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Abstract
Cold tumors lack antitumor immunity and are resistant to therapy, representing a major challenge in cancer medicine. 
Because of the immunosuppressive spirit of the tumor microenvironment (TME), this form of tumor has a low response to 
immunotherapy, radiotherapy, and also chemotherapy. Cold tumors have low infiltration of immune cells and a high expres-
sion of co-inhibitory molecules, such as immune checkpoints and immunosuppressive molecules. Therefore, targeting TME 
and remodeling immunity in cold tumors can improve the chance of tumor repression after therapy. However, tumor stroma 
prevents the infiltration of inflammatory cells and hinders the penetration of diverse molecules and drugs. Nanoparticles are 
an intriguing tool for the delivery of immune modulatory agents and shifting cold to hot tumors. In this review article, we 
discuss the mechanisms underlying the ability of nanoparticles loaded with different drugs and products to modulate TME and 
enhance immune cell infiltration. We also focus on newest progresses in the design and development of nanoparticle-based 
strategies for changing cold to hot tumors. These include the use of nanoparticles for targeted delivery of immunomodula-
tory agents, such as cytokines, small molecules, and checkpoint inhibitors, and for co-delivery of chemotherapy drugs and 
immunomodulatory agents. Furthermore, we discuss the potential of nanoparticles for enhancing the efficacy of cancer 
vaccines and cell therapy for overcoming resistance to treatment.
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Introduction

Cancer immunotherapy is known as an encouraging 
modality for the eradication of various types of malignan-
cies. However, its success is limited by the lack of immune 
cell infiltration and over-expression of co-inhibitory 
mediators [1]. Tumors with these properties are known as 
cold tumors. Cold tumors are marked by a hostile tumor 
microenvironment (TME), which suppresses the immune 
response and promotes tumor growth [2]. Therefore, there 
is a need for innovative approaches that can convert immu-
nosuppressive environment of cold tumors into an inflam-
matory milieu, which is known as hot tumor. Hot tumors 
are marked by a high degree of immune cell infiltration 
and a high concentration of inflammatory cytokines and 
anticancer molecules. These tumors are often responsive 
to immunotherapy and other therapy agents, and have a 
better prognosis compared to cold tumors [3]. Understand-
ing the properties of hot tumors is critical for developing 
effective strategies for their treatment. Therefore, sev-
eral researchers have focused on identifying new targets 
for immunotherapy and developing new approaches for 
enhancing the immune response in cold tumors [4].

Administration of different agents such as some spe-
cific drugs, adjuvants, and also nanoparticles have been 
proposed as promising tools for modulating immune 
responses and shifting cold tumors to hot tumors [5]. Nan-
oparticles are small, versatile, and can be engineered to 
target specific cells or tissues. They can also be designed 
to carry a variety of payloads, including drugs, natural 
products, and immunomodulatory agents [6]. The ability 
of nanoparticles to modulate TME and enhance immune 
cell infiltration makes them an attractive platform for can-
cer immunotherapy [7]. The usual forms of most chemo-
therapy drugs, adjuvants, and immunomodulatory agents 
have low bioavailability, fast clearance, and low penetra-
tion ability for solid tumors. Fast clearance can cause 
some side effects such as hepatotoxicity and nephrotoxic-
ity following using a high concentration of drugs [8, 9]. 
Therefore, normal tissue side effects can limit the usage 
of enough concentrations to overcome cancer resistance. 
Nanoparticles may also be performed for drug delivery 
of anticancer drugs without inducing serious impacts on 
critical normal tissues [10].

In this review article, we will explore the mechanisms 
underlying the ability of nanoformulations to modulate 
TME and enhance immune cell infiltration. We will also 
highlight recent advances in the design and development 
of nanoparticle-based strategies for shifting cold tumors 
to hot tumors. These include the use of nanoparticles for 
targeted delivery of immunomodulatory agents, such as 
cytokines, natural products, vaccines, and checkpoint 

inhibitors, and for co-delivery of chemotherapy drugs and 
immunomodulatory agents.

Tumor microenvironment (TME)

TME has substantial impacts on tumor development, thera-
peutic resistance, and suppression of immune responses. 
TME is a dynamic environment that consists of cancer cells 
with different potency, stromal cells, stem cells, extracellular 
matrix (ECM), vasculature, and different types of immune 
cells [11]. The interactions among these components are 
tightly regulated and contribute to the cancer expansion [12]. 
Cancer cells are the primary component of the TME and are 
responsible for driving tumor growth and metastasis. These 
cells have acquired several genetic and epigenetic modifica-
tions that allow them to evade immune surveillance and pro-
liferate uncontrollably [13]. Cancer cells also secrete a vari-
ety of factors that modulate the TME, including cytokines, 
chemokines, growth factors, and extracellular vesicles [14, 
15]. Stromal cells are another important component of the 
TME and consist of fibroblasts, myofibroblasts, adipocytes, 
endothelial cells, and mesenchymal stem cells. These cells 
provide structural support to the tumor and secrete a vari-
ety of factors that expand tumor and render metastasis [16]. 
Stromal cells also shape the ECM, a network of proteins, 
such as collagen and fibronectin, and carbohydrates that 
shape the tumor stroma [17].

In addition to the mentioned stromal components, TME 
also includes a variety of immune cells, such as diverse sub-
sets of T and B cells, macrophages, dendritic cells (DCs), 
natural killer (NK) cells, and neutrophils. CD8 + T lympho-
cytes, DCs, and NK cells are central players in detecting 
and removing malignant cells [18]. Cytotoxic CD8 + T lym-
phocytes (CTLs) are effector type of T cells that maintain 
the heart of adaptive immunity against cancer. These cells 
identify and destroy neoplastic cells by recognizing specific 
antigens expressed by these cells. Antigen presentation 
involves the identification and uptake of tumor antigens by 
DCs, which then present them to CD8 + T cells. This process 
is associated with the engagement among the T cell receptor 
(TCR) on CD8 + T cells and the major histocompatibility 
complex (MHC) class I molecules on the surface of DCs 
[19]. After antigen presentation, CD8 + T cells undergo 
expansion and differentiation into CTLs. This process is 
regulated by a complex network of cytokines and other 
signaling molecules, including IL-2, interferon-γ (IFN-γ), 
and tumor necrosis factor-α (TNF-α) [20]. These cytokines 
promote the activation, proliferation, and differentiation of 
CD8 + T cells, allowing them to mount an effective immune 
response against cancer [21]. DCs and also M1 macrophages 
are specialized antigen-presenting cells (APCs) that capture 
and present antigen to immature CD8 + T cells [22]. DCs 
express a variety of pattern recognition receptors (PRRs) 
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that allow them to recognize specific molecular patterns 
associated with cancer cells, including damage-associated 
molecular patterns (DAMPs). Toll-like receptors (TLRs) 
are the best-known RRRs [23, 24]. In addition to antigen 
presentation, DCs also express and liberate cytokines, such 
as IL-12, IL-15, and IL-18, which expand the differentiation 
of CD8 + T cells into CTLs. DCs can also induce the dif-
ferentiation of CD4 + T helper cells, which provide support 
for CTLs by liberating IL-2 and IFN-γ [25].

NK cells are the best-known innate immune cells that 
find and kill tumor cells without the need for APCs. These 
cells use cytotoxic granules containing perforin and gran-
zymes, as well as the activation of death receptors on the 
surface of tumor cells [26]. NK cells express a variety of 
activating and inhibitory molecules that provide the differ-
entiation of usual and abnormal cells [27]. NK cells can be 
triggered by the lack of MHC I molecules, which is a com-
mon mechanism used by cancer cells to evade recognition 
by CD8 + T cells [28]. The interactions between CD8 + T 
lymphocytes, DCs, and NK cells in TME are complex and 
dynamic. These cells work together in a coordinated manner 
to detect and eliminate tumor cells, and their activity is regu-
lated by numerous cellular and molecular interactions [29]. 
In TME, these mechanisms can be disrupted or dysregu-
lated, leading to immune evasion and tumor progression. For 
instance, DCs may express some co-inhibitory molecules, 
such as indoleamine 2,3-dioxygenase (IDO), programmed 
death ligand 1 (PD-L1), and some others [30].

Tregs are the suppressive subset of CD4 + T cells that 
restrain immune responses. These cells can recruited to the 
TME following the liberation of some specific chemoattract-
ants [31]. MDSCs are other prominent suppressor cells in 
TME. These cells can also be recruited to the TME after 
the liberation of some chemokines [32]. Similar to these 
cells, some forms of neutrophils and macrophages can 
repress immune responses by NK cells and CTLs. Neutro-
phils and macrophages have dual effects on tumor growth. 
M1 alternative macrophages and N1 neutrophils can render 
immune activity by liberating inflammatory cytokines and 
phagocytosis of malignant cells [33, 34]. However, tumor-
associated neutrophils (TANs) and tumor-associated mac-
rophages (TAMs) repress the immune system responses and 
expand to the proliferation of malignant cells by releasing 
anti-inflammatory cytokines and growth factors [35].

Vasculature is another substantial component of the 
TME, providing essential nutrients and oxygen to the tumor. 
However, the vasculature in tumors is often abnormal, with 
leaky vessels and irregular blood flow [36]. This can lead to 
hypoxia, which is a hallmark of the TME. Hypoxia expands 
tumor growth and metastasis by rendering angiogenesis, 
altering gene expression, and suppressing the immune 
response [37, 38]. Hypoxia is associated with the regula-
tion of hypoxia-inducible factors (HIFs), which regulate a 

wide range of metabolic pathways and neovascularization in 
the tumor. Hypoxia and also irregular metabolism of cancer 
cells, which is known as the Warburg effect, render the pro-
duction of acidic metabolites such as lactate [38]. However, 
the regulation of some transporters such as proton pumps in 
the tumors can also enhance the acidity of TME [39].

Cold tumors

Cold tumors are a subset of tumors that are characterized by 
an absence of an inflammatory response. These tumors are 
often resistant to immunotherapy, chemotherapy, and radio-
therapy, and have a poor prognosis [4]. Understanding the 
properties of cold tumors is critical for developing effective 
strategies for their treatment. One of the key properties of 
cold tumors is their lack of immune cell infiltration. This 
is due to several factors, including the absence of tumor 
antigens that can be recognized by immune cells, the pres-
ence of immunosuppressive factors in TME, and defects in 
the recruitment of inflammatory cells [40]. Tumor antigens 
are proteins that are regulated by tumoral cells and can be 
recognized by immune cells, as explained earlier. However, 
many cold tumors do not express these antigens, making 
them invisible to the immune system. This is often due to 
defects in the antigen processing and presentation machin-
ery, which is responsible for presenting tumor antigens to 
immune cells [41]. Cold tumors also express a variety of 
immunosuppressive factors that interfere with the function 
of CTLs. These factors include cytokines such as TGF-β and 
IL-10, which promote the differentiation and activation of 
Tregs and MDSCs [42]. Another factor that contributes to 
the lack of immune cell infiltration in cold tumors is defects 
in chemokine expression or defects in the adhesion mol-
ecules that are crucial for immune cell trafficking. In addi-
tion, cold tumors often lack the inflammatory signals that 
are essential for NK cell activation [43]. High infiltration of 
Tregs and MDSCs is associated with overexpression of co-
inhibitory molecules, such as immune checkpoints, such as 
PD-L1 [44]. Stroma rigidity and stiffness in tumors can also 
create a barrier and cause T-cell exclusion [45]. On the other 
hand, resident NK cells and CD8 + T cells may be remodeled 
by the released growth factors and suppressive cytokines 
such as TGF-β. A high presence of TGF-β in the tumors may 
reprogram NK cells and T cells toward pro-angiogenic cells. 
These cells also can’t attack immune cells and aren’t able 
to release enough inflammatory cytokines, such as TNF-α 
and IFN-γ [46]. As infiltrated effector T cells and NK cells 
are crucial for the response of tumors to immunotherapy, 
cold tumors have a low response to immunotherapeutic 
modalities such as ICIs [47]. In addition to their resistance 
to immunotherapy, cold tumors also have a poor prognosis. 
This is due to their aggressive behavior and their ability to 
invade to distant organs [48]. Cold tumors often have a high 
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mutation rate, which can lead to the development of drug 
resistance and the emergence of new tumor clones [49].

Some types of the cold tumors include pancreatic can-
cer, prostate cancer, ovarian cancer, and glioblastoma [50]. 
Prostate cancer is common in males, with a unique profile 
that often evades immune detection [51]. The prevalence 
of prostate cancer correlate with lifestyle factors, such as 
smoking, which are more common in men [52]. Ovarian 
cancer is a female-specific cold tumor that is notorious for 
its silent progression and immune evasion [4]. Glioblastoma 
also occurs more frequently in males, with incidence peak-
ing in the elderly population [53]. These patterns underscore 
the importance of considering gender-specific factors in the 
study and treatment of cold tumors. Hormonal influences, 
genetic predispositions, and environmental exposures con-
tribute to the complex interplay that determines the epide-
miology of these cancers [54, 55].

Hot tumors

Hot tumors are another shape of tumors that are known by 
a high infiltration of NK cells and CTLs that provide an 
inflammatory milieu. These tumors are often responsive to 
immunotherapy and have a better prognosis compared to 
cold tumors [56]. One of the key properties of hot tumors is 
their high degree of infiltration of NK cells and CTLs [57]. 
These tumors are recognized by the activity of DCs and the 
presence of tumor antigens that can be recognized by imma-
ture CD8 + T cells [58]. On the other hand, the expression of 
immunosuppressive factors in hot tumors is lower compared 
to cold tumors [59]. The infiltration of NK cells and effec-
tor T lymphocytes in hot tumors provides an inflammatory 
environment that promotes the recruitment and activation of 
more anticancer immune cells. This is due to the secretion 
of specific chemoattractants and cytokines such as IFN-γ, 
IL-12, IL-2, TNF-α, etc. [60]. Hot tumors have often suit-
able response to immunotherapy due to high frequency of 
NK cells and CTLs [61]. In these tumors, ICIs can target the 
immune checkpoint molecules such as PD-1 and CTLA4 
that are expressed on the surface of infiltrated immune cells 
to prolong the generation of IFN-γ and TNF-α. By blocking 
these molecules, ICIs can unleash the antitumor immunity 
to remove malignant cells [62, 63].

In addition to their responsiveness to immunotherapy, 
hot tumors also have a better prognosis compared to cold 
tumors. This is due to their lower mutation rate and their 
lower propensity for metastasis [64]. Hot tumors often 
have a lower mutation rate compared to cold tumors, which 
reduces the likelihood of drug resistance and the emergence 
of new tumor clones. In addition, hot tumors often have a 
more localized growth pattern, which reduces the likelihood 
of metastasis to other parts of the body [65].

Examples of hot tumors include melanoma, non-small 
cell lung cancer (NSCLC), bladder cancer, and head and 
neck tumors [66]. Melanoma is known for its high mutation 
load and rapid proliferation [67]. NSCLC is characterized 
by a significant presence of immune cells [68]. Bladder can-
cer exhibits a strong immune response due to its neoantigen 
profile [69]. Head and neck cancers are often responsive 
to immunotherapy due to high T-cell infiltration [70]. The 
prevalence of these hot tumors varies widely. Melanoma 
and NSCLC, for example, are more common in populations 
with high exposure to risk factors, such as UV radiation and 
smoking, respectively [71, 72]. Bladder cancer and head and 
neck cancers also have lifestyle and environmental risk fac-
tors, such as exposure to certain chemicals, smoking, and 
human papillomavirus (HPV) infection [73, 74]. Rates of 
melanoma are slightly higher in males compared to females, 
possibly due to behavioral differences in sun exposure and 
protection [75]. NSCLC is more common in males, but the 
gap is closing as smoking rates in females have increased 
over time [76]. Bladder cancer is predominantly affects 
males, with a male-to-female ratio of about 3:1 [77]. Head 
and neck cancers are also more common in males, which 
may be linked to higher rates of tobacco and alcohol use 
[78]. (Fig. 1).

Treatment options for rendering inflammatory 
responses in the tumor

As explained, cold tumors have a low number of inflamma-
tory cells, such as Th1 and CD8 + T lymphocytes. However, 
anti-inflammatory cells such as Tregs, M2 macrophages, 
MDSCs, Th2 cells, and CAFs have a high activity in these 
tumors. Some therapeutic agents such as radiotherapy, some 
particular chemotherapy drugs, ICIs, and also photody-
namic and photothermal therapy may cause inflammatory 
responses in the tumors. ICIs, particularly anti-PD-L1 and 
anti-PD-1 agents, can repress the PD-L1/PD-1 axis, leading 
to more liberation of IFN-γ and TNF-α by CTLs [79]. The 
release of these cytokines not only renders apoptosis and 
tumor regression but also triggers other inflammatory cells, 
including Th1 cells, M1 macrophages, and NK cells [80]. 
However, experimental studies have suggested that treatment 
with an ICI such as an anti-PD-L1 or anti-PD-1 antibody 
may stimulate the regulation of other co-inhibitory mecha-
nisms such as CTLA4 and TIM-3 by DCs or other immune 
cells [81]. Therefore, some experiments have suggested dual 
blockade of immune checkpoints for improving the activity 
of CTLs and more release of inflammatory cytokines [82].

Radiotherapy and certain chemotherapy drugs such as 
cisplatin, anthracyclines, oxaliplatin, and cyclophosphamide 
have been observed to induce immunogenic cell death (ICD) 
and inflammatory responses in tumors, which can generate a 
"hot" environment within the tumor [83]. Radiotherapy and 
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also the mentioned drugs act by producing ROS and dam-
aging the DNA and other critical components of the cancer 
cells. These damages can induce various forms of regulated 
cell death, including apoptosis, ferroptosis, necrosis, and 
autophagy. Interestingly, these cell death mechanisms can 
trigger ICD, which involves the release of DAMPs from 
dying cancer cells [84, 85]. DAMPs act as danger signals, 
alerting the immune system to the presence of cellular dam-
age [86]. One key DAMP that is released during ICD is high 
mobility group box 1 (HMGB1). HMGB1 binds to receptors 
on DCs, macrophages, NK cells, and T lymphocytes, lead-
ing to more antigen presentation and higher inflammatory 
responses [87, 88].

Photodynamic therapy and photothermal therapy are 
other agents that can render ICD and maturation of DCs 
and CTLs in solid cancers. Photothermal and photodynamic 
therapy are both forms of cancer treatment that utilize light 
energy to induce cell death in tumors. Although they primar-
ily target tumor cells, they can also induce inflammatory 
responses in the TME [89, 90]. Photodynamic therapy uses 
photosensitizing agents that accumulate selectively in tumor 
tissues. Upon activation with light of a specific wavelength, 
photosensitizing agents generate a high concentration of 
ROS, such as singlet oxygen, which can cause direct dam-
age to tumor cells or initiate a cascade of events leading 
to their destruction. However, severe oxidative stress and 
necrosis following this form of therapy can render ICD and 
inflammatory responses [91]. Photothermal therapy uses 
photothermal agents, which generate heat upon exposure 

to specific wavelengths of light. These photothermal agents 
can be delivered to the tumor site through various meth-
ods, such as nanoparticle-based systems or laser-activatable 
molecules. When illuminated with laser light, photothermal 
agents convert light energy into heat, leading to thermal 
ablation of tumor cells. The heat generated by photother-
mal therapy can significantly increase the local temperature 
within the tumor. This thermal effect can cause stress and 
damage to tumor cells, leading to cell death. In addition, 
elevated temperatures can induce heat shock proteins and the 
release of DAMPs [92]. Both mentioned modalities can ren-
der inflammatory responses and also amplify the antitumor 
efficacy of other treatment options such as chemotherapy and 
immunotherapy [93, 94].

Nanoparticles in cancer therapy; types 
and properties for targeting tumors

Nanotechnology has suggested numerous intriguing 
approaches for the diagnosis, treatment, and prevention of 
cancer [95]. Nanoparticles, characterized by their dimen-
sions in the nanometer range, have demonstrated significant 
potential in cancer therapy owing to their distinctive attrib-
utes such as high surface area, reactivity, and the ability 
to traverse biological membranes [95]. This versatility and 
unique properties make nanoparticles an encouraging mean 
in cancer therapy, with vast potential for further exploration 
and innovation. As research in this domain progresses, it is 
anticipated that there will be more innovative applications 

Fig. 1   Schematic of cold tumors vs hot tumors. Cold tumors have 
low numbers of CTLs and high expression of immune checkpoints 
and pro-angiogenic factors. However, high numbers of CTLs in hot 

tumors can cause the release of antitumor cytokines and pro-apoptotic 
molecules for malignant cells. (Created with BioRender.com)
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of nanoparticles in cancer treatment. This section aims to 
explore various types of nanoparticles that can be harnessed 
in cancer therapy, encompassing inorganic nanoparticles 
such as metal nanoparticles, mesoporous nanoparticles, 
carbon nanoparticles, and organic nanoparticles includ-
ing micelles, polymeric nanoparticles, lipid nanoparticles, 
exosomes, dendrimers, and nanoemulsions.

Inorganic nanoparticles, a subset of nanocarriers, find 
utility in biomedicine, particularly for drug delivery. These 
nanoparticles are crafted from diverse inorganic agents such 
as metals, ceramics, and carbon [96]. Gold nanoparticles 
(AuNPs) stand out as one of the most renowned and appli-
cable metal nanoparticles in biomedicine. AuNPs have gar-
nered significant attention in cancer therapy because of their 
safety and distinctive physical characteristics [97]. They can 
be readily synthesized and modified with different molecules 
such as antibodies, peptides, or drugs for targeted delivery 
into tumors [98]. Moreover, they can elaborate radiother-
apy and photothermal therapy efficacy by absorbing light 
rays and converting them into heat to selectively destroy 
adjacent malignant cells [99]. In addition, AuNPs serve 
imaging purposes, enabling the detection and monitoring 
of tumors [100]. Iron oxide nanoparticles (IONPs) repre-
sent another category of metal nanoparticles that have been 
extensively examined in cancer research studies. IONPs 
can be employed for magnetic resonance imaging (MRI) to 
detect tumors and monitor treatment responses [101]. They 
can also be utilized for magnetic hyperthermia, where an 
alternating magnetic field is applied to generate high tem-
peratures within tumors and selectively eliminate malignant 
cells [102]. Furthermore, IONPs can be loaded with drugs 
or genes and targeted to specific tumor sites using magnetic 
targeting techniques [103]. Other metal nanoparticles such 
as silver and titanium nanoparticles have been developed for 
targeting cancer cells [104].

Mesoporous nanoparticles (MSNs) are silica-based nano-
materials with a high surface area and large pore volume 
that exhibit compelling properties for delivering anticancer 
agents [105]. The substantial surface area also allows for the 
adsorption of proteins, enzymes, or nucleic acids, further 
enhancing their therapeutic potential [106]. MSNs feature 
numerous pores on their surface, which can be modified to 
open under specific conditions. For instance, MSNs can be 
functionalized to release anticancer agents in a controlled 
manner in the low pH environment of tumors. The delivery 
of anticancer drugs using these nanoparticles can reduce the 
toxicity to other organs and release a high concentration of 
drugs within the tumor stroma [107]. Carbon nanoparticles, 
including carbon nanotubes, carbon dots, fullerenes, and 
graphene oxide, are among the major inorganic forms of 
nanoparticles and possess unique physicochemical proper-
ties that make them attractive for delivering cancer drugs 
[108]. Carbon nanotubes can be employed for targeted drug 

delivery and photothermal therapy [109]. They can also be 
functionalized with specific molecules or RNAs to target 
antigens expressed by neoplastic cells [110]. On the other 
hand, graphene oxide has demonstrated promise in gene 
delivery and photodynamic therapy, generating ROS upon 
irradiation with light to eliminate cancer cells [111].

In addition to inorganic nanoparticles, various forms 
of organic nanoparticles are employed for cancer therapy. 
These nanocarriers are crafted from biodegradable mole-
cules such as lipids and polymers [112]. Micelles, a preva-
lent form of organic nanoparticles, consist of amphiphilic 
molecules containing a hydrophobic core and a hydrophilic 
shell, enabling the encapsulation of water-insoluble anti-
cancer drugs [113]. Micelles provide a high solubility for 
these drugs, prolong the circulation time, and augment accu-
mulation in tumors through the enhanced permeability and 
retention (EPR) effect [114]. Polymeric nanoparticles are 
produced from natural or artificial polymers and can be tai-
lored to provide requirements for drug delivery [115]. These 
nanoparticles can encapsulate both hydrophobic and hydro-
philic drugs and exhibit controlled release properties [116].

Lipid nanoparticles, such as liposomes and solid lipid 
nanoparticles (SLNs), are among the most valuable organic 
nanoparticles for drug delivery [117]. Liposomes are vesicu-
lar structures composed of lipid bilayers that can encapsulate 
both hydrophobic and hydrophilic drugs [118]. SLNs, on the 
other hand, are solid particles composed of lipids that can 
carry hydrophobic agents [119]. They offer improved stabil-
ity and controlled release properties compared to liposomes 
[120]. Nanoemulsions represent another form of organic 
nanoparticles. Nanoemulsions are containing colloidal dis-
persions of oil and water. They have small size and high 
stability, which facilitate high capacity for hydrophobic or 
hydrophilic agents. Nanoemulsions can enhance the solu-
bility and bioavailability of drugs and improve their target-
ing of tumors through passive or active targeting strategies 
[121].

Exosomes and dendrimers serve as other organic nano-
carriers for drug delivery. Exosomes, naturally occurring 
extracellular vesicles that participate in intercellular com-
munication [122]. They can be isolated from various cell 
types, including cancer cells, and loaded with anticancer 
drugs or therapeutic nucleic acids [123]. Exosomes have 
shown promise in targeted drug delivery and immunother-
apy, as they can be modified to specifically target cancer 
cells and deliver therapeutic payloads [124]. Dendrimers, 
highly branched nanoparticles with a well-defined structure, 
can be synthesized from various polymers, such as polyami-
doamine (PAMAM) or polyethyleneimine (PEI) [125]. Den-
drimers can encapsulate drugs, genes, or imaging agents and 
be functionalized with targeting ligands for specific delivery 
to cancer cells. They have also shown potential in photody-
namic therapy and gene therapy [126] (Fig. 2).
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Strategies for shifting “cold” to “hot” tumors: 
potential of nanoparticles, products, and drugs

Shifting cold tumors to hot tumors is a major goal in cancer 
immunotherapy, as it can increase the efficacy of existing 
immunotherapies and expand the number of patients who 
can benefit from these treatments. In this section, we over-
view the different mechanisms for shifting cold to hot tumors 
and the potential of nanotechnology for this aim.

Inducing immunogenic cell death (ICD)

ICD is a form of cell death that elicits an immune response, 
leading to the activation of inflammatory processes. It is a 
crucial process in cancer therapy as it helps to enhance the 
efficacy of treatment and improve long-term outcomes [127]. 
Radiotherapy and chemotherapy drugs have been shown to 
induce ICD [128], therefore, understanding the cellular and 

molecular mechanisms behind this process in TME is essen-
tial for developing novel therapeutic strategies. The cellu-
lar and molecular mechanisms underlying immunogenic 
cell death in TME involve the interaction between dying 
cancer cells, immune cells, and TME components [129]. 
During ICD, dying cancer cells release DAMPs, including 
calreticulin, ATP, and HMGB1 [130]. Calreticulin is a key 
molecule involved in the recognition of dying cells by DCs. 
It is normally located in the endoplasmic reticulum (ER) 
and plays a role in protein folding and calcium homeostasis. 
However, during ICD, calreticulin can translocate to the cell 
surface, which facilitates their recognition and uptake by 
DCs [131]. ATP and other extracellular DAMPs also act as 
a "find me" signal, attracting DCs to the site of cell death, 
promoting the maturation of DCs. This activation leads to 
the upregulation of co-stimulatory molecules and the pro-
duction of pro-inflammatory cytokines, which are essential 
for the activation of T cells [132].

Fig. 2   Structure of well-known 
organic and inorganic nano-
carriers that can be used for 
targeting tumors. (Created with 
BioRender.com)
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Radiotherapy is a commonly used treatment modality for 
cancer. In addition to apoptosis, high doses of radiotherapy 
can induce ICD [133]. Nanoparticles may be utilized for ren-
dering ICD by radiotherapy. Metal nanoparticles are promis-
ing agents for inducing ICD in combination with radiother-
apy. These nanoparticles, such as gold, iron, and hafnium 
oxide nanoparticles, have high atomic numbers, which cause 
more absorption of X-rays and more production of ROS by 
radiotherapy [134, 135]. Radiotherapy in combination with 
hafnium oxide nanoparticles has been shown to induce 
immunogenic responses through a phenomenon called the 
abscopal effect [136]. This effect is triggered following ICD 
and the liberation of DAMPs in the tumor. The abscopal 
effect is associated with infiltration of CTLs in the tumors 
and also distant metastasis in other organs [137, 138]. These 
nanoparticles have shown safety and good treatment efficacy 
in clinical trial studies for both male and female [139, 140].

Several chemotherapy drugs have also been found to 
induce ICD. Anthracyclines such as doxorubicin and dauno-
rubicin are common drugs for various cancers [141]. These 
drugs induce DNA damage and disrupt cellular homeostasis, 
leading to the release of DAMPs [142]. Another example is 
oxaliplatin, a platinum-based chemotherapy drug used in 
the treatment of colorectal cancer. Oxaliplatin induces ICD 
through the activation of calreticulin [143]. One approach to 
utilizing nanoparticles for inducing ICD involves their use as 
carriers for chemotherapy drugs. Traditional chemotherapy 
drugs can induce ICD in certain cases, but their effective-
ness is often limited by poor tumor targeting and systemic 
toxicity. By encapsulating these drugs within nanoparticles, 
their delivery to the tumor site can be improved, resulting 
in higher concentrations of the drug within the tumor and 
reduced exposure to healthy tissues [144]. This targeted 
delivery can augment ICD by increasing the concentration 
of the drug within cancer cells, leading to more efficient cell 
death and release of DAMPs [145].

Various nanoformulations are available for the delivery of 
chemotherapy drugs into tumor stroma. These nanoformula-
tions have been examined in combination with immunother-
apy to amplify immune system activation by ICIs. This com-
bination can also provide prolonged antitumor immunity by 
blocking immune checkpoints after activation and matura-
tion of DCs and CTLs [146]. Nanoparticles can be designed 
to concentrate in the cancers through EPR effects and also 
activate targeting by functionalizing these nanoparticles by 
specific ligands [147]. Nanoparticles can also deliver a com-
bination of these drugs to amplify cancer cell killing without 
serious side effects in normal tissues. Guo et al. developed a 
polymeric nanocomplex containing fluorouracil (5-Fu) and 
oxaliplatin for rendering ICD and better elimination of colo-
rectal cancer cells. They showed that this nanocomplex ren-
ders ROS generation and ICD in tumors, thereby inducing 
a synergistic effect on the treatment outcome. In addition, 

this nanocomplex could significantly improve the therapy 
efficacy of anti-PD-L1 therapy [148]. Similar findings have 
been reported after treatment with doxorubicin–poly(lactic-
co-glycolic acid (PLGA)–polyethylene glycol (PEG) and 
anti-PD-L1 therapy [149]. This synergistic effect has also 
been reported following co-delivery of doxorubicin and a 
TLR7/8 agonist [150].

Photodynamic and photothermal therapies are other 
modalities that by which nanoparticles can induce ICD and 
subsequent immune responses [90]. Both these modalities 
offer the potential for targeted tumor therapy and alleviating 
damage to surrounding organs [151]. Nanoparticles used in 
these therapies can be designed with tailored properties to 
enhance their light absorption capacity, stability, biocompat-
ibility, and targeted delivery to TME [152]. For instance, 
gold nanoparticles have demonstrated exceptional ability to 
absorb light and convert it into heat for photothermal ther-
apy [153], while photosensitizers such as porphyrins can be 
delivered by different nanocarriers such as quantum dots, 
metal nanoparticles, graphene oxide, and MSNs have shown 
promise in photodynamic therapy [154]. Notably, the use of 
nanoparticles in photothermal therapy and photodynamic 
therapy has been shown to potentiate the induction of ICD, 
thus priming the immune system to recognize and attack 
cancer cells, which can significantly augment the efficacy 
of immunotherapy [155, 156] (Fig. 3).

Toll‑like receptor (TLR) agonists

The utilization of TLR agonists represents a compelling 
strategy in cancer immunotherapy aimed at triggering 
potent inflammatory responses by activating NK cells and 
CTLs [157]. TLR agonists have garnered significant interest 
due to their potential to induce a pro-inflammatory milieu 
within the TME and to bolster antitumor immune responses 
mediated by NK cells and CTLs [158]. One of the key 
mechanisms through which TLR agonists exert their effects 
involves the activation of DCs [159]. Upon recognition of 
TLR agonists, DCs undergo maturation, leading to increased 
antigen presentation. This maturation process primes the 
immune system for a heightened response, facilitating the 
activation and recruitment of NK cells and CTLs to the 
TME [160]. TLR agonists, by promoting DC maturation and 
enhancing antigen presentation, effectively prime CD8 + T 
lymphocytes for recognizing tumor-specific antigens and 
mounting robust immune responses. This activation and 
amplification of CD8 + T lymphocytes within the TME drive 
the targeted killing of cancer cells, ultimately contributing to 
the containment and eradication of the tumor [161]. Some 
TLR agonists have been tested and utilized in preclinical 
and clinical studies. Imiquimod is a synthetic TLR7 agonist 
that has been investigated for its immunostimulatory prop-
erties in cancer therapy. Imiquimod has been utilized in the 
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treatment of skin cancers, where it induces ICD and triggers 
antitumor immune responses within the TME. Resiquimod 
is a TLR7/8 agonist that acts by inducing the production of 
pro-inflammatory molecules, leading to the maturation of 
DCs and the activation of CTLs. Poly-ICLC, a TLR3 ago-
nist, is another TLR synthetic agonist that has demonstrated 
immunomodulatory effects. By engaging TLR3 on immune 
cells, poly-ICLC induces the production of IFN-γ, contribut-
ing to the activation of DCs and the enhancement of antigen 
presentation [162].

Numerous experiments have examined the potential 
of nanoparticle-loaded TLR agonists for targeting tumor 
stroma. These experiments suggest that nanoparticle-loaded 
TLR agonists can induce antitumor immunity and remodel 
tumor stroma by hampering immunosuppressive TME. For 
instance, nanoparticle-loaded resiquimod has been shown to 
sensitize tumors to cisplatin and doxorubicin by remodeling 
antitumor immunity. It has been uncovered that cisplatin 

and doxorubicin can render ICD and initiate inflammatory 
responses in the tumor. On the other hand, nanoparticle-
loaded resiquimod can amplify immune responses by ren-
dering DC maturation and activation of CTLs [163]. In 
addition, biodegradable and tumor-sensitive nanoparticles 
have shown the potential to deliver TLR agonists into tumors 
without significant systemic toxicity. In mice-bearing colon 
tumors, ROS-sensitive MSN-loaded resiquimod has shown 
the potential to eradicate tumors by inducing inflammatory 
responses such as the maturation of DCs and CTLs and sub-
sequent releasing TNFα and IL-12 [164]. Some other find-
ings are explained in Table 1.

Immune checkpoint inhibitors (ICIs)

ICIs are drugs that target and block specific immune check-
points, allowing the immune system to trigger effective 
antitumor responses [176]. PD-L1 is often overexpressed 

Fig. 3   Amplification of radiotherapy, chemotherapy and photody-
namic or photothermal therapy by nanoparticles can render ICD in 
cold tumors. ICD is associated with the liberation of DAMPs and 

overexpression of TLRs, leading to the maturation of DCs and CTLs. 
The delivery of ICIs by nanoparticles can also enhance the efficacy of 
ICD by more inducing CTLs. (Created with BioRender.com)
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on cancer cells, and its interaction with PD-1 on CTLs inhib-
its their activity, leading to immune suppression and tumor 
escape [177]. By blocking the PD-1/PD-L1 interaction using 
ICIs, such as pembrolizumab or nivolumab, the inhibitory 
signals are removed, and CTLs can regain their ability to 
recognize tumoral cells [178]. This can lead to tumor repres-
sion and improved patient prognosis in various types of 
malignancies such as lung cancer [179]. CTLA4 is another 
immune checkpoint that can be blocked by ICIs for render-
ing CTLs [180]. However, T cell immunoreceptor with Ig 
and ITIM domains (TIGIT) can be suggested for recovering 
the function of NK cells [181]. The precise delivery of ICIs 
to the tumor stroma is a critical challenge in cancer therapy 
[182]. Systemic administration of ICIs can result in off-tar-
get effects such as brain, lung, and cardiovascular toxicity, 

and limited penetration into TME [183]. Nanoparticles can 
help to overcome these limitations and improve the delivery 
of ICIs to the TME. By encapsulating ICIs within nanoparti-
cles and engineering them to target specific cells or tissues, 
their delivery to the tumor site can be enhanced, resulting in 
higher concentrations and reduced systemic toxicity [184].

Numerous experiments have designed nanoparticles for 
the delivery of ICIs. An experiment showed that an anti-
PD-1 nanoformulation has a higher efficacy compared to 
a free form of anti-PD-1. This study exhibited that anti-
PD-1-loaded PEG–PLGA can penetrate and distribute into 
TME more effectively compared to free anti-PD-1. Image 
analysis of mice-bearing tumors confirmed more accumula-
tion of nanodrugs in the tumor and very lower distribution 
in normal tissues. This was associated with more effective 

Table 1   Summary results of the remodeling TME by nanoparticle-loaded TLR agonists

Tumor model Nanocarriers TLR agonist Remarks Ref

Female mice-bearing B16.F10 melanoma Silver nanoparticles Resiquimod Increasing apoptosis and infiltration of 
CD4 + and CD8 + T lymphocytes

[165]

Female mice-bearing metastatic mela-
noma (B16F10-OVA), bladder (MB49) 
and kidney (Renca-GL cell) tumors

PLGA Resiquimod Nanoformulated TLR7/8 agonist could 
be absorbed in immune cells more 
effectively, leading to migration of DCs 
to lymph nodes and activation of CTLs

[166]

Female mice-bearing HT-29 colorectal
tumor

PEG–Platelet Resiquimod A steady state release of resiquimod was 
observed, leading to better suppression 
of tumors and inducing CD4 + and 
CD8 + T cells

[167]

Mice bearing lymph nodes with J774 
cells

PLGA–PEG Resiquimod Nanoparticle-loaded resiquimod could 
be taken up by DCs and macrophages 
significantly and render antitumor 
immunity without systemic toxicity

[168]

Female mice-bearing SW626 ovarian 
cancer

PEG–micelle Resiquimod Co-delivery of cisplatin and resiquimod 
could reprogram M2-TAMs toward M1 
macrophages and enhance the survival 
of mice

[169]

Female mice-bearing NDL mammary 
carcinoma

Thermosensitive liposomes Resiquimod A combination of resiquimod and 
anti-PD-1 therapy caused a significant 
increase in the infiltration of CTLs and 
the survival of mice

[170]

Female mice-bearing NDL breast cancer Micelle Resiquimod Nanoparticles could amplify immune 
system activation by anti-PD-1 immu-
notherapy

[171]

Female mice-bearing 4T1 breast cancer Hyaluronic acid Imiquimod An increase in the activity of antitumor 
immunity and cytotoxicity of gemcit-
abine was reported

[172]

Female mice-bearing metastatic B16–
F10 melanoma

Micelle Imiquimod Nanoparticles could significantly render 
DC maturation, thereby activating 
CTLs

[173]

Mice-bearing CT26 colorectal cancer Micelle Imiquimod Imiquimod triggered DC maturation and 
activation of M1 macrophages and 
CTLs

[174]

Female mice-bearing 4T1 breast tumor pH-sensitive polymeric nanoparticle Imiquimod Nanoparticles released imiquimod and 
doxorubicin in the acidic environment 
of tumors, thereby rendering the matu-
ration of DCs and activation of CTLs 
and M1 macrophages

[175]
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infiltration of CTLs against head and neck cancer cells [185]. 
Similar findings were reported following administration of 
PLGA-anti-PD-1 for mice-bearing melanoma tumors [186].

Silencing PD-1/PD-L1 gene expression using specific 
small molecules or siRNAs is another approach for target-
ing ICIs by nanoparticles. A study by Wu et al. investigated 
the capacity of two nanoparticles for PD-1 gene silencing. 
They utilized layered double hydroxide and lipid-coated cal-
cium phosphate nanoparticles for delivering PD-1 siRNA to 
T lymphocytes. The findings revealed that both nanoparti-
cles effectively delivered PD-1 siRNA into T lymphocytes, 
resulting in a significant knockdown of PD-1 expression. 
However, lipid-coated calcium phosphate nanoparticles 
demonstrated superior transfection efficiency, higher gene 
silencing efficacy, and cellular uptake compared to lay-
ered double hydroxide nanoparticles [187]. Another study 
developed lipid-coated calcium phosphate nanoparticles 
to deliver both PD-1 and PD-L1 siRNAs to MCF-7 breast 
cancer cells and T lymphocytes. The findings showed that 
these nanoparticles can effectively repress the regulation of 
PD-L1 in cancer cells. On the other hand, a significant aug-
ment in the INF-γ production was reported [188]. A study 
by Jeong et al. utilized a β-hairpin peptide isolated from an 
engineered PD-1 protein to target PD-L1 in tumors. They 
developed to conjugate β-hairpin peptides with dendrimer 
nanoparticles to enhance their stability and multimerize their 
binding sites. The study used biophysical and cellular assays 
to evaluate the stability, binding affinity, and efficacy of the 
peptide–nanoparticle conjugates in blocking PD-1/PD-L1 
interactions. The results demonstrated that the dendrimer 
conjugation significantly stabilized the β-hairpin peptides 
and improved their binding affinity towards PD-L1. Fur-
thermore, the multivalency of the peptide–nanoparticle 
conjugates enhanced their blocking efficacy, leading to 
more effective inhibition of PD-1/PD-L1 interactions. This 
study highlights the potential of nanoparticle conjugation 
as a strategy to augment the stability and targeting ability 
of β-hairpin peptides in targeting the PD-1/PD-L1 pathway 
and suggests their potential application in cancer immuno-
therapy [189].

The development of nanoparticles for the delivery of 
clustered regularly interspaced short palindromic repeat 
(CRISPR) is another approach for targeting immune check-
points. Zhang et al. developed a dual-responsive polymeric 
nanoparticle to deliver CRISPR/Cas13a to tumors by 
responding to the unique environment of TME. Nanoparti-
cles consisted of a core–shell structure, where the CRISPR/
Cas13a encapsulated inside the core of nanocarriers. The 
CRISPR/Cas13a system was carefully monitored to target 
PD-L1 in melanoma-bearing mice. The findings of this 
experiment suggested successful disruption of the PD-1/
PD-L1 axis and infiltration of CTLs [190]. Another study 
showed successful delivery and activation of antitumor 

immunity by delivering ROS-responding nanoparticles 
loaded with CRISPR/Cas13a. Nanoparticles have been 
designed to deliver both CRISPR/Cas13a and SN38 as an 
immunomodulatory prodrug. The CRISPR/Cas13a compo-
nent was designed to specifically target and edit the RNA 
of PD-L1. The findings demonstrated that the CRISPR/
Cas13a-loaded nanoparticles effectively edited the RNA of 
PD-L1, leading to downregulation of PD-L1 in the tumor. 
This knockdown of PD-L1 was associated with a significant 
augment in the infiltration of CTLs and the liberation of 
antitumor molecules by these cells. Furthermore, the SN38 
component of the nanoparticles demonstrated long-lasting 
release kinetics, sustaining the activation of T cells by ren-
dering ICD in the tumor. The treatment led to a significant 
reduction in tumor volume and prolonged survival compared 
to control groups [191].

Co-delivery of anti-PD-1 and other antitumor agents 
such as chemotherapy drugs and photosensitizers is another 
intriguing approach for remodeling TME by nanoparticles-
loaded ICIs. An experiment by Lan et al. developed pH-
sensitive lipid nanoparticles loaded with PD-1 antibody 
and cisplatin against skin and oral tumor xenografts. The 
findings revealed a significant augment in the infiltration of 
CTLs and concentration of IFN-γ following treatment with 
the mentioned nanoformulation. Co-delivery of anti-PD-1 
and cisplatin was also more effective in removing cancer 
cells and repressing tumor volume. Nanoparticles could also 
ameliorate side effects associated with antitumor drugs in 
normal tissues [192]. Similar synergistic effects have been 
reported following treatment with polymeric nanoparticles 
loaded with anti-PD-1 and docetaxel, paclitaxel, or doxoru-
bicin [193, 194]. Smart nanoparticles such as pH-sensitive 
nanoparticles loaded with anti-PD-1 have also been shown 
promising to target TME and increase the efficacy of chemo-
therapy [195]. Nanoparticles loaded with anti-PD-1 have 
also been investigated for their synergistic effects in com-
bination with ICD inducers, and hypoxia and angiogenesis 
inhibitors [196–199].

Stimulating antigen‑presenting cells (APCs) 
and antigen presentation

As explained, one of the key factors that determine 
whether a tumor is hot or cold is the level of antigen pres-
entation. Tumors with high levels of antigen presentation 
are more likely to be removed by CTLs. However, tumors 
have developed intricate pathways to evade immune sur-
veillance, containing impairing antigen presentation, thus 
hampering an effective antitumor immune response [200]. 
Therefore, enhancing antigen presentation is a promising 
strategy for shifting cold to hot tumors [201]. One way 
to enhance antigen presentation is to increase the expres-
sion of MHC I on malignant cells [202]. Several studies 
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have revealed that augmenting MHC I expression on tumor 
cells can enhance the efficacy of immunotherapy in animal 
models and human patients [200]. Another way to enhance 
antigen presentation is to augment the uptake and process-
ing of antigens by DCs. Numerous approaches have been 
developed to trigger DC function, including the use of 
TLR agonists, cytokines, and adjuvants [203].

One promising approach involves leveraging the poten-
tial of nanoparticles loaded with tumor antigens or other 
agents to facilitate enhanced antigen presentation, leading 
to a robust antitumor immunity. Zwiorek et al. developed 
one of the first nanodrugs for the delivery of tumor anti-
gens. In this study, the researchers used cationic gelatin 
nanoparticles to deliver cytidine phosphate guanosine 
(CpG) oligodinucleotides (ODN; TLR9 agonist) to DCs. 
The primary findings exhibited that these nanodrugs can 
remarkably penetrate murine DCs and render the matu-
ration of these cells. These effects were associated with 
the production of IL-12 and TNF-α [204]. CpG-loaded 
Pluronic F127-stabilized poly(propylene) sulfide nano-
particles are another form of CPG nanodrugs that have 
been used for tumor targeting. Adjuvant delivery parti-
cles can also induce the maturation of DCs to increase 
efficiency for tumor-draining lymph node delivery. These 
nanoparticles have shown the ability to render the func-
tion of CTLs while reducing Treg numbers in melanoma 
tumors [205]. Some experiments have been conducted to 
control the freedom of CpG antigens from nanoparticles 
for efficient immunization of tumors. For instance, an 
experiment developed AuNPs loaded CPG using spacers 
to facilitate the liberation of CpG from nanoparticles. In 
this experiment, the size of nanoparticles was reduced to 
improve the immunization of tumors by increasing the 
infiltration and antitumor activity of macrophages and 
DCs. The CpG-AuNPs exhibited more efficacy on immune 
cells to release antitumor molecules, such as TNF-α. These 
immunomodulatory impacts led to obvious tumor retarda-
tion and improved survival rate in mice-bearing melanoma 
compared to mice that received free CpG [206].

In addition to TLR agonists, tumor antigens and neoan-
tigens are other important mediators for tumor vaccination 
and inducing inflammatory responses in the tumor. Neoan-
tigens are a class of tumor antigens that arise from somatic 
mutations in malignant cells. These antigens are unique to 
each patient's tumor and are identified as foreign by CTLs 
[207]. As such, neoantigens have achieved remarkable atten-
tion in cancer immunotherapy due to their capacity to induce 
antitumor responses. By presenting neoantigens to the 
immune system, either through vaccination or checkpoint 
blockade, researchers aim to trigger potent antitumor immu-
nity within the TME [208]. By leveraging the immunogenic-
ity of shared tumor-associated antigens (TAAs), researchers 
seek to stimulate broad anti-tumor immune responses within 

the TME, potentially conferring protection against a range 
of cancer types [209].

Some studies have investigated the capacity of nanoparti-
cles loaded with tumor antigens. A study explored the poten-
tial use of polymer nanoparticles for carrying TAAs and 
also and whole tumor cells. The researchers observed that 
the immune cells stimulated with the nanoparticles showed 
an increased production of cytokines and activation mark-
ers, indicating an enhanced immune response against the 
cancer cells. To examine the immunomodulatory impacts of 
nanoparticles on TME, female C57BL/6 mice were treated 
with either the nanoparticles containing TAAs, whole tumor 
cells, or a control group receiving no treatment. The results 
demonstrated an obvious tumor size drop in mice that treated 
with nanoparticles compared to non-treated mice. In addi-
tion, the nanoparticles induced the infiltration of immune 
cells, indicating an enhanced immune response by CTLs 
against cancer cells [210]. Another experiment examined 
the potential of PLGA-loaded TAA and tumor lysates on 
DCs and head and neck squamous carcinoma tumors. DCs 
exposed to nanoparticles loaded with tumor lysate anti-
gens demonstrated enhanced activation, as evidenced by 
increased expression of activation markers and secretion 
of pro-inflammatory cytokines. The loaded DCs also dis-
played improved antigen uptake and presentation, leading 
to enhanced T-cell activation.

Some other experiments have developed combinational 
modalities to render the activity of antitumor immunity fol-
lowing antigen delivery. In an experiment, the researchers 
designed and synthesized lipid-enveloped polymeric nano-
particles that encapsulate different antigen peptides. These 
nanoparticles were made of a polymeric core from biode-
gradable polymers and then coated with a lipid envelope to 
enhance stability and facilitate cellular uptake. Nanoparti-
cles carrying both TAA and immune-stimulating peptides 
showed significantly higher immunogenicity compared to 
nanoparticles carrying either peptide alone. This suggests 
that the combinatorial delivery of multiple peptides can 
enhance the immune response against tumor antigens. The 
combinational delivery induced long-term antitumor mem-
ory responses, leading to prolonged tumor growth inhibition 
and survival rate in mice-bearing melanoma tumors [211]. 
In another study, PLGA nanoparticles have been utilized to 
co-deliver tumor antigens, STAT3 siRNA, and imiquimod to 
DCs and tumors. The nanoparticles successfully presented 
antigenic peptides to DCs, leading to enhanced antigen-spe-
cific immune responses. The antigen-loaded nanoparticles 
effectively activated T cells and promoted their proliferation 
and secretion of cytokines.

An investigation examined the potential of the nano-
particle-delivered TGF-β siRNA in combination with a 
melanoma vaccine. They administered the nanoparticles 
to tumor-bearing mice, followed by vaccination with a 
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melanoma antigen-specific vaccine. They monitored the 
tumor growth, survival rate, and immune responses of 
the mice to investigate the effectiveness of the combined 
treatment. The findings exhibited the successful delivery 
of TGF-β siRNA using nanoparticles, resulting in efficient 
knockdown of TGF-β gene expression in melanoma cells. 
This led to the suppression of TGF-β signaling and subse-
quent alterations in the tumor stroma. This was accompanied 
by infiltration of CTLs and NK cells, and reduction of Tregs 
and MDSCs [212].

Nanovaccines containing neoantigens alone or in combi-
nation with other immunostimulatory agents such as TLR 
agonists are other interesting adjuvants for cancer immu-
notherapy. Arbelaez et al. developed a complex contain-
ing G12D KRAS mutations and CpG for stimulating the 
immune system in mice-bearing lung adenocarcinoma. In 
this experiment, G12D KRAS mutations acted as neoan-
tigens, and CpG was utilized as an adjuvant in liposomes. 
Administration of this nanocomplex could significantly 
repress tumors by rendering CD4 + and CD8 + T lympho-
cytes [213]. Another experiment exhibited that treatment 
with a nanocomplex containing TLR7/8 agonist R848, 
TLR9 CpG agonists, and a peptide neoantigen loaded with 
polymeric nanoparticles for targeting colorectal tumors. The 
findings demonstrated a remarkable immune system awaken-
ing following treatment with this nanocomplex. In addition, 
treatment with this nanocomplex in combination with anti-
PD-1 therapy led to 70% tumor regression without tumor 
recurrence. The findings suggested that tumor antigens can 
wake DCs to present antigens to CD8 + T cells while anti-
PD-1 therapy prevented the exhaustion of CTLs [214].

In addition to the mentioned nanocomplexes, some 
nanoparticles alone may trigger immune responses against 
tumors. Fullerenes are nanocarriers for the delivery of dif-
ferent adjuvants, however, they can modulate immune sys-
tem responses. It has been revealed that polyhydroxylated 
fullerenes can activate APCs and render the liberation of 
TNF-α, thereby reducing tumor volume in animal models 
[215, 216] (Fig. 4).

Targeting of tumor stroma and rigidity

One of the major challenges in treating cold tumors is the 
dense network of tumor stroma. This rigid environment 
consists of some proteins and fibers that surround and 
support malignant cells against the penetration of various 
agents [217]. This stroma develops a barrier that reduce 
the infiltration of CTLs and NK cells. In addition, the rigid 
environment and abnormal vascular structure can prevent 
the penetration of drugs into TME [218]. Interstitial fluid 
pressure (IFP) arises from imperfect vascular structure 
within tumors. The high hydrostatic pressure created by 
IFP can compress blood vessels, compromising blood 

flow and reducing the delivery of therapeutic agents to 
the tumor. This limited drug penetration hinders the effec-
tive targeting of cancer cells, reducing treatment efficacy 
[219]. Furthermore, elevated IFP can hamper antitumor 
immunity and the efficacy of drugs [220]. To overcome 
this barrier, researchers have been exploring ways to tar-
get tumor rigidity to facilitate the infiltration of CTLs and 
entrance of anticancer drugs.

Nanoparticles have interesting properties to overcome 
these barriers. They can be designed to release enzymes 
that break down the ECM. By breaking down this matrix, 
nanoparticles can increase the permeability of the tumor vas-
culature, allowing immune cells to infiltrate the tumor and 
attack cancer cells. By binding to these cells, nanoparticles 
can disrupt their function and reduce their ability to sup-
port cancer cell growth. Some experiments have shown the 
potential of nanoparticles loaded with some enzymes for the 
degradation of ECM. For instance, MSN-loaded bromelain 
(a proteolytic agent) has been shown to enhance the diffu-
sion of nanoparticles into TME [221]. Some nanoparticle-
loaded ECM remodeling agents such as lysyl oxidase, cyclo-
pamine, and CLT1 (anti-fibronectin) have shown the ability 
to repress ECM, thereby hindering tumor growth [222–224]. 
Some other nanoformulations have been developed to reduce 
the expression of ECM molecules, such as collagen. For 
instance, nanogels containing metformin have been shown to 
deplete ECM by downregulating the concentration of TGF-β 
and its downstream signaling pathway [225]. The pulsed 
high-intensity focused ultrasound is another agent that can 
remodel ECM to enhance the penetration of anticancer drugs 
[226]. Treatment with anti-ECM-loaded nanoparticles has 
also been shown to sensitize tumors to antitumor agents, 

Fig. 4   Delivery of neoantigens by nanoparticles can directly activate 
CTLs against tumors. In addition, nanoparticles may carry TLR ago-
nists to render the activity and maturation of APCs. (Created with 
BioRender.com)
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such as radiotherapy, chemotherapy, and photothermal ther-
apy [227, 228].

Inhibiting and reprogramming immunosuppressive 
cells

Inhibiting immunosuppressive cells or reprogramming 
tumor-promoting immune cells is another strategy to propel 
the shifting cold into hot tumors. One of the pivotal players 
in tumor immunosuppression is TAMs, which have been 
known to polarize towards an immunosuppressive pheno-
type, contributing to the establishment of an immune-evasive 
TME [229]. By targeting TAMs and reprogramming their 
polarization from an immunosuppressive M2 phenotype to 
an inflammatory M1 phenotype, it is possible to tip the bal-
ance within the tumor stroma, fostering an inflammatory 
milieu that facilitates the activation of CTLs and other effec-
tor immune cells essential for combating the tumor [230]. 
Tregs and MDSCs are other important immune cells that 
participate in dampening the antitumor immune response 
by suppressing CTLs. Inhibiting these cells is effective in 
promoting an inflammatory and immune-activating TME 
[231]. Nanoparticles can be utilized for depleting these cells 
or reprogramming their function by changing the tumor's 
immunosuppressive environment [155].

An experiment by Zhang et al. reported the beneficial 
impacts of PLGA nanoparticles on primary breast tumors 
and metastasis. They injected nanoparticles intravenously 
and detected the frequency of TAMs and MDSCs in the 
circulation and tumors. The findings exhibited that cargo-
free nanoparticles can significantly repress the expression 
of CCL2 by tumors, leading to a reduction in the number 
of circulating and intratumoral MDCSs and TAMs. These 
changes were associated with increased expression of TNF-α 
by more than twofold. The findings also suggested that the 
injection of these cargo-free nanoparticles can augment the 
efficacy of anti-PD-1 therapy [232]. Another study by Sun 
et al. reported interesting effects of MSNs on immunosup-
pressive TME in melanoma. They showed that MSNs trig-
ger the expression of CCL5 and CXCL9/10 by rendering 
the TLR4–NFκB axis in macrophages, thereby enhancing 
the infiltration of CTLs into tumors. The regulation of mac-
rophages by MSNs led to the sensitization of tumors to anti-
PD-1 therapy [233].

Some other experiments have been conducted to remodel 
immunosuppressive cells by delivering small molecules or 
antitumor products. The colony-stimulating factor-1 (CSF-
1) is one of the well-known factors that participate in tumor 
immunosuppression by rendering the infiltration of TAMs 
[234]. The blockade of CSF-1 is one of the interesting 
immunotherapeutic approaches for remodeling immunosup-
pressive TME and boosting the therapeutic efficacy of other 
anticancer agents [235, 236]. A study suggested that a single 

blockade of CSF-1R is associated with more infiltration of 
MDSCs following the activation of CAFs [237]. Therefore, 
it seems that combination modalities can be more effective 
for better remodeling TME and elimination of malignant 
cells. For instance, the blockade of CSF-1 can increase the 
efficacy of radiotherapy against cancer [238]. Nanoparticles 
can effectively deliver CSF-1 inhibitors alone or in com-
bination with other agents to repress TAMs and remodel 
TME effectively [239–241]. Selective blockade of some 
other molecules such as chemokines may also be effective 
for repressing TAMs. For instance, targeting CCL2/CCR2 
can effectively reduce the infiltration of macrophages and 
boost immune system activity following treatment with 
some agents such as radiotherapy and immunotherapy [128, 
242]. Nanoparticles such as plasmid encoding CCL2 or lipid 
nanoparticles containing CCL2 inhibitors have been devel-
oped for the blockade of macrophage infiltration [243, 244].

Phytochemical nanoformulations are other adjuvants that 
can be utilized for remodeling immunosuppressive TME. 
Curcumin, resveratrol, apigenin, and some approved drugs 
such as paclitaxel are well-known natural-derived products 
that have been shown to be effective in remodeling TME. 
Some experiments have also developed nanoparticles to 
deliver and improve the bioavailability of these agents in 
tumor models. Micelles, liposomes, SLNs, and polymeric 
nanoparticles such as PEG and PLGA are appropriate can-
didates for the delivery of these agents into tumors. How-
ever, metal nanoparticles are useful candidates for the 
delivery of these agents in combination with photothermal/
photothermal therapy [245]. Phytochemical nanoparticles 
such as curcumin and resveratrol nanoformulations have 
been shown to render the differentiation of CD4 + T cells 
into Th1 while reducing the population of Th2 and Tregs 
[246–248]. Furthermore, these nanoformulations have been 
shown to increase the accumulation of CTLs by hampering 
immunosuppressive cells [249]. Phytochemical nanoformu-
lations have successfully been shown to increase the anti-
tumor potency of photothermal and photodynamic therapy 
by repressing immunosuppressive cells [250, 251]. Further-
more, smart nanoparticles such as ROS and pH-sensitive 
nanoparticles have been developed to release these agents 
in the tumor selectively [252, 253] (Fig. 5).

Cytokines

Cytokines are small molecules that trigger immune cell 
infiltration and activation. IFN-γ, IL-2, IL-15, and IL-12 
are examples of cytokines that have been used in cancer 
treatment [254]. IL-2 and IL-12 can activate CD8 + T cells 
and NK cells, which can remove neoplastic cells. These 
cytokines stimulate the activity of CTLs and NK cells to 
release antitumor molecules, such as IFN-γ [255]. IFN-γ 
is a cytokine that stimulates the immune system to induce 



Clinical and Translational Oncology	

apoptosis in cancer cells. IFN-γ has been used in the treat-
ment of melanoma, renal cell carcinoma, and chronic 
myeloid leukemia. However, the systemic administra-
tion of cytokines can lead to off-target effects and toxicity 
[256]. Some other studies have investigated the potential 
of cytokine therapy. For instance, IL-2 therapy has been 
shown promising results for pancreatic and colon tumor-
bearing mice [257]. The efficacy and reversed toxicity of 
IL-2 and IL-19 combination for patients with advanced renal 
cell carcinoma have been reported [258]. Another clinical 
study showed more survival rate for melanoma patients that 
received intratumoral L19IL2 + L19TNF modality. However, 
severe reactions in the site of injection were reported [259].

Nanoparticles can carry cytokines and deliver them spe-
cifically to the TME. This localized delivery can enhance 
the therapeutic efficacy of adoptively transferred cells 
and minimize systemic toxicity [260]. Numerous experi-
ments have examined the capacity of nanocarriers for 
the delivery of IL-2 and IL-12. It has been revealed that 
nanocarriers, such as polymeric and lipid nanoparticles, 
and also nanogels can maintain sustained release of these 
cytokines to reduce systemic toxicity and local delivery 
into tumors [260–265]. Nanoparticles can also deliver 
the RNAs for the regulation of these cytokines to render 
antitumor immunity in TME [266–268]. These cytokines 
and their RNAs can be delivered for inducing a synergic 

response in combination with other therapeutic agents. 
An experiment by Zhao et al. examined the potential of 
thermosponge nanoparticles for co-delivery of IL-2 and 
paclitaxel. The results showed that a low dose of paclitaxel 
remodels the immunosuppressive environment by trigger-
ing DCs and subsequent activation of CTLs. Then, IL-2 
could amplify the activity of CTLs against tumor cells. 
Nanoparticles could improve the pharmacokinetics prop-
erties of IL-2 and paclitaxel to augment their synergistic 
effect against primary tumors and metastasis in female 
mice-bearing tumors. The findings uncovered that mice 
that received nanoformulation of drugs have remarkably 
higher survival compared to mice that received free-form 
drugs [269]. Another experiment showed the synergic 
impact of IL-12 RNA delivery with ultrasound-induced 
necroptosis. The delivery of calcium carbonate nanopar-
ticles containing IL-12 RNA was shown to successfully 
cross the blood–brain barrier and increase immunogenicity 
in glioblastoma TME [270]. A clinical trial study evalu-
ated the potential of PEG–PEI–cholesterol lipopolymer 
loaded with IL-12 in combination with PEG–liposomal 
doxorubicin for patients with advanced ovarian malignan-
cies. Treatment with these agents led to an augment in 
therapy response and a remarkable increase in the anti-
tumor cytokines including IL-12, IFN-γ, and TNF-α was 
observed [271].

Fig. 5   Nanoparticles can be utilized for the delivery of different 
agents such as specific inhibitors and phytochemicals. Some phyto-
chemicals such as curcumin and resveratrol can suppress immunosup-

pressive cells to restore the activity of CTLs and NK cells. In addi-
tion, small molecules can be utilized to repress the recruitment of 
immunosuppressive cells such as TAMs
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Oncolytic viruses

Oncolytic viruses have suggested as a transformative modal-
ity in the realm of cancer therapy, exhibiting profound 
potential in harnessing the tumor stroma to trigger robust 
inflammatory responses and transform cold tumors into hot 
ones. One of the crucial mechanisms through which onc-
olytic viruses exert their effects within the tumor stroma 
involves selective infection and replication within cancer 
cells, leading to their destruction [272]. Simultaneously, 
the viral infection triggers the liberation of tumor antigens 
and DAMPs, serving as beacons for the immune system to 
attack malignant cells [273]. This process activates various 
immune cells within the tumor stroma, including DCs, mac-
rophages, and other innate immune effectors, resulting in the 
production of pro-inflammatory cytokines and the recruit-
ment of CTLs and NK cells to the TME [274, 275]. Moreo-
ver, the immunomodulatory properties of oncolytic viruses 
extend to the local and systemic activation of CTLs and NK 
cells, representing key effectors in the immune reactions. 
The release of TAAs during viral infection, coupled with 
the induction of DAMPs and pro-inflammatory cytokines, 
triggers the activation and priming of CTLs and NK cells 
[276]. This activation results in the targeted destroying of 
cancer cells within the TME.

Some different types of viruses can be utilized for remod-
eling tumor stroma. Talimogene laherparepvec (T-VEC), 
Reovirus (Pelareorep), Newcastle disease virus, Maraba 
virus, and vesicular stomatitis virus (VSV) are designed 
viruses to activate DCs and the recruitment of CTLs to the 
TME by rendering ICD, the release of DAMPs, and antigen 
presentation [277–281]. It has been revealed that IONPs 
loaded with oncolytic Newcastle viruses can rapidly render 
pyroptosis in the tumor, leading to immunogenic responses 
by antitumor immunity. This was associated with tumor 
repression and increased survival of mice-bearing tumors. 
IONPs could improve tumor targeting and uptake of onco-
lytic viruses by tumor cells [282]. AuNP-loaded oncolytic 
viruses have also been shown to render apoptosis in breast 
cancer cells [283]. Recently, a study developed an oncolytic 
virus-like nanoplatform for targeting antitumor immunity 
in a tumor model system. Administration of nanoparticles 
could induce immunogenicity and render the recruitment 
of CTLs, leading to the liberation of INF-γ and apoptosis 
of cancer cells [284]. Further experiments need to explore 
the capacity of novel developed nanoparticles loaded with 
oncolytic viruses for targeting TME.

Adoptive cell therapy (ACT)

ACT is another encouraging approach for remodeling cold 
tumors. ACT is the transfer of engineered immune cells 
into patients to enhance their antitumor immune response 

[285]. ACT can be performed using NK cells, DCs, and 
chimeric antigen receptor (CAR) T cell therapy [286]. ACT 
has revealed encouraging clinical success in treating certain 
types of cancer, such as melanoma and hematological malig-
nancies [287]. However, there are several challenges associ-
ated with these therapies, including the limited availability 
of tumor-specific T cells, the hostile TME, and the potential 
for off-target toxicities [288]. One approach to address these 
challenges is to use nanoparticles as delivery vehicles for 
immune cells in ACT. By engineering nanoparticles to target 
specific cells or tissues, their delivery to the TME can be 
enhanced, resulting in higher concentrations and reduced 
systemic toxicity [289, 290].

Nanoparticles can be utilized to induce CAR expression 
in T lymphocytes. For instance, lipid nanoparticles are suit-
able for the successful delivery of DNA for inducing CAR 
expression in T lymphocytes [291]. A study utilized plas-
mid nanoparticles to reshape CTLs in TME. The research-
ers evaluated the impact of nanoparticles containing iRGD, 
PI3K inhibitors, and alpha-GalCer on T-cell proliferation, 
cytotoxicity, and migration toward cancer cells. These 
treatments have been performed to increase the homing of 
CAR-T cells and cytotoxicity against tumor cells in mice-
bearing breast or head and neck tumors. The findings exhib-
ited that a specific time frame of about 2 weeks between 
nanoparticle injection and CAR-T cell infusion resulted in 
maximal therapeutic benefit. Outside this window, there 
was little to no improvement in tumor growth inhibition. 
The results demonstrated that nanoparticles promoted T 
cell expansion via increased expression of IL-2 and IL-15, 
enhanced T cell trafficking into tumors due to upregulation 
of CXCL8, and reduced immunosuppressive factors, such 
as TGF-β [292]. Another experiment showed that liposo-
mal delivery of an A2aR-specific small molecule antagonist 
can prevent the exhaustion of CAR-T cells in deep layers of 
TME. These nanoparticles can penetrate tumors and remodel 
the immunosuppressive environment to facilitate the func-
tion of CAR-T cells [293] (Fig. 6).

Disadvantages of the current modalities for shaping 
cold to hot tumors

The therapeutic application of the mentioned modalities for 
shaping cold to hot tumors are associated with some chal-
lenges. Cytokines and TLR agonists are often marred by 
their pleiotropic effects and systemic toxicity. For instance, 
IL-2, despite its efficacy, can lead to vascular leak syndrome 
and renal dysfunction. Similarly, inflammatory cytokines 
may cause severe inflammatory reactions in different 
organs. TLR agonists may inadvertently promote tumor 
growth by activating NF-κB signaling, which can support 
cancer cell survival [294]. Furthermore, TLR agonists may 
cause some side effects such as flu-like symptoms, fatigue, 
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and injection-site reactions [295]. Nanoparticles have been 
shown to deliver cytokines and TLR agonists into tumor 
more effectively with lower side effects in normal tissues 
[296]. However, further clinical trial studies need to confirm 
the findings in preclinical studies.

Oncolytic viruses face the obstacle of host antiviral 
defenses, which can neutralize the therapeutic viruses before 
they exert their effects. Furthermore, there is a risk of non-
target effects, where the virus may infect non-tumorous 
cells, leading to unintended consequences [297]. Although 
oncolytic viruses have shown lower toxicity compared to 
cytokines or TLR agonists, some preclinical studies have 
shown some side effects for this treatment modality [298]. 
Some experiments have shown that treatment with these 
viruses may cause systemic effects and the presence of 
viruses in normal tissues. However, emerging evidence in 
preclinical and clinical trial studies show good safety for 
oncolytic viruses [299]. In addition, development of nano-
carriers for the delivery of oncolytic viruses have shown that 
can remove tumor cells more effectively with lower systemic 
effects [300].

ICIs and ICD inducers are other important immu-
nomodulators that have shown encouraging results for 
some cold malignancies. ICIs can cause irAEs due to their 
mechanism of enhancing immune activity. These events 
can range from mild skin rashes to severe conditions, such 
as colitis, hepatitis, and pneumonitis [301]. Managing 
these adverse effects requires careful monitoring and often 

immunosuppressive treatments, which can counteract the 
therapeutic benefits of ICIs. A significant proportion of 
patients do not respond to ICIs [177, 302]. As explained, 
cold tumors with the absence of pre-existing antitumor 
immune responses, low tumor mutational burden, and the 
presence of immunosuppressive cells can reduce tumor 
response to ICIs. Consequently, identifying biomarkers 
predictive of response is critical but remains challeng-
ing [303]. Both primary and acquired resistance to ICIs 
pose significant hurdles. Tumors can adapt to ICIs by 
upregulating alternative immune checkpoints, modifying 
antigen presentation pathways, or creating an immunosup-
pressive TME [304]. In these conditions, the delivery of 
ICIs using nanoparticles isn’t enough for shifting cold to 
hot tumors and needs combination therapy modalities for 
remodeling antitumor immunity in the tumor. However, 
combination modalities such as using hypofractionated 
radiotherapy or immunogenic drugs and adjuvants may 
be effective [128, 305–308]. There are some challenges 
for ICD inducers too. Not all chemotherapeutic agents or 
radiotherapy techniques can induce ICD. In addition, these 
drugs may cause severe inflammatory responses in nor-
mal tissues [309]. The variability in ICD induction across 
different cancers and treatment regimens complicates the 
standardization of ICD-based therapies [310]. Moreover, 
the identification of reliable ICD biomarkers is still in 
its infancy [311]. These challenges are also existed for 
other immunomodulator agents such as small molecules 

Fig. 6   Nanoparticles for render-
ing the activity of CAR T cells 
in the tumor. The delivery 
of some adjuvants can boost 
antitumor activity by preventing 
the exhaustion of CAR T cells. 
(Created with BioRender.com)
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for inhibiting immunosuppressive cells [312]. The safety, 
efficacy, and biocompatibility of different agents are 
explained in Table 2.

Challenges and future directions

In addition to the mentioned advantages, the delivery of 
the suggested molecules or cells using nanoparticles also 
faces challenges that should to be noted. One challenge is 
the optimization of nanoparticle design to achieve efficient 
encapsulation, delivery, and controlled release of these 
agents. The size, shape, surface charge, and composition of 
nanoparticles can influence their interactions with immune 
cells, tumor cells, and TME [319]. Therefore, careful design 
and engineering of nanoparticles are necessary to ensure 
optimal delivery and therapeutic efficacy. Another challenge 
is the comprehending of the interactions between nanopar-
ticles and the immune system. Nanoparticles may induce 
immune responses, which may impact the efficacy and safety 
of tumor vaccines, small molecules, cytokines, and others 
[320]. It is important to study the immunological effects of 
nanoparticles, including their potential to activate or sup-
press immune cells, induce inflammation, or cause adverse 
reactions [321]. By gaining a better understanding of these 
interactions, researchers can optimize nanoparticle design 
and minimize any potential negative effects. The safety and 
biocompatibility of nanoparticles need to be thoroughly 
evaluated. Nanoparticles can accumulate in various organs 
and tissues, causing toxicity or long-term adverse effects. It 
is crucial to assess the biodistribution, pharmacokinetics, 
and biodegradability of nanoparticles to ensure their safe 
use in clinical applications [322]. In addition, the potential 
for immune recognition and clearance of nanoparticles by 
the immune system should be considered to avoid unwanted 
immune responses [323].

The safety and efficacy of nanoparticles for the delivery 
of some treatment modalities such as ACT, TLR agonists, 
ICIs, and some other adjuvants are in the first way and need 
to be more investigated in preclinical studies. The incorpora-
tion of multiple agents and cells or combination therapies 
into nanoparticle-based therapy may enhance their efficacy 
by targeting multiple pathways involved in tumor growth and 
immune evasion. Moreover, the use of advanced imaging 
techniques can provide valuable insights into the biodistri-
bution and fate of nanoparticles in vivo. Techniques such as 
positron emission tomography (PET), magnetic resonance 
imaging (MRI), or fluorescence imaging can help track the 
accumulation and release of nanoparticles, as well as moni-
tor their interactions with immune cells and tumor cells 
[324, 325]. This information can guide the optimization of 
nanoparticle design and improve our understanding of their 
therapeutic mechanisms.

Conclusion

In this review, we overviewed the potential of nanoparticles 
for the delivery of different immunomodulatory agents that 
can reshape cold tumors and induce inflammatory responses 
in TME. Different shapes and types of nanocarriers can be 
utilized for this aim depending on their cargo and treatment 
modality. Inorganic nanoparticles such as metal and ceramic 
nanocarriers are useful for rendering ICD during radiother-
apy, photodynamic, and photothermal therapy. However, 
organic nanoparticles can deliver chemotherapy drugs or 
phytochemicals to enhance their bioavailability. Nanopar-
ticles have shown the ability to deliver TLR agonists, vac-
cines, antigens, oncolytic viruses, and ICIs into tumors. 
The delivery of these agents by nanoparticles has shown 
an enhancement in tumor targeting and preventing severe 
reactions in normal tissues. In addition, nanoparticles can 

Table 2   Safety, efficacy, and biocompatibility of different agents for shaping cold to hot tumors

Agent Safety Efficacy Biocompatibility Ref

Cytokines May cause systemic toxicity and 
autoimmune reactions. Risk of 
cytokine storm

High potential to stimulate immune 
response when targeted properly

Generally biocompatible but require 
careful dosing to avoid inflamma-
tory reactions in normal tissues

[313]

TLR Agonists Can induce inflammation and tissue 
damage

Effective in activating antitumor 
immunity, however, TLR agonists 
have low therapeutic index alone

Biocompatible when used in appro-
priate formulations and doses

[314]

Oncolytic Viruses Have low toxicity compared to 
other systemic therapy modalities

Selectively target and kill cancer 
cells, stimulating an antitumor 
immune response

Biocompatibility varies; genetically 
modified viruses are designed to 
be safe for human use

[315, 316]

ICD inducers May cause systemic inflammation Induces a potent immune response 
in TME

Biocompatibility is contingent on 
the controlled induction of cell 
death

[317, 318]

ICIs Can lead to irAEs affecting various 
organs

Effective for some tumors but may 
induce resistance

Biocompatible, but associated with 
immune-related side effects

[177]
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deliver DNA into tumors to activate CAR-T cells in deep lay-
ers of tumors. The ability of nanoparticles to penetrate deep 
layers of tumors can remodel immunosuppressive TME to 
augment the infiltration of NK cells and CTLs and reshape 
a cold environment into a hot environment for the function 
of the immune system against malignancies. The utiliza-
tion of nanoparticles for remodeling TME is in the first way 
and needs several future experiments to examine the safety, 
efficacy, and potency of each type of nanocarriers for the 
delivery of different drugs and adjuvants into tumors and 
reshaping the response of cancer to therapy.
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