Simplifying the data to highlight the most critical features. 
Cell annotation: Categorizing cells based on specific characteristics. 
Pseudotime analysis: Analyzing cellular developmental trajectories. 

Integration with clinical data: Correlating findings with clinical data 
for validation. Differential gene expression analysis: Identifying dif-
ferentially expressed genes. Functional enrichment analysis: Under-
standing the biological processes and pathways involved. Cell-spe-
cific analysis: Investigating interactions and communications among 
various cell types, including immune, epithelial, endothelial, and 
fibroblast cells
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distant metastasis in primary tumor cells as BRCA advances, 
leading to subsequent transformation into BoM tumor cells.

Critical involvement of immune cells in BRCA‑driven 
BoM

To unravel the dynamics of immune cells in BRCA BoM, we 
employed re-clustering techniques and marker gene anno-
tations (Fig. 5A, B). Seven distinct immune cell clusters 
emerged, with two identified clusters devoid of significant 
immune cell type marker gene expression, highlighted by 
their highest DEGs. Analysis of immune cell percentages 
in PT, LN, and BoM revealed a notable increase in myeloid 
cells and a relative rise in cytotoxic NK-T cells in BoM 
(Fig. 5C). To gain comprehensive insights into the func-
tions of myeloid cells in BoM, we further re-clustered them 
into six distinct subsets termed TAM 1–6 (Fig. 5D). The 
bar plot illustrates that, except for TAM3, all clusters were 
predominantly present in BoM (Fig. 5E), actively engag-
ing in biological processes such as cell adhesion, immune 
response, and immune regulation (Fig. 5F).

We analyzed immune cell dynamics in BRCA BoM using 
re-clustering techniques and marker gene annotations (Fig. 5A, 
B), identifying seven immune cell clusters. Two clusters lacked 
significant immune cell marker gene expression, highlighted by 
their highest DEGs. Examination of immune cell percentages 
in PT, LN, and BoM indicated increased myeloid cells and a 
relative rise in cytotoxic NK-T cells in BoM (Fig. 5C). Further 
re-clustering of myeloid cells revealed six subsets (TAM 1–6) 
with all but TAM3 predominantly present in BoM, actively 
participating in cell adhesion, immune response, and immune 
regulation (Fig. 5D-F).

Deciphering immune cell interactions in BoM TME

In BoM, we utilized “CellChat” to assess immune cell 
impact on the TME. Numerous interactions were identi-
fied (Fig. 6A), highlighting predominant pathway presence 
(Fig. 6B). Our investigation unveiled that cytotoxic NK-T 
cells in BoM release CD8A, engaging in communication 

with B cells, naïve T cells, myeloid cells, regulatory T cells, 
and carcinoma cells through interaction with HLA-A, HLA-
B, and HLA-C (Fig. 6C), potentially augmenting immune 
responses in BoM.

BoM state 1 carcinoma cells primarily interact with 
cytotoxic NK-T cells, myeloid cells, and B cells (Fig. 6D). 
The engagement is facilitated by FN1, HLA genes, and 
MDK, interacting with their respective target genes. Notably, 
the MDK-NCL interaction (Fig. 6E) has a substantial impact, 
potentially suppressing the immune response. Concurrently, 
myeloid cells and B cells predominantly target BoM state 1 
tumor cells through interactions with FN1, SPP1, GRN, and 
MK, along with their target genes (Fig. 6F). The activation 
of signaling pathways by FN1 may contribute to cell 
survival, metastasis, and the progression of BoM (Fig. 6G).

Decoding fibroblast dynamics and interactions 
in BRCA BoM

In investigating fibroblast dynamics in BRCA BoM, we 
utilized re-clustering techniques and marker gene anno-
tations, revealing three distinct fibroblast cell clusters 
(Fig. 7A, B). Analysis of fibroblast proportions in PT, 
LN, and BoM indicated a notable increase in myofibro-
blast cells and  FAP+ inflammatory cells in BoM (Fig. 7C). 
Functional exploration demonstrated that myofibroblast 
cells and  FAP+ inflammatory cells in BoM are actively 
involved in processes such as cell proliferation, adhesion, 
and complement and coagulation cascades, as indicated by 
KEGG functional enrichment (Fig. 7D).

Fibroblast cell influence in BoM was evaluated using 
“CellChat”, revealing numerous interactions in BoM 
(Fig. 7E). Our investigation identified  FAP+ inflammatory 
cells releasing FN1, engaging in communication with 
carcinoma cells, myofibroblast cells,  FAP− inflammatory 
cells, and self-interactions (Fig. 7F).

In BoM, state 1 carcinoma cells engage primarily 
with myofibroblast cells and  FAP+ inflammatory cells 
(Fig. 7G), facilitated by MDK and CD46, activating their 
target genes (Fig. 7H). MDK-SDC1/SDC4 interactions 
play a significant role, potentially enhancing cell 
proliferation, angiogenesis, and epithelial-mesenchymal 
transition (EMT), promoting metastasis from the primary 
site (Fig. 7H). The overall survival of the high-expression 
group of MDK was significantly higher than that of 
the low-expression group (Fig.  7K). Simultaneously, 
myofibroblast cells and  FAP− inflammatory cells target 
BoM state 1 tumor cells through THBS, PTN, and NOTCH 
pathways (Fig.  7I). PTN activation may contribute 
to stimulating new blood vessel formation and tumor 
angiogenesis (Fig. 7J). The overall survival of the high-
expression group of PTN was significantly lower than that 
of the low-expression group (Fig. 7L).

Fig. 2  Single-cell RNA-seq Atlas of BRCA Primary Tumor and 
Metastasis. A Workflow overview illustrating the decoding of BRCA 
progression using single-cell RNA-seq (scRNA-seq). Single-cell sus-
pensions from PT, LN, and BoM were subjected to scRNA-seq using 
the 10 × Genomics platform. B A t-distributed Stochastic Neigh-
bor Embedding (t-SNE) plot, derived from integrated BRCA data 
(n = 34,375 cells), visually delineates principal cell types. C Propor-
tional representation of each cell type across different tumor types in 
BRCA is shown in a bar chart. D Dot plot presenting marker gene 
expression levels in indicated cell types. Dot size indicates the pro-
portion of cells expressing the marker within the group, while color 
represents marker expression levels. E Heatmap depicting results 
from “infercnv” provides insights into copy number variations across 
samples

◂
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Fig. 3  Functional Enrichment and Pseudotime Analysis. A Dot plot 
illustrating Gene Set Enrichment Analysis (GSEA) functional enrich-
ment results across BRCA types. Dot sizes correspond to gene set 
sizes, and colors indicate enrichment p values. B Heatmap presenting 
changes in cancer hallmarks within each BRCA tumor type. C Pseu-
dotime-ordered analysis of tumor cells from PT and BoM, with the 
spectrum of blue indicating the temporal order. D Pseudotime states 

are color-labeled, with each dot representing a single cell. E Bar plot 
displaying inferred stemness scores of pseudotime states. F Dot plot 
showcasing Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment results for each state, where dot size reflects the 
gene set size, and color indicates the p value of the result
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Fig. 4  BoM State 1 Markers Identification and Its Association with 
BRCA Clinical Features. A Decision tree model illustrating the 
identification of BoM State 1 markers. B Box plot displaying the 
expression levels of individual markers in The Cancer Genome Atlas 

(TCGA) BRCA samples. C Kaplan–Meier plot revealing significant 
differences between two BRCA states. D Bar plot illustrating the dis-
tribution of the two BRCA states across distinct clinical features
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Myofibroblast‑immune interactions in BRCA BoM 
progression

In examining cell communications between fibroblast cells 
and immune cells, numerous interactions were identified 
in the extracellular matrix (Fig. 8A). Quantitative analysis 
revealed a heightened frequency of interactions between 
myofibroblast cells and immune cells compared to other cell 
types (Fig. 8B). Notably, cytotoxic NK-T cells and myeloid 
cells were the predominant interactors with myofibroblast 
cells (Fig. 8C), facilitated by PTN, MDK, and LAMININ 
signaling pathways (Fig. 8D). Simultaneously, myofibroblast 
cells and  FAP+ inflammatory cells targeted myofibroblast 
cells through interactions involving PTN, MDK, and SPP1 
signaling pathways (Fig. 8E). The PTN-NCL interaction 
significantly influenced both incoming and outgoing inter-
actions with myofibroblast cells, potentially influencing 
cell proliferation, angiogenesis, metastasis, and resistance 
to apoptosis in cancer cells (Fig. 8F).

Discussion

The emergence of BoM is of significant prognostic 
importance in BRCA, underscoring the necessity to delve 
into the intricate pathogenesis and molecular regulatory 
networks governing this phenomenon. In this study, we 
undertook a comprehensive investigation of BRCA, with 
a particular focus on both LN and BoM. Our meticulous 
analysis provides valuable insights into the nuanced 
intricacies of BRCA progression, with special attention to 
the metastatic niche of BoM. Specifically, we observed a 
distinct elevation in CAFs alongside a reduction in immune 
cells within the bone metastatic microenvironment. These 
findings enhance our understanding of the disease and 
present potential avenues for therapeutic interventions.

Several recent studies have extensively explored the 
intricate microenvironments within BoM, shedding light 
on the niche that supports tumor colonization [25–27]. The 
dynamic interplay of tumor-stromal interactions orchestrates 

the progression from initial seeding to the development of 
overt macrometastasis. Consistent with these findings, our 
investigation into the early-stage colonization of breast 
cancer bone metastasis (BRCA BoM) aligns with the 
observed overexpression of heterotypic adherens junctions 
and an up-regulation of calcium influx. A pivotal outcome 
of our research is the identification of a distinct subtype 
of BRCA BoM cells. This specific subtype demonstrates 
a close correlation with the occurrence of BRCA BoM 
and serves as an indicator of an unfavorable prognosis. 
Through a comparative analysis of cancer hallmarks between 
BoM and PT, as well as LN, we unveiled a predominant 
upregulation of metabolic and Toll-like receptor signaling 
pathways in BoM. This highlights significant molecular 
distinctions in the metastatic microenvironment.

To gain deeper insights, we further stratified BoM into 
three distinct states using stemness scores. Intriguingly, 
State 1, characterized by the highest stemness, was found 
to coexist in both primary and metastatic sites, acting as 
the initiating point for BoM. KEGG functional enrichment 
analysis of State 1 underscored its involvement in critical 
biological processes, including cell growth, development, 
proliferation, differentiation, and cell adhesion. By 
comparing our findings with the conclusions drawn in recent 
publications [28], we contribute to the ongoing discourse on 
bone metastatic microenvironments. Our identification of 
a specific BRCA BoM cell subtype and the delineation of 
distinct functional pathways provide novel perspectives for 
understanding and potentially targeting the unique aspects 
of metastasis within the bone microenvironment.

Ma et  al. recently identified a specific subset of 
protumorigenic macrophages which derived from CCL2-
recruited inflammatory monocytes, promoting BRCA 
BoM in an IL-4R-dependent manner [29]. Our exploration 
has illuminated the intricate dynamics of communication 
between BRCA cells and immune cells, providing a nuanced 
understanding of the immune landscape. Employing distinct 
biomarkers for immune cell identification, we observed 
a significant upregulation of myeloid cells in BoM as 
opposed to PT and LN. Further elucidating the myeloid cell 
landscape through dimensionality reduction and clustering 
revealed that specific clusters of TAM were notably elevated 
in BoM. These clusters were found to predominantly engage 
in processes associated with cell adhesion and immune 
response, as substantiated by KEGG functional enrichment 
analysis.

Remarkably, our examination of cell–cell interactions 
has revealed a substantial augmentation in interactions 
specific to the formation of the metastatic niche within BoM. 
Noteworthy is the identification of Major Histocompatibility 
Complex class I (MHC-I) as a central mediator in facilitating 
communication between tumor cells and immune cells, 
as well as orchestrating intercellular interactions among 

Fig. 5  Immune Cell Annotation and Myeloid Cell Analysis. A Dot 
plot displaying marker gene expression in specified cell types, with 
dot size indicating the proportion of expressing cells and color rep-
resenting marker expression levels. B Utilizing t-SNE, a plot gener-
ated from integrated immune data visually delineates principal cell 
types. C Bar chart illustrating the proportional representation of each 
immune cell type across various BRCA tumor types. D Uniform 
Manifold Approximation and Projection (UMAP) plot depicts the 
primary cell types of TAM cells extracted from immune cell data. E 
Bar chart presenting the proportional representation of each TAM cell 
type across diverse BRCA tumor types. F Dot plot revealing Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
results for each TAM cluster, with dot size indicating gene set size 
and color denoting the p value of the result
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immune cells specifically within the BoM microenvironment, 
a phenomenon not as prominently observed in the PT or 
LN. Intriguingly, our focused analysis of interactions 
involving FN1, SPP1, and MDK with their target genes has 
yielded additional insights. These interactions were found 
to significantly contribute to an augmentation in myeloid 
cells, B cells, Naive T cells, and Cytotoxic T cells within 
the dynamic milieu of the BoM microenvironment. This 

intricately orchestrated interplay emphasizes the influential 
role of specific signaling pathways in shaping the immune 
landscape of BRCA BoM.

Our study brings forth a nuanced understanding of 
the roles played by cancer-associated myofibroblasts and 
inflammatory CAFs within the metastatic niche. Particularly 
in BoM, a significant augmentation of myofibroblasts and 
 FAP− inflammatory CAFs was observed in comparison 

Fig. 6  Interactions between BRCA Tumor Cells and Immune Cells. 
A Quantification of carcinoma cell and immune cell interactions in 
PT, LN, and BoM depicted in a bar plot. B Bar plot presenting the 
cell–cell interaction count for each signaling pathway in PT, LN, and 
BoM. C Dot plot visualizing cell–cell communication probabilities 
within the MHC-I and CD99 pathways. D Chord plot showcasing 
up-regulated signaling pathways originating from BoM state 1 carci-

noma cells and connecting to various immune cell types. E Dot plot 
revealing communication probabilities of BoM-specific pathways 
(MK, MHC-II, and FN1) from carcinoma cells. F Chord plot present-
ing up-regulated signaling pathways targeting BoM state 1 carcinoma 
cells from diverse immune cell types. G Dot plot demonstrating com-
munication probabilities of BoM-specific pathways (SPP1 and FN1) 
targeting carcinoma cells
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Fig. 7  Fibroblast Insights in 
BRCA BoM. A t-SNE-based 
dimensionality reduction 
clustering plot of fibroblasts. 
B Dot plot showcasing marker 
gene expression in specific cell 
types, with dot size indicating 
proportion and color denoting 
expression levels. C Bar chart 
illustrating the proportional 
representation of fibroblast 
cell types across diverse 
BRCA tumor types. D Dot 
plot revealing Kyoto Encyclo-
pedia of Genes and Genomes 
(KEGG) pathway enrichment 
in fibroblast clusters, with dot 
size indicating gene set size and 
color representing the p value. 
E Bar plot quantifying interac-
tions between carcinoma cells 
and fibroblasts in PT, LN, and 
BoM. F Dot plot visualizing 
cell–cell communication prob-
abilities within FN1, CD99, and 
LAMININ pathways. G Chord 
plot highlighting up-regulated 
signaling pathways originating 
from BoM state 1 carcinoma 
cells and connecting to various 
fibroblast cell types. H Dot plot 
displaying communication prob-
abilities of BoM-specific path-
ways (MK, CD46, ncWNT, and 
TGFb) from carcinoma cells. I 
Chord plot presenting up-regu-
lated signaling pathways target-
ing BoM state 1 carcinoma 
cells from diverse fibroblast cell 
types. J Dot plot demonstrating 
communication probabilities of 
BoM-specific pathways (THBS, 
PTN, and NOTCH) targeting 
carcinoma cells. K The survival 
curves of MDK using the KM 
plotter. L The survival curves of 
PTN using the KM plotter
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to PT and LN, while  FAP− inflammatory CAFs displayed 
a reduction. These identified myofibroblasts and  FAP+ 
inflammatory CAFs emerged as pivotal contributors, 
primarily involved in crucial cellular functions such 
as proliferation, adhesion, and extracellular matrix 
organization. The intricate interplay orchestrated by CD46, 
MDK, PTN, and their target genes emerged as a driving force 
behind the activation and proliferation of myofibroblasts, 
significantly contributing to tissue remodeling within 
BoM. Furthermore, the interactions facilitated by MDK, 
PTN, FN1, and their respective target genes were found to 
stimulate the activation and proliferation of  FAP+ CAFs, 
concurrently promoting cell adhesion and migration within 
the BoM microenvironment. Our in-depth exploration of 

immune-stromal cell communication unveiled critical genes, 
including PTN, MK, SPP1, and FN1. Through interactions 
with their target genes, these genes were implicated in 
fostering the activation and proliferation of myofibroblasts 
while concurrently playing a pivotal role in orchestrating 
inflammatory responses within the dynamic context of BoM. 
We performed clinical validation through the database and 
conducted survival analysis on the genes PTN, MK, MDK, 
SPP1, and FN1. The results indicated that among the five 
genes, MDK and PTN genes were significantly associated 
with the prognosis of osteosarcoma (p < 0.05). The 
overall survival of the high-expression group of PTN was 
significantly lower than that of the low-expression group. 
Conversely, the overall survival of the high-expression 

Fig. 8  The Intricate Interactions between Fibroblast Cells and 
Immune Cells. A Bar plot quantifies interactions between fibroblasts 
and immune cells across PT, LN, and BoM. B Visualization of up-
regulated signaling pathways in BoM using a chord plot. C Chord 
plot highlights up-regulated pathways originating from BoM myofi-
broblast cells, connecting with other cell types. D Communication 

probabilities of BoM-specific pathways (PTN, MK, and LAMININ) 
from myofibroblast cells portrayed in a dot plot. E Chord plot pre-
sents up-regulated signaling pathways targeting BoM myofibroblast 
cells from other cell types. F Dot plot illustrating communication 
probabilities of BoM-specific pathways (SPP1, PTN, and MK) target-
ing myofibroblast cells
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group of MDK was significantly higher than that of the low-
expression group.

In conclusion, our investigation has meticulously con-
structed a comprehensive single-cell map, providing a 
detailed portrayal of the metastatic niche throughout the 
spectrum of BRCA progression, encompassing in situ con-
ditions, LN, and BoM. The systematic delineation of the 
metastatic niche in BoM has uncovered distinctive features, 
unraveling the intricate mechanisms that govern the immu-
nosuppression induced by cancer cells upon metastasizing 
to the bone.

Supplementary materials

BoMrawData: The eleventh thoracic vertebra of the BRCA 
BoM case in the BoM data set contains expression profiles 
of 32,738 genes across 9181 individual cells.
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