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Abstract
Macrophages are the most abundant immune cells in primary and metastatic tumor tissues. Studies have shown that mac-
rophages mainly exhibit a tumor-promoting phenotype and play a key role in tumor progression and metastasis. Therefore, 
many macrophage-targeted drugs have entered clinical trials. However, compared to preclinical studies, some clinical trial 
results showed that macrophage-targeted therapy did not achieve the desired effect. This may be because most of what we 
know about macrophages comes from in vitro experiments and animal models, while macrophages in the more complex 
human microenvironment are still poorly understood. With the development of technologies such as single-cell RNA sequenc-
ing, we have gained a new understanding of the origin, classification and functional mechanism of tumor-associated mac-
rophages. Therefore, this study reviewed the recent progress of macrophages in promoting tumor progression and metastasis, 
aiming to provide some help for the formulation of optimal strategies for macrophage-targeted therapy.
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Introduction

Although advances in traditional treatment methods (such 
as surgery, radiotherapy, chemotherapy, and gene-targeted 
therapy) have improved the prognosis of patients to a certain 
extent, local recurrence and distant metastasis are still the 
leading causes of death in cancer patients. In recent years, to 
solve this problem, researchers have gradually turned their 
attention from the study of tumor cells themselves to the 
study of tumor microenvironment (TME). With the in-depth 
study of TME, a new treatment method-immunotherapy has 
been successfully developed and applied in patients with 
refractory or metastatic cancer. Among them, immune 
checkpoint blockade (ICB) therapy targeting CD8+T cells 
has achieved particularly significant clinical effects in some 
cancer patients. Accordingly, many people believe that 

immunotherapy (including ICB, tumor vaccines, and adop-
tive immune cell therapy, etc.) will become the new pillar 
of cancer treatment. However, a substantial proportion of 
patients experience limited clinical benefit after ICB therapy, 
and almost all cancer patients eventually develop drug resist-
ance. The reasons are analyzed as follows: on the one hand, 
tumor intrinsic factors such as tumor mutation burden limit 
the therapeutic effect of ICB therapy, on the other hand, 
TME produces ICB resistance by limiting the infiltration 
and activation of effector T cells. Fortunately, studies have 
found that the immunosuppressive network established by 
tumor-associated macrophages (TAMs) is one of the main 
mechanisms affecting the therapeutic effect of ICB therapy, 
and macrophage-targeted therapy can greatly improve the 
therapeutic effect of ICB therapy.

Macrophages (Mϕ) exist in almost all tissues and organs 
and play a crucial role in tissue homeostasis. As a pivotal 
component of the innate immune system, macrophages can 
recruit other immune cells to the site of infection, phago-
cytose and obliterate foreign pathogens, and activate the 
complement system and adaptive immunity [1]. In addi-
tion, macrophages play critical roles in development, dis-
ease (including cancer, infection, and inflammation), and 
tissue regeneration and remodeling. Actually, macrophages 
are the most pro-tumor immune cells in the TME. It has 
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been demonstrated that tumors are significantly associated 
with the recruitment and polarization of macrophages. For 
example, tumor-secreted cytokines CSF-1 and CCL2 are 
the most important factors that promote the recruitment of 
macrophages. M1 exhibits pro-inflammatory, pro-immune 
and anti-tumor features, while M2 has anti-inflammatory, 
immunosuppressive and pro-tumor functions. In the TME, 
macrophages dynamically and continuously differentiate 
according to the changes in the current microenvironment. 
For example, IFN-γ, TNF-α, IL-12, GM-CSF, etc. induce the 
polarization of macrophages to M1, and IL-4, IL5, IL-10, 
IL-13, etc. induce their polarization to M2. Although the 
M1/M2 polarization dichotomy limits an accurate descrip-
tion of macrophage function, it is currently the most widely 
used classification of macrophages.

In addition to powerful immunosuppressive effects, 
macrophages have extensive tumor-promoting functions. 
For example, they can promote tumor progression and 
metastasis by participating in cancer stem cell activation, 
epithelial-mesenchymal transition (EMT), tumor angiogen-
esis, transendothelial migration, extracellular matrix (ECM) 
remodeling, and formation of pre-metastatic niches (PMN). 
Thus, therapies targeting macrophages may exert or improve 
anticancer therapeutic effects through broad and pleiotropic 
mechanisms. In conclusion, macrophages have emerged as 
one of the most promising therapeutic targets for control-
ling tumor recurrence and metastasis due to their powerful 
tumor-promoting characteristics.

Although preclinical studies have confirmed the good 
therapeutic effect of targeting macrophages, and many 
targeted drugs have entered clinical trials. We still lack a 
thorough understanding of macrophages due to their high 
heterogeneity and plasticity. Inaccurate targeted therapy 
will greatly reduce the effect of anti-tumor therapy, and 
even some serious complications will occur. Therefore, this 
review details the current status of research on the tumor-
promoting mechanisms of macrophages, as detailed below.

Origin of macrophages

Macrophages is not only widely distributed in various 
healthy tissues, but also exists in most solid tumor tissues. 
Moreover, it is one of the most abundant immune cells in 
tumor tissue, and even accounts for up to 50% of immune 
cells [2]. So, where do these macrophages originate and how 
are they enriched in tumors? For more than half a century, 
the mainstream view has been that macrophages are derived 
from bone marrow hematopoietic stem cells. However, with 
the development of modern lineage tracing techniques and 
single-cell RNA sequencing (scRNA-seq), a large body of 
evidence has shown that they have different pathways of 
origin. First, in addition to myeloid-derived macrophages, 

the researchers identified embryonic-derived macrophages 
in adult mouse tissues [3]. Subsequently, further studies con-
firmed that embryonic-derived macrophages also exist in 
human organs and tissues [4]. Therefore, it is currently rec-
ognized that there are three origins of macrophages, which 
are: yolk sac-derived erythromyeloid progenitors (EMPs) 
produced embryonic macrophages, embryonic monocytes 
generated by EMPs colonization in the fetal liver and 
monocyte-macrophages differentiated from bone marrow 
hematopoietic stem cells. (Fig. 1) Actually, macrophages in 
most normal tissues, namely tissue-resident macrophages 
(TRMs), are dominated by embryonic macrophages with 
self-renewal and proliferation capacity, supplemented by 
the recruitment of myeloid-derived macrophages. However, 
not all TRMs have multiple origins. For example, TRMs in 
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Fig. 1   Macrophage Origin and Polarization. a Macrophages have 
three origins (yolk sac, fetal liver, and bone marrow) and two forms 
(TRMs and myeloid-derived macrophages). b Unlike TRMs, which 
have a well-defined self-proliferation ability, the self-proliferation 
ability of bone marrow-derived TAMs in tumor tissues remains 
controversial. c TAMs mainly consisted of myeloid-derived mac-
rophages, followed by TRMs. However, unlike TAMs, whether 
MAMs are partially derived from TRMs remains controversial. d 
TAMs can be further polarized into M1 and M2, while M1 and M2 
can be converted into each other. TRMs tissue-resident macrophages, 
MAMs metastasis-associated macrophages, TAMs tumor-associated 
macrophages
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adult gastrointestinal and dermal tissues are almost exclu-
sively derived from bone marrow, whereas TRMs in brain 
tissues are almost exclusively derived from embryos (yolk 
sac origin) [5].

Besides, there is currently controversy over the origin of 
TAMs. Lineage tracing studies in mouse models have shown 
that, in contrast to TRMs that are predominantly derived 
from embryonic precursors, the vast majority of TAMs 
are derived from myeloid-derived monocytes/monocyte-
myeloid-derived suppressor cells (M-MDSCs) [6]. There-
fore, it has been suggested that the “reservoir” of TAMs is 
mainly composed of circulating monocytes and M-MDSCs. 
However, recent studies have shown that TAMs have both 
embryonic and myeloid origins, at least in tumors such as 
lung cancer, pancreatic cancer, and glioblastoma [7]. These 
studies also found that TAMs of different origins have differ-
ent phenotypic and functional characteristics. Among them, 
bone marrow-derived TAMs highly expressed genes related 
to immunosuppression and antigen presentation, while 
embryo-derived TAMs highly expressed genes related to 
tissue remodeling and wound healing [8]. Chow et al. found 
that Tim-4+ luminal resident macrophages sequestered and 
inhibited the proliferation of CD8+T cells, and blocking 
Tim-4 enhanced the efficacy of ICB therapy and adoptive 
T cell therapy in mice [9]. Ramos and colleagues found that 
FOLR2+TRMs are positively associated with good prog-
nosis by interacting with CD8+T cells in breast cancer tis-
sue [10]. In addition, the proportion of TAMs of different 
origins varied with tumor progression. Through scRNA-seq 
technology, it was found that TAMs in the early stage of 
tumors were mainly embryonic-derived TRMs. And they 
promote tumor growth and proliferation by establishing a 
pro-tumor niche by promoting tumor cell EMT, invasion, 
and protecting tumor cells from adaptive immunity [11]. 
Similarly, Huggins et al. identified a novel lipid-associated 
macrophage derived from alveolar macrophages (AMs) in 
an animal model of breast cancer lung metastasis. Interest-
ingly, their study showed that the aggregation of these cells 
occurred before the formation of tumor metastases [12]. 
Therefore, we speculate that TRMs may be more inclined 
to proliferate and function in the early stage of tumors com-
pared with myeloid-derived macrophages.

Moreover, Antunes et al. found that myeloid-derived 
TAMs also have the ability to self-renew and proliferate, and 
inhibiting the recruitment of myeloid-derived macrophages 
only activates the proliferation compensatory mechanism of 
TAMs, but does not reduce the total number of TAMs [13]. 
Wang and colleagues found that granulocyte-macrophage 
colony-stimulating factor (GM-CSF) enhanced A2A recep-
tor expression on TAMs and synergized with adenosine to 
induce proliferation of TAMs in liver cancer tissues [14]. 
These may be one of the reasons for the poor efficacy of pan-
macrophage-targeted therapies, such as anti-CSF-1 antibody. 

In conclusion, it is still unclear how TAMs of different ori-
gins regulate the TME and cancer progression. Further clari-
fication of this issue is of great significance for elucidating 
the diversity of TAMs functional phenotypes and targeted 
therapy strategies.

Recruitment and polarization of TAMs

Tumor promotes the recruitment and polarization of mac-
rophage. Ali N and colleagues [2] summarized the five 
recruitment axes of monocyte-macrophages, including 
CCL2/CCR2, CXCL12/CXCR4, VEGF/VEGFR, comple-
ment components (especially C5a/C5a receptors) and CSF-1 
/CSF-1R. Studies have found that tumors can also recruit 
macrophages/M-MDSCs through CCL3, CCL5, CX3CL1, 
IL34, and periostin. In addition, recent studies on tumor 
metabolism have shown that the hypoxic environment in 
tumors plays a key role in promoting the recruitment and 
differentiation of TAMs [15]. Metabolites in the TME may 
also be important factors in tumor recruitment of TAMs. For 
example, Barrio et al. found that adenosine can promote the 
recruitment of monocytes through a self-amplifying mecha-
nism that is further adenosine production by M2 or MDSCs 
recruited by adenosine [16].

Traditionally, TAMs have been classified into M1 (clas-
sically activated macrophages) and M2 (alternatively acti-
vated macrophages) polarized phenotypes based on their 
functional characteristics. M1 exhibits pro-inflammatory, 
pro-immune, and anti-tumor features, while M2 has anti-
inflammatory, immunosuppressive, pro-angiogenic, and 
metastasis-promoting functions [17]. Recently, some schol-
ars have further subdivided M2 cells into four subgroups: 
M2a, M2b, M2c and M2d [1, 18]. The present findings sug-
gest that IFN-γ, TNF-α, Toll-like receptor (TLR) agonists 
(such as bacterial lipopolysaccharide (LPS)), IL-12, GM-
CSF can induce TAMs polarization to M1 [19–22], while 
IL-4, IL5, IL-10, IL-13, IL-33, CSF-1, TGF-β, FGF2, PGE2, 
Sonic Hedgehog (SHH), BMP4 and Sema3A induce TAMs 
polarization to M2 [20, 23–28]. Besides, accumulating evi-
dence suggests that TAMs can promote their polarization 
toward M1 or M2 by ingesting tumor cell-derived exosomes 
[29–34]. In addition, metabolic reprogramming of tumors 
[20], hypoxic state of the TME [35], and remodeling of the 
ECM [36, 37] can promote TAMs polarization toward M2. 
However, TAMs differentiate dynamically and continuously 
according to changes in the current microenvironment, 
resulting in their high degree of heterogeneity and plastic-
ity. On the one hand, their functional phenotypes have the 
characteristics of spatiotemporal distribution [11, 38]. That 
is, TAMs show different phenotypic and functional charac-
teristics between different patients, between different tumors 
in the same patient, and even in different sites or different 
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stages of the same tumor. For example, despite the overall 
predominance of an anti-tumor phenotype, TAMs mainly 
exhibit an anti-tumor M1 phenotype in early tumor stage 
and a pro-tumor M2 phenotype in tumor progression [18, 
39–41]. Besides, unlike M1 that are predominantly enriched 
in normoxic tumor areas, M2 are predominantly enriched in 
hypoxic, necrotic and perivascular tumor areas [20]. On the 
other hand, continued dynamic differentiation also results in 
a large number of intermediate transition states in TAMs, or 
TAMs with both M1 and M2 phenotypes [42–45]. Moreo-
ver, the M1/M2 polarization dichotomy is a taxonomy to 
describe the activation state of TAMs in vitro, limiting an 
accurate description of the multifunctional complexity of 
TAMs in humans [46–48]. Therefore, some scholars have 
tried to use scRNA-seq technology to classify TAMs sub-
sets. For example, Zhang L divided TAMs in colorectal 
cancer into subgroups of C1QC+ and SPP1+TAMs. Among 
them, C1QC+TAMs highly expressed genes involved in 
phagocytosis and antigen presentation, while SPP1+TAMs 
preferentially expressed genes involved in angiogenesis. This 
study further found that anti-CSF-1R treatment preferen-
tially reduced C1QC+TAMs with inflammatory features and 
did not affect SPP1+TAMs expressing pro-angiogenic/tumo-
rigenic genes [49]. In a pan-cancer scRNA-seq study, TAMs 
were further divided into four subgroups: SPP1+TAMs, 
C1QC+TAMs, ISG15+TAMs and FN1+TAMs [43]. In addi-
tion, Obradovic found that TREM2+/APOE+/C1Q+ TAMs 
were associated with postoperative recurrence of clear cell 
renal cell carcinoma [50]. We believe that scRNA-seq tech-
nology will become a new classification method of mac-
rophages and influence the formulation of targeted therapy 
strategies for macrophages. Despite its obvious limitations, 
the M1/M2 polarization dichotomy is currently the most 
commonly used method for classifying TAMs in medical 
research.

TAMs and tumor growth

To the body, the tumor is like an endless wound that keeps 
on starting to heal, but never completely heals [51]. In the 
process of tumorigenesis, precancerous lesions or oncogenic 
inflammation should eliminate abnormal cells by recruit-
ing pro-inflammatory immune cells such as macrophages 
and dendritic cells, thereby inhibiting tumorigenesis. At 
this point, the recruited macrophages (M1) exert anti-tumor 
functions. The specific manifestations are: (1) phagocytos-
ing and killing tumor cells; (2) presenting neoantigens to 
CD8+T cells to remove tumor cells and start the "immune 
editing" program; (3) producing cytotoxic factors (such as 
NO and ROS) to directly kill tumor cells; (4) release of pro-
inflammatory factors (such as IFN-γ, TNF-α, IL-1β, IL-2, 
IL-6, IL-12, IL-18, IL-23 and CXCL9) to further activate 

the anti-tumor immune response [52, 53]. In addition, M1 
increases the expression of major histocompatibility com-
plex class II (MHC II) molecules, resulting in a higher 
degree of activation of tumor-associated antigen-presenting 
cells (APCs) such as monocytes, macrophages, and dendritic 
cells (DCs) [54]. However, while exerting pro-inflamma-
tory and anti-tumor functions, M1 also increases the gene 
mutation burden of precancerous cells by releasing IFN-γ, 
TNF-α, TGF-β, IL-1β, and reactive oxygen species/reactive 
nitrogen (ROS/NOS) [55, 56]. An increased gene mutation 
load is required for tumorigenesis. Gradually, the accumula-
tion of gene mutational burden in precancerous cells leads to 
tumorigenesis, and tumor cells further promote macrophage 
recruitment and polarization toward a pro-tumor phenotype 
by regulating the TME. Importantly, M2 plays a multifaceted 
tumor-promoting role during tumor progression, as detailed 
below (Fig. 2).

Promote cancer stem cells activation

Cancer stem cells (CSCs) are tumor cell subsets with stem 
cell-like properties that play a key role in tumorigenesis, 
immune evasion, metastasis and therapy resistance. Several 
studies have demonstrated that the acquisition and mainte-
nance of CSCs activity can be regulated by TAMs through 
the secretion of cytokines such as IL-6, IL-8, CD51 and 
GPNMB [57–60]. Sharma et al. found that TAMs could 
activate the Notch1-Jagged1/2 signaling pathway through 
direct contact with tumor cells, thereby inducing stemness 
in cancer cells [61]. Additionally, TAMs can promote tumor 
growth and proliferation by secreting collagen [62] and 
insulin-like growth factor-1 (IGF-1) [63]. In addition, M2 
increases the iron absorption rate of tumor cells by up-regu-
lating the expression of ferroportin, which in turn promotes 
their growth and proliferation [64].

Promote angiogenesis

The unlimited proliferation of tumor cells requires continu-
ous consumption of a large amount of oxygen and nutrients. 
When the TME fails to meet the metabolic demands of the 
tumor, solid tumors turn on a program called an “angio-
genesis” switch This procedure replenishes the tumor with 
nutrients and removes waste by triggering the formation of 
a dense network of blood vessels. Importantly, TAMs play a 
key role in turning on the “angiogenic switch”. It can secrete 
various cytokines (such as VEGFA, platelet-derived growth 
factor (PDGF), angiopoietin, placental growth factor (PlGF), 
adrenomedullin (AMD), VEGFC, TNF, IL-1β, IL-6, CCL18, 
CXCL8, CXCL12, FGF2, WNT7B and signaling protein 4D 
(Sema4D)) to promote angiogenesis [65–67]. Among them, 
VEGFA mainly comes from TAMs and promotes the recruit-
ment, proliferation and maturation of endothelial cells by 
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binding to VEGF receptor 2. In addition, TAMs degrade 
ECM by expressing membrane-bound or soluble proteases 
such as matrix metalloproteinases, urokinase-type plasmi-
nogen activator (uPA), thymidine phosphorylase, and cath-
epsin, assisting endothelial cell migration and formation of 
new vascular buds, and mobilizing free VEGFA in ECM 
[68]. TAMs also degrade collagen in the ECM by endocyto-
sis in a mannose receptor-dependent manner [69]. Interest-
ingly, TIE2+TAMs aggregated around tumor blood vessels, 
where they supported vascular sprouting or anastomosis in 
a paracrine fashion [70].

TAMs are also associated with high permeability of neo-
vascularization within tumors. On the one hand, TAMs pro-
mote the transendothelial migration of tumor cells by secret-
ing inflammatory factors (such as VEGFA and TGF-β) that 
cause endothelial cells to lose adherent junctions, expand 
the vascular endothelial cell space and increase permeabil-
ity. On the other hand, overexpression of these angiogenic 
growth factors produces immature new blood vessels that 
appear to be barely covered by pericytes and loosely bound 
to the basement membrane [71]. When tumor cells migrate 
around blood vessels, TIE2+TAMs open a door for tumor 
cells to enter the vasculature by assisting their transen-
dothelial migration [72]. Ginter and colleagues found that 
the tumor metastasis microenvironment (TMEM), involv-
ing tumor cells, TAMs, and endothelial cells, is the gateway 
for hematogenous dissemination of the primary tumor and 

lymph nodes of breast cancer [73]. Additionally, preclinical 
studies have demonstrated that targeted killing or depletion 
of TAMs can reduce the number of circulating tumor cells 
[74].

In addition to participating in angiogenesis, TAMs may 
be associated with increased infiltration and density of lym-
phatic vessels. It has been found that TAMs can promote 
lymphangiogenesis and lymph node metastasis by secret-
ing VEGF-C/D [75] and expressing S1PR1 [76] and PDPN 
[77]. Furthermore, TAMs can differentiate into lymphatic 
endothelial progenitors and integrate with existing lymphatic 
vessels to induce new lymphatic sprouting [60].

Suppress immune response

We conclude that TAMs mainly exert their immunosuppres-
sive abilities in the following four ways.

Membrane proteins

TAMs highly express T cell immune checkpoint ligands 
on the membrane surface, including PD-L1 (also known as 
B7H1 or CD274), PDL2 (also known as B7-DC or CD273), 
CD80 (also known as B7-1), and CD86 (also known as 
B7-2) [78]. PD-L1 and PD-L2 expression of TAMs is up-
regulated by stimulation of cytokines and hypoxia, and 
they induce effector T cell exhaustion by binding to the 
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inhibitory receptor PD-1 on the membrane surface of effec-
tor T cells. However, CD80 and CD86 inhibit the activity 
of effector T cells by binding to CTLA-4 on effector T cells. 
Indeed, TAMs themselves also express high levels of PD-1, 
which has the ability to reduce their antigen presentation 
and increase the expression of immunosuppressive factors 
such as ARG1, IL-10, and TGF-β [2, 79]. Kryczek et al. 
found that another member of the B7 superfamily (B7-
H4) expressed by TAMs is also involved in suppressing 
the immune activity of effector T cells [80]. In addition, 
the V-type immunoglobulin domain-containing suppressor 
of T cell activation (VISTA) expressed on the membrane 
of TAMs is a novel immunosuppressive checkpoint and is 
often considered to be an indicator of poor prognosis in vari-
ous cancers [81]. Furthermore, SIRPα [82], LILRB1 [83], 
Siglec-10 [84] expressed by TAMs transmit the signal of 
“don’t eat me” by binding to CD47, β2M and CD24 on the 
surface of tumor cell membranes, respectively, thereby pro-
tecting cancer cells from being phagocytosed by TAMs.

Scavenger receptors are composed of a structurally 
diverse group of membrane proteins (including A-H classes) 
that have important effects on inflammatory responses, tis-
sue repair and remodeling, and innate immune responses 
by recognizing a broad range of ligands [79]. Among the 
various scavenger receptors expressed by macrophages, 
CD206, SR-A (also known as CD204) and CD163 have been 
widely used as biomarkers for M2. Many scavenger recep-
tors, including SR-A [85], MARCO [86], and Clever-1 (also 
known as stabilin-1 or FEEL1) [87], contribute to the expres-
sion of tumor-promoting activity in macrophages through 
ligand binding. Fleur et al. found that MARCO+TAMs in 
non-small cell lung cancer promoted Treg cell proliferation 
and IL10 production, and decreased CD8+T cell activity 
[88]. Masetti et al. found that MARCO+TAMs can main-
tain the growth and invasion of prostate cancer by promot-
ing lipid metabolism and lipid accumulation [89]. Recent 
studies have found that TREM2+TAMs are associated with 
exhaustion of effector T cells and resistance to anti-PD-1 
therapy. Targeted TREM2 therapy inhibits tumor growth 
and improves ICB efficacy while remodeling TAMs [90]. 
However, TREM2 plays different roles in the occurrence and 
development of different malignant tumors, and its specific 
biological function needs to be further confirmed by a large 
number of studies [91].

Besides, Hu et al. found that DC-SIGN+TAMs were asso-
ciated with inactivation of CD8+T cells, and anti-DC-SIGN 
treatment enhanced the therapeutic effect of PD-1 inhibi-
tors [92]. Qi et al. found that Gal-9+TAMs are associated 
with effector T cell exhaustion [93]. Chow et al. found that 
Tim-4+luminal resident macrophages could sequester and 
inhibit the proliferation of CD8+T cells, and blocking Tim-4 
enhanced the efficacy of ICB and adoptive T cell therapy 
in mice [9]. TAMs also negatively regulate NK and T cell 

activity by expressing atypical major histocompatibility 
complex class I (MHC-I) molecules such as HLA-E and 
HLA-G, thereby exerting immunosuppressive effects [72]. 
TAMs also express ligands for the death receptors FAS and 
TRAIL, which bind to their related receptors on T cells and 
lead to T cell apoptosis by activating the caspase 3 and cas-
pase 8 pathways [60, 72]. In conclusion, the specific mem-
brane-expressed receptors of TAMs play an important role 
in promoting tumor immunosuppression, and blocking them 
can significantly improve the outcome of immunotherapy in 
patients. Compared with pan-macrophage-targeted therapy, 
we believe that targeting receptors on the surface of mac-
rophage membranes is a precise, safe, and more effective 
therapeutic strategy.

Cytokines

TAMs can suppress the function of effector T cells by secret-
ing a series of cytokines to recruit natural regulatory T cells 
(nTreg) and induce the differentiation of adaptive regulatory 
T cells (iTreg) [72]. For example, TAMs-derived chemokines 
CCL2, CCL3, CCL4, CCL5, CCL20, and CCL22 promote 
the recruitment of immunosuppressive nTregs to tumors [19, 
78, 94]. TGFβ, IL-10 and exosomes derived from TAMs 
can induce the differentiation and expansion of CD4+T cells 
to iTreg [72, 95]. Besides, TAMs can inhibit the cytotoxic 
activity of effector T cells and NK cells through the expres-
sion of IL-10 and TGFβ, thereby promoting tumor progres-
sion [78, 96]. Specifically, secreted TGFβ can directly inhibit 
CD8+ T cell function through transcriptional repression 
of genes encoding functional cytokines such as perforin, 
granzymes, and cytotoxins [97]. Alternatively, secreted 
TGFβ indirectly inhibits effector T cells by upregulating the 
expression of indoleamine 2,3-dioxygenase (IDO) in plasma 
cell-like dendritic cells (pDC) and CCL22 in myeloid DC 
(mDC) [98]. Membrane-bound TGF-β can also affect NK 
cell phenotype and cytotoxicity through direct cell-to-cell 
contact [99]. IL-10, which mainly comes from TAMs, can 
indirectly attenuate the activity of CD8+T cells by inhibit-
ing DC secretion of IL-12 [100]. Finally, the lysosomes of 
TAMs inhibit the cross-presentation of antigens due to their 
highly active cysteine protease activity, thereby inhibiting 
the activity of CD8+T cells [101].

Cellular metabolism

M2 participates in the metabolism of L-arginine through 
high expression of arginase. On the one hand, arginine 
depletion of M2 leads to "arginine starvation" of effector 
T cells, which in turn inhibits the proliferation and activa-
tion of effector T cells by blocking the cell cycle [102]. On 
the other hand, ornithine (M2-related arginine metabolite), 
as a precursor of proline and polyamines, can remodel the 
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ECM by promoting collagen synthesis, remodeling of dam-
aged tissues, and formation of fibrosis. Moreover, TAMs 
can degrade tryptophan in TME through high expression of 
IDO, thereby inhibiting the cytotoxic activity of T cells and 
NK cells. A large amount of kynurenine (a metabolite of 
tryptophan mediated by IDO) can play an immunosuppres-
sive function directly or by binding to AhR on the surface of 
Treg cells, NK cells and DC cell membranes [103]. In addi-
tion, TAMs indirectly exert pleiotropic immunosuppressive 
functions by promoting the hydrolysis of extracellular ATP 
to adenosine by expressing high levels of membrane-bound 
nucleotidase CD39 and CD73, or by initiating NAD+ extra-
cellular adenosine synthesis by CD38 [20, 104]. Recently, 
Hinshaw et al. found that TAMs can regulate metabolic 
processes through the Hedgehog (Hh) signaling pathway, 
thereby promoting their immunosuppressive activity [105].

ECM remodeling

It is well known that one of the key factors in the fail-
ure of ICB therapy is T cell exclusion, that is, the dense 
fibrotic structure of the ECM hinders the physical contact 
of CD8+T cells with cancer cells, thereby rendering them 
unable to perform the function of killing cancer cells. 
Therefore, overcoming this physical barrier imposed by 

the ECM is a necessary precondition to guarantee the suc-
cess of ICB therapy. Increasing evidence has confirmed 
that TAMs play an important role in the formation of ECM 
fibrosis. The traditional view is that TAMs mainly activate 
tumor-associated fibroblasts by releasing inflammatory 
factors, and then indirectly induce ECM fibrosis [106]. 
However, studies have shown that TAMs can modulate 
tumor-associated fibrosis by directly participating in ECM 
remodeling [107]. Not only that, there is evidence that M2 
cells have the potential to transform into tumor-associated 
fibroblasts [108].

TAMs, MAMs and distant metastasis

Tumors metastasize mainly through the following steps: 
(1) establishment of a pre-metastatic niche (PMN), (2) 
metastasis and seeding of primary tumor cells (includ-
ing invasion, migration, vascular infiltration, circulation, 
vascular extravasation and seeding), (3) growth and prolif-
eration of metastatic tumor cells (including micrometasta-
ses, dormancy and secondary growth). And TAMs play an 
important role in almost all processes. (Fig. 3).
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Fig. 3   Macrophages promote distant metastasis of tumors. a The 
formation process of distant metastasis of tumor includes: invasion, 
migration and vascular infiltration of primary tumor cells, survival 
and vascular extravasation of circulating tumor cells, and seeding and 

proliferation of metastatic tumor cells. b During the whole process 
of tumor metastasis, macrophages play an important promoting role 
through different molecular mechanisms. EMT Epithelial-mesenchy-
mal transition, PMN pre-metastatic niche



98	 Clinical and Translational Oncology (2023) 25:91–104

1 3

Establishment of PMN

Tumor-secreted factors including EVs, cytokines and 
chemokines, and other molecular components contribute 
to tumor cell metastasis. Before the primary tumor cells 
spread into the blood circulation, the soluble factors (includ-
ing CCL-2, TNFα, VEGF-A, TGFβ and CXCL1) [109] and 
EVs [110] released by the primary tumor cells are first 
released into the blood circulation and recruit macrophages/
MDSCs to pre-metastatic organs [56]. Furthermore, tumor 
cell-derived tissue factor (TF) [111] and exosomes [112] 
can promote the recruitment of macrophages by promot-
ing the formation of microthrombi in pre-metastatic organs. 
The recruited macrophages/MDSCs, together with neutro-
phils, establish a PMN by remodeling ECM, creating an 
immunosuppressive environment, stimulating neovascu-
larization, and secreting inflammatory factors [56]. Block-
ing the recruitment of these myeloid cells to the PMN can 
significantly reduce the incidence of metastasis and improve 
disease-free survival [113]. It is worth mentioning that 
although it was initially thought that TRMs such as alveolar 
macrophages (AMs) were not involved in tumor metastasis, 
recent studies have found that AMs can function as metas-
tasis-associated macrophages (MAMs) [12, 114, 115]. For 
example, Sharma et al. showed that AMs can promote the 
formation of pre-metastatic niches by inhibiting antitumor 
immunity [114]. Nosaka et al. found that monocyte-derived 
AMs promote the progression of lung metastases via leu-
kotriene B4 (LTB4) [115]. In addition, Huggins et al. dis-
covered a novel pro-metastatic lipid-associated macrophage 
subset (Lgals3, Trem2) in breast cancer lung metastases, 
and suggested that this cell population was derived from 
AMs [12].

Tumor metastasis

Tumor cell reprogramming is a hallmark of tumor inva-
sion initiation. In epithelial cell carcinoma, epithelial-
mesenchymal transition (EMT) is the main manifestation 
of tumor cell reprogramming. EMT encompasses dynamic 
changes in cellular organization from epithelial to mes-
enchymal phenotypes, which leads to functional changes 
in cell migration and invasion [116]. EMT can enhance 
the metastatic ability of tumor cells, which is manifested 
by remodeling of the cytoskeleton, changes in cell polar-
ity, loosening of intercellular and cell-matrix junctions, 
individualization of cells, acquisition of cell motility, and 
enhancement of cell invasive capacity [117]. In addition, 
EMT is associated with stem cell properties, cell viabil-
ity, metabolic changes, and drug resistance [117, 118]. 
Importantly, TAMs can promote EMT of tumor cells by 
releasing various cytokines, such as TGF-β, Wnt-1, EGF, 
IL-6, IL-8, IL-10, TNF-α, COX-2 and heme oxygenase-1 

(HO-1). Mechanistically, these cytokines promote EMT by 
increasing the expression and activation of EMT-related 
transcription factors such as Zeb, Snail, Twist, and FoxQ1, 
which in turn downregulates the expression of E-cadherin 
and epithelial cell adhesion molecule (EpCAM).

In addition to promoting EMT, TAMs can participate 
in tumor invasion and metastasis by producing a variety of 
proteolytic enzymes that degrade basement membrane and 
ECM. These enzymes include metalloproteinases (MMP2, 
MMP7, MMP9), urokinase-type plasminogen activator 
(uPA), COX2, and cathepsins. TAMs also produce several 
other molecules to advance tumor cell invasion. One exam-
ple is osteoadhesin (also known as SPARC), which pro-
motes migration by increasing tumor cell-ECM interactions 
through integrins [119]. When migrating to the vicinity of 
blood vessels, tumor cells infiltrate into the vasculature with 
the assistance of TAMs (see above for details).

In the process of tumor metastasis, some paracrine cir-
cuits between TAMs and tumor cells play an important role. 
For example, preclinical studies have found that breast can-
cer cells can recruit TAMs by releasing CSF-1 and promote 
their secretion of EGF and Wnt-1, thereby further supporting 
tumor cell migration and infiltration into blood vessels [120]. 
In addition, neuregulin (NRG1) produced by breast cancer 
cells can promote the secretion of Jag-1 (ligand of Notch 
receptor) by TAMs, and Jag-1 further promotes the transen-
dothelial migration and infiltration of tumor cells through 
the Notch signaling pathway [121]. In squamous cell carci-
noma, tumor-initiating cells (TICs) induce FcεRIα+TAMs 
to accumulate in their vicinity by overexpressing IL-33. In 
turn, FcεRIα+TAMs promoted the low differentiation and 
invasiveness of TICs through the expression of TGF-β, and 
further up-regulated the expression of IL-33 [122].

During hematogenous metastasis, tumor cells must over-
come challenges such as immune monitoring, fluid shear 
stress, and oxidative stress. Although Bernabé et al. dem-
onstrated that TAMs promote the survival of tumor cells 
in the blood circulation, the specific mechanism remains 
unclear [111]. In addition, previous studies have found that 
macrophages can activate the PI3K/Akt signaling pathway in 
tumor cells through the interaction of α4 integrin and vascu-
lar cell adhesion molecule-1 (VCAM-1), thereby supporting 
the survival of cancer cells in the circulation [123]. After-
wards, tumor cells reside in the capillary bed of the PMN 
and infiltrate into the parenchyma within hours of their entry 
into the blood. Intact lung imaging reveals that macrophages 
are required for tumor cell extravasation [124]. Qian et al. 
found that inflammatory monocytes can promote tumor cell 
extravasation at least by secreting VEGF [124]. Häuselmann 
et al. showed that monocytes can promote transendothelial 
extravasation of tumor cells by inducing E-selectin-depend-
ent endothelial cell retraction and regulating tight junctions 
through dephosphorylation of VE-cadherin [125].
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MAMs derived from inflammatory monocytes are one 
of the most abundant immune cell types in the metastatic 
tumor niche [126]. They are recruited by CCL2, which is 
highly expressed by tumor metastatic cells and endothelial 
cells [127], and adhere to cancer cells via autocrine CCL-
3, thus leading to prolonged residence of many MAMs at 
metastatic sites [128]. That is, CCL2 is mainly responsible 
for the recruitment of macrophages, while CCL3 is mainly 
responsible for the retention of macrophages. MAMs play 
an important role in maintaining the immunosuppressive 
microenvironment and promoting the growth of metastatic 
tumors. For example, MAMs can inhibit the activity of 
effector T cells by secreting CCL20 and expressing CD80/86 
and PDL-1/2 [56, 129], and inhibit the antitumor activity 
of NK cells by releasing HGF and expressing membrane-
bound TGF-β [130, 131]. In addition, MAMs can promote 
the growth of metastatic tumors through high expression of 
VEGFR-1 and IL-4R [126, 132]. In a model of pancreatic 
ductal adenocarcinoma liver metastases, granulin secreted 
by MAMs promotes the transformation of hepatic stellate 
cells into myofibroblasts, which secrete periostin, thereby 
creating a fibrotic microenvironment that sustains metastatic 
tumor growth [133]. Moreover, because the recruitment of 
inflammatory monocytes is faster than the rate of differen-
tiation into MAMs, a large number of metastasis-associated 
macrophage precursors (MAMPCs) are also present at tumor 
metastatic sites. Ultimately, immunosuppressive MAMPCs 
can differentiate into MAMs within hours [56].

Conclusion

In this review, we summarize the latest research progress 
of macrophages, including its origin, classification, func-
tional roles and molecular mechanisms in different stages of 
tumors. Based on our research, we believe that macrophages 
are very potential anti-cancer therapeutic targets, and the 
development and application of macrophage-targeted drugs 
has important clinical significance for improving the prog-
nosis of cancer patients. But our current understanding of 
TAMs is still relatively limited due to their high hetero-
geneity and plasticity, as well as the intricate interactions 
between cells within the TME. Therefore, we strongly rec-
ommend further research in macrophage-targeted therapy 
in the future. In this context, the application of new tech-
nologies (including scRNA-seq, mass cytometry, multiplex 
fluorescence immunohistochemistry, TAMs in vivo imaging, 
and spatial transcriptome sequencing) and the development 
of clinical trials will be very helpful for our comprehen-
sive understanding of TAMs. In conclusion, TAMs-targeted 
therapy is a very promising antitumor immunotherapy strat-
egy. However, to obtain the optimal-targeted macrophages 
therapy, that is, to deliver specific macrophage-targeted 

drugs dynamically and efficiently in real time, we still need 
to conduct more in-depth research on TME and TAMs.
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