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Abstract
Purpose The advent of circulating tumor DNA (ctDNA) technology has provided a convenient and noninvasive means to 
continuously monitor cancer genomic data, facilitating personalized cancer treatment. This study aimed to evaluate the sup-
plementary benefits of plasma ctDNA alongside traditional tissue-based next-generation sequencing (NGS) in identifying 
targetable mutations and tumor mutational burden (TMB) in colorectal cancers (CRC).
Methods Our study involved 76 CRC patients, collecting both tissue and plasma samples for NGS. We assessed the con-
cordance of gene mutational status between ctDNA and tissue, focusing on actionable genes such as KRAS, NRAS, PIK3CA, 
BRAF, and ERBB2. Logistic regression analysis was used to explore variables associated with discordance and positive 
mutation rates.
Results In total, 26 cancer-related genes were identified. The most common variants in tumor tissues and plasma samples 
were in APC (57.9% vs 19.7%), TP53 (55.3% vs 22.4%) and KRAS (47.4% vs 43.4%). Tissue and ctDNA showed an overall 
concordance of 73.53% in detecting actionable gene mutations. Notably, plasma ctDNA improved detection for certain genes 
and gene pools. Variables significantly associated with discordance included gender and peritoneal metastases. TMB analysis 
revealed a higher detection rate in tissues compared to plasma, but combining both increased detection.
Conclusions Our study highlights the importance of analyzing both tissue and plasma for detecting actionable mutations in 
CRC, with plasma ctDNA offering added value. Discordance is associated with gender and peritoneal metastases, and TMB 
analysis can benefit from a combination of tissue and plasma data. This approach provides valuable insights for personal-
ized CRC treatment.
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1 Introduction

Colorectal cancer (CRC) stands as the third most com-
monly diagnosed cancer and the second leading cause of 
cancer-related deaths in 2020, accounting for approximately 
9.8% (over 1,880,000) of new cancer cases and 9.2% (over 
915,000) of cancer fatalities in 2020 [1]. The initiation and 
progression of CRC are widely attributed to the presence of 
gene mutations in several oncogenes, prominently includ-
ing KRAS, NRAS, BRAF, PIK3CA and HER2 (ERBB2), etc. 
[2–9]. The accurate and dynamic identification of these 

therapeutically targetable mutations holds significant prom-
ise for precision-based personalized treatment in CRC, ulti-
mately enhancing patient outcomes and prognosis.

Tumor tissue next-generation sequencing (NGS) of clini-
cally targetable mutations is important for precise treatment 
for CRC, while intertumor and intratumor heterogeneity 
hampers the further application of tissue-based NGS [5, 
10]. In addition, tumor tissues are not always available or 
eligible for NGS. Recently, developed circulating tumor 
DNA (ctDNA) technique as a convenient and noninvasive 
means has been rapidly employed for dynamically obtain-
ing and monitoring landscape of genomic information to 
instruct personalized cancer treatment [11, 12], which has 
a concordant detection efficacy with the matched tumor tis-
sue NGS [13] but overcomes the influence of intratumor 
heterogeneity [14] affecting tissue NGS. ctDNA has been 
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effectively applying in the identification of clinically relevant 
mutations. For example, Hsu et al. targeted ctDNA to moni-
tor genetic variants and response to therapies and predict 
prognosis in CRC [15, 16]. Tarazona et al. detected plasma 
post-surgery ctDNA to track minimal residual disease and 
identify a high risk of relapse in patients with localized 
colon cancer, which showed post-surgery ctDNA detection 
was correlated with poor disease- free survival and that pres-
ence of ctDNA post therapy in patients receiving adjuvant 
chemotherapy was associated with early relapse [17]. Xu 
et al. explored the application of ctDNA in the assessment of 
clinical tumor mutation burden (TMB) in Chinese patients 
with metastatic CRC [18].

Not only does ctDNA detect the same mutations as tis-
sue (accounting for most of those detected), but it can also 
distantly identify some mutations that might be omitted by 
the other method. For example, Takeda et al. showed that in 
34 untreated CRC patients, 53 mutations were detected in 
tumor tissues, and 47 mutations were detected in ctDNA, 
20 of which were undetected in tissues [19]. Cao et al. 
reported among 59 mutations in 11 advanced CRC tissues, 
52 (88.14%) was also identified in matched blood, while 
19 mutations in plasma ctDNA were missed in the corre-
sponding tissues [20]. It appears that plasma ctDNA could 
detect more cancer mutations in CRC than tissues. In addi-
tion, detection concordance has been observed between 
some important clinically relevant gene mutations in tis-
sues and ctDNA. For example, some reports showed a high 
concordance (77%) of KRAS variant between tumor tissues 
and plasma [21], and concordance between tissue and blood 
ctDNA ranged from 63.2% (APC) to 85.5% (BRAF) in CRC 
[22].

To date, there is a lack of consistency in studies regard-
ing the positive detection of clinically targetable mutations, 
both at the comprehensive and individual levels, with lim-
ited investigations into the application of plasma ctDNA for 
evaluating TMB status in CRC. In this study, we systemati-
cally assess the detection efficacy of tissue versus plasma 
ctDNA, along with the additional value of plasma ctDNA in 
comparison to tissue-based NGS, for therapeutically targeta-
ble mutations (at both comprehensive and individual levels) 
and TMB-H in Chinese CRC patients.

Materials and methods

Patients and sample collection

We conducted a retrospective review and enrolled 76 CRC 
patients who underwent surgical resection at eight hospitals. 
Peripheral blood samples were collected from these patients 
prior to treatment, and none had received radio chemother-
apy before the sample collection or surgical tumor resection. 

Additionally, the patients had an adequate quantity and qual-
ity of tissue DNA for NGS analysis. Those individuals with 
concurrent cancer types were excluded from the study. The 
diagnosis of all the samples was performed by two experi-
enced molecular pathologists based on the morphology of 
hematoxylin & eosin staining (HE), and the tumor cell con-
tent was higher than 50%. This study was approved by the 
ethics committees of the corresponding hospitals. Written 
informed consent was obtained from all enrolled patients.

DNA extraction and sequencing

Tissue DNA was extracted from the FFPE tissues using the 
QIAamp DNA FFPE tissue kit (Qiagen). The plasma DNA 
was extracted using a DNeasy Blood & Tissue kit (Qiagen) 
according to the manufacturer’s instructions. The resultant 
DNA was then quality-controlled using Nanodrop and Qubit 
(Thermo Fisher Scientific) to ensure adequate purity and 
quality. Illumina paired-end libraries were prepared from 
extracted DNA and sequenced on Illumina HiSeq platforms. 
The 556 or 105 panel produced by Shanghai Tongshu Bio-
technology Co., Ltd. was used as a DNA capture probe 
of cancer-related genes. All the tumor tissues and plasma 
samples were subjected to NGS of driver mutated genes. 
The average sequencing depth in tissues is ≥ 1000 × and the 
average sequencing depth in plasma cfDNA is ≥ 7000 × . 
The variant allele frequency (VAF) is ≥ 1% for tissue DNA 
and ≥ 0.1% for cfDNA from plasma. BWA (Burrows-
Wheeler-Alignment) software was used to compare the 
sequencing data. GATK (The Genome Analysis Toolkit), 
MuTect [23] and VarScan [24] were used to alignment opti-
mization, variant calling and annotation, respectively.

The quantification of ctDNA levels followed a previously 
established method [25, 26]. This involved calculating the 
maximum variant allele frequency (maxVAF) and then 
determining the ctDNA concentration (in haploid genomic 
equivalents per milliliter, hGE/mL) using the formula: 
ctDNA concentration (hGE/mL) = (mean ctDNA VAF * 
cell-free DNA concentration (pg/mL))/3.3, assuming that 
each haploid genomic equivalent (hGE) weighed 3.3 pg.

Statistical analysis

Detected mutations with allele abundance of ≥ 0.1% were 
recorded. Samples that were identified with at least one 
mutation in oncodrivers by any of the tissue and plasma 
assays were considered true positive, and those showing neg-
ative by both assays were considered true negative [27]. The 
concordance was defined as the number of concordant posi-
tive and negative cases/total cases × 100%, positive detection 
rate was calculated as the positively detected case number/
total case number × 100%, and sensitivity was shown as the 
detected case number of true positive/total true positive case 
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number × 100%. Additionally, the TMB analysis exclusively 
employed sequencing data from the panel of 556 cancer-
related genes, utilizing the upper quartile TMB value of the 
tissue sample as the threshold to distinguish TMB levels. 
The software SPSS 25.0 (IBM Corp., Armonk, NY, USA) 
was used for all statistical analysis. χ2 test was used in the 
univariate analysis of ctDNA-positive rate and concord-
ance detection. Statistical significance was considered when 
P < 0.05.

Results

Patient characteristics

Seventy-six CRC patients were successfully enrolled in the 
study, and tissue and plasma samples were collected and 
analyzed separately for NGS. Within our cohort, there were 
49 males (64.47%) and 27 females (35.53%); ages ranged 
from 33 to 80 (median: 63). The majority of patients had 
stage III (48, 63.16%), and the remainder had stage II (11, 
14.47%) or IV (17, 22.37%). Fifty-nine patients (77.63%) 
had no distant metastasis, and 17 patients (22.37%) had 
distant metastasis at different sites including liver, lung, 
peritoneum, navel, etc. In addition, 4 patients were DNA 
mismatch repair (MMR) deficient (dMMR), and 72 were 
MMR proficient (pMMR), where MMR status was identified 
by immunohistochemistry (IHC). The basic information of 
the patients was shown in Table 1.

Concordance of gene mutational status 
between ctDNA and tissue

In total, 26 cancer-related genes were found in tissue or 
plasma samples from these 76 CRC patients. As shown in 
Fig. 1a, the most frequent variants occurred in APC (57.9% 
vs 19.7%), TP53 (55.3% vs 22.4%) and KRAS (47.4% vs 
43.4%), both in tumor tissue and plasma ctDNA samples. 
The mutation type of each oncodriver was summarized 
in Supplementary Table 1. The positive detection rates 
of tissue and ctDNA were 96.05% and 71.05%, respec-
tively, with an overall consistency of 73.53% (Fig. 1B, C). 
Here, we focused on the genes KRAS, NRAS, PIK3CA, 
BRAF and ERBB2, where mutations detected were con-
sidered potentially actionable. The positive mutation rate 
of plasma plus tissue testing for these genes was not lower 
than that of a single assay, either for individual genes or 
gene pools as shown in Fig.  2A. Particularly, plasma 
ctDNA significantly enhances the tissue-based detection 
of KRAS and KRAS/NRAS/BRAF/PIK3CA/ERBB2 (McNe-
mar’s test, p < 0.01) (Supplementary Table 2). The overall 
concordance of KRAS, NRAS, PIK3CA, BRAF and ERBB2 
between plasma- and tissue-based analyses was 75% 

(57/76), 90.79% (69/76), 96.05% (73/76), 100% (76/76) 
and 94.74% (72/76) (Fig. 2b). The concordance analysis of 
all detected genes is presented in Supplementary Table 3.

Variables associated with discordance and positive 
mutation rate

In addition, variables associated with the discord-
ance and positive mutation rate of tissue and ctDNA 
were analyzed. The overall positive mutation rate of 
KRAS/PIK3CA/BRAF/NRAS/ERBB2 for advanced patients 
was higher than early patients, and those with distal metas-
tasis were higher than those without distal metastasis, but 
there was no statistically significant difference (Fig. 3). 
The increased positive mutation rate of combined tis-
sue and plasma testing was independent of the clinical 
characteristics of the patients (Table 2). We investigated 
the logistic regression analysis for identifying the vari-
ables associated with the discordance. Stage and meta-
static status did not appear to be significantly associated 
with inconsistency (Fig. 3 and Table 3). The discordance 
showed a strong association with gender (P = 0.030) and 
peritoneal metastases (P = 0.045).

Table 1  Baseline demographic and clinical characteristics (N = 76)

Characteristics Number Percentage (%)

Gender Male 49 64.47
Female 27 35.53

Age (median: 63 years)  ≥ 60 43 56.58
 < 60 33 43.42

Stage at diagnosis IIa/IIb/IIc 11 14.47
IIIa/IIIb/IIIc 48 63.16
IV 17 22.37

Primary site Colon 68 89.47
Rectum 6 7.89
colorectal 2 2.63

The degree of differentia-
tion

Moderately 64 84.21
Poorly 12 15.79

Distant metastasis No 59 77.63
Yes 17 22.37

Metastatic site Liver 11 14.47
Lung 5 6.58
Node 62 81.58
Peritoneal 4 5.26
Navel 1 1.32

Number of metastatic sites 0 9 11.84
1 53 69.74
 ≥ 2 14 18.42

Status of MMR dMMR 4 5.26
pMMR 72 94.74
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Fig. 1  Concordance of mutation landscape between tissue and plasma 
ctDNA. A The mutational landscapes of tissue and plasma ctDNA are 
provided along with the most frequently mutated oncodrivers. B A 

comparison of the positive mutation rate of all genes between tissue 
and plasma ctDNA. C Concordance of all genes between tissue and 
plasma ctDNA



1980 Clinical and Translational Oncology (2024) 26:1976–1987

Concordance of TMB‑H between ctDNA and tissue

TMB was then classified into TMB-H and TMB-L accord-
ing to the upper quartile TMB of 9.48 mutations/Mb 
(TMB ≥ 9.48 was defined as TMB-H and those < 9.48 as 
TMB-L). For the detection of TMB-H, the positive detec-
tion rates of TMB-H by tissues and plasma were 25% 
(16/64) and 7.81% (5/64), respectively, and plasma plus 
tissue increased the detection rate to 32.81% ([16 + 5]/64), 

and the overall concordance was 67.19% (43/64) (Fig. 4 
and Supplementary Table 4).

4 Discussion

Currently, studies regarding the positive detection of clini-
cally targetable mutations in CRC by ctDNA, at both the 
whole and individual mutation levels, are not consistent, and 

Fig. 2  Concordance of KRAS/PIK3CA/BRAF/NRAS/ERBB2 
between tissue and plasma ctDNA. A A comparison of the positive 
mutation rate of KRAS/PIK3CA/BRAF/NRAS/ERBB2 between tis-

sue and plasma ctDNA. B Concordance of KRAS/PIK3CA/BRAF/
NRAS/ERBB2 between tissue and plasma ctDNA. *p < 0.05; 
**p < 0.01; ns, no significant difference
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there were few studies reporting the application of plasma 
ctDNA in monitoring TMB in CRC. In this study, we aimed 
to assess the concordance between gene mutational status 
in ctDNA and tissue samples from CRC patients and to 
determine the impact of combining these two modalities 
in detecting actionable mutations. Our findings shed light 
on the utility of plasma ctDNA as a complementary tool 
for assessing genetic alterations in CRC patients. We also 
evaluated the concordance of TMB-H classification between 
ctDNA and tissue samples. The progression of driver gene 
alterations in CRC represents a stepwise tumorigenesis pro-
cess. It’s noteworthy that less than 1% of human genes are 

likely to undergo transformation into cancer-driver genes, 
which play an active role in regulating cell survival and fate, 
consequently impacting the stability of normal genomes [28, 
29]. In contrast to diseases like cystic fibrosis or muscular 
dystrophy, where cancer does not stem from a single gene 
defect, it’s more accurate to regard altered cancer genes as 
contributory factors rather than root causes of cancer. Never-
theless, studies have revealed that several frequently mutated 
genes in CRC, such as APC, TP53, KRAS, and BRAF, are 
not only significantly influenced by individual somatic muta-
tions but also exert a substantial functional impact [30]. In 
our investigation, we identified a total of 26 cancer-related 

Fig. 3  Variables associated with discordance and positive muta-
tion rate of KRAS/PIK3CA/BRAF/NRAS/ERBB2 between 
tissue and plasma ctDNA. A The positive mutation rate of 
KRAS/PIK3CA/BRAF/NRAS/ERBB2 between tissue and plasma 
ctDNA from patients with different stages. B Concordance of 
KRAS/PIK3CA/BRAF/NRAS/ERBB2 between tissue and plasma 

ctDNA from patients with different stages. C The positive muta-
tion rate of KRAS/PIK3CA/BRAF/NRAS/ERBB2 between tissue and 
plasma ctDNA from patients with distal metastasis or not. D Con-
cordance of KRAS/PIK3CA/BRAF/NRAS/ERBB2 between tissue and 
plasma ctDNA from patients with distal metastasis or not
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genes, with APC, TP53, and KRAS exhibiting the most prev-
alent mutations in both tumor tissue and plasma samples. 
The APC gene is recognized as the sentinel gene in CRC 
[31]. KRAS plays a pivotal role in promoting cancer through 
the activation of RAF-MAPK and PI3K pathways. Typically, 
APC mutations coincide with KRAS or TP53 mutations, or 
both, as corroborated by our findings. The overall concord-
ance in detecting mutations in these tumor-related genes 
stood at 73.53%, signifying robust consistency between 

tissue- and plasma-based NGS. This level of concordance 
surpasses that reported in some earlier studies [18, 32]. 
Additionally, we identified other potentially actionable target 
genes, including NRAS, PIK3CA, BRAF, and ERBB2, which 
are closely linked to anti-EGFR resistance. The concord-
ance between individual gene mutations from tissue- and 
plasma-based NGS exceeded 90%, with NRAS achieving a 
perfect 100% agreement, slightly exceeding results in certain 
prior studies [33–35]. Furthermore, even though the positive 
mutation rates of KRAS, BRAF, PIK3CA, and ERBB2 were 
higher in tissue samples, the combination of plasma and 
tissue data resulted in a higher overall positive detection 
rate. This underscores that both tissue and plasma ctDNA 
NGS are effective in identifying therapeutically targetable 
mutations in CRC. Notably, the increased positive mutation 
rate achieved through the combined tissue and plasma test-
ing was independent of the clinical characteristics of the 
patients. In summary, plasma ctDNA adds significant value 
to routine tissue NGS, as illustrated in Fig. 5.

We conducted a comprehensive analysis of variables 
influencing concordance. Discordance could potentially 
arise from the low levels of ctDNA shedding by tumors. 
Our investigation revealed a higher positive mutation rate 
of KRAS/PIK3CA/BRAF/NRAS/ERBB2 in advanced-stage 
patients compared to early-stage patients. Likewise, patients 
with distal metastasis exhibited a higher positive mutation 
rate than those without distal metastasis, although this differ-
ence did not reach statistical significance. This observation 
suggests that later disease stages may yield more ctDNA 
release than earlier stages. Notably, the logistic regression 
analysis revealed that peritoneal metastases were a signifi-
cant variable associated with discordance, while liver and 
lung metastases showed no significant association with 
discordance in our cohort. Hideaki Bando et al. found that 
lung metastasis alone was the most significant factor associ-
ated with discordance [34]. Due to our limited sample size, 
the difference in discordance between patients with lung 
metastasis and patients with peritoneal metastasis was only 
one person. Therefore, these findings should be further sub-
stantiated with a larger cohort in future studies. Addition-
ally, the plausible reason for discordance could be lower 
ctDNA shedding from different tumors [34]. Some studies 
aslo reported that in recurrence CRCs, ctDNA detection was 
challenging for lung metastases and peritoneal metastases 
[34, 36]. This discordance between tissue- and plasma-based 
NGS is not the factors mentioned above; it’s also influenced 
by the patients’ treatment history or the differences in tumor 
heterogeneity, even the bias in multicenter patients [34–36].

To account for spatial and temporal variability, it is 
imperative to periodically assess the genomic profile of CRC 
patients throughout their treatment. Liquid biopsies can play 
a pivotal role in profiling the patient’s specific molecular 
makeup, particularly when considering anti-EGFR treatment 

Table 3  Variable analysis of the consistency between ctDNA and 
tissue DNA detection for KRAS/NRAS/PIK3CA/BRAF/ERBB2 
(N = 76)

Bold font indicates statistical significance, P < 0.05

Variables Incon-
sistent 
(n = 23)

Con-
sistent 
(n = 53)

χ2 value P value

Age 0.261 0.610
  < 60 11 22
 ≥ 60 12 31

Gender 4.736 0.030
  Male 19 30
  Female 4 23
Stage 0.289 0.591
 II/IIIa 16 40
 IIIb/IIIc/IV 7 13

Primary site 0.000 0.987
  Colon 20 48
  Rectum 3 3
  Colorectal 0 2
The degree of differentia-

tion
0.187 0.665

 Moderately 20 44
 Poorly 3 9

Distant metastasis 0.263 0.608
 No 17 42

  Yes 6 11
Metastatic site
Liver metastasis 4.430 0.098
  No 22 43
   Yes 1 10
Lung metastasis 2.243 0.134
 No 20 51
 Yes 3 2

Peritoneal metastasis 4.004 0.045
 No 20 52
 Yes 3 1

Number of metastatic 
sites

0.050 0.824

 0 3 6
 1 15 38
 ≥ 2 5 9
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options [37, 38]. One of the strongest arguments favoring 
this minimally invasive approach is the ability to perform 
RAS/RAF testing at the point of decision-making. Within 
our cohort, we observed instances where 11 and 2 patients 
had tissue mutations in KRAS and BRAF that were undetect-
able in plasma, and conversely, eight and one patients had 
plasma mutations in KRAS and BRAF that were absent in tis-
sue samples. The absence of RAS/RAF mutations in plasma 
might be attributed to biological factors influencing ctDNA 
release—a crucial area for further investigation. This issue 
becomes even more pronounced in light of false-negative 
results, which pose a significant challenge in plasma testing 
for RAS/RAF mutations. Negative interactions may occur 
between anti-EGFR drugs and oxaliplatin-based regimens 
in patients with RAS/RAF mutations. Similar trends were 
observed in the detection of other genes, including PIK3CA 
and ERBB2 mutations, within our cohort. Additionally, the 
detection rate of TMB-H in tissue samples was 25%, signifi-
cantly lower at 7.81% in plasma, with poor consistency. We 
suspect several factors may contribute to this result. In our 
study, a significant proportion of patients (59 cases, 77.6%) 

were classified as stage II/III. The observed low TMB values 
in ctDNA may be attributed to restrictions on the release of 
tumor-derived DNA into the bloodstream and factors related 
to the early stages of the disease. Consequently, the TMB 
levels in ctDNA (with 92.2% of patients in this study having 
TMB < 10 mutations/Mb) are significantly lower than tissue 
TMB levels. In the absence of uniform TMB grading crite-
ria, it is necessary to determine the cutoff value for defining 
TMB as "TMB-high," which may also be one of the reasons 
for the bias. Furthermore, compared to TMB estimates based 
on tumor tissue, TMB estimates based on ctDNA cannot 
effectively avoid interference from lineage mutations; thus, 
it may lead to calculation biases, especially in patients with 
relatively low mutation counts. Despite this, the combined 
analysis of plasma and tissue increased the positive detection 
rate to 32.81%. This outcome underscores that for detecting 
TMB-H in CRC, plasma ctDNA alone may not suffice; nev-
ertheless, it effectively enhances the positive detection rate 
when used in conjunction with tissue samples. Studies have 
established a correlation between TMB and ctDNA levels. 
Lower TMB values are associated with a higher likelihood 
of false-negative plasma ctDNA results and reduced con-
cordance between tissue and plasma ctDNA detection [39].

Conclusion

Our study highlights the potential clinical implications of 
combining tissue and plasma-based genetic testing in CRC 
patients. The high concordance of actionable gene mutations 
and the increased detection of high TMB suggest that this 
approach may guide treatment decisions more effectively. 
The integration of ctDNA analysis in clinical practice may 
improve the precision and efficacy of treatment strategies 
for CRC patients.
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