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Abstract
Background Acute myeloid leukemia (AML) is the most common type of acute leukemia and biologically heterogeneous 
diseases with poor prognosis. Thus, we aimed to identify prognostic markers to effectively predict the prognosis of AML 
patients and eventually guide treatment.
Methods Prognosis-associated genes were determined by Kaplan–Meier and multivariate analyses using the expression and 
clinical data of 173 AML patients from The Cancer Genome Atlas database and validated in an independent Oregon Health 
and Science University dataset. A prognostic risk score was computed based on a linear combination of 5-gene expression 
levels using the regression coefficients derived from the multivariate logistic regression model. The classification of AML was 
established by unsupervised hierarchical clustering of CALCRL, DOCK1, PLA2G4A, FCHO2 and LRCH4 expression levels.
Results High FCHO2 and LRCH4 expression was related to decreased mortality. While high CALCRL, DOCK1, PLA2G4A 
expression was associated with increased mortality. The risk score was predictive of increased mortality rate in AML patients. 
Hierarchical clustering analysis of the five genes discovered three clusters of AML patients. The cluster1 AML patients were 
associated with lower cytogenetics risk than cluster2 or 3 patients, and better prognosis than cluster3 patients (P values < 0.05 
for all cases, fisher exact test or log-rank test).
Conclusion The gene panel comprising CALCRL, DOCK1, PLA2G4A, FCHO2 and LRCH4 as well as the risk score may 
offer novel prognostic biomarkers and classification of AML patients to significantly improve outcome prediction.
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Background

Acute myeloid leukemia (AML) is a heterogeneous disease 
with a relatively poor prognosis [1]. The incidence of AML 
ranges from three to five cases per 100,000 individuals in 
US. An estimated 20,830 new cases were diagnosed, and 
more than 10,000 patients died from the disease in 2015 
alone [2]. Though considerable progress in the treatment 
of AML has significantly improved clinical outcomes for 
younger patients, prognosis remains poor for the elderly [3]. 

As high as 70% of patients above 65 years old die from AML 
within 1 year of diagnosis [4].

Cytogenetic abnormalities have been well established 
to serve as diagnostic and prognostic markers for AML 
patients, suggesting that they may play a critical role in 
leukemogenesis [5]. For example, genetic markers, such as 
translocation (8;21), inversion (16)/translocation (16;16), 
are associated with favorable outcome. In contrast, inversion 
(3)/translocation (3;3) may indicate poor prognosis in AML 
patients [5]. However, a fraction of AML genomes are lack 
of structural abnormalities; thus, the prediction of prognosis 
may not be possible for this subset of AML patients [6, 7]. 
In recent years, the prognostic value of somatic mutations 
has been systematically evaluated. Patel et al. found internal 
tandem duplication in Fms-like tyrosine kinase 3-internal 
tandem duplication (FLT3-ITD), mixed-lineage leukemia-
partial tandem duplication (MLL-PTD), ASXL Transcrip-
tional Regulator 1(ASXL1) and Tumor protein p53 (TP53) 
mutations were associated with inferior prognosis. While, 
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mutations in CCAAT Enhancer Binding Protein Alpha 
(CEBPA) and isocitrate dehydrogenase 2 (IDH2) were asso-
ciated with improved prognosis. DNA methyltransferase 3A 
(DNMT3A), Nucleophosmin 1 (NPM1) mutations and MLL 
translocations showed to improve risk stratification for AML 
patients with normal karyotype [8]. These findings suggest 
that mutational profiling could potentially be used for risk 
stratification and to inform prognosis in AML. However, 
mutation profiling may be not applicable to those AML 
patients without DNMT3A, NPM1 mutations and mixed-
lineage leukemia translocations [8]. Therefore, the current 
prognostic predictors might not meet the clinical demand, 
new biomarkers are needed for better prognostic classifica-
tion, ultimately, better therapeutic targets.

In this study, we performed Kaplan–Meier and multi-
variate analyses to screen for prognosis-associated genes 
using the expression and clinical data of 173 AML patients 
from The Cancer Genome Atlas (TCGA) database [9] and 
validated the results in an independent Oregon Health and 
Science University (OHSU) dataset [10]. We established 
a prognostic risk score based on a linear combination of 
5-gene expression levels to effectively predict the overall 
survival (OS) of AML patients. Lastly, we utilized unsuper-
vised hierarchical clustering of five genes and defined AML 
genomic subgroups and their relevance to clinical outcomes. 
The completion of our study paves the way for developing 
molecular markers in prognostication and treatment deci-
sion-making for AML patients.

Materials and methods

Data acquisition

RNA-seq expression data of 20,531 genes, and clinicopatho-
logic characteristics of 173 AML patients were obtained 
from the TCGA database [9]. Genes which have expression 
values in less than 10% AML samples were removed from 
the study. 18,366 genes were included in the study. Clin-
icopathologic characteristics analysed in the study included 
patients’ age, gender, percent of bone marrow blast cells 
(PBMBC), European Leukemia Net (ELN) classification, 
isocitrate dehydrogenase 1 (IDH1), IDH2, DNMT3A, NPM1, 
FLT3, CEBPA, TP53, ASXL1, Runt-related transcription 
factor 1 (RUNX1) mutation status, OS and neoadjuvant 
therapy. To verify the associations of gene expression with 
OS, gene expression and clinical data of 405 AML patients 
were downloaded from the Tyner’s study (OHSU dataset) 
[10]. Clinicopathologic characteristics included patients’ 
age, gender, PBMBC, cytogenetic risk, FLT3-IDT, IDH1, 
CEBPA, DNMT3A, NPM1, TP53, ASXL1, RUNX1 mutation, 
OS, chemotherapy, bone marrow transplant and targeted 
therapy data in the OHSU dataset. Mutation data of the gene 

panel comprising Calcitonin Receptor Like Receptor (CAL-
CRL), Dedicator Of Cytokinesis 1 (DOCK1), Phospholipase 
A2 Group IVA (PLA2G4A), FCH Domain Only 2 (FCHO2) 
and Leucine Rich Repeats And Calponin Homology Domain 
Containing 4 (LRCH4) were obtained from the cbioportal 
database and visualized with the cbioportal online tools [11].

Survival analyses

To investigate the association of gene expression or risk 
score with OS in the TCGA and OHSU datasets, a prognos-
tic risk score formula was established based on a linear com-
bination of expression levels weighted with the regression 
coefficients derived from the multivariate logistic regression 
analysis. Risk score = expression of gene 1 × β1 + expression 
of gene 2 × β2 + ⋯ + expression of gene n × βn. β values 
are the regression coefficients derived from the multivari-
ate logistic regression analysis of the TCGA dataset. AML 
patients were split into high-risk and low-risk subgroups 
based on the median expression values and median risk 
score. We used Kaplan–Meier curves and log-rank methods 
to study the prognostic importance of gene expression and 
the risk score using the survival package [12, 13]. Multi-
variate survival analyses were performed to confirm whether 
gene expression and risk score are independent prognostic 
biomarkers after adjustment of the prognosis-related risk 
factors using logistic regression model. Receiver operat-
ing characteristic (ROC) curve analysis was conducted by 
the R package of pROC to further validate the prognostic 
importance of risk score [14]. Area under curve (AUC) val-
ues were computed accordingly by the R package of pROC 
for the risk score. P < 0.05 was considered statistically 
significant.

Diagnostic analyses of five genes

Transcripts Per Million (TPM) expression data of 173 AML 
patients came from the TCGA database. TPM expression 
data of 70 bone marrow tissues were obtained from The 
Genotype-Tissue Expression (GTEx) project [15]. Gene 
expression difference of CALCRL, DOCK1, PLA2G4A, 
FCHO2 and LRCH4 was compared by the Wilcoxon sum-
rank test between 173 AML patients and 70 bone marrow 
tissues. ROC curve analysis was conducted by the R pack-
age of pROC to determine the diagnostic values of the five 
genes [14]. AUC values were computed accordingly by the 
R package of pROC for the five genes.

Unsupervised hierarchical clustering analysis

Unsupervised hierarchical clustering of CALCRL, DOCK1, 
PLA2G4A, FCHO2 and LRCH4 was conducted using the 
function Pheatmap of the R package of pheatmap [16]. 
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Difference in quantitative clinical factors was compared by 
the Wilcoxon sum-rank test between subgroups of patients. 
Count data were compared by Fisher’s exact test among the 
three subgroups of AML patients. Kaplan–Meier curves 
were plotted using the R package of survival [12], and sur-
vival rates were compared among the three clusters using 
the log-rank test. P < 0.05 was predefined as statistically 
significant.

Results

Characteristics of AML patients

Detailed clinical information of the 173 AML patients of 
the TCGA dataset is shown in Table 1. Patient’s age, ELN 
classification and TP53 expression were found to be nega-
tively associated with OS (P < 0.05 for all cases, Student’s 
t-test or Fisher’s exact test, Table 1). In the OHSU data-
base, older patient’s age and higher ELN classification and 
TP53 expression were negatively associated with inferior 
OS (P < 0.05 for all cases, Student’s t-test or Fisher’s exact 

test, Supplementary Table 1). Chemotherapy, bone marrow 
transplant and targeted therapy were positively correlated 
with improved OS (P < 0.05 for all cases, Fisher’s exact test, 
Supplementary Table 1). The other characteristics did not 
exhibit a significant association with OS in the TCGA and 
OHSU datasets (P values > 0.05 for all cases, Student’s t-test 
or Fisher’s exact test, Table 1 and Supplementary Table 1).

Survival analyses between patient mortality 
and gene expression in AML

To evaluate the predictive capability of gene expression for 
patients’ OS, the 173 AML patients in the TCGA dataset 
were divided into low and high expression groups based on 
median values. Kaplan–Meier survival analysis showed that 
high expression levels of 1352 genes and 1099 genes were 
associated with favourable or poor prognosis, respectively, 
such as CALCRL, DOCK1, PLA2G4A, FCHO2 and LRCH4 
(P < 0.05 for all cases, log-rank test, Fig. 1, Supplementary 
Fig. 1). Then, multivariate analyses were performed between 
patients’ OS and the mortality-associated features, including 
patients’ age, ELN classification, and 2451 gene expression 

Table 1  Association between 
the clinical features and 
patients’ mortality in 173 AML 
patients of the TCGA dataset

Variables Group Alive Dead P value Statistical method

Age 49.63 58.86 0.00 Student t test
PBMBC 44.25 40.28 0.48 Student t test
Gender Female 21 50 0.86 Fisher’s exact test

Male 27 59
European Leukemia Net 

classification
Favorable 10 7 0.03 Fisher’s exact test
Intermediate 30 72
Poor 8 28

TP53 mutation Mutant 0 14 0.003 Fisher’s exact test
Wild-type 59 100

ASXL1 mutation Mutant 0 3 0.55 Fisher’s exact test
Wild-type 59 111

RUNX1 mutation Mutant 3 13 0.27 Fisher’s exact test
Wild-type 56 101

IDH1 mutation Mutant 7 9 0.26 Fisher’s exact test
Wild-type 41 100

IDH2 mutation Mutant 5 12 1 Fisher’s exact test
Wild-type 43 97

DNMT3A mutation Mutant 10 33 0.25 Fisher’s exact test
Wild-type 38 76

NPM1 mutation Mutant 15 33 1 Fisher’s exact test
Wild-type 33 76

CEBPA mutation Mutant 4 9 1 Fisher’s exact test
Wild-type 44 100

FLT3 mutation Mutant 12 32 0.7 Fisher’s exact test
Wild-type 36 77

Neoadjuvant treatment Yes 12 31 0.7 Fisher’s exact test
No 36 78
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levels. Multivariate survival analyses confirmed that high 
expression of 337 genes was associated with decreased 
mortality, such as FCHO2 and LRCH4 (P = 0.01, OR: 0.36, 

95% CI: 0.17–0.75; P = 0.01, OR: 0.38, 95% CI: 0.18–0.79; 
respectively, Supplementary Table 3). While high expres-
sion of 165 genes was associated with increased mortality, 

Fig. 1  Kaplan–Meier survival analysis of patients’ OS with CALCRL (a), DOCK1 (b), FCHO2 (c) and LRCH4 (d) and PLA2G4A (e) expression 
levels in 173 AML patients of the TCGA dataset
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such as CALCRL, DOCK1, PLA2G4A (P = 0.03, OR: 2.32, 
95% CI: 1.09–5.03, P = 0.03, OR: 2.23, 95% CI: 1.08–4.70; 
P < 0.001, OR: 3.88, 95% CI: 1.83–8.50; respectively, Sup-
plementary Table 2, Supplementary Fig. 1).

Validation of survival analyses

In order to validate the findings above, the association 
between 502 gene expression and mortality was evaluated in 
405 AML samples of the OHSU dataset. Of 502 prognosis-
associated genes, Kaplan–Meier survival analysis confirmed 
that high expression levels of 22 genes were associated with 
a favorable prognosis in AML. In contrast, high expression 
of 19 genes was associated with a poor prognosis (P < 0.05 
for all cases, log-rank test, Supplementary Fig. 1 and Sup-
plementary Fig. 2). Then, multivariate analyses were per-
formed between patients’ OS and the mortality-associated 
features, including patients’ age, ELN classification, chemo-
therapy, bone marrow transplant, targeted therapy and 41 
gene expression levels. Multivariate survival analyses con-
firmed that high expression of FCHO2 and LRCH4 was 
associated with decreased mortality (P < 0.001, OR: 0.47, 
95%CI: 0.28–0.77; P = 0.02, OR:0.56, 95%CI: 0.34–0.90, 
respectively, Supplementary Fig. 1, Supplementary Table 3) 
and high expression of CALCRL, DOCK1, PLA2G4A was 
associated with increased mortality (P = 0.03, OR: 1.75, 
95% CI: 1.07–2.88; P = 0.03, OR: 1.69, 95% CI: 1.04–2.75; 
P < 0.001, OR: 2.26, 95% CI: 1.40–3.72, respectively, Sup-
plementary Fig. 1, Supplementary Table 3).

Risk score is a negative prognostic factor in AML

A prognostic risk score formula was established based on a 
linear combination of the expression levels weighted with 
the regression coefficients derived from multivariate logistic 
regression analysis: Risk score = 2.32 × expression of CAL-
CRL + 2.23 × expression of DOCK1 + 0.36 × expression 
of LRCH4 + 0.38 × expression of FCHO2 + 3.88 × expres-
sion of PLA2G4A. Risk scores were computed for AML 
patient and then they were divided into high and low risk 
groups based on the median risk score. Kaplan–Meier sur-
vival analysis showed the patients with high-risk scores 
showed higher mortality rates than those with low-risk 
scores (P < 0.001, Fig. 2a). Following adjustment of prog-
nostic risk factors, multivariate analysis confirmed that the 
risk score was associated with increased mortality rate in 
AML patients (P < 0.001, OR: 3.36, 95% CI: 1.57–7.48, 
Table 2). With respect to the associations of risk score with 
known prognostic biomarkers, the five patients with double 
CEBPA mutations were predicted to have low risk scores, 
3 out of 15 core binding factor, 6 out of 22 NPM1-mutated/
FLT3-wild type AML patients were classified as high-risk 
score patients. Of the 103 and 32 ELN intermediate and 

favorable patients, 53, 4 AML patients were predicted high-
risk, respectively, risk score was a negative factor for over-
all survival in the ELN intermediate and favorable groups 
of the TCGA dataset (Supplementary Table 4). To validate 
the findings above, risk score was calculated following the 
formula in the TCGA dataset. The negative correlation was 
validated between OS and risk score in the OHSU dataset 
(Table 2 and Fig. 2b). The 25 patients with double CEBPA 
mutations were predicted to have high-risk scores, 32 core 
binding factor, 17 out of 53 NPM1-mutated/FLT3-wild type 
AML patients were classified as high-risk score patients. 
Among the ELN intermediate and favorable groups, 68 in 
142, 38 in 117 AML patients were predicted high-risk, risk 
score was a negative factor for overall survival in the inter-
mediate and favorable groups of the OHSU dataset following 
adjustment of prognosis-associated features (Supplementary 
Table 4). The ROC curve analysis scores were 0.74 and 0.64 
for TCGA and OHSU datasets, respectively (Fig. 2c), indi-
cating the good sensitivity and specificity of the risk score 
in predicting OS in AML patients.

Assessment of diagnostic value

Then, the cBioPortal database was used to analyze the 
genomics alternations of CALCRL, DOCK1, PLA2G4A, 
FCHO2 and LRCH4 from the TCGA and OHSU datasets. 
The results showed that DOCK1, FCHO2 and PLA2G4A 
had mutations in 1%, 0.5% and 0.5% patients in the TCGA 
dataset. DOCK1 displayed a mutation frequency of 0.38% 
in the OHSU dataset (Supplementary Fig. 3). By comparing 
expression levels of CALCRL, DOCK1, PLA2G4A, FCHO2 
and LRCH4 between 173 AML samples and 70 bone mar-
row tissues, CALCRL, DOCK1, PLA2G4A and LRCH4 were 
found to be up-regulated, while FCHO2 was down-regulated 
in AML samples (P < 0.05 for all cases, Wilcoxon sum-
rank test, Fig. 3a). ROC curves were constructed to further 
explore the diagnostic values of the five genes. CALCRL, 
DOCK1, PLA2G4A and LRCH4 in particular exhibited high 
accuracy in differentiating AML tissues from bone marrow 
tissues (Fig. 3b, P values < 0.05, AUC > 0.85 for all cases).

Unsupervised hierarchical clustering analysis

Hierarchical clustering analysis of the five genes revealed 
three subgroups of AML patients in the TCGA dataset 
(Supplementary Fig. 4). The cluster1 AML patients were 
associated with lower cytogenetics risk than cluster2 or 3 
tumors, and more favorable OS than cluster3 patients (P 
values < 0.05 for all cases, fisher exact test or log-rank test, 
Fig. 4a, b). The remaining factors NPM1, DNMT3A, IDH1, 
IDH2, FLT3, CEBPA, TP53, ASXL1 and RUNX1 muta-
tions, gender and neoadjuvant treatment did not exhibit 
significant difference between subgroups of AML patients 
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(P values > 0.05 for all cases, Fisher’s exact test). To vali-
date the findings, we performed the classification of 405 

AML patients using the gene panel and found three clus-
ters of AML patients in the OHSU dataset (Supplementary 

Fig. 2  Risk score is negative prognostic biomarker in AML. a 
Kaplan–Meier survival analysis of patients’ OS with risk score in 
the TCGA dataset, b Kaplan–Meier survival analysis of patients’ OS 

with risk score in the OHSU dataset. c The ROC curves of the risk 
scores in the TCGA and OHSU datasets

Table 2  Multivariate analyses 
between OS and the risk score 
in the TCGA and OHSU 
datasets

Notably, OR and CI refers to odds ratio and confidence interval respectively

TCGA dataset OHSU dataset

Clinical
feature

OR 95%CI P value Clinical feature OR 95%CI P value

Age 1.03 1.01–1.06 0.01 Age 1.03 1.02–1.05  < 0.001
Cytogenetic risk 1.53 0.84–2.89 0.26 Cytogenetic risk 1.97 1.44–2.74  < 0.001
TP53 4.91e+06 2.26e−26-NA 0.99 Chemotherapy 0.24 0.01–1.37 0.19
Risk score 3.36 1.57–7.48  < 0.001 Transplant 0.33 0.19–0.56  < 0.001

Targeted therapy 2.17 1.11–4.4 0.03
TP53 2.66 0.83–11.87 0.14
Risk score 1.99 1.21–3.3  < 0.001
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Fig.  5). Cluster1 tumors were significantly associated 
with lower cytogenetics risk, higher frequencies of TP53, 
RUNX1 and targeted therapy than those in cluster 2, lower 
frequency of FLT3-ITD mutation than cluster3 tumors, 
higher frequency of FLT3-ITD mutations than cluster2 
tumors and more favourable OS than cluster2, 3 tumors 
(P values < 0.05 for all cases, Wilcoxon sum-rank test, 
Fisher’s exact test or log-rank test, Fig. 4c, d and Sup-
plementary Fig. 6).

Discussion

Acute myeloid leukemia (AML) is the most common type 
of acute leukemia and biologically heterogeneous diseases 
with poor prognosis. Accurate assessment of prognosis is 
central to the management of AML for genomics research-
ers and physicians. The 2017 ELN guidelines are widely 
used for the evaluation of prognostic risk and classifying 

Fig. 3  Diagnostic value of the 
gene panel. a Expression dif-
ference of CALCRL, DOCK1, 
PLA2G4A, FCHO2 and LRCH4 
between 173 AML samples and 
70 bone marrow tissues. b The 
ROC curves of the five genes in 
the TCGA dataset

Fig. 4  The three clusters of 
AML patients (1–3) showed sig-
nificant differences in cytoge-
netic risk (a), OS (b) in the 
TCGA dataset, cytogenetic risk 
(c) and OS (d) in the OHSU 
dataset
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patients into “favorable,” “intermediate,” and “adverse” 
subgroups on the basis of leukemia cell cytogenetics 
and somatic mutations in several key driver genes [17]. 
Papaemmanuil et al. [18] developed a Bayesian statistical 
model to compartmentalize AML into mutually exclusive 
subtypes based on patterns of co-mutation and defined 11 
classes of AML, each with distinct diagnostic features and 
clinical outcomes. Ciftciler et al. [19] demonstrated that 
pre-transplant bone marrow blast percentage is a positive 
prognostic factor for patients with AML, with patients 
with pre-transplant bone marrow blast cells < 5 showing 
more favourable survival than those with pre-transplant 
bone marrow blast cells 5–10%.

In recent years, an increasing number of mRNAs have 
been demonstrated to be potential prognostic biomark-
ers in AML. Lee [20] reported that elevated expression of 
DOCK1 confers poor prognosis in acute myeloid leukemia. 
Angenendt [21] revealed increasing expression levels of 
CALCRL were associated with decreasing complete remis-
sion rates, 5-year overall, and event-free survival. Despite 
significant advances in the risk classification of AML, a sin-
gle gene might be an inaccurate predictor, because various 
factors can affect a single gene. There are few reports on a 
gene signature comprising various genes to predict cancer 
outcomes.

In this study, we performed Kaplan–Meier and multivariate 
analyses using the mRNA expression data of two independent 
datasets and found CALCRL, DOCK1, PLA2G4A, FCHO2 
and LRCH4 expression levels could predict the OS of AML 
patients. Furthermore, we computed a risk score using a linear 
combination of 5-gene expression levels and β-values from 
subsequently multivariate logistic regression models. The risk 
score remained significantly associated with poor OS after 
adjusting for established prognosticators. The five genes play 
diverse roles in the tumorigeneses of cancers. For instance, the 
PLA2G4A gene encodes a member of the cytosolic phospholi-
pase A2 group IV family. The enzyme catalyzes the hydrolysis 
of membrane phospholipids to release arachidonic acid which 
is subsequently metabolized into eicosanoids. Eicosanoids, 
including prostaglandins and leukotrienes, are lipid-based 
cellular hormones that regulate hemodynamics, inflammatory 
responses, and other intracellular pathways [22]. PLA2G4A 
is up-regulated in glioblastoma [23], AML [24], lung cancer 
[25] and colon cancer [26]. PLA2G4A depletion moderately 
inhibited glioblastoma proliferation and survival but remark-
ably sensitized chemo-resistant glioblastoma cells to several 
chemotherapeutic agents through suppressing the PI3K/Akt/
mTOR pathway in glioblastoma cells [23]. Similarly, reduc-
tion in PLA2G4A activity caused decreased growth of A549 
and H460 lung cancer cells [25] and reduced both basal and 
the leukotriene D4 -induced proliferation, the effects being 
most pronounced in Caco-2 tumor cells [26]. These results 

combined with our study suggest PLA2G4A may serve as 
oncogene in cancers.

Furthermore, the 5-gene expression signature effectively 
stratified AML patients into three subgroups with different 
survival probabilities. Given the 5-gene expression signature 
is independent of known prognosis-associated mutations 
in NPM1, DNMT3A, IDH1, IDH2 and CEBPA, the 5-gene 
expression signature may have prognostic values for the fac-
tion of AMLs who harbor normal or risk-indeterminate kar-
yotypes. In addition to prognostic value, the five genes also 
showed diagnostic value for AML patients. Our study revealed 
that CALCRL, DOCK1, PLA2G4A and LRCH4 differentiated 
AML tissues from bone marrow tissues with high accuracy. 
Lastly, the five genes may also pave the way for developing 
targeted therapies for AML patients. For instance CRISPR-
Cas9-mediated knockout of CALCRL significantly inhibited 
colony formation in human myeloid leukemia cell lines [21]. 
Selective inhibition of DOCK1 ablated cellular invasion in 
Ras-transformed cells and suppressed cancer metastasis and 
growth in vivo in mice [27].

Conclusion

Taken together, this study is the first to report a 5-gene risk 
signature that has prognostic and diagnostic values and suc-
cessfully stratifies AML patients. A higher risk score indicates 
a poorer prognosis. These findings will help researchers iden-
tify new treatments for AML and to provide more therapeutic 
targets to cure AML patients in the future.
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