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Abstract
Cancer is one of the leading causes of death, with a heavy socio-economical burden for countries. Despite the great advances 
that have been made in the treatment of cancer, chemotherapy is still the most common method of treatment. However, many 
side effects, including hepatotoxicity, renal toxicity, and cardiotoxicity, limit the efficacy of conventional chemotherapy. 
Over recent years, natural products have attracted attention as therapeutic agents against various diseases, such as cancer. 
Resveratrol (RES), a natural polyphenol occurring in grapes, nuts, wine, and berries, exhibited potential for preventing and 
treating various cancer types. RES also ameliorates chemotherapy-induced detrimental effects. Furthermore, RES could 
modulate apoptosis and autophagy as the main forms of cancer cell deaths by targeting various signaling pathways and up/
downregulation of apoptotic and autophagic genes. This review will summarize the anti-cancer effects of RES and focus on 
the fundamental mechanisms and targets for modulating apoptosis and autophagy by RES.
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Introduction

Besides cardiovascular diseases, cancer is the leading cause 
of death worldwide [1]. The global incidence and mortality 
of cancer are increasing, leading to a heavy economic burden 
to both families and society. It is reported that the incidence 
of cancer was increased from 18.1 to 19.3 million between 
2018 and 2020, and cancer deaths reached 10.0 million from 
9.6 million in this period [2, 3]. Despite remarkable efforts 
to develop novel and more effective approaches, including 
surgery, radiotherapy, immunotherapy, and suicide genes, 
chemotherapy as cytotoxic agents are still predominantly 
used in clinical practices. However, the resistance of tumors 
to chemotherapeutic agents and their side effects, such as 
hepatotoxicity and cardiotoxicity, limit their efficiency [4].

Different natural products, including berberine, curcumin, 
ginsenosides, artemisinins, (-)-epigallocatechin-3-gallate 
(EGCG), indole-3-carbinol (I3C), triptolide, ursolic acid 
(UA), ordonin, wogonin, cepharanthine, tanshinones, sili-
binin, and cucurbitacins, were identified with potent anti-
cancer properties, such as anti-angiogenic, anti-metastatic, 
immune regulatory, multidrug resistance (MDR) reversal, 
pro-apoptotic, and autophagy regulatory [5]. The natural 
products attracted attention owing to their low costs, low 
toxicity, affordability, and multi-targeting properties that 
modulate several signaling pathways [6, 7]. Resveratrol 
(RES), a natural polyphenol, is presented in various plants, 
such as grapes, nuts, wine, and berries [8]. Indeed, RES is 
a phytoalexin that plants produce in response to environ-
mental stress, such as metallic salts and UV irradiation, or 
pathogenic attacks, such as bacterial and fungi infections 
[9]. It has gained extensive attention owing to numerous 
biological activities in controlling heart diseases, autoim-
mune disorders, arthritis, and cancer. The chief anti-cancer 
activity of RES is due to its chemopreventive effect as well 
as interfering with signaling pathways regulating cell prolif-
eration, inflammation, metastasis, apoptosis, and autophagy 
[10]. Owing to the preventive and therapeutic effects of RES 
against various cancers, this review will focus on the ben-
eficial effects of this natural product, with emphasis on its 
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modulatory effects on two vital processes during cancer 
development and treatment, apoptosis and autophagy.

Resveratrol and its anti‑cancer effects

Although RES or 3,5,4-trihydroxystilbene firstly was iso-
lated from Veratrum grandiflorum root in 1939 [11], it was 
also identified as one of the active constituents of Polygonum 
cuspidatum, a plant in Japanese and Chinese traditional med-
icine, in 1963 [12]. Structurally, due to a double “bridge”, 
RES has cis and trans isomers which the trans form is more 
stable than the cis one [13]. Although the half-life of RES 
in the plasma is 8–14 min, its metabolites circulate in the 
plasma for about 9.2 h [14]. RES could bind to some pro-
teins in the plasma, such as serum albumin and lipoproteins. 
Following oral administration of RES, it could accumulate 
in various tissues, such as the liver, intestine, stomach, and 
organs with diseases, such as cancers [15]. The oral uptake 
of RES leads to its metabolization into sulfate and glucu-
ronide conjugates, resulting in its low concentration in the 
plasma [16]. To pass the cell membrane and its intracellular 
functions, RES could be absorbed via passive diffusion or 
transport by ion channels [17, 18].

In 1997, Jang et al. found that RES could inhibit carcino-
gens at three stages: initiation, promotion, and progression 
[19]. It has been shown that RES has a synergistic effect 
in combination with chemotherapy agents. For instance, 
Bostan et al. demonstrated that RES could act as an adju-
vant of cisplatin against head and neck cancer (HNSCC) 
cells and enhance the cytotoxicity effects of cisplatin on 
induction of apoptosis and cell-cycle arrest [20]. RES could 
also reverse cancer cells' resistance to chemotherapy agents 

[21]. Yang et al. found that RES could resensitize glioma 
cells to temozolomide (TMZ) by inhibiting the activation of 
the Wnt pathway and downregulation of O6-methylguanine-
DNA methyltransferase (MGMT) expression [22]. Mecha-
nistically, MGMT determines the resistance of tumor cells 
to TMZ by removing the added methyl group by TMZ from 
O-6 positions of guanine [23]. In another study, Jin et al. 
investigated the effect of RES and doxorubicin (DOX) on 
the epithelial-mesenchymal transitions (EMTs) and chem-
oresistance in adriamycin (ADR)-resistant MCF-7/ADR 
breast cancer cells. They demonstrated that the combina-
tion of RES with DOX remarkably inhibited the prolifera-
tion and metastasis of MCF-7/ADR cells. RES could reverse 
the EMT process in MCF-7/ADR cells by promoting the 
expression of silent mating type information regulation 2 
homologue 1 (SIRT1) and modulating the SIRT1/β-catenin 
pathway. The upregulated SIRT1 induced the degradation 
of β-catenin through the promotion of ubiquitin-mediated 
proteolysis [24]. Many studies have demonstrated that the 
SIRT1 is a major target of RES and its upregulation is essen-
tial for anti-cancer activities of RES [25]. Moreover, RES 
could downregulate the phosphorylation and acetylation of 
NF-κB, resulting in impairments in elements that contribute 
to tumor proliferation, invasion, and metastasis [25, 26]. For 
instance, Tino et al. indicated that treating ovarian cancer 
cell lines with RES and acetyl-RES could inhibit cell growth 
by decreasing NF-κB levels and its downstream gene, vas-
cular endothelial growth factor (VEGF) [27]. VEGF is a 
major growth factor involved in the angiogenesis process 
that provides nutrients and oxygen to tumor cells for sup-
porting their growth [28]. Table 1 summarizes the effect of 
RES on the anti-cancer efficacy of other therapeutic agents.

Table 1   The combination of 
resveratrol and other therapeutic 
agents in cancer therapy

TMZ temozolomide; 5-FU 5-fluorouracil; CRC​ colorectal cancer; DTX docetaxel; DDP cisplatin; PERK 
PRKR-like ER kinase; ATF4 activating transcription factor 4; CHOP CCAAT/enhancer binding protein 
homologous protein (CHOP); Pacl paclitaxel; E2/ERα/NGB 17β-estradiol/estrogen receptor α/neuroglobin; 
MET metformin; VEGF vascular endothelial growth factor; DHA dihydroartemisinin; SAL salinomycin

Resveratrol 
(dose) (μM)

Therapeutic agent Cancer Pathway Ref

10 TMZ (100 μM) Glioblastoma MPK-TSC-mTOR [29]
25 5-FU (10 μM) CRC​ STAT3/Akt [30]
15 DTX (1 nM) Breast HER-2–Akt [31]
20 DDP (1 µg/ml) Gastric PERK/eIF2α/ATF4/CHOP [32]
20–22 DTX (10 nM) Prostate p53/ p21WAF1/CIP1 and p27KIP1 [33]
50 Rapamycin (100 nM) Thyroid PI3K/Akt/mTOR [34]
0.1–10 Pacl (1–100 nM) Breast E2/ERα/NGB [35]
100 MET (20 mM) Pancreatic VEGF-B [36]
100 Rapamycin (20 nM) Bladder Akt/mTOR [37]
100 5-FU (10 μM) Colon STAT3/Akt [38]
50 DHA (25 μM) Liver, Breast DLC1/TCTP/Cdc42 [39]
50 SAL (2.5) Breast JNK-p38-MAPK [40]
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In addition to synergistic effects with chemotherapy 
agents, RES also reduces the side effects related to chemo-
therapy. It has been shown that RES could attenuate chem-
otherapy-induced cardiotoxicity through various pathways. 
For instance, Tian et al. demonstrated that treatment of rats 
with DOX impaired cardiac function and increased the levels 
of creatine kinase isoenzyme (CK-MB) and lactate dehy-
drogenase (LDH) in the serum. DOX treatment also led to 
an increase in apoptosis and cell death in cardiomyocytes 
and a decrease in the expression of VEGFB- compared to 
the control group, whereas the combination of RES with 
DOX notably attenuated the cardiotoxicity effects of DOX 
[41]. In another study, Zhang et al. encapsulated RES into 
a solid lipid nanoparticle (SLN) to investigate its inhibitory 
effects on DOX-induced cardiotoxicity. They concluded that 
the RES-loaded SLN with 271.13 nm particle size not only 
solved the poor solubility of RES, but also improved heart 
functions, such as heart rate, and reduced cardiotoxicity 
induced by DOX administration [42]. RES also can attenu-
ate chemotherapy-induced hepatotoxicity. Recently, Alhu-
saini et al. showed that twice-weekly administration of DOX 
for 5 weeks could induce hepatotoxicity in rats, which was 
demonstrated through the elevation of the levels of alanine 
aminotransferase (ALT), hepatic malondialdehyde (MDA), 
transforming growth factor-β1 (TGF-β1), and inflamma-
tory cytokines, as well as the structural changes in the liver 
and downregulation of SIRT1 and endogenous glutathione 
(GSH). The liposomal RES prevented liver injury via con-
trolling inflammation, oxidative stress, and fibrosis [43]. The 
other study revealed that pre-treatment of rats with RES or 
RES + coenzyme Q10 could remarkably mitigate paclitaxel-
induced hepatotoxicity [44]. In addition to the mentioned 
protective effects, RES also ameliorates other detrimental 
effects induced by chemotherapy (Table 2).

Apoptosis

Cancer development and progression stem from uncon-
trolled cell differentiation and growth and impairment in 
the apoptosis process. Apoptosis is an organized process 
involving cellular proteins and signals transduction cascades. 
Based on their role, apoptotic proteins are classified into two 
groups: pro-apoptotic, including caspases and Bcl2 family, 
and anti-apoptotic proteins. Caspases belong to the cysteine 
proteases family with 14 proteins which are divided into 
three subtyped according to their function and structure: (1) 
inflammatory caspases, including caspases-1, -4, -5, -11, 
-12, -13, and -14; (2) initiator caspases in apoptotic path-
ways, including caspases -2, -8, -9, and -10; and (3) effector 
caspases, including caspases -3, 6-, and -7 [56, 57]. The Bcl2 
family proteins, which are localized in the outer membrane 
of the mitochondria, act as both pro-apoptotic (BAX, BAK, 
BID, BAD, BIM, BIK, HRK, BMF, PUMA, NOXA, etc.) 
and anti-apoptotic (BCL-2, MCL-1, BCL-XL, BFL-1/A1, 
and BCL-W) proteins [58].

Apoptosis occurs through two main pathways: intrin-
sic and extrinsic pathways (Fig. 1). The intrinsic pathway 
begins with mitochondrial outer membrane permeabiliza-
tion (MOMP) and the release of cytochrome c into the cyto-
plasm, which is activated with pro-apoptotic proteins of the 
Bcl2 family. The released cytochrome c binds to apoptotic 
protease activating factor 1 (Apaf-1) and procaspase-9 to 
form the apoptosome complex. The cleavage and activa-
tion of procaspase-9 in the apoptosome complex lead to the 
activation of caspase-3 and subsequently apoptosis [59]. 
Following cytochrome c release from the mitochondria, 
the inhibitors of apoptosis proteins (IAP), such as IAP1, 
IAP2, and XIAP, negatively regulate caspase-3 activation 
[60]. On the other hand, proteins that release together with 

Table 2   The effects of 
resveratrol on the toxicities 
induced by chemotherapeutic 
agents

DDP cisplatin; CyP cyclophosphamide; MTX methotrexate; DOX doxorubicin; DAC docetaxel adriamycin 
and cyclophosphamide

Chemotherapeu-
tic agent

Cytotoxic effect RES effect Ref

DDP Ovarian and uterine toxicity ↓Oxidative stress, apoptosis inflammation [45]
DDP Testicular damage ↓Oxidative stress, apoptosis inflammation [46]
Pacl Neuropathic pain ↓Apoptosis,inflammation [47]
DDP Ovarian damage ↓Inflammation, apoptosis [48]
CyP Multi-organ toxicity ↓Oxidative stress, inflammation [49]
MTX Liver damage ↓Oxidative stress [50]
DDP Ototoxicity ↓Apoptosis [51]
CyP Ovarian granulosa cell injury ↓Apoptosis, autophagy, oxidative stress [52]
DOX Cardiotoxicity ↓Oxidative stress [53]
DAC Cognitive impairment ↓Inflammation [54]
MTX Hepatotoxicity ↓Lipid peroxidation [55]
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cytochrome c from the mitochondria, such as Smac/DIA-
BLO and Omi/HtrA2, can facilitate caspase activity and 
apoptosis by blocking IAPs function [61]. The extrinsic 
pathway of apoptosis triggers following the binding of death 
signals to and the activation of death receptors located on 
the cell membrane. The binding of TNF, FasL, and TRAIL 
to their cognate receptors, including TNFR, Fas, DR4, and 
DR5, results in the recruitment of adaptor proteins, such as 
adaptor molecule Fas-associated death domain (FADD), and 
caspase-8 and caspase-10, which form the death-inducing 
signaling complex (DISC) [62]. The activation of initiator 
caspases, -8 and -10, leads to the activation of effector cas-
pases and cleavage of the pro-apoptotic protein BID, which 

is myristoylated and translocated to the mitochondria to con-
tribute to cytochrome c release [63]. Due to homology to 
caspase-8 and -10, FLIP is recruited to the DISC and blocks 
caspase activation [64] (Fig. 2).

Autophagy

Autophagy is a conserved process from yeast to the man that 
maintains cellular homeostasis by eliminating dysfunctional 
proteins and aged or damaged organelles. For his outstanding 
works on autophagy mechanisms and their impact on health 
and disease, the Nobel Prize in Physiology or Medicine was 

Fig. 1   The intrinsic and extrin-
sic pathways of apoptosis

Fig. 2   The molecular mechanism of autophagy
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awarded to Yoshinori Ohsumi in 2016 [65]. Three types of 
autophagy occur in the cell according to their morphology and 
mechanism: chaperone-mediated autophagy, microautophagy, 
and macroautophagy, which autophagy usually refers to as 
macroautophagy [66].

Under nutrient-rich conditions, the mechanistic target of 
rapamycin complex 1 (mTORC1) in the activated form inhibits 
autophagy initiation by phosphorylating of autophagy-related 
protein 13 (ATG13) and blocking its interaction with FIP200 
and ULK1. In response to stressful conditions, such as oxi-
dative stress, hypoxia, starvation, and protein aggregation, 
the ULK1 complex, composed of ULK1, FIP200, ATG13, 
and ATG101, is activated through dissociation of mTORC1, 
leading to the phosphorylation of the class III PI3K (PI3KC3) 
complex and production of phosphatidylinositol-3-phosphate 
(PI3P) at a characteristic endoplasmic reticulum structure, 
called the omegasome [67]. PI3P recruits proteins contain-
ing the PI3P-binding domain, including DFCP1 and WIPIs, 
to the omegasome. WIPI2 binds to ATG16L1 and recruits the 
ATG12 ~ ATG5-ATG16L1 complex, which catalyzes the con-
jugation of ATG8 proteins, such as LC3 and GABARAPs, to 
phosphatidylethanolamine (PE). These interactions result in 
the recruitment of components containing an LC3-interacting 
region (LIR), and finally, the lipidation, elongation, and clos-
ing of the phagophore membrane to form an autophagosome, a 
double-layered vesicle [68]. After the maturation, the fusion of 
the autophagosome with the lysosome leads to the degradation 
of autophagic cargo due to the lysosomal acidic hydrolases. 
The degraded components are released to the cytoplasm for 
re-using by cells [69].

It has been shown that autophagy is a dichotomous player 
in cancer. Autophagy can act as tumorigenesis or tumor-
inhibitory element, depending on the cancer type and its 
stage and genetic context [70]. It can control the quality of 
organelles and proteins, maintain the stability of the cellular 
genome, prevent cell injury, inflammation, chronic tissue 
damage, and inhibit the aggregation and accumulation of 
oncogenic proteins. These functions of autophagy could sup-
press tumor initiation, development, proliferation, migration, 
invasion, and metastases, mainly in the early stages of cancer 
[71–73]. On the other hand, autophagy could act as a cellular 
survival, defense, and protective mechanism, reduce DNA 
damage, maintain mitochondrial function, and sustain tumor 
growth and survival, leading to tumorigenesis promotion and 
resistance to therapeutic agents, especially in the late stage 
of cancer [71, 74].

Resveratrol and apoptosis

It has been shown that the induction of apoptosis and cell-
cycle arrest is one of the tumoricidal effects of RES. To 
induce apoptosis, RES could alter the expression of both 

pro-apoptotic and anti-apoptotic proteins. Depending on the 
RES concentration and cancer cell type, the signaling path-
way and the target of RES could be different. In the below, 
we will discuss the main targets of RES in the induction 
of apoptosis and its effects on chemosensitization of tumor 
cells by promoting apoptosis.

Survivin

Survivin, the product of baculoviral inhibitor of apoptosis 
repeat-containing 5 (BIRC5) gene, is the smallest member 
of the IAP family with a chain of 142 amino acids and a 
molecular weight of 16.5 kDa [75, 76]. It plays a pivotal 
role in controlling and regulating cell proliferation, divi-
sion, and cell cycle. Due to its upregulation in embryos and 
tumors and weak expression in normal cells, it has been 
concluded that survivin contributes to rapid cell prolifera-
tion and growth [75]. There is evidence that survivin can 
act as an inhibitory element in apoptosis, both intrinsic 
and extrinsic pathways. Mechanistically, survivin interacts 
with the activated form of effector caspases, -3, -7, and -9, 
and suppresses their cascade and function [77]. In another 
mechanism, survivin can prevent the activation of caspases 
by binding to and inactivating Smac/DIABLO [78]. Various 
therapeutic agents have been developed to target survivin in 
cancer, such as YM155, LLP3, LY2181308, and shepherdin 
[79]. The inhibitory effect of RES on survivin also have been 
demonstrated in various studies. Habibie et al. indicated that 
RES has cytotoxicity effects on murine and human mela-
noma cells via inducing apoptosis. The stimulatory effect 
of RES on apoptosis was due to the inhibition of survivin. 
Mechanistically, RES diminished survivin expression at 
the transcriptional level by regulating the STAT3/β-catenin 
pathway. Furthermore, oral administration of RES (100 mg/
kg/day) in a mice model for melanoma showed that RES 
significantly inhibited tumor growth by reducing survivin 
expression [80]. In another study, Saha et al. investigated 
the effect of trans-4,4′-dihydroxystilbene (DHS), a RES 
analog, on melanoma. They showed that DHS could reduce 
the survival of melanoma cell lines by inducing apoptosis 
and cell-cycle arrest at G1-phase. RES could also inhibit 
the metastasis of melanoma cells both in vitro and in vivo, 
which was demonstrated by repressing the expression of 
N-cadherin, matrix metalloproteinases-2 (MMP-2), MMP-
9, and survivin, as well as reducing melanoma nodules in 
the lungs [81]. The negative effect of RES on survivin also 
was reported in gastric cancer cells, which led to induction 
of apoptosis and cell-cycle arrest at the G0/G1 phase [82]. 
Moreover, there is evidence that the chemoprotective effects 
of RES against ultraviolet radiation (UVR)-mediated skin 
carcinogenesis and its ability to enhance chemosensitivity 
of tumor cells to chemotherapeutic agents may be associated 
with the modulation of survivin [83, 84].
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p53

It has been shown that the TP53 gene, a tumor suppressor, is 
mutated in almost 50% of cancer cells. Under the unstressed 
conditions, there are very low levels of wild-type p53 in non-
transformed cells due to its ubiquitination by the MDM2 and 
directed for proteasomal degradation. In response to DNA 
damage, oncogene activation, or other stress stimuli, the 
activated signaling pathways inhibit MDM2, which leads 
to an increase in the p53 levels [85]. Although p53 medi-
ates apoptosis through both intrinsic and extrinsic pathways, 
p53-dependent apoptosis normally follows the intrinsic path-
way. Furthermore, most studies revealed that the main con-
tribution of p53 to induction apoptosis is chiefly dependent 
on transcriptional activity. In this regard, p53 can activate 
the transcription of pro-apoptotic genes, including PUMA, 
NOXA, and BAX [86]. In turn, PUMA disassociates p53 
from its inactive form, p53-Bcl-XL complex, by binding 
to Bcl-XL in the cytoplasm. The cytosolic p53 can induce 
BAX oligomerization and then mitochondrial translocation. 
In addition, mitochondrial p53 promotes BAX and BAK oli-
gomerization, binds to and antagonizes the Bcl-XL and Bcl-2 
anti-apoptotic functions, and forms a complex with cyclo-
philin D in the inner membrane of mitochondria, result-
ing in disruption of mitochondrial structure and release of 
apoptotic factors, such as cytochrome c [87, 88]. Target-
ing and restoring the p53 pathway utilizing peptides and 
small molecules has been applied in cancer therapy with 
successful clinical trials [89]. Similarly, RES could induce 
apoptosis by targeting the p53-mediated pathway [90, 91]. 
For instance, Li et al. demonstrated that RES could sup-
press HeLa cell proliferation and enhance apoptosis through 
the intrinsic and p53 pathways. They showed that treatment 
of HeLa cells with RES (20 µmol/l) activated caspase − 3 
and − 9, upregulated BAX, and downregulated the expres-
sion of Bcl-XL and Bcl-2 proteins. In addition, RES-treated 
cells exhibited higher levels of p53 protein [92]. In another 
study, Liu et al. showed that RES could suppress the viabil-
ity of colorectal cancer cells and enhance the expression of 
p53 and its target genes, including BAX and PUMA, that 
play a crucial role in p53-dependent apoptosis. They also 
indicated that treated cells with RES exhibited upregula-
tion of SET domain-containing lysine methyltransferase 
7/9 (SET7/9) [93]. SET7/9 is a positive regulator of p53 
that methylates p53 at lysine 372 and increases its stabiliza-
tion [94]. Wang et al. demonstrated that RES could enhance 
apoptosis by targeting the HIF-1α/ROS/p53 pathway. They 
demonstrated that the treatment of prostate cancer cells 
with RES (50 μM) elevates reactive oxygen species (ROS) 
concentration, downregulates Bcl2, and upregulates BAX. 
RES treatment also significantly increased the expression of 
α-subunit of hypoxia-inducible factor-1 (HIF-1α) and p53 
[95]. It has been shown that HIF-1α inhibits p53 degradation 

and increases its stability via binding to MDM2 [96, 97]. 
Another upstream protein in the induction of p53 dependent 
apoptosis with RES is cyclooxygenase (COX)-2. RES treat-
ment results in phosphorylation and nuclear translocation of 
ERK1/2 and accumulation of COX-2 in the nuclear, leading 
to its ability to form compex with p53 and ERK1/2. Subse-
quently, the phosphorylation of p53 at the Ser-15 (pSer15-
p53) induces the expression of anti-proliferation genes of 
cancer cells. To unreveal the mechanism of action, Cheng 
et al. indicated that sumoylation is pivotal for nuclear accu-
mulation of RES-induced COX-2. Further analyses exhibited 
that inhibition of COX-2 accumulation in the nuclear as well 
as sumoylation blockade suppresses RES-induced apoptosis 
in cancer cells [98].

RES and other therapeutic agents

Moreover, RES could be combined with other therapeutic 
agents, such as chemotherapy, and enhance their anti-can-
cer effect by inducing apoptosis. For example, Singh et al. 
reported that RES enhances the effects of docetaxel (DTX) 
on prostate cancer cells. The combination of RES and DTX 
promoted apoptosis via upregulating pro-apoptotic genes, 
including BAX, BAK, and BID, and downregulating anti-
apoptotic genes, including Bcl-XL, Bcl-2, and MCL-1. The 
combination regimen also, in turn, induced cell-cycle arrest 
at the G0/G1 phase by inhibiting the expression of cyclin 
D1, cyclin E1, CDK4, and inducing Rb hypo-phosphoryla-
tion [33]. Rasheduzzaman et al. found that RES could sensi-
tize lung cancer cells to treatment with TRAIL by promoting 
apoptosis in the p53-independent pathway. They revealed 
that RES attenuates the resistance to TRAIL via suppressing 
NF-kB (p65) and enhances TRAIL-mediated apoptosis by 
inhibiting anti-apoptotic signals [99]. RES can resensitize 
cisplatin-resistant MCF-7 cells to cisplatin through induction 
of apoptosis in a p53-dependent pathway. RES induces the 
phosphorylation of p53 at the Ser-20 in chemoresistant cells 
and activates the target genes of p53, including BAX and 
PUMA, leading to apoptosis restoring. Phosphorylation of 
Ser-15 and -20 enables p53 protein to escape from MDM2-
mediated degradation, its stabilization, and apoptosis induc-
tion [100]. The other mechanism that RES sensitizes cancer 
cells to cisplatin stems from its ability to promote apoptosis 
by inducing the expression of dual-specificity phosphatase 1 
(DUSP1) [101]. Mechanistically, the pro-apoptosis property 
of DUSP1 is associated with its inhibitory effect on p38 
MAPK [102]. Furthermore, DUSP1 acts as a mediator of 
the anti-inflammatory effect of RES and reduces the activa-
tion of NF-κB [101]. The synergistic pro-apoptotic effects 
of RES in combination with cisplatin can be related to its 
ability to induce apoptosis's intrinsic pathway [103].
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Resveratrol and autophagy

The regulatory effect of RES on autophagy has been 
demonstrated in cancer prevention and treatment [104]. 
Moreover, RES could induce apoptosis by autophagy. For 
instance, Miki et al. revealed that the treatment of colon 
cancer cells with RES could increase both apoptosis and 
autophagy. Inhibition of RES-induced autophagy with 
3-methyladenine reduced apoptosis levels, whereas inhi-
bition of apoptosis increased LC3-II levels did not reduce 
autophagy. Further analyses exhibited that RES could 
increase the intracellular levels of ROS, which was cor-
related to the LC3-II elevation and induction of cleavage 
of caspase-8 and -3. Thus, the effect of RES treatment on 
apoptosis induction by autophagy is mediated with ROS in 
colon cancer cells [105]. Also, RES in combination with 
cisplatin activated autophagy, whereas autophagy inhibi-
tion with 3-methyladenine significantly reduced cisplatin-
induced apoptosis [106]. RES can exert its regulatory 
effects on autophagy through various signaling pathways, 
transcriptional factors, and cellular targets.

The PI3K/AKT/mTOR pathway

There is accumulating evidence that RES could suppress 
tumor development and growth by promoting autophagy 
through the inhibition of the PI3K/AKT/mTOR pathway. 
For example, Wang et al. indicated the tumoricidal effects 
of RES on non-small-cell lung cancer (NSCLC) cells. 
Besides the inhibitory effects on cell proliferation and 
inducing apoptosis, RES treatment also induced autophagy 
via upregulating SIRT1. RES increased the expression 
of LC3 II/I and Beclin1 and reduced p62 expression, 
an autophagic cargo adaptor protein that recruits orga-
nelles and ubiquitinated proteins to the autophagosome. 
Mechanistically, RES-induced protective autophagy by 
activating p38-MAPK and inhibiting AKT/mTOR [107]. 
In another study, Gong and Xia found that RES (100 μM) 
could inhibit cell viability, migration, and invasion of mel-
anoma cells, whereas autophagy inhibition reversed the 
anti-tumor functions of RES. RES treatment also promoted 
the expression of LC3 II/I and Beclin1 and downregulated 
p62 expression. They demonstrated that the autophagy 
induction effect of RES was due to its ability to inhibit 
the PI3K/AKT/mTOR pathway [108]. Chang et al. stud-
ied the anti-tumor activity of RES and its mechanism of 
action in cisplatin-resistant oral cancer cells. They found 
that RES treatment (50 µM) provoked both autophagic 
and apoptotic cell death of the cancer cell, identified by 
the formation of autophagic vacuoles, acidic vesicular 
organelles, and DNA condensation or fragmentation. The 

treated cells with RES increased the levels of autophagy 
proteins, including Atg proteins, LC3-II, PI3K class III, 
Beclin1, and apoptosis proteins, including caspase-9 and 
caspase-3. RES treatment decreased the phosphorylation 
of mTOR on Ser2448 and AKT on Ser473, but increased 
the levels of AMPKα and its phosphorylation on Thr172 
[109]. Similarly, Ma et al. concluded that RES promotes 
autophagy and apoptosis in a manner dependent on the 
PI3K/AKT/mTOR signaling pathway in multiple myeloma 
cells [110]. The inhibitory effect of RES on mTOR also 
could be owing to its ability to compete with ATP to dock 
onto the ATP-binding site of mTOR [111].

p62

p62 or sequestosome 1 (SQSTM1) is a multifunctional pro-
tein because it consists of different domains, including the 
ZZ zinc finger domain, Phox-BEM1 (PB1) domain, nuclear 
export signal (NES) motif, nuclear localization signal (NLS), 
Keap1-interacting region (KIR), LC3-interaction region 
(LIR), and C-terminal ubiquitin-associated (UBA) domain 
[112]. It has been demonstrated that p62 delivers ubiquit-
inated proteins to the proteasome, and there is evidence that 
lack of autophagy results in p62 accumulation, whereas p62 
impairment induces autophagy [113, 114]. Puissant et al. 
reported that RES triggers autophagic cell death of chronic 
myelogenous leukemia (CML) cells via AMPK activation 
and JNK-mediated accumulation of p62. These results also 
were demonstrated in RES-treated CD34 + stem cells iso-
lated from CML patients. In contrast, p62 knockdown or 
JNK inhibition suppressed RES-mediated autophagy and 
anti-cancer effects. Thus, AMPK-dependent inhibition of 
mTOR promotes phagophore formation, while JNK acti-
vation provokes elongation by inducing p62 expression 
and promoting its binding to LC3 [115]. In another study, 
Zhang et al. found that the treatment of A549 cells with 
RES-induced autophagy and promoted degradation of p62 
in an autophagy-mediated manner. They also indicated that 
p62 downregulation could enhance the formation of the Fas/
Cav-1 (caveolin-1) complex, an inducer of apoptosis. The 
Fas/Cav-1 complex promotes the activation of caspase-8 and 
cleavage of Beclin1, leading to the release of a C-terminal 
Beclin1 peptide which triggers apoptosis by translocating to 
the mitochondria. Furthermore, knockdown of p62 increased 
caspase-8 activation and apoptosis initiation, whereas 
knockdown of Cav-1 suppressed apoptosis but enhanced 
autophagy. They concluded that p62 regulates the transi-
tion from autophagy to apoptosis [116]. Also, it has been 
reported that RES could activate non-canonical autophagy 
in an Atg-5- and Beclin1-independent manner alongside 
apoptosis activation in A549 cells. RES-induced autophagy 
led to attenuated apoptosis, proposing that autophagy may 
work as a protective pathway in A549 cells. Accordinglly, 
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it was found that RES induces mitophagy, degradation of 
damamaged mitochondria by autophagy, and p62 acts as an 
adaptor in A549 cells [117].

p53

In addition to apoptosis, p53 also is involved in autophagy. 
It has been shown that there is an important correla-
tion between p53 and autophagy, in which p53 induces 
autophagy and autophagy inhibits p53. Autophagy activa-
tion by p53 implies that autophagy acts as a part of the p53 
protective function, whereas p53 suppression by autophagy 
participates in tumor development and promotion [118]. 
The effect of RES on autophagy in a p53-dependent man-
ner has been studied in some studies. For instance, Zhang 
et al. studied the anti-tumor effects of RES on hepatocellu-
lar carcinoma cells and its potential mechanisms of action. 
They found that RES treatment inhibited the proliferation, 
viability, and migration of the cancer cells. Also, the treat-
ment of MHCC-97H cells with RES-induced autophagy, 
characterized by upregulation of LC3 II/I ratio and Bec-
lin1 and downregulation of p62. Furthermore, inhibition of 
autophagy by treatment with 3-methyladenine reversed RES 
effects on cancer cell proliferation, viability, and migration, 
suggesting that autophagy suppression could hamper anti-
tumor functions of RES. They indicated that RES increased 
p53 expression while decreasing the phosphorylated pro-
tein kinase B (p-Akt)/Akt ratio, whereas treatment with 
pifithrin-α and insulin-like growth factor-1 as p53 inhibi-
tor and Akt activator, respectively, downregulated Beclin1 
expression while stimulating cancer cell proliferation and 
migration. Thus, RES could inhibit the proliferation and 
metastasis of cancer cells by inducing autophagy through 
activation of p53 and inhibition of PI3K/AKT [119]. In 
another study, Fan et al. demonstrated 1,031 differentially 
expressed genes, 680 upregulated and 351 downregulated, 
in the RES-treated A549 cells, including the p53 pathway. 
They found that RES treatment could induce apoptosis and 
autophagy, and it affects apoptosis and autophagic cell death 
through a p53-dependent pathway in A549 cells. RES treat-
ment upregulated p53 expression, inhibited MDM2 phos-
phorylation at Ser-166, and decreased AKT phosphorylation 
at Ser-473, suggesting that RES-induced the triggering of 
the p53 pathway [120].

Nrf2

The intracellular abundance of nuclear factor (erythroid-
derived-2)-like 2 (Nrf2), a protein that regulates oxidative 
stress responses, is regulated by Kelch-like ECH-associated 
protein 1 (Keap1) [104]. Under normal conditions, the inter-
action of Nrf2 with Keap1 directs it toward proteasomal 
degradation. Under oxidative conditions, the oxidization 

and inactivation of Keap1 lead to Nrf2 stabilization and 
its translocation into the nucleus, resulting in Nrf2 bind-
ing to anti-oxidant response elements (AREs) and activa-
tion of genes containing AREs [121]. There is evidence 
that the Nrf2-Keap1-ARE signaling axis has crosstalk with 
autophagy [122, 123]. For instance, it has been shown that 
p62 sequesters Keap1 into the autophagosomes through 
direct interaction with Keap1, which impairs Nrf2 ubiqui-
tylation, leading to triggering the Nrf2 pathway [124]. Kabel 
et al. indicated that RES in combination with sitagliptin, a 
dipeptidyl peptidase-4 inhibitor with cytotoxicity activity 
on tumor cells by inhibiting autophagy, exerted anti-oxidant 
and anti-inflammatory effects via modulating STAT3/NF-κB 
and Nrf2/HO-1 pathway on a renal carcinoma model in rats 
[125]. In another study, Rai et al. demonstrated that RES 
could decrease the growth of MCF-7 cells exposed to DOX 
by stimulating Nrf2, resulting in a reduction in apoptosis 
(Bax: Bcl-2 ratio and caspase-9), inflammation (NF-kB and 
COX-2), and autophagy (LC3 and Beclin1) [126]. In addi-
tion, Cheng et al. reported that RES enhanced anti-tumor 
efficacy of gemcitabine through the inhibition of nutrient-
deprivation autophagy factor-1 (NAF-1) via activating 
the ROS/Nrf2 pathway [127]. NAF-1 is a key regulator of 
autophagy that could inhibit autophagy by interacting with 
Beclin1 [128].

Conclusions

In conclusion, RES can modulate cancer treatment and can-
cer cell death by targeting multiple signaling and molecular 
pathways. It can reduce side effects associated with conven-
tional chemotherapy and improve results when combined 
with chemotherapeutic agents and sensitize cells to them. 
Due to the promising impacts on apoptosis and autophagy, 
researchers will be motivated to develop RES-based studies 
for combating cancer, specifically in clinical trials. How-
ever, some concerns could be addressed in using RES. One 
of the concerns is its low solubility that using nanoparti-
cles can increase RES solubility in water. Nanoparticles 
also can increase the specificity of RES by targeting tumor 
tissues. Tailoring nanoformulations responsive to external 
cues (such as ultrasound and magnetic field) and biologi-
cal cues (such as redox status and pH) could enhance RES 
delivery and targeting precision. Also, reprogramming the 
tumor microenvironment to increase the accumulation of 
RES-loaded nanoformulations besides developing nano-
formulations containing transcytosis capability to simplify 
deep tumor penetration may enhance RES efficacy in fight-
ing cancer. Another consideration in developing RES-loaded 
nanoformulations is their preparation cost, ensuring the fea-
sibility of their development. Furthermore, the minimal side 
effects of RES could be due to low or medium doses and 
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its rapid metabolization into safe analogs. To verify these 
promising results, investigating RES anti-cancer effects at 
high doses in similar experiments is imperative to translate 
into clinical studies.
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