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Abstract
Background There is currently no formal consensus on the administration of adjuvant chemotherapy to stage I lung squamous 
cell carcinoma (LUSC) patients despite the poor prognosis. The side effects of adjuvant chemotherapy need to be balanced 
against the risk of tumour recurrence. Prognostic markers are thus needed to identify those at higher risks and recommend 
individualised treatment regimens.
Methods Clinical and sequencing data of stage I patients were retrieved from the Lung Squamous Cell Carcinoma project 
of the Cancer Genome Atlas (TCGA) and three tissue microarray datasets. In a novel K-resample gene selection algorithm, 
gene-wise Cox proportional hazard regressions were repeated for 50 iterations with random resamples from the TCGA 
training dataset. The top 200 genes with the best predictive power for survival were chosen to undergo an L1-penalised Cox 
regression for further gene selection.
Results A total of 602 samples of LUSC were included, of which 42.2% came from female patients, 45.3% were stage IA 
cancer. From an initial pool of 11,212 genes in the TCGA training dataset, a final set of 12 genes were selected to construct 
the multivariate Cox prognostic model. Among the 12 selected genes, 5 genes, STAU1, ADGRF1, ATF7IP2, MALL and 
KRT23, were adverse prognostic factors for patients, while seven genes, NDUFB1, CNPY2, ZNF394, PIN4, FZD8, NBPF26 
and EPYC, were positive prognostic factors. An equation for risk score was thus constructed from the final multivariate Cox 
model. The model performance was tested in the sequestered TCGA testing dataset and validated in external tissue microar-
ray datasets (GSE4573, GSE31210 and GSE50081), demonstrating its efficacy in stratifying patients into high- and low-risk 
groups with significant survival difference both in the whole set (including stage IA and IB) and in the stage IA only subgroup 
of each set. The prognostic power remains significant after adjusting for standard clinical factors. When benchmarked against 
other prominent gene-signature based prognostic models, the model outperformed the rest in the TCGA testing dataset and 
in predicting long-term risk at eight years in all three validation datasets.
Conclusion The 12-gene prognostic model may serve as a useful complementary clinical risk-stratification tool for stage I 
and especially stage IA lung squamous cell carcinoma patients to guide clinical decision making.
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Introduction

To date, lung cancer remains the most commonly diag-
nosed cancer and the leading cause of cancer death world-
wide [15]. Lung squamous cell carcinoma (LUSC) is the 
second most common lung cancer subtype, comprising 
approximately 20% of primary lung neoplasms in the 
United States [3].

The gold standard treatment for squamous cell lung carci-
nomas treatment is surgical resection, sometimes combined 
with adjuvant platinum-based chemotherapy, and com-
plemented by immunotherapy and targeted therapy where 
necessary [26]. However, when diagnosed in the earlier 
stages, current guidance is unclear on the use of adjuvant 
chemotherapy and requires case-by-case judgment based on 
individual risk profiles. The latest meta-analysis of several 
large-scale trials [2, 5, 10, 25, 30] suggests platinum-based 
adjuvant chemotherapy confers survival benefits to patients 
in stage IB(> 4 cm) to stage III, but nil or even detrimental 
survival effects for stage IA patients. Accordingly, the 8th 
edition of the Tumour, Node, Metastasis (TNM) staging 
system has since reclassified tumour size > 4 cm without 
lymph node involvement as stage IIA and recommended 
adjuvant chemotherapy [14]. However, for stage IB cancers 
with tumours measuring between 3 and 4 cm, the 5-year 
survival averages still at 68%, not significantly different from 
the 60% 5-year survival in stage IIA patients [12]. At stage 
IA, the 5-year survival ranges from 77 to 92%, and there is 
no conclusive evidence to guide the administration of adju-
vant chemotherapy in this group. Therefore, to balance out 
the risk of tumour recurrence and the side effects of adjuvant 
chemotherapy, other prognostic markers are needed for fur-
ther risk stratification within early-stage LUSC patients to 
identify those at higher risks to recommend individualised 
treatment regimens.

Previous studies have explored the potential of using 
gene-expression profiles for the prognosis and prediction of 
response to lung cancer therapies [33]. Zhu et al. constructed 
a 15-gene model from 133 samples in the JBR.10 trial which 
was able to predict response to adjuvant chemotherapy in 
early-stage non-small cell lung cancer (NSCLC) [42]. 
Kratz et al. developed a 14-gene-expression based model 
from 361 resected non-squamous NSCLC samples which 
offered prognostic value in small < 2 cm node-negative stage 
IA patients beyond standard clinical factors [17]. Nonethe-
less, as Kinoshita pointed out in his editorial, given the dis-
tinct carcinogenesis pathways and molecular phenotypes in 
LUSCs that is not common to all NSCLCs [13, 16], there 
remains a need for a more targeted assay in the early-stage 
LUSC patients for more precise risk stratification.

Methodologically, despite the various promising genetic 
prognostic models in development [37], no model has so 

far been incorporated into routine clinical practice due to 
issues such as overfitting on small training datasets, lack of 
sufficient validation, improper patient selection [31], thus 
conferring limited clinical utility. Acknowledging these 
potential pitfalls, this study sets out to keep the end goal 
of patient-centred applications in mind to address unmet 
clinical needs, specifically by (1) focusing on stage IA 
and IB cancers where clinical decisions on chemotherapy 
administration require additional risk-stratification; (2) 
ensuring the model offers additional predictive power 
over the standard prognostic factors such as tumour size, 
histological grading and margin status; and (3) validating 
the model against external datasets [31, 43]. As such, this 
study aims to develop a robust genetic prognostic model 
as a complementary tool to stratify stage IA and IB lung 
squamous cell carcinomas, for potential clinical applica-
tions in risk stratification and individualised treatment.

Method

Study design and data curation

A retrospective data analysis was performed on expression 
profiles of frozen tissue samples retrieved from four publicly 
available datasets, including three tissue microarray datasets 
(GSE4573, GSE31210 and GSE50081, see each study for 
details on sample preparation [8, 22, 27]) and one RNA-Seq 
dataset from the Cancer Genome Atlas (TCGA) Lung Squa-
mous Cell Carcinoma (LUSC) project. The GSE4573 dataset 
was retrieved directly from the Gene Expression Omnibus 
(GEO) online database, while samples from the GSE31210 
and GSE50081 were acquired from a large published merged 
dataset [20], which have been pre-processed, normalised and 
corrected for batch effects. Genes were matched by entrez 
IDs cross datasets, and gene expressions were all log2-trans-
formed. Only patients with stage IA or IB non-recurrent pri-
mary lung squamous cell carcinomas and complete survival 
information were included in the analysis. The process of the 
study is summarised in Fig. 1.

K‑Cox gene selection and model construction

The TCGA–LUSC dataset, the largest of the four, was cho-
sen for gene selection and model training. Only two-thirds 
of the samples (N = 161) in the TCGA dataset were used to 
train the model, while the remaining one-third of the sam-
ples (N = 81) was reserved for testing. The partitioning took 
into account the survival information, with approximately 
40% of patients right-censored in both the training and test-
ing dataset.

Genes with counts-per-million smaller than 1 in more 
than 80% of all samples were excluded from the analysis. K 
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random resamples (K = 50 in this study) were drawn from 
within the training dataset (N = 161), each consisting of two-
thirds of the training set (i.e. 107 samples in each resample). 
In each resample, a separate Cox proportional hazard model 
was fitted for each gene, with the age of diagnosis included 
as a covariate. The results of the 50 runs of gene screening 
were combined by averaging the p values of each gene’s 
predictive power in the Cox regressions. The top 200 genes 
with the smallest average p values were selected to obtain a 
stable list of genes most predictive of survival.

The expressions of these selected genes were then scaled 
and further selected by an L1-penalised Cox proportional 
hazard regression on the training set, with the penalty coef-
ficient lambda chosen by a tenfold cross-validation process. 
A final multivariate Cox proportional hazard model was 
constructed using the final set of selected genes and other 
available clinical parameters to predict overall survival.

Model validation and evaluation

The final set of selected genes were validated internally 
against the reserved TCGA testing set, and externally against 
two sets of microarray samples, namely the GSE4573 data-
set (N = 73), as well as a larger merged set consisting of all 

stage I lung squamous cell carcinoma (LUSC) and adenocar-
cinoma (LUAD) patients retrieved from the GSE50081 and 
GSE31210 repositories (N = 287). In the internal validation, 
a hazard score was computed for each patient in the train-
ing and the testing set using the coefficients associated with 
each predictor in the Cox model that was trained exclusively 
using the training dataset. The risk score was dichotomised 
at the medium to categorise patients into high-risk and low-
risk groups, whose survival probabilities were calculated 
using the Kaplan–Meier estimator and compared using the 
log-rank test. A multivariate Cox regression on the overall 
survival was run using the derived risk score along with 
other available clinical parameters to assess the models’ 
independent prognostic power. The same workflow was then 
performed in the two external datasets.

To further benchmark the model’s performance, we 
evaluated our model against three promising, clinically 
ready NSCLC prognostic models and two best perform-
ing model in the LUSC population identified by existing 
literature [18, 23, 33, 34, 42]. All models selected contained 
similar numbers of gene signatures to avoid the problem of 
falsely elevated prognostic power due to overfitting using 
comparatively larger numbers of predictors in multivariate 
Cox regression. The set of genes from each study was taken 

Fig. 1  Study flow diagram. TCGA  the Cancer Genome Atlas, LUCS lung squamous cell carcinoma, Cox Cox proportional hazard model, K-Cox 
K-resampling Cox regression
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to fit a multivariate Cox model, from which the risk scores 
were calculated (We did not use their reported coefficients, 
if any, to allow a fairer comparison to our model). Genes that 
could not be mapped into our datasets were left out. Hazard 
ratio, concordance index (C-index) and AUC at 3, 5 and 8 
years were used as benchmarking parameters, as was used 
in a previous meta-analysis evaluating the performance of 
various genetic prognostic models in lung cancer [33].

Lastly, to evaluate our methodology in comparison with 
the mainstream DEG-based prognostic gene selection, a dif-
ferential expression analysis was carried out in the TCGA 
dataset (N = 271, stage IA and IB) using the edgeR package, 
comparing the primary tumour samples (N = 242) with nor-
mal solid tissue samples (N = 29).

Statistical analysis

All statistical analyses were performed using R (version 
3.6.3, https:// www.r- proje ct. org/). Data partitioning was con-
ducted using the caret package, survival calculations using 
the survival and survminer packages, penalised regressions 
using the glmnet package and diagrams and illustrations 
using the ggplot2 and ggpubr package. Statistical signifi-
cance was defined as p < 0.05 unless specified otherwise.

Results

Subject characteristics

Overall, data from a total of 602 samples of LUSC were 
included in the study, of which 42.2% came from female 
patients, 45.3% were stage IA cancer. The median age was 67 
years (interquartile range, IQR = 61.0–73.0), and the median 

length of follow-up was 3.72 years (IQR = 1.72–5.40) (see 
Table 1).

12‑gene model construction and testing in TCGA 
dataset

After filtering out 45,281 genes with low expressions, all 
of the remaining 11,212 genes underwent the 50-resample 
K-Cox selection to screen for genes associated with overall 
survival. The 50 p values obtained for each gene were aver-
aged, by which the genes were ranked (see Fig. 2a). The top 
200 selected genes underwent an L1-penalised regression, 
and the cross-validated penalty coefficient lambda was cho-
sen at 0.115, resulting in 12 genes with non-zero coefficients 
(see Fig. 2b). Among the 12 selected genes, 5 genes, STAU1, 
ADGRF1, ATF7IP2, MALL and KRT23, were adverse 
prognostic factors for patients, while 7 genes, NDUFB1, 
CNPY2, ZNF394, PIN4, FZD8, NBPF26 and EPYC, were 
positive prognostic factors (see Table 2 for hazard ratios in 
the univariate and multivariate Cox regressions).

A final multivariate Cox model was then constructed 
using the 12 selected genes (see Table 2), with 6 out of 12 
genes being independent predictors of survival in the train-
ing dataset (see Fig. 2c). An equation for risk score was thus 
constructed from the final multivariate Cox model:

where the log2-transformed gene expressions are multi-
plied by coefficients computed using data from the TCGA 
training set. Individual risk scores were thus calculated for 
the patients in both the TCGA training set and the TCGA 

Risk Score = 0.633 × STAU1 − 0.379 × NDUFB1 − 0.761 × CNPY2 − 0.454 × ZNF394

− 0.541 × PIN4 − 0.293 × FZD8 + 0.181 × ADGRF1 + 0.301 × ATF7IP2

− 0.032 ×MALL + 0.017 × KRT23 − 0.326 × NBPF26 − 0.226 × EPYC,

Table 1  Clinical characteristics 
of patients in datasets

Numerical values are reported as medium (10th percentile–90th percentile); Categorical variables are 
reported by count (percentage in brackets)
*Stage I unspecified, no classification information available regarding the sample’s substage

TCGA training TCGA testing GSE4573 GSE31210 and GSE50081
N = 161 N = 81 N = 73 N = 287

Age (years) 70 (57–78) 70 (60–78) 71 (59–81) 64 (52–76)
Gender
 Female 47 (29%) 27 (33%) 27 (37%) 153 (53%)
 Male 114 (71%) 54 (67%) 46 (63%) 134 (47%)
Stage
 Stage IA 64 (40%) 25 (31%) 27 (37%) 158 (55%)
 Stage IB 95 (59%) 55 (68%) 46 (63%) 129 (45%)
 Stage I* 2 (1.2%) 1 (1.2%) –
Follow-up (years) 1.75 (0.23–6.49) 1.9 (0.2–7.2) 2.93 (0.85–7.37) 5.00 (2.24–7.40)
Number deceased 62 37 33 61

https://www.r-project.org/
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testing set. Patients in either set were separately dichot-
omised by their median risk score and categorised into the 
high-risk and low-risk groups. There was a statistically sig-
nificant distinction in survival between the high-risk and 
low-risk groups in both the training and testing datasets 
(see Fig. 3a). We then investigated if the same stratifica-
tion survival difference could be extended to the stage IA 
subgroup. Notably, the computed risk score was sensitive 
enough to differentiate patients into high-risk and low-risk 
groups even within the stage IA cohorts in both sets. A mul-
tivariate Cox proportional hazard model was fitted with the 
computed risk score and clinical variables including patient 
age, gender, tumour stage (either stage IA or IB) and pack-
years smoked (see Fig. 3b and c). The model showed that 
the computed risk score remained an independent predictor 
of survival in TCGA training set (Hazard ratio = 2.98, 95% 
CI 2.19–4.0, p < 0.001) and testing set (Hazard ratio = 2.43, 
95% CI 1.69–3.5, p < 0.001). It is noteworthy that no clear 
prognostic differences were observed using tumour stage 

between patients in stage IA and those in stage IB in both 
TCGA training (Hazard ratio = 1.33, 95% CI 0.74–2.4, 
p = 0.344) and testing set (Hazard ratio = 1.24, 95% CI 
0.49–3.2, p = 0.648).

Model validation in external datasets

In the two validation datasets, similarly, multivariate Cox 
models were constructed using the 12-gene signature and 
computed risk scores were dichotomised to separate the 
patients into high-risk and low-risk groups. In both the 
GSE4573 dataset (LUSC-only) and the merged GSE31210 
and GSE50081 dataset (both a mixture of LUSC and 
LUAD), the high-risk groups exhibited significantly worse 
prognosis than the low-risk groups. This risk-stratification 
power was again sensitive enough even in the subset of stage 
IA patients (see Fig. 4). Multivariate Cox proportional haz-
ard model suggested computed risk score is again an inde-
pendent prognostic factor in GSE4573 (Hazard ratio = 2.77, 

a

c

b

Fig. 2  Gene selection processes. a The top 200 genes with the lowest 
mean p values (left of the dotted line) were selected for L1-penalised 
regression. b L1-penalised regression were conducted on the 200 
genes, the lambda was selected through a tenfold cross-validation 

process. c A multivariate Cox model was constructed with the 12 
selected genes, and the forest plot illustrates the adjusted hazard ratio 
corresponding to each gene
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95% CI 1.66–4.6, p < 0.001) and interestingly also in the 
merged dataset of GSE31210 and GSE50081 (Hazard 
ratio = 1.91, 95% CI 1.04–3.5, p = 0.038). Again, tumour 
stage alone was not prognostic between patients in stage IA 
and those in stage IB in GSE4573 (Hazard ratio = 1.82, 95% 
CI 0.82–4.0, p = 0.139). However, in the merged dataset of 
GSE31210 and GSE50081, tumour stage exhibited a signifi-
cant prognostic difference between stage IA and IB patients 
(Hazard ratio = 2.45, 95% CI 1.28–4.7, p = 0.007).

Benchmarking against other prominent gene‑based 
prognostic models

The summary of each model’s final gene signatures in every 
dataset is outlined in Table 3. When compared against the 
five other promising clinical models, our model outper-
formed the rest in the TCGA training and testing set across 
all three metrics (see Fig. 5). Looking at hazard ratio and 
C-index, our model achieved a decent performance in 
external validation dataset GSE4573 and the merged set 
GSE31210 and 50,081 containing LUAD samples. When 
looking at AUC, our model performed the best at predict-
ing longer term survival, i.e. at 8 years, while its predictive 
power is on par with other models at shorter time frames.

Differential expression analysis of the 12 genes

Finally, a differential expression analysis was carried out in 
the TCGA dataset, comparing the gene expressions of stage 
I tumour tissue samples and the corresponding normal solid 
lung tissue surgically removed from patients with stage I 

cancers. Only two out of the 12 genes exhibited differen-
tial expression patterns in tumour samples (see Fig. 6c). A 
combination of differential expression level and hazard ratio 
data revealed EPYC as a prognostically beneficial gene that 
is significantly up-regulated in tumour tissues and KRT23 
as a prognostically detrimental gene that is also significantly 
up-regulated (Fig. 6d).

Discussion

In this study, we used the K-Cox gene selection method 
based on RNASeq data from TCGA to construct a reliable 
prognostic model that was able to stratify stage IA and IB 
LUSC patients into different risk groups. The risk category 
derived from the model was able to better predict mortal-
ity risks than using standard clinical prognostic factors 
alone. The independent prognostic power of the model was 
further validated in two external validation sets including 
one with LUAD patients. We also benchmarked our model 
against several of the most promising gene expression-
based prognostic models and demonstrated that our model 
outperformed the rest in the RNA-seq based TCGA data-
set as well as in predicting long-term survival at 8 years 
across all datasets. This could be possibly due to the lack 
of training data with long-term survival information and 
RNASeq-based datasets for the other models at the time of 
their development. This model was developed with a par-
ticular focus on stage IA and IB LUSC patients, while most 
previous gene expression-based prognostic models were 
trained to be deployed in the general NSCLC cohorts [43]. 

Table 2  Characteristics of the 
final 12-gene set

The mean p values in K-Cox analysis and the coefficients for both univariate and multivariate Cox regres-
sion are calculated in the TCGA training set. Differential expression is calculated using all stage I patients 
in the TCGA dataset, comparing gene expressions in normal solid tissues with that in primary tumours
K-Cox K-resampling Cox regression gene selection, SD standard deviation, HR hazard ratio, logFC log fold 
change in differential gene-expression analysis, FDR false discovery rate, Expr expression

Symbol K-Cox Univariate Cox regression Multivariate Cox regression Differential Expr

Mean p (SD) HR (95% CI) p HR (95% CI) p logFC FDR

ADGRF1 0.030 (0.045) 1.179 (1.065–1.305) 0.001 1.199 (1.020–1.408) 0.028 0.215 0.639
NDUFB1 0.039 (0.047) 0.585 (0.416–0.824) 0.002 0.684 (0.426–1.100) 0.117 0.104 0.566
FZD8 0.052 (0.075) 0.833 (0.729–0.953) 0.008 0.746 (0.607–0.916) 0.005 −0.687 0.008
CNPY2 0.053 (0.097) 0.441 (0.274–0.712) 0.001 0.467 (0.221–0.989) 0.047 0.578 0.000
KRT23 0.056 (0.064) 1.117 (1.040–1.201) 0.003 1.017 (0.909–1.140) 0.764 4.265 0.000
MALL 0.073 (0.138) 1.225 (1.059–1.418) 0.006 0.968 (0.752–1.247) 0.803 −1.287 0.000·
STAU1 0.081 (0.095) 1.616 (1.021–2.557) 0.041 1.883 (0.935–3.790) 0.076 0.288 0.003
PIN4 0.091 (0.121) 0.540 (0.353–0.827) 0.005 0.582 (0.273–1.241) 0.161 0.220 0.097
ATF7IP2 0.105 (0.131) 1.266 (1.050–1.528) 0.014 1.351 (1.038–1.758) 0.025 −0.059 0.784
NBPF26 0.106 (0.098) 0.816 (0.700–0.951) 0.009 0.722 (0.588–0.886) 0.002 −0.249 0.265
EPYC 0.107 (0.136) 0.875 (0.789–0.971) 0.012 0.797 (0.691–0.921) 0.002 4.650 0.000
ZNF394 0.113 (0.137) 0.426 (0.253–0.717) 0.001 0.635 (0.306–1.318) 0.223 0.012 0.937
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a

b

c

Fig. 3  Internal validation in the TCGA training dataset and testing 
dataset. a Kaplan–Meier survival curves for risk groups dichotomised 
at median risk score in stage IA and IB patients and stage IA only 

patients. b and c Multivariate Cox model shows the risk scores are 
independent prognostic factors
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a

b

c

d

Fig. 4  External validation in the GSE31210 & GSE50081 and 
GSE4573 dataset. a and b Kaplan–Meier survival curves for risk 
groups dichotomised at median risk score in stage IA and IB patients 

and stage IA only patients. c and d Multivariate Cox model shows the 
risk scores are independent prognostic factors
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The performance in LUSC dataset GSE 4573 represents 
room for improvement in our prognostic signatures, likely 
since our model was only trained on RNASeq data. Mixing 
a portion of microarray data into the training set in the gene 
selection process may improve the general applicability of 
future prognostic models.

Methodologically, our gene selection approach presents a 
unique alternative to the mainstream differentially expressed 
genes (DEG) approach. A significant limitation of the DEG 
approach is that some of the healthy tissue annotated in 
many databases are in fact paracarcinomatous tissues rather 
than normal healthy tissue [1]. According to the recently 
proposed field cancerisation theory, paracarcinomatous tis-
sues have already acquired certain genetic mutations in a 
stepwise manner [28] and thus carry genetic patterns dif-
ferent from true healthy tissues. Using the mRNA expres-
sion levels from paracarcinomatous tissues as a “healthy 
reference” in DEG analysis would overlook essential genes 
that are differentially expressed in both cancer and paracar-
cinomatous tissues compared to the truly healthy tissues. 
Furthermore, to screen for potential candidate genes among 
a significantly larger pool of genes than among only the 
DEGs, potential problems might arise from “false discover-
ies” due to the large number of individual regressions and 
the random characteristics of the particular sampling of the 

training dataset. In this study, by taking different subsets 
of the training dataset for K repetitions of Cox regressions, 
the K-Cox approach reduces the chances of Type I errors 
of falsely relying on a single significant p value in rejecting 
the null hypothesis, i.e. potentially including prognostically 
meaningless genes or excluding important ones. It is also 
worth noting that, the present algorithm started with an ini-
tial pool of 11,212 candidate genes before K-Cox selection, 
while typical DEG-based approaches select from a much 
smaller subset of genes, typically in the hundreds. This, 
therefore, demonstrates the sensitivity of our method in pro-
ducing a set of prognostically significant genes that can be 
plausibly supported by mechanistic studies in the literature, 
as shown in the following section.

Even though only two genes exhibited a  log2 fold change 
of more than 1.5, which is the conventional threshold for 
determining differentially expressed gene, the importance 
of the selected genes in tumourigenesis can be substanti-
ated by previous mechanistic studies. Overexpression of 
ADGRF1 (Adhesion G Protein-Coupled Receptor F1) was 
shown to dampen mammosphere formation and anchorage-
independent growth, a common feature of metastatic cell 
lines [4]. Another study found that ADGRF1 mRNA expres-
sion was positively correlated with E-cadherin (CDH1) 
and negatively correlated with vimentin and N-cadherin 

Table 3  Summary of the current model used for the benchmark

Raw gene the original genes reported in each model, Ngenes number of genes used for each model in respective datasets, Missing gene genes 
that are not found from each model in respective datasets

Study Raw gene TCGA GSE4573 GSE31210_50081

Ngenes Missing genes Ngenes Missing genes Ngenes Missing genes

Kratz_2012 BAG1, BRCA1, CDC6, 
CDK2AP1, ERBB3, FUT3, 
IL11, LCK, RND3, SH3BGR, 
WNT3A, ESD, TBP, YAP1

14 13 WNT3A 13 WNT3A

Zhu_2010 MLANA, ATP1B1, L1CAM, 
STMN2, TRIM14, FAM64A, 
MB, EDN3, UMPS, MDM2, 
ZNF236, FOSL2, HEXIM1, 
MYT1L, IKBKAP, MDM2

13 FAM64A, IKBKAP 13 FAM64A, IKBKAP 16

Tang_2013 DOCK9, RRM2, AURKA, 
HOPX, NKX2-1, TTC37, 
COL4A3, IFT57, C1orf116, 
HSD17B6, MBIP, ATP8A1

11 NKX2-1 11 NKX2-1 11 NKX2-1

Parmigiani_2004 GPC3, MALL, IRX5, FGFR2, 
FOLR1, TYRP1, STX1A, 
IGJ, MAD2L1, VEGFC, 
KIAA0101, IL6ST, SELE, 
ARHGDIB

12 IGJ, KIAA0101 12 IGJ, KIAA0101 14

Kadara_2011 UBE2C, MCM2, MCM6, 
FEN1, TPX2

5 5 5

This study STAU1, ADGRF1, ATF7IP2, 
MALL, KRT23, NDUFB1, 
CNPY2, ZNF394, PIN4, 
FZD8, NBPF26, EPYC

12 12 10 ADGRF1, NBPF26
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(CDH2), suggesting a potential role of ADGRF1 in the EMT 
process [6]. NDUFB1, a subunit of mitochondrial oxida-
tive phosphorylation complex I, is related to bioenergetic 

pathways, including the electron transport chain and mito-
chondrial ATP synthesis coupled to electron transport [38]. 
FZD8, which codes for a Wnt pathway receptor, mediates 

a

b

c

Fig. 5  Benchmarking performance in four different datasets using a 
C-index where our model outperforms the rest in TCGA datasets but 
not the external validations sets; b Hazard ratio where the same pat-
tern can be seen; and c AUC at four different time points where in 

addition to superior performance in TCGA datasets, our model also 
has the best performance at predicting 8-year survival in both exter-
nal validation sets
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the interaction of c-Met and Wnt/β-catenin signalling in 
head and neck squamous carcinomas [32] and is reported to 
mediate resistance to chemotherapy [40] and promote bone 
metastasis in prostate cancer [19]. Through targeting FZD8, 
miR-99b-5p was shown to inhibit NSCLC cell proliferation, 
migration and invasion [21]. Several lines of pharmaceuti-
cal inquiries leveraged such roles of FZD8. For example, a 
phase I clinical trial involved OMP-54F28, a recombinant 
fusion protein of the extracellular domain of the FZD8 
receptor and a human IgG1 Fc fragment. OMP-54F28 binds 
Wnt ligands, blocking the signalling of the Wnt/FZD signal-
ling pathway, a key oncologic pathway implicated in tumour 
cell de-differentiation and cancer stem cell (CSC) function 
[29]. Canopy homolog 2 (CNPY2) is an endoplasmic reticu-
lum (ER) luminal protein. It contributes to tumour invasion 
and metastasis by activating the AKT/GSK3β pathway and 

modulating the EMT pathway [9]. In lung adenocarcinoma, 
MiR-30a-3p was demonstrated to down-regulate CNPY2, 
suppressing tumour cell proliferation and migration [35]. 
In human colorectal cancer, up-regulation of CNPY2 inhib-
ited the activity of p53 and thus enhanced tumour growth 
and angiogenesis, and inhibited cell apoptosis [39]. Serum 
CNPY2 isoform 2 was also shown to be an effective bio-
marker for the early detection of CRCs [24]. We noted that 
the protective roles of CNPY2 and FZD8 revealed in this 
study seem to contradict the cited literature. We hypothesise 
that the inconsistencies observed could be attributed to the 
different underlying biology in the tumour models investi-
gated in the literature. Further interrogation is warranted into 
the roles of these genes in LUSC.

KRT23 codes for a member protein of the keratin family. 
In one study, the inhibition of KRT23 by a KRT23-specific 

a

b c d

Fig. 6  Final model evaluation. a Heatmap of the 12 genes in the full 
TCGA dataset of stage I samples, with samples sorted from low to 
high-risk scores horizontally. b Density plot showing the cluster of 
deceased patients towards the right side of the graph with higher 
risk scores. c Volcano plot in the full TCGA dataset of stage I sam-
ples, with fold change denoting the differential expression in tumour 

samples compared to normal solid tissue. d Prognostic properties of 
the 12 genes in relation to whether they are differentially expressed 
in tumours. Colours of the gene names: grey = not significantly dif-
ferentially expressed in tumours, red = negative prognostic factor up-
regulated in tumours; green = positive prognostic factor up-regulated 
in tumour
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siRNA repressed the endogenous hTERT protein and cell 
telomerase activity, and significantly inhibited tumour cell 
growth in vitro and in vivo. In another study of colorectal 
cancers, KRT23 promoted cancer stem cell properties and 
increased the expression of CD133 and CD44 [41]. Further-
more, KRT23 participates in EMT progression and inter-
acts with p21 to mediate PI3K/AKT/GSK3β pathway in 
hepatocellular carcinoma (HCC) development [11]. Results 
from this study support the tumorigenic role of KRT23 in 
the LUSC model. MALL encodes for a protein of the MAL 
proteolipid family. Overexpression of MALL could suppress 
HCT116 and SW480 cell proliferation and inhibit HCT116 
migration, and is demonstrated to reduce vessel invasion, 
disease recurrence and metastasis and death (p = 0.027) [36]. 
STAU1 encodes for Stauden Double-Stranded RNA Binding 
Protein 1. A study showed that depletion of another protein 
coded by SNHG5 induces cell cycle arrest and apoptosis 
in vitro and limits tumour outgrowth in vivo, while deple-
tion of STAU1 rescues the apoptosis induced after SNHG5 
knockdown [7], demonstrating STAU1’s oncogenic role. In 
summary, it is evident that the present algorithm succeeded 
in selecting plausible prognostically relevant genes that can 
be corroborated by previous research on tumourigenesis 
mechanisms.

The most important limitation of the present study is 
the lack of PCR validation on formalin-fixed and paraffin-
embedded (FFPE) tissues to assess the clinical applicability 
of the 12-gene model. The current set of gene signatures 
were derived from an RNA-Seq platform using snap-frozen 
tissue samples which are not readily available in routine 
clinical practices. In addition, several other prognostic fac-
tors considered for early-stage LUSC in practice including 
surgical margin, vascular invasion and histological grade 
were unfortunately not available in the datasets. It was thus 
difficult to verify if the present model offers additional prog-
nostic power over those factors. In future studies, the model 
would benefit from blinded, multi-centre validations to fur-
ther assess its clinical utility. Further investigation into the 
individual prognostic genes identified in this study is also 
encouraged to explore their potential clinical utilities.

Conclusion

In summary, the paper constructed an independent 12-gene 
prognostic model using a novel K-Cox gene selection algo-
rithm with comparable or even better performance than the 
top gene expression-based prognostic models for LUSC/
NSCLC in the literature. In view of the current lack of clini-
cal risk-stratification tools for stage I and especially stage IA 
lung squamous cell carcinomas, upon further validation, this 
genetic model could prove useful as a complementary tool 
on top of existing clinical prognostic factors to guide clinical 

decision making and recommend individualised treatment 
plans.
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