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Abstract
MicroRNAs (miRNAs) are short, non-coding, conserved, oligonucleotides that are regulatory in nature and are often dys-
regulated in many cancers including prostate cancer. Depending on the level of complementarity between the miRNA and 
mRNA target, they can either inhibit translation or degrade the target mRNA. MiRNAs expression is specific to the type of 
cancer, its stage and level of metastasis, making miRNAs potential stage-specific biomarkers of cancer. Recent research has 
shown that these miRNAs have the potential to be a diagnostic and prognostic non-invasive biomarker for various cancers 
including prostate cancer. Various miRNAs have been reported as novel biomarkers for prostate cancer therapy. However, 
there is inconsistency in the data reported and no overlapping expression pattern could be found. In this review, we have 
highlighted the most consistently reported dysregulated miRNAs in prostate cancer from the existing literature and discussed 
the currently available data on their role in regulating the hallmarks of prostate cancer. These four most consistently reported 
dysregulated miRNAs viz. miRNA-141, miRNA-375, miRNA-221 and miRNA-21 need to be further validated in terms of 
their regulatory potential in regulating various pathways important for prostate cancer management.
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Introduction

Prostate cancer (PCa) remains one of the major medical 
burdens in males. The estimated number of new cases and 
deaths from PCa in the United States in 2017 is 161,360 and 
26,730, respectively [1]. The incidence rate of PCa is lowest 
in Asian countries and in India it is the sixth most com-
monly diagnosed cancer among men [2]. Although prostate-
specific antigen (PSA) detection in serum has facilitated the 
early detection of prostate cancer, there are limitations to 
this as elevated serum PSA is not specific to the malignant 
disease and it gives a high false-positive and a false-nega-
tive rate of approximately 15% [3]. In addition, PSA as a 
prognostic marker also has detrimental effects as screening 

detects indolent tumors along with those that can become 
life threatening over a period of time [4]. Moreover, PCa 
patients treated for localized prostate cancer show relapse 
within 5 years [5]. This lack of sensitivity and specificity 
in serum PSA level calls for a better PCa biomarker. Thus, 
miRNA profiling in the serum of PCa patients can lead to 
identification of putative biomarkers for PCa and can be a 
tool to establish patients with various stages of PCa and, 
therefore, can be treated accordingly.

MicroRNAs (miRNAs) are a class of non-protein coding 
endogenous 19–20 nucleotides long small single-stranded 
RNAs which were originally discovered in Caenorhabditis 
elegans lin four locus and 7 years later in mammals let seven 
was discovered [6]. These are evolutionarily conserved in 
nature [7]. MiRNAs are found to have a regulatory role and 
they regulate around 1–5% of the human genome and at least 
30% of the protein coding gene [8]. They negatively regulate 
target gene expression at the post-transcriptional level either 
by degrading the target mRNA or inhibiting translation of 
the mRNA into functional proteins [9]. MiRNA is found 
to regulate vital functions of the cell including apoptosis, 
proliferation, cell cycle, differentiation, stem cell mainte-
nance and metabolism [10]. The database miRBase reports 
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around 2000 miRNA discovered in the human genome and 
it is believed that 30% of human genome is under miRNA 
regulation [11].

Various miRNAs reported have been shown to regulate 
the hallmarks of cancer and dysregulation of miRNA expres-
sion profile is associated with numerous human cancers, 
including lung, brain, liver, colon, breast, leukemia and pros-
tate cancer [12–14]. Conceptually these miRNAs may func-
tion as tumor suppressors and oncogenes [12] depending 
on the target tumor suppressor gene or oncogenes, respec-
tively. For example, miR-15 and miR-16 act as tumor sup-
pressors by targeting anti-apoptotic gene B cell lymphoma 
2 (BCL2) mRNA and miR-17-19 acts as oncogene by tar-
geting two tumor suppressor genes phosphatidylinositol-
3,4,5,-triphose-3-phosphatase (PTEN) and retinoblastoma 
like protein-2 (RB2) [13]. Since miRNAs acts as both tumor 
suppressors and oncogenes and the fact that miRNAs are 
diferentially expressed in cancer [14] as compared to normal 
tissue indicates that miRNAs can be potential clinical targets 
for cancer therapy.

The development of minimal invasive tests for the detec-
tion and monitoring of malignancies can greatly reduce the 
burden of cancer [15]. One such approach is miRNA as 
blood-based (circulating) cancer biomarkers as they can be 
readily detected in small volume of samples using specific 
and sensitive quantification using real time PCR [15]. MiR-
NAs can be isolated from the most body fluids, including 
serum, plasma, urine, saliva, breast milk, tears and semen 
[16]. They are highly stable in circulation as they are resist-
ant to RNase degradation due to their short sequence [17, 
18]. The packaging of miRNAs in lipid vesicles, bound by 
RNA-binding proteins and associated with high-density lipo-
protein, has a wider relevance as miRNA can be transferred 
between individuals orally [16]. Moreover, being highly con-
served between species, it allows the use of animal models 
for pre-clinical studies [16]. Looking at the redundant role 
of miRNA, it can be expected to have differential expres-
sion pattern in different stages of cancer depending on the 
requirement of cells and the relationship of this differential 
expression pattern of miRNAs with PCa hallmarks can have 
great therapeutic application.

Although several studies have investigated the differen-
tial expression pattern of miRNAs in PCa and their associa-
tion with clinicopathological parameters, unique signatures 
that can be used as biomarker to detect PCa, its prognosis, 
therapy selection and response are missing. Thus, in this 
review, we have identified the most consistently reported 
dysregulated microRNAs in prostate cancer and have tried to 
evaluate the genes being regulated by these four microRNAs 
viz., miRNA-141, miRNA-375, miRNA-221 and miRNA-21 
in regulating prostate cancer hallmarks.

MicroRNA biogenesis

The biogenesis of miRNA is a cascade of events which com-
prises three stages: miRNA transcription, miRNA matura-
tion and finally RISC complex formation (Fig. 1). The first 
stage, miRNA transcription, initiates in the nucleus with 
transcription of miRNA by RNA polymerase II [19, 20] 
which generates 5′ capped and 3′ polyadenylated primary 
transcripts (pri-miRNA) of variable lengths (around 1–3 kb) 
[21]. The second stage, miRNA maturation, is catalyzed by 
a ribonuclease (RNase III), called Drosha which is a large 
protein of ~ 160 kDa and its cofactor DiGeorge syndrome 
critical region gene 8 (DGCR8) together forms the micro-
processor complex (500–650 kDa) and leads to the cleav-
age of pri-miRNA into precursor-miRNA (pre-miRNA), 
a sterm-loop structure, comprising of ~ 70 nucleotides 
[22–24]. Pre-miRNA is then exported to the cytoplasm by a 
nuclear export factor called exportin-5 [25], where another 
RNase III, Dicer along with TAR (HIV) RNA-binding pro-
tein cleaves it into an RNA duplex of ~ 22 nucleotide, which 
is a double-stranded miRNA–mRNA duplex of the mature 

Fig. 1  Schematic representation of microRNA biogenesis
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miRNA and its complementary strand [26, 27]. The mature 
miRNA then associates with argonaute proteins to form an 
miRNA-protein complex called RNA-induced silencing 
complex (RISC) or RNA interference (RNAi) complex and 
the complementary strand gets degraded [28]. Depending 
on the complementarity between the “seed” sequence of the 
miRNA and the “seed-match” sequence of target mRNA, 
the target mRNA is either degraded by Ago1/2 or leads to 
translational repression [29].

Dysregulated microRNAs in prostate cancer

Circulating miRNAs being abundant in blood, stable, a 
non-invasive approach for cancer detection and the findings 
that human blood comprises stably expressed miRNAs [30] 
have drawn the attention of various studies investigating 
the potential of miRNAs as blood-based biomarkers. An 
increasing number of miRNA expression studies investi-
gating differential expression of miRNAs as potential diag-
nostic, prognostic and predictive tools have been reported, 
suggesting the potential of miRNAs as novel biomarkers for 
prostate cancer therapy (summarized in Table 1). The first 
report on miRNA profiling in prostate cancer was published 
in 2007 [31]. This study comprised both in vitro and in vivo 
samples from benign prostatic hyperplasia (BPH) and pros-
tate cancer patients. The expression of 319 miRNAs was 
analyzed in 6 prostate cancer cell lines, 9 prostate cancer 
xenografts samples, and 13 clinical prostate tissue samples 
(4 BPH, 5 untreated prostate carcinomas, and 4 hormone 
refractory prostate carcinomas) [31]. Expression of only 128 
miRNAs (40%) was detectable in array hybridization which 
was further validated by dot blot hybridization as well as 
qRT-PCR [31]. Between BPH and carcinoma samples, 51 
miRNAs were found to be differentially expressed, 37 miR-
NAs were found to be downregulated in carcinoma samples 
and 14 were found to be upregulated [31].

As summarized in Table 1, initial studies have reported 
various miRNAs as differentially expressed in different 
stages of prostate cancer; however, data are inconsistent 
and no overlapping expression pattern has been found. The 
high variability among the data reported by various groups 
could be because of various factors such as sample size, 
sample type and screening methodology. Moreover, not all 
the differentially expressed miRNAs were validated. By 
validating clinically relevant miRNA in prostate cancer, one 
can come up with miRNA targets that have clinical applica-
tion. Thus, identifying consistently reported differentially 
expressed microRNAs can widen up new horizons for PCa 
management. In this review, we have identified a panel of 
four most consistently reported, differentially expressed 
miRNAs in prostate cancer. These miRNAs: miR-141, miR-
375, miR-221 and miR-21 depicted similar trend in multiple 

studies with different study structure and exhibited consist-
ent significance.

The first report on miR-141 as a potential diagnostic 
marker was reported in the year 2008 by Mitchell et al. [32]. 
The authors validated six miRNAs including miR-141 in 
the serum samples of a case control cohort of 25 metastatic 
PCa patients with 25 age-matched healthy controls [32]. Of 
all the miRNAs miR-141 showed the greatest differential 
expression (46-fold overexpressed) in the patient sample and 
could differentiate between advanced metastatic PCa cases 
and healthy controls with a specificity of 60% and sensitivity 
of 100% [32]. Later in the year 2011, contradictory results 
were reported by Yaman Agaoglu et al., who investigated 
the expression pattern of three miRNAs, miR-21, miR-141 
and miR-221 and found that there was no difference in the 
expression level of miR-141 when localized, local advance 
and metastatic PCa patient’s plasma samples were compared 
with healthy controls [33]. However, the expression, miR-
21 and miR-221, could differentiate between patients and 
healthy controls [33]. Also, among the three miRNAs inves-
tigated miR-141 was reported to be the strongest discrimina-
tor of metastatic PCa from localized/local advanced disease 
[33]. Another study was carried out in the same year by 
Brase et al., where they identified 69 miRNAs to be upregu-
lated in the serum of metastatic PCa patients [34]. MiR-141 
along with other two miRNAs (miR-375 and miR-200b) 
showed the highest correlation with clinical parameters [34]. 
Followed by this in 2012, Selth et al. used transgenic adeno-
carcinoma of mouse prostate (TRAMP) mouse model of the 
prostate to discover miRNAs associated with PCa [35]. They 
identified eight miRNAs based on their serum levels and 
human homologs were further validated in the sera of 25 
human PCa patients with metastatic CRPC and 25 healthy 
controls [35]. The authors showed that miR-141 along with 
other three miRNAs (miR-298, miR-346 and miR-375) were 
consistently upregulated in PCa patients with metastatic 
CRPC compared to healthy controls [35]. Another study in 
the year 2012 by Nguyen et al. showed that the expression of 
miR-141 along with miR-375 and miR-378* could discrimi-
nate between metastatic PCa patients and low-risk localized 
patients [36]. Also the expression of miR-141 was signifi-
cantly higher in prostate tumor samples compared to normal 
prostate tissue [36]. Taken together, these studies indicated 
miR-141 as a marker of metastatic prostate cancer which 
could differentiate between healthy controls, primary PCa 
patients and metastatic CRPC patients with high specificity 
and sensitivity and also correlate with PCa aggressiveness.

MiR-375 was first identified as pancreatic islet-specific 
miRNA that regulates glucose-induced insulin secretion in 
murine embryonic β cell line MIN6 [37]. However, various 
miRNA expression profiling studies revealed dysregulated 
expression of miR-375 in various malignancies for instance, 
hepatocellular carcinoma [38], gastric cancer [39], head and 



129Clinical and Translational Oncology (2019) 21:126–144 

1 3

Ta
bl

e 
1 

 D
iff

er
en

tia
l e

xp
re

ss
io

n 
pr

ofi
le

 o
f m

ic
ro

R
N

A
s i

n 
PC

a

Ye
ar

G
ro

up
D

ys
re

gu
la

te
d 

m
ic

ro
R

N
A

s
M

et
ho

d
O

ut
co

m
e

Re
fe

re
nc

es

20
08

M
itc

he
ll 

et
 a

l.
m

iR
-1

00
, m

iR
-1

25
b,

 m
iR

-1
41

, m
iR

-1
45

, m
iR

-2
05

, a
nd

 m
iR

-2
96

qR
T-

PC
R

Th
e 

stu
dy

 v
al

id
at

ed
 6

 m
iR

N
A

s i
n 

a 
ca

se
 c

on
tro

l c
oh

or
t o

f s
er

um
 sa

m
-

pl
es

 fr
om

 2
5 

m
et

as
ta

tic
 p

ro
st

at
e 

ca
nc

er
 p

at
ie

nt
s a

nd
 2

5 
ag

e 
m

at
ch

ed
 

he
al

th
y 

co
nt

ro
ls

. F
iv

e 
ou

t o
f s

ix
 sh

ow
ed

 in
cr

ea
se

d 
ex

pr
es

si
on

 in
 th

e 
pa

tie
nt

 sa
m

pl
es

 c
om

pa
re

d 
to

 c
on

tro
ls

. E
xp

re
ss

io
n 

of
 1

 re
m

ai
ni

ng
 

m
iR

N
A

 w
as

 u
nd

et
ec

ta
bl

e 
in

 b
ot

h 
th

e 
gr

ou
ps

. O
f a

ll 
th

e 
m

iR
N

A
s, 

m
iR

-1
41

 sh
ow

ed
 th

e 
gr

ea
te

st 
di

ffe
re

nt
ia

l e
xp

re
ss

io
n 

(4
6-

fo
ld

 o
ve

re
x-

pr
es

se
d)

 in
 th

e 
pa

tie
nt

 sa
m

pl
e 

an
d 

co
ul

d 
di

ffe
re

nt
ia

te
 b

et
w

ee
n 

ca
se

s 
an

d 
co

nt
ro

ls
 w

ith
 a

 sp
ec

ifi
ci

ty
 o

f 6
0%

 a
nd

 se
ns

iti
vi

ty
 o

f 1
00

%

[3
2]

20
09

Lo
de

s e
t a

l.
m

iR
-1

6,
 m

iR
-9

2a
, m

iR
-1

03
, m

iR
-1

07
, m

iR
-1

97
, m

iR
-3

4b
, m

iR
-3

28
, 

m
iR

-4
85

-3
p,

 m
iR

-4
86

-5
p,

 m
iR

-9
2b

, m
iR

-5
74

-3
p,

 m
iR

-6
36

, m
iR

-
64

0,
 m

iR
-7

66
, m

iR
-8

85
-5

p

M
ic

ro
ar

ra
y

Ev
al

ua
te

d 
m

iR
N

A
 e

xp
re

ss
io

n 
pa

tte
rn

s i
n 

fiv
e 

ty
pe

s o
f h

um
an

 c
an

ce
rs

 
in

cl
ud

in
g 

pr
os

ta
te

 c
an

ce
r. 

15
 m

iR
N

A
s w

er
e 

fo
un

d 
to

 b
e 

up
re

gu
la

te
d 

in
 th

e 
se

ru
m

 o
f p

ro
st

at
e 

ca
nc

er
 p

at
ie

nt
s c

om
pa

re
d 

to
 n

or
m

al
 c

on
tro

l. 
H

ow
ev

er
, t

he
se

 m
iR

N
A

s w
er

e 
no

t P
C

a 
sp

ec
ifi

c 
an

d 
co

ul
d 

no
t d

if-
fe

re
nt

ia
te

 b
et

w
ee

n 
PC

a 
an

d 
ot

he
r m

al
ig

na
nc

ie
s

[5
8]

20
11

M
ol

tz
ah

n 
et

 a
l.

m
iR

-2
23

, m
iR

-2
6b

, m
iR

-3
0c

, m
iR

-2
4,

 m
iR

-8
74

, m
iR

-1
27

4a
, m

iR
-

12
07

-5
p,

 m
iR

-9
3 

an
d 

m
iR

-1
06

a
qR

T-
PC

R
In

 th
is

 st
ud

y 
ou

t o
f 1

2,
 e

xp
re

ss
io

n 
of

 1
0 

m
iR

N
A

s (
20

b,
 2

4,
 2

6b
, 

30
c,

 9
3,

 1
06

a,
 2

23
, 8

74
, 1

20
7-

5p
, a

nd
 1

27
4a

) w
er

e 
su

bs
ta

nt
ia

lly
 

di
ffe

re
nt

 b
et

w
ee

n 
th

e 
he

al
th

y 
an

d 
al

l m
al

ig
na

nt
 sa

m
pl

es
: f

ou
r w

er
e 

do
w

nr
eg

ul
at

ed
 in

 c
an

ce
r g

ro
up

 (m
iR

-2
23

, 2
6b

, 3
0c

, a
nd

 2
4)

 a
nd

 
si

x 
w

er
e 

up
re

gu
la

te
d 

in
 th

e 
ca

nc
er

 g
ro

up
 (m

iR
-2

0b
, 8

74
, 1

27
4a

, 
12

07
-5

p,
 9

3 
an

d 
10

6a
). 

A
nd

 th
e 

re
m

ai
ni

ng
 tw

o 
(m

iR
-1

9a
 a

nd
 4

51
) 

w
er

e 
si

gn
ifi

ca
nt

ly
 d

iff
er

en
t b

et
w

ee
n 

th
e 

he
al

th
y 

ve
rs

us
 h

ig
h-

ris
k 

gr
ou

p.
 M

iR
-1

06
a 

an
d 

m
iR

-9
3 

sh
ow

ed
 a

 li
ne

ar
 tr

en
d 

ac
ro

ss
 a

ll 
gr

ou
ps

 
as

 w
el

l a
s a

m
on

g 
ca

nc
er

 p
at

ie
nt

s a
lo

ne
. M

iR
-2

4 
sh

ow
ed

 a
 li

ne
ar

 
tre

nd
 a

m
on

g 
ca

nc
er

 p
at

ie
nt

s b
ut

 n
ot

 a
cr

os
s a

ll 
gr

ou
ps

. F
ur

th
er

, a
ll 

12
 m

iR
N

A
s w

er
e 

va
lid

at
ed

 b
y 

qR
T-

PC
R

: m
iR

-2
23

 w
as

 d
ow

nr
eg

u-
la

te
d 

in
 a

ll 
gr

ou
ps

, m
iR

-1
20

7,
 m

iR
-8

74
 sh

ow
ed

 a
 st

ab
le

 in
cr

ea
se

 in
 

th
e 

ca
nc

er
 p

at
ie

nt
s r

el
at

iv
e 

to
 h

ea
lth

y 
co

nt
ro

ls
. M

iR
-2

4 
ex

pr
es

si
on

 
ste

ad
ily

 d
ec

re
as

ed
 w

ith
 c

an
ce

r r
is

k 
an

d 
m

iR
-1

06
a,

 m
iR

-9
3 

an
d 

m
iR

-
12

74
 e

xp
re

ss
io

n 
in

cr
ea

se
d 

w
ith

 c
an

ce
r r

is
k.

 M
iR

-3
0c

 a
nd

 m
iR

-2
6b

 
ex

pr
es

si
on

 w
er

e 
do

w
nr

eg
ul

at
ed

 in
 lo

w
 a

nd
 in

te
rm

ed
ia

te
 ri

sk
 g

ro
up

s 
re

la
tiv

e 
to

 h
ea

lth
y 

an
d 

hi
gh

-r
is

k 
gr

ou
ps

. M
iR

-4
51

 e
xp

re
ss

io
n 

w
as

 
in

cr
ea

se
d 

in
 a

 h
ig

h-
ris

k 
gr

ou
p

[5
9]

20
11

A
ga

og
lu

 e
t a

l.
m

iR
-2

1,
 m

iR
-2

21
, a

nd
 m

iR
-1

41
qR

T-
PC

R
In

 th
is

 st
ud

y 
m

iR
-2

1 
an

d 
m

iR
-2

21
 le

ve
ls

 w
er

e 
fo

un
d 

to
 b

e 
hi

gh
er

 
in

 p
at

ie
nt

s t
ha

n 
in

 h
ea

lth
y 

co
nt

ro
ls

 w
hi

le
 th

er
e 

w
as

 n
o 

di
ffe

re
nc

e 
fo

un
d 

fo
r m

iR
-1

41
. A

ll 
th

re
e 

m
iR

N
A

s w
er

e 
hi

gh
er

 in
 p

at
ie

nt
s w

ith
 

m
et

as
ta

se
s t

ha
n 

in
 lo

ca
liz

ed
 a

dv
an

ce
d 

di
se

as
e 

an
d 

m
iR

-1
41

 b
ei

ng
 

th
e 

m
os

t p
ow

er
fu

l d
is

cr
im

in
at

or
 o

f m
et

as
ta

tic
 P

C
a 

fro
m

 th
e 

lo
ca

l-
iz

ed
 a

dv
an

ce
d 

di
se

as
e.

 M
iR

-2
1 

is
 m

or
e 

us
ef

ul
 to

 d
iff

er
en

tia
te

 P
C

a 
pa

tie
nt

s f
ro

m
 h

ea
lth

y 
co

nt
ro

ls
 w

hi
le

 m
iR

-1
41

 w
as

 a
 b

et
te

r d
is

cr
im

i-
na

to
r o

f m
et

as
ta

tic
 P

C
a 

fro
m

 lo
ca

liz
ed

 a
dv

an
ce

d 
di

se
as

e

[3
3]



130 Clinical and Translational Oncology (2019) 21:126–144

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Ye
ar

G
ro

up
D

ys
re

gu
la

te
d 

m
ic

ro
R

N
A

s
M

et
ho

d
O

ut
co

m
e

Re
fe

re
nc

es

20
11

Zh
an

g 
et

 a
l.

m
iR

-2
1

qR
T-

PC
R

Th
e 

stu
dy

 a
ss

es
se

d 
th

e 
ex

pr
es

si
on

 o
f m

iR
-2

1 
in

 se
ru

m
 sa

m
pl

es
 o

f 5
6 

pa
tie

nt
s (

20
 lo

ca
liz

ed
 P

C
a 

pa
tie

nt
s, 

20
 a

nd
ro

ge
n-

de
pe

nd
en

t p
ro

st
at

e 
ca

nc
er

 p
at

ie
nt

s, 
10

 H
R

PC
 p

at
ie

nt
s a

nd
 6

 B
PH

 p
at

ie
nt

s)
 fo

llo
w

ed
 

by
 v

al
id

at
io

n 
w

ith
 q

RT
-P

C
R

. M
iR

-2
1 

ex
pr

es
si

on
 w

as
 fo

un
d 

to
 b

e 
hi

gh
er

 in
 A

D
PC

 a
nd

 H
R

PC
 p

at
ie

nt
s w

ith
 P

SA
 >

 4 
ng

/m
l. 

M
or

eo
ve

r, 
se

ru
m

 m
iR

-2
1 

le
ve

ls
 w

er
e 

hi
gh

er
 in

 p
at

ie
nt

s r
es

ist
an

t t
o 

do
ce

ta
xe

l 
ch

em
ot

he
ra

py
 c

om
pa

re
d 

to
 m

iR
-2

1 
le

ve
ls

 in
 p

at
ie

nt
s s

en
si

tiv
e 

to
 

ch
em

ot
he

ra
py

[5
6]

20
11

B
ra

se
 e

t a
l.

m
iR

-1
41

, m
iR

-2
00

b,
 a

nd
 m

iR
-5

16
-3

p)
qR

T-
PC

R
Th

e 
stu

dy
 sc

re
en

ed
 6

67
 m

iR
N

A
s i

n 
se

ru
m

 sa
m

pl
es

 fr
om

 m
et

as
ta

tic
 

(7
) a

nd
 lo

ca
liz

ed
 (1

4)
 P

C
a.

 6
9 

m
iR

N
A

s w
er

e 
fo

un
d 

to
 b

e 
el

ev
at

ed
 

in
 p

at
ie

nt
s w

ith
 m

al
ig

na
nt

 P
CA

 c
om

pa
re

d 
to

 th
e 

lo
w

-r
is

k 
gr

ou
p.

 5
 

up
re

gu
la

te
d 

m
iR

N
A

s w
er

e 
se

le
ct

ed
 fo

r f
ur

th
er

 v
al

id
at

io
n.

 M
iR

-3
75

, 
14

1 
an

d 
20

0b
 sh

ow
ed

 h
ig

he
st 

co
rr

el
at

io
n 

w
ith

 c
lin

ic
al

 p
ar

am
et

er
s 

an
d 

m
iR

-3
75

 a
nd

 1
41

 c
ou

ld
 d

is
cr

im
in

at
e 

be
tw

ee
n 

m
et

as
ta

tic
 a

nd
 

hi
gh

 g
ra

de
 tu

m
or

s c
om

pa
re

d 
to

 in
te

rm
ed

ia
te

 a
nd

 lo
w

 g
ra

de
 tu

m
or

s

[3
4]

20
11

M
ah

n 
et

 a
l.

m
iR

-2
6a

, m
iR

-3
2,

 m
iR

-1
95

 a
nd

 m
iR

-le
t-7

i
qR

T-
PC

R
In

 th
is

 st
ud

y 
37

 p
at

ie
nt

s w
ith

 ra
di

ca
l p

ro
st

at
ec

to
m

y,
 1

8 
pa

tie
nt

s w
ith

 
B

PH
 w

ith
 tr

an
su

re
th

ra
l r

es
ec

tio
n 

of
 th

e 
pr

os
ta

te
, e

ig
ht

 p
at

ie
nt

s w
ith

 
m

et
as

ta
tic

 P
C

a 
an

d 
20

 h
ea

lth
y 

co
nt

ro
ls

 w
er

e 
in

vo
lv

ed
. T

he
 se

le
ct

ed
 

m
iR

N
A

s w
er

e 
fu

rth
er

 v
al

id
at

ed
 in

 th
e 

se
ru

m
 o

f t
en

 p
at

ie
nt

s w
ith

 
pr

e-
/p

os
t p

ro
st

at
ec

to
m

y 
an

d 
co

rr
es

po
nd

in
g 

PC
a/

ad
ja

ce
nt

 n
or

m
al

 
pr

os
ta

te
 ti

ss
ue

. M
iR

-2
6a

 le
ve

ls
 c

ou
ld

 d
is

cr
im

in
at

e 
be

tw
ee

n 
ea

rly
 

PC
a 

an
d 

B
PH

 w
ith

 a
 se

ns
iti

vi
ty

 o
f 8

9.
2%

 a
nd

 sp
ec

ifi
ci

ty
 o

f 5
5.

6%
. 

Le
ve

ls
 o

f m
iR

-2
6a

, m
iR

-1
95

 c
or

re
la

te
d 

ne
ga

tiv
el

y 
w

ith
 su

rg
ic

al
 

m
ar

gi
ns

 a
nd

 m
iR

-1
95

 a
nd

 m
iR

-le
t7

i c
or

re
la

te
d 

ne
ga

tiv
el

y 
w

ith
 th

e 
G

le
as

on
 sc

or
e

[6
0]

20
12

Se
lth

 e
t a

l.
m

iR
-1

41
, m

iR
-2

98
, m

iR
-3

46
 a

nd
 m

iR
-3

75
M

ic
ro

ar
ra

y
Th

e 
stu

dy
 u

se
d 

TR
A

M
P 

m
od

el
 to

 d
is

co
ve

r P
C

a 
as

so
ci

at
ed

 m
iR

N
A

s 
in

 se
ru

m
 w

hi
ch

 w
er

e 
fu

rth
er

 v
al

id
at

ed
 in

 se
ra

 o
f 2

5 
hu

m
an

 P
C

a 
pa

tie
nt

 sa
m

pl
es

 w
ith

 m
C

R
PC

 a
nd

 2
5 

he
al

th
y 

co
nt

ro
ls

. 8
 m

iR
N

A
s 

(m
m

u-
m

iR
-2

4,
 1

82
, 1

84
, 2

15
, 2

98
, 3

20
, 3

46
 a

nd
 8

87
) w

er
e 

ch
os

en
 

fo
r v

al
id

at
io

n 
ba

se
d 

on
 th

ei
r l

ev
el

s i
n 

se
ru

m
 a

nd
 th

ei
r k

no
w

n 
hu

m
an

 
ho

m
ol

og
. M

m
u-

14
1 

an
d 

37
5 

w
er

e 
in

cl
ud

ed
 a

s a
dd

iti
on

al
 li

te
ra

tu
re

-
ba

se
d 

ca
nd

id
at

es
 fo

r v
al

id
at

io
n.

 M
iR

-1
41

, m
iR

-2
98

, m
iR

-3
46

 a
nd

 
m

iR
-3

75
 w

er
e 

co
ns

ist
en

tly
 e

le
va

te
d 

in
 h

um
an

 p
at

ie
nt

s w
ith

 m
C

R
PC

 
w

he
re

as
 h

om
ol

og
s o

f t
he

 re
m

ai
ni

ng
 6

 m
iR

N
A

s d
id

 n
ot

 sh
ow

 si
m

ila
r 

up
re

gu
la

te
d 

ex
pr

es
si

on
 in

 h
um

an
 se

ra
 sa

m
pl

es

[3
5]



131Clinical and Translational Oncology (2019) 21:126–144 

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Ye
ar

G
ro

up
D

ys
re

gu
la

te
d 

m
ic

ro
R

N
A

s
M

et
ho

d
O

ut
co

m
e

Re
fe

re
nc

es

20
12

B
ry

an
t e

t a
l.

m
iR

-1
07

, m
iR

-1
30

b,
 m

iR
-1

41
, m

iR
-3

01
a,

 m
iR

-2
11

0,
 m

iR
-3

26
, m

iR
-

33
1-

3p
, m

iR
-4

32
,m

iR
-3

75
, m

iR
-4

84
, m

iR
-5

74
-3

p,
 a

nd
 m

iR
-6

25
qR

T-
PC

R
Th

e 
stu

dy
 e

va
lu

at
ed

 1
2 

m
iR

N
A

s w
hi

ch
 w

er
e 

fo
un

d 
to

 h
av

e 
di

ffe
re

nt
ia

l 
ex

pr
es

si
on

 in
 P

C
a 

pa
tie

nt
 sa

m
pl

es
 c

om
pa

re
d 

to
 c

on
tro

l (
11

 u
pr

eg
u-

la
te

d 
an

d 
1 

do
w

nr
eg

ul
at

ed
). 

2 
m

iR
N

A
s (

m
iR

-5
74

-3
p 

an
d 

m
iR

-1
07

) 
w

er
e 

co
nfi

rm
ed

 b
y 

qR
T-

PC
R

. 1
6 

m
iR

N
A

s a
re

 fo
un

d 
to

 h
av

e 
di

ffe
r-

en
tia

l e
xp

re
ss

io
n 

in
 m

et
as

ta
tic

 P
C

a 
pa

tie
nt

s w
he

n 
co

m
pa

re
d 

to
 n

on
-

m
et

as
ta

tic
 P

C
a 

pa
tie

nt
s. 

2 
m

iR
N

A
s (

m
iR

-3
75

 a
nd

 m
iR

-2
00

b)
 w

er
e 

co
nfi

rm
ed

 b
y 

qR
T-

PC
R

. T
he

 m
iR

-1
07

 e
xp

re
ss

io
n 

co
ul

d 
di

ffe
re

nt
ia

te
 

be
tw

ee
n 

no
n-

m
et

as
ta

tic
 p

ro
st

at
e 

ca
nc

er
 a

nd
 n

or
m

al
 h

ea
lth

y 
co

nt
ro

ls
. 

M
iR

-3
75

 a
nd

 m
iR

-2
00

b 
ex

pr
es

si
on

 c
ou

ld
 d

iff
er

en
tia

te
 b

et
w

ee
n 

m
et

as
ta

tic
 p

ro
st

at
e 

ca
nc

er
 a

nd
 n

on
-m

et
as

ta
tic

 c
as

es

[4
3]

20
12

C
he

n 
et

 a
l.

m
iR

N
A

s l
et

-7
c,

 le
t-7

e,
 m

iR
-3

0c
, m

iR
-6

22
, a

nd
 m

iR
-1

28
5

qR
T-

PC
R

Th
e 

stu
dy

 id
en

tifi
ed

 5
 m

iR
N

A
s t

o 
be

 d
iff

er
en

tia
lly

 e
xp

re
ss

ed
 th

at
 

di
sc

rim
in

at
e 

pr
os

ta
te

 c
an

ce
r f

ro
m

 B
PH

 a
nd

 h
ea

lth
y 

su
bj

ec
ts

. l
et

-7
e,

 
le

t-7
c 

an
d 

m
iR

-3
0c

 w
er

e 
do

w
nr

eg
ul

at
ed

 a
nd

 m
iR

-6
22

 a
nd

 m
iR

-1
28

5 
w

er
e 

up
re

gu
la

te
d 

in
 p

ro
st

at
e 

ca
nc

er
 p

at
ie

nt
s

[6
1]

20
12

Sh
en

 e
t a

l.
m

iR
-2

0a
, m

iR
-2

1,
 m

iR
-1

45
, a

nd
 m

iR
-2

21
qR

T-
PC

R
In

 th
is

 st
ud

y 
82

 P
C

a 
pa

tie
nt

s w
er

e 
in

vo
lv

ed
 a

nd
 th

e 
ag

gr
es

si
ve

ne
ss

 
of

 P
C

a 
ca

se
s w

as
 c

at
eg

or
iz

ed
 b

y 
th

e 
CA

PR
A

 sc
or

e 
an

d 
D

’A
m

ic
o’

s 
cr

ite
ria

. M
iR

-2
0a

 a
nd

 m
iR

-2
1 

ar
e 

as
so

ci
at

ed
 w

ith
 c

lin
ic

op
at

ho
lo

gi
-

ca
l v

ar
ia

bl
es

 o
f P

C
a.

 M
iR

-2
21

 in
de

pe
nd

en
tly

 c
ou

ld
 n

ot
 d

is
cr

im
in

at
e 

be
tw

ee
n 

PC
a 

ag
gr

es
si

ve
ne

ss
 b

ut
 th

e 
co

m
bi

na
tio

n 
pa

tte
rn

 o
f m

iR
-

20
a,

 m
iR

-2
1,

 m
iR

-1
45

 a
nd

 m
iR

-2
21

 si
gn

ifi
ca

nt
ly

 d
ist

in
gu

is
h 

hi
gh

 
ve

rs
us

 lo
w

-r
is

k 
PC

a 
pa

tie
nt

s. 
M

iR
-1

41
 e

xp
re

ss
io

n 
w

as
 u

nd
et

ec
ta

bl
e 

fo
r a

ll 
pa

tie
nt

s a
nd

 n
o 

fu
rth

er
 a

na
ly

si
s w

as
 c

on
du

ct
ed

[5
7]

20
13

N
gu

ye
n 

et
 a

l.
m

iR
-1

41
, m

iR
-3

75
, m

iR
-3

78
*,

 a
nd

 m
iR

-4
09

-3
p

M
ic

ro
ar

ra
y

Th
e 

stu
dy

 in
cl

ud
ed

 2
8 

pa
tie

nt
s w

ith
 lo

w
-r

is
k 

lo
ca

liz
ed

 d
is

ea
se

, 3
0 

of
 

hi
gh

-r
is

k 
lo

ca
liz

ed
 d

is
ea

se
 a

nd
 2

6 
of

 m
et

as
ta

tic
 C

R
PC

. E
xp

re
ss

io
n 

of
 m

iR
-3

75
, m

iR
-3

78
* 

an
d 

m
iR

-1
41

 w
as

 u
pr

eg
ul

at
ed

 in
 th

e 
se

ru
m

 
fro

m
 m

et
as

ta
tic

 C
R

PC
 p

at
ie

nt
s a

nd
 e

xp
re

ss
io

n 
of

 m
iR

-4
09

-3
p 

w
as

 
do

w
nr

eg
ul

at
ed

. E
xp

re
ss

io
n 

of
 m

iR
-3

75
 w

as
 m

os
t r

ob
us

t a
s i

t w
as

 
ab

ou
t 3

5-
 to

 4
5-

fo
ld

 h
ig

he
r t

ha
n 

th
at

 o
f m

iR
-1

41

[3
6]

20
15

H
ua

ng
 e

t a
l.

m
iR

-3
75

 a
nd

 m
iR

-1
29

0
qR

T-
PC

R
Th

e 
stu

dy
 sc

re
en

ed
 1

92
 su

bj
ec

ts
 (2

3 
w

ith
 C

R
PC

 a
nd

 1
69

 h
ea

lth
y 

an
d 

no
n-

he
al

th
y)

. T
w

o 
ca

nd
id

at
e 

m
iR

N
A

s:
 m

iR
-1

29
0 

an
d 

m
iR

-3
75

 w
er

e 
id

en
tifi

ed
 a

s p
ro

gn
os

tic
 b

io
m

ar
ke

rs
 in

 C
R

PC

[4
4]



132 Clinical and Translational Oncology (2019) 21:126–144

1 3

neck cancer [40], esophageal carcinoma [41], melanoma 
and glioma [42]. MiR-375 as a biomarker for PCa was first 
reported in the year 2011 by Brase et al. [34]. The authors 
identified 69 miRNAs which were upregulated in the serum 
samples of metastatic PCa patients compared to primary 
PCa patients [34]. Three miRNAs including miR-375 
showed the highest correlation with tumor stage and Gleason 
score [34]. Also, miR-375 expression showed considerable 
association with lymph-node metastasis; however, it could 
not discriminate between high-risk PCa patients (Gleason 
score 8) and intermediate risk PCa patients (Gleason score 
7) [34]. MiR-375 also showed higher expression in pros-
tate tumor tissues compared to normal epithelium [34]. A 
similar study by Bryant et al. in the year 2012 reported dif-
ferential expression of 16 miRNAs including miR-375, in 
plasma samples from 16 metastatic PCa patients compared 
to 55 localized PCa patients [43]. Expression of three miR-
NAs including miR-375 along with miR-200b could dis-
criminate between metastatic PCa patients and localized PCa 
patients [43]. Also the expression of miR-375 was found to 
show correlation with metastatic CRPC in a study by Selth 
et al. [35]. Similar results were reported by another group 
in the year 2013 (Nguyen et al.) where they showed that 
the expression of miR-375 was found to be upregulated in 
serum from CRPC patients compared to serum from local-
ized PCa patients [43]. Another study in the year 2015 high-
lighted the potential of miR-375 as prognostic biomarker of 
PCa where the authors reported significant association of 
elevated miR-375 levels with shorter overall survival (mor-
tality rate approximately 80%). Thus, miR-375 expression 
correlates with clinicopathological parameters and can act 
as a prognostic biomarker of PCa [44].

MiR-221 is encoded in tandem located on the X chro-
mosome (Xp11.30) in human, mouse and rat and is highly 
conserved in vertebrates [45]. MiR-221 is reported to act 
as an oncomir in various epithelial cancers including pros-
tate cancer [46–49]. MiR-221 as a biomarker of PCa was 
first reported in the year 2011 by Agaoglu et al. [33]. The 
authors reported miR-221, along with miR-21, to be elevated 
in the plasma samples of PCa metastatic patients compared 
to healthy controls [33]. Also the expression of miR-221 
was found to be significantly higher in metastatic PCa cases 
compared to localized/local advanced PCa [33]. Yet in 
another study (Selth, 2012) miR-221 in combination with 
miR-20a, miR-21 and miR-145 could discriminate between 
intermediate or high-risk PCa patients compared to low-risk 
PCa as categorized by cancer of the prostate risk assessment 
(CAPRA) score and D’Amico’s criteria [35]. However, there 
was no significant association between independent expres-
sion of miR-221 and PCa aggressiveness by either CAPRA 
or D’Amino score [35]. Collectively, these studies show that 
the expression of miR-221 is associated with metastatic PCa 
and can discriminate between different stages of PCa.

MiR-21 is located in chromosome 17q23.2 in human and 
is evolutionarily conserved across vertebrate species [50]. 
The expression of miR-21 is found to be overexpressed in 
various human tumors and cancer cell lines [51–53], includ-
ing prostate tumors and it is reported to be an oncogene 
targeting various tumor suppressor genes [54, 55]. As men-
tioned above, miR-21 along with miR-221 was reported by 
Agaoglu et al. in 2011 to be upregulated in metastatic PCa 
patients compared to healthy controls and could discrimi-
nate between metastatic and localized/local advanced PCa 
cases [33]. Zhang et al. in the same year showed that the 
expression of miR-21 is upregulated in androgen-dependent 
PCa (ADPC) and castration-resistant PCa (CRPC) group 
of patients compared to localized PCa and BPH [56]. Also, 
serum levels of miR-21 corresponded to that of PSA levels 
in ADPC and CRPC patients [56]. Moreover, patients who 
were resistant to chemotherapy had an elevated level of miR-
21 compared to responsive group of patients [56]. However, 
expression of miR-21 could not discriminate between local-
ized PCa and BPH [56]. In a study by Shen et al., expression 
of miR-21 along with miR-20a was significantly associated 
with CAPRA score as well as with clinicopathological vari-
ables of PCa [57]. Thus, miR-21 expression correlates with 
CAPRA score and PSA levels and can work as a diagnostic 
and prognostic marker in PCa.

The molecular basis for dysregulated 
expression of microRNAs in prostate cancer

The molecular mechanism underlying the dysregulated 
expression of microRNAs in prostate cancer includes change 
in copy number of microRNAs [62], epigenetic modifica-
tions (DNA methylation and histone modification) [63], 
upregulated expression of Dicer [64], mutations in the stem 
regions of pre-miRNAs [65], single nucleotide polymor-
phisms (SNPs) [66] and androgen receptor (AR) regulated 
mechanisms [67]. Copy number alterations of miRNAs and 
their regulatory genes are highly prevalent in cancer and may 
account partly for the dysregulated microRNA expression 
profile in many cancers including prostate cancer [62]. It 
has been seen that in epithelial cancers there is a high fre-
quency of copy number alterations in microRNA containing 
regions of the genome which correlates with the respective 
microRNA expression [62]. This copy number alterations 
correlates with miRNA transcript expression; however, the 
same does not hold true for many miRNAs. Also micro-
RNA regulation is controlled by transcriptional regulation 
of the host gene [68]. Since half of the microRNA genes are 
located in introns of protein coding gene [69], these are more 
susceptible to epigenetic silencing by aberrant methylation 
of the CpG island located in the 5′UTR of the host gene [68]. 
Moreover, as half of the human promoter regions comprises 
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CpG islands, thus, differential promoter methylation may 
lead to aberrant expression of microRNAs [70]. Addition-
ally, there exists a bidirectional cross-control mechanism 
between microRNAs and epigenetic machinery in which 
microRNA expression can be regulated by the epigenetic 
system and in return the components of epigenetic machin-
ery are modulated by microRNAs [71]. For instance, miR-29 
expression showed inverse correlation and downregulated 
the expression of DNA methyltransferases (DNMT-3A and 
-3B) in lung cancer (55). Furthermore, enforced expression 
of miR-29 leads to decreased global DNA methylation with 
simultaneous restoration of expression of tumor suppres-
sor genes. Besides these, the position of microRNA in the 
genome (fragile sites, genomic regions of loss heterozygo-
sity, or cancer-associated regions) [72] and mutations in the 
microRNA processing machinery also contributes to the 
microRNA deregulation in cancer [73]. For instance, miR-
142 located on chromosome 17 but also found in the break-
down junction of a t(8,17) translocation causes an aggressive 
B cell leukemia by upregulation of a translocated c-Myc 
gene which is under the control of an upstream miR-142 
promoter [74]. The upregulated expression of Dicer along 
with other components (EIF2C2, EIF2C1, XPO5, MOV10, 
HSPCA and TNRC6B) of miR machinery also contributes 
towards deregulated expression of microRNAs and also cor-
relates with the aggressiveness associated with PCa metas-
tasis and Gleason score [64]. Human Dicer is located in 
the subtelomeric region of chromosome 14 (14q32.13) and 
any genomic instability at 14q32 induces Dicer upregula-
tion [64]. In addition, single nucleotide polymorphisms 
(SNPs) within precursor-microRNAs (pre-miRNAs) also 
affect microRNA expression levels [75]. For instance, in 
papillary thyroid carcinoma, an SNP in the pre-miR-146a 
is reported to decrease mature miRNA expression [76]. 
Another aspect of regulating the microRNA expression in 
PCa is androgen-induced androgen-receptor (AR) which 
binds to the promoter region of microRNA and leads to its 
over expression followed by androgen-dependent (AD) cell 
growth and castration resistance in PCa [67].

MicroRNAs and androgen receptor signaling

Prostate cancer cells depend on androgen for its growth and 
survival [77]. Thus, patients with metastatic prostate cancer 
are often treated with drugs that block androgen produc-
tion [78]. These drugs are provided with antiandrogens such 
as analogs of luteinizing hormone releasing hormones that 
work as androgen receptor antagonist [79]. Studies carried 
out by Chen et al. have shown that androgen works in a 
paracrine manner in normal prostate cells where binding 
of androgen receptor to its ligand leads to its dimerization 
and, thereby, it regulates specific genes in the stromal and 

epithelial prostate cells, regulating proliferation and survival 
of epithelial cells [78]. However, in prostate cancer cells the 
paracrine pathway gets converted to the autocrine pathway 
where androgen directly stimulates proliferation of malig-
nant prostate cells [80]. The postulated mechanisms underly-
ing the reason behind relapse to an unresponsive hormone 
refractory stage can be divided into four categories, the 
first category being the mutations such as amplifications or 
point mutations of the androgen receptor gene which alters 
the response of the receptor and sensitizes the cancerous 
cells even to low concentration of androgens [81], also the 
antagonists start behaving like agonists; the 2nd category 
includes cases where activation of androgen receptor takes 
place independently as a consequence of cross talk between 
AR signaling pathway and other pathways such as epidermal 
growth factor receptor, Akt pathway, mitogen-activated pro-
tein kinase (MAPK) signaling induced by oncogenes [82]; 
however, the kinases and substrates involved in this mecha-
nism are unknown; the 3rd category includes alterations in 
the equilibrium between coactivators and corepressors [83] 
and the 4th category comprises alternating pathways that 
bypass androgen receptor signaling and progression of the 
disease which is independent of androgen receptor [84, 85].

Thus, it shows that AR signaling pathways play a crucial 
role in PCa progression and, hence, the microRNAs that 
regulate this signaling pathway are of utmost importance. 
Therefore, in the present review we have compiled the role 
played by this panel of miRNAs in apoptosis in PCa.

MicroRNA‑141 and androgen receptor

Waltering et al. 2011 showed that very few microRNAs are 
androgen regulated in both cell lines and xenografts of which 
miR-141 was upregulated in both PCa cases and castration-
resistant prostate cancer (CRPC) compared to BPH [86]. 
The authors analyzed the microRNA expression in LNCaP-
derived models, VCaP cell lines, 13 castrated prostate can-
cer (PCa) xenografts and clinical samples of untreated PCa 
patients and CRPC, using microarray and q-RT-PCR [86]. 
They also studied the functional significance of miR-141 
in PCa by overexpressing and suppressing miR-141 in cell 
lines [86]. The forced expression of miR-141 increased the 
proliferation of LNCaP cell lines in low concentration of 
dihydrotestosterone (DHT) and the suppression of miR-141 
by anti-miR-141 reduced LNCaP proliferation in low andro-
gen medium, indicating the role of miR-141 in enhancing 
the growth of CRPC cells in the androgen depleted environ-
ment [86].

Another study by Xiao et al. [87] showed the correlation 
of Shp (small heterodimer protein) expression with miR-
141 and subsequently its effect on AR signaling pathway 
in malignant and non-malignant PCa cells. The Shp mRNA 
and protein were found to be downregulated in PCa cell lines 
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compared to non-malignant human prostate epithelial cell 
line (RWPE-1), which was confirmed by real-time PCR, 
western blot and immunofluorescent staining [87]. The 
authors also found an upregulated expression of miR-141 in 
PCa cell lines compared to control. Using miR-141 precur-
sor and anti-miR-141, the authors showed that transfection 
with anti-miR-141 downregulated the expression of Shp pro-
tein in RWPE-1 cell line in a dose-dependent manner and 
an increase in Shp protein was seen in PCa cell lines after 
treatment with anti-miR-141 [87]. This suggests that Shp is 
a target of miR-141 [87]. Thus, the above study showed that 
Shp, which is a known corepressor and metabolic regula-
tor, is a target of miR-141 and the downregulation of Shp, 
induced by upregulated miR-141, transcriptionally regu-
lates androgen receptor genes in prostate cells indicating 
the importance of miR-141 in prostate cancer progression.

MicroRNA‑375 and androgen receptor

MiR-375 acts as a tumor suppressor in various cancers viz., 
esophageal squamous cell carcinoma [88], oral squamous 
cell carcinoma [89], pancreatic cancer [90], squamous cer-
vical cancer [91], gastric carcinomas [39], head and neck 
squamous cell carcinomas [92], and melanoma [93]. How-
ever, in hormone-dependent cancers, namely prostate cancer 
and breast cancer, miR-375 is found to be overexpressed and 
thus is hypothesized to exert an oncogene function [94, 95].

A study by Chu et al. showed that the differential expres-
sion pattern of miR-375 is determined by the methylation 
mediated transcriptional repression of the miR-375 pro-
moter. The AR-positive PCa cells exhibits lower levels of 
miR-375 and AR-negative PCa cells display a higher level 
of miR-375 [96]. Androgen receptor negatively regulates 
the DNA methyltransferases (DNMTs) activity in PCa 
cells, thereby leading to either hypermethylations or hypo-
methylation of the miR-375 promoter in AR-negative cells 
(PC-3) and AR-positive cells (LNCaP), respectively [96]. 
Also using a demethylating agent such as 5-Aza-dC in AR-
positive cells, the lower expression of miR-375 could be 
reversed, indicating DNA methylation to be a major driving 
factor in regulating miR-375 expression in prostate cancer 
cells [96].

The dysregulated expression profile of miR-375 is only 
relevant to malignant PCa cells such as PC-3 whereas no 
significant attenuation was observed in benign prostate epi-
thelial cells (RWPE-) [97], indicating a dual role of miR-375 
in PCa progression depending on the stage and hormone 
status [97]. The molecular targets of miR-375 are cyclin D2 
(CCND-2) and retinoblastoma 1(RB1) which were seen to 
be downregulated upon forced expression of miR-375 in PCa 
cell lines [97].

MicroRNA-375 has been reported to form a complex 
with miR-93/miR-106b and targets capicua (CIC), which 

is an HMG box-containing transcriptional repressor [98]. 
Knock-down of CIC leads to increased expression of cellular 
retinoic acid binding protein 1 (CRABP1) [99]. CRABP1 is 
known to have pro-tumorigenic and pro-metastatic activity 
in mesenchymal tumors [100] and is known to be upregu-
lated in androgen-independent PC-3 cells [101] and CRPC 
[102].

Another study reported sec23 homolog A, coat complex 
II component (SEC23A) to be a target of miR-375 [94]. 
SEC23A works in interaction with N-myc downstream-
regulated gene 1 (NDRG1) and the NDRG1 interactions 
are androgen-regulated driving androgen-dependent PCa 
to androgen-independent PCa [94]. Further, it has been 
reported that MHC-I molecules interact with SEC23-24 for 
their endoplasmic reticulum (ER) to Golgi trafficking, sug-
gesting downregulation of SEC23A by miR-375 which in 
turn reduces the immunogenicity of PCa cells by reducing 
the expression of MHC-I [94].

MicroRNA‑221 and androgen receptor

The expression of miR-221 is upregulated about 6- to 
10-fold in LNCaP-derived castration-resistant counterpart 
androgen-independent (AI LNCaP-abl) cells compared to 
androgen-dependent LNCaP cells [103]. Upregulating the 
expression of miR-221 in androgen-dependent (AD), LNCaP 
cells showed a negative regulation of the AR mediated 
PSA level and androgen-mediated cell growth; however, it 
showed no influence on AR expression [103]. Also, transfec-
tion of AI LNCaP-abl (CRPC) cells with anti-miR-221 could 
restore the AR mediated PSA level and androgen-mediated 
cell growth, indicating the importance of miR-221 in main-
taining the CRPC phenotype in PCa [86]. Cyclin-dependent 
kinase inhibitors, p27/kip1 and p57/kip2, are reported as 
miR-221 targets [103]. Upregulated expression of miR-221 
in PC-3 and LNCaP cell lines and in glioblastoma is associ-
ated with upregulated p27/kip1 expression and results in 
growth inhibition and inability to form colonies in soft agar; 
however, in AI LNCaP-abl (CRPC) cells upregulated expres-
sion of miR-221 had no influence on the p27/kip1 expres-
sion, suggesting various other genes which may be involved 
along with p27/kip1 in maintaining CRPC phenotype in PCa 
[103].

MiR-221 is also shown to play a role in neuroendocrine 
(NE) differentiation of prostate cells [104]. NE diferentiation 
is hypothesized to be a major regulator of CRPC [105], and 
is associated with various cancerous phenotypes because NE 
cells do not proliferate; they secretes elevated levels of sur-
vival genes viz., Survivin [106] and Bcl-2 [107]; they also 
secrete certain growth factors and hormones that support the 
growth of surrounding tumor in a paracrine manner [106]. It 
has been reported that miR-221 promotes NE differentiation 
in hormone-sensitive LNCaP cells and sustains the growth 



135Clinical and Translational Oncology (2019) 21:126–144 

1 3

of LNCaP cells in androgen-deprived environment [105]. 
MiR-221 also induces an S-phase arrest in cells [105]. MiR-
221 transfection of LNCaP cells is also associated with NSE 
mRNA upregulation [105].

MiR-221 is shown to have a direct influence on the sen-
sitivity of PCa cells to androgen. The upregulated expres-
sion of miR-221 in PCa cell lines is also consistent in 
human prostate tumor samples. It has been reported that 
even in the absence of androgen LNCaP cells could grow 
when expression of miR-221 was upregulated [108]. Also 
LNCaP with elevated miR-221 expression rescued LNCaP 
cells from growth arrest at G1 phase of cell cycle due to 
androgen depletion, promoting androgen-independent (AI) 
growth [108]. Upregulated expression of miR-221 also 
leads to differential expression of various AR-responsive 
genes such as declined expression of PSA [103] along with 
other AR sensitive genes viz., polycomb protein enhancer 
of zeste homolog 2 (EZH2) [26] and cell cycle regulatory 
gene (cdc20) [109]; however, significant change in expres-
sion level was observed in AR and promyelocytic leuke-
mia zing finger protein (PLZF) [110]. It is also reported 
that upregulated expression of miR-221 is associated with 
downregulation of various miR-221 targets and, thereby, 
leads to elevated expression of G2, G2/M phase transition 
and M-phase cyclins, which eventually sustain AI growth of 
LNCaP cells [108]. HECT domain containing E3 ubiquitin 
protein ligase 2 (HECTD2) and Ras-related protein Rab-1A 
(RAB1A) are reported to be two targets of miR-221 and they 
are negatively regulated by miR-221 in PCa cells and thus 
they helped in sustaining the AI growth of PCa cells [108].

MicroRNA‑21 and androgen receptor

MiR-21 has been shown to be an AR-regulated microRNA 
that enhances the androgen-dependent growth of prostate 
cells and develops the CRPC phenotype [111]. In yet another 
study, it has been shown that  p57Kip21 is a target of miR-21 in 
PCa cells and transfection with miR-21 inhibitors and mim-
ics in MDA-PCa-2b and PC-3 cells upregulated and down-
regulated  p57Kip21 mRNA expression, respectively, thereby 
hampering the tumor suppressive potential of  p57Kip21 [112].

Thus, the above studies show convincing data indicat-
ing miR-141, miR-375, miR-221 and miR-21 as makers of 
metastatic prostate cancer. MiR-141 is globally upregulated 
in PCa cases irrespective of the stage and hormone status of 
the cancer, whereas miR-375 is upregulated in AR-negative 
PCa cells compared to AR-positive PCa cells and the dysreg-
ulated expression profile is only relevant to malignant PCa 
cells indicating a dual role of miR-375 in PCa progression. 
Similarly, expression of miR-221 and miR-21 is upregu-
lated in AI PCa cell lines compared to AD PCa counterparts 
and miR-221 also has a role in regulating neuroendocrine 
(NE) differentiation of prostate cells which is a regulator of 

CRPC, thus signifying the role of miR-221 in maintaining 
the CRPC phenotype in PCa.

MicroRNAs and cell proliferation

Cell proliferation is one of the major factors that mark 
the beginning of cancer and is the central and key process 
affected in all malignancies [113]. It is marked by loss of 
balance between cell loss and cell gain followed by invasion 
and metastasis [114]. Studies have shown that one way by 
which microRNAs plays a role in the pathogenesis of can-
cer is by regulating cell proliferation [7, 115]. For instance, 
it has been reported that miR-122 plays a role in hepatitis 
B virus (HBV)-related hepatocellular carcinoma (HCC) 
by inhibiting proliferation and growth of malignant tumor 
cells [116]; miR-19a acts as an oncogene and targets TIA1 
(T cell intracytoplasmic antigen) and promotes colorectal 
cancer proliferation and migration [117]. MiR-144 targets 
E2F8 (E2F transcription factor 8) gene and inhibits the pro-
liferation of papillary thyroid cancer (PTC), the most com-
mon subtype of thyroid cancer [118]; miR-373 suppresses 
proliferation and invasion in breast carcinoma by inhibiting 
BCl-2 expression [119]. Similarly in prostate cancer various 
miRNAs are reported to be tumor suppressor miRs as well as 
oncomiRs. For instance, miR-181c inhibited cell prolifera-
tion in PCa cells viz PC-3 and DU145 by targeting ERK2 
(extracellular signal-regulated kinase), a core component of 
the ERK signaling pathway [120]. Similarly, miR-193a-3p 
suppressed proliferation in PC-3 and DU145 cells by target-
ing CyclinD1 and exhibited a significant G1/S phase arrest 
[121]. MiR-211 also exhibited tumor suppressive effects by 
inhibiting proliferation of PCa cells by targeting SPARC 
(secreted protein acidic and rich in cysteine) mRNA [122] 
which is matricellular glycoprotein and plays a major role 
in cell proliferation, migration and differentiation, modulat-
ing reversible interactions between cells and ECM [123]. 
Similarly, miR-17 overexpression suppressed LNCaP cells 
proliferation by downregulating STAT3 expression which is 
an important transcription factor in the Janus kinase (JAK)-
signal transducer and activator of transcription (STAT) sign-
aling pathway that plays a critical role in many biological 
processes including proliferation [124]. MiR-20b, however, 
exerted an oncogenic effect in prostate cancer cells by pro-
moting proliferation in VCaP and PC-3 cells by inhibiting 
PTEN (phosphatase and tensin homolog) expression by 
directly binding to its 3′-UTR and the proliferating ability 
of the prostate cancer cells was significantly reduced upon 
transfection with miR-20b inhibitor [125]. Similarly, miR-
671 functions as an oncogene and promotes prostate cell 
proliferation by inhibiting tumor suppressor gene SOX6 
[encoding SRY (sex determining region Y)—box 6] [126]. 
Thus, miRNAs represent critical regulators of proliferation 
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in PCa and, thus, in the present review we have compiled 
the reported data associated with the role played by each of 
these four most dysregulated microRNAs, viz., miR-141, 
miR-375, miR-221 and miR-21 in PCa proliferation and also 
made a comprehensive list of target genes that regulates PCa 
proliferation.

MicroRNA‑141 and proliferation

MiR-141 is reported to have anti-proliferative properties in 
nasopharyngeal carcinoma, gastric adenocarcinoma cells 
[127] and hepatocellular carcinoma [128]. In case of PCa 
miR-141 is shown to interact with kruppel-like-factor-9 
(KLF9) and promotes proliferation of PCa cells by upregu-
lating stem cell markers viz., Oct-4, Nanog, SOX-9 and Bmil 
[103]. Moreover, genes associated with proliferation such as 
CyclinD1, Cyclin E and c-Myc are reported to be upregu-
lated in miR-mimic transfected PC-3 cells [129]. MiR-141 
is also reported to enhance the spheroid forming ability of 
PC-3 cells when transfected with miR-141 mimics. Thus, 
miR-141 positively regulates the proliferative and stemness-
associated properties in PCa cells [129].

MicroRNA‑375 and proliferation

CBX7 (chromobox homolog 7) is reported to be a target of 
miR-375 [130]. The CBX7 loss is correlated with metas-
tasis in various other cancers such as breast, colon, gastric 
and pancreatic cancer [131, 132]. Also inhibition of CBX7 
by miR-375 leads to abundance of CBX8 in PCa cells and 
CBX8 is shown to have oncogenic properties in other can-
cers such as colon [133], esophageal [134] and breast can-
cer [135]. CBX7 upregulates E-cadherin and knockdown 
of CBX7 leads to activation of various signaling path-
ways such as EMT and Wnt/beta-catenin pathway [130]. 
Thus, increased expression of miR-375 is associated with 
enhanced proliferation, metastasis and invasion of PCa cells 
in vitro [130].

MicroRNA‑221 and proliferation

MiR-221 positively regulates both cell proliferation and 
migration and negatively regulates apoptosis of PCa cells 
[136]. Downregulation of miR-221 is associated with the 
G0/G1 arrest of cells, indicating a role of miR-221 in cell 
cycle distribution [136]. Silent information regulator 1 
(SIRT1) is one of the putative targets of miR-221 and is 
reported to act as both oncogene and tumor suppressor 
depending on the oncogenic pathway specific to the tumor 
[137]. For instance, in PC-3 cells, increased expression of 
SIRT1 with downregulated miR-221 expression is associ-
ated with inhibition of cell proliferation and migration and 
increased apoptosis [136], whereas in LNCaP cells, it serves 

to restrain cell proliferation [138]. Although SIRT1 is not a 
direct target of miR-221 as shown by the luciferase reporter 
assay, the biological effects exerted by miR-221 in PCa 
pathogenesis are in association with SIRT1 [136].

In yet another study, miR-221 has been shown to act as 
a tumor suppressor, targeting B-cell specific Moloney leu-
kemia virus insertion region homolog 1 (Bmi-1), which is a 
polycomb ring finger oncogene and downregulation of miR-
221 is associated with the promotion of cell proliferation in 
PCa cells [139].

Another tumor suppressor gene, ARHI, that negatively 
regulates cell proliferation is reported to be a target of miR-
221 and causes cell cycle G0/G1 arrest in PC-3 cells with 
regulation of genes such as p21, growth arrest and DNA-
damage-inducible, alpha (GADD45A) and Hect domain and 
RLD5 (HERC5) [140]. These genes are reported to function 
by regulating cell cycle proteins, stimulating DNA excision 
repair and ISGylation of protein targets, respectively [140].

MicroRNA‑21 and proliferation

A recent study has shown that there exists an inverse correla-
tion between miR-21 and phosphatase and tensin homolog 
deleted on chromosome ten (PTEN) in prostate cancer [141]. 
PTEN is a tumor suppressor and have both lipid phosphatase 
and protein phosphatase activity [142] and can inhibit the 
phosphorylation of downstream PI3K/Akt signaling pathway 
[141]. Thus, the reduced expression of PTEN is associated 
with reduced dephosphorylation of PI3K/Akt, enhancing 
cell proliferation and invasion in prostate cancer cells [141].

Thus, collectively it can be stated that miR-141, miR-375 
and miR-21 act as oncogenic miRNAs promoting prolifera-
tion of PCa cells and miR-141 also positively regulates the 
stemness-associated properties of PCa cells. However, there 
are contradicting data in case miR-221 in PCa cells prolifera-
tion and is reported to act both as an oncomiR and a tumor 
suppressor miRNA regulating PCa cell proliferation. Thus, 
future studies on comprehensive analysis of miR-221 target 
genes and regulatory networks will be of great importance to 
clarify the role of miR-221 in PCa cell proliferation.

MicroRNAs and epithelial mesenchymal 
transition (EMT)

Epithelial mesenchymal transition is a developmental pro-
gram with downregulation of epithelial phenotype and 
upregulation of mesenchymal characteristics [143]. It plays 
a major role in the metastasis of tumors of epithelial ori-
gin [144]. EMT can be both physiological and pathological 
and plays a key role in embryonic development and many 
diseases including cancer [145]. MicroRNAs have been 
reported to regulate EMT in various cancers, for instance, 
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miR-200 family acts as a suppressor of EMT in various can-
cer, miR-194 promotes tumorigenesis by positively regulat-
ing EMT in colorectal cancer [146]; miR-217 suppressed 
EMT in gastric cancer by targeting PTPN14 (protein tyros-
ine phosphatase non-receptor type 14) gene which plays a 
crucial factor in EMT, metastasis and tumorigenesis [147]; 
miR-138 acts an a tumor suppressor in breast cancer cells 
by negatively regulating tumor associated gene Vimentin 
[148]. In case of prostate cancer, various miRNAs regulated 
EMT, for instance, miR-200b regulated EMT by increasing 
epithelial features of PC-3 cells with simultaneous reduc-
tion of mesenchymal markers [149]; miR-186 plays a tumor 
suppressive role in prostate cancer and suppressed EMT by 
inhibiting Twist1 expression [150]; miR-409-3p/-5p acts 
as an oncogene and its inhibition reduced the growth of 
prostate cancer cells with simultaneous induction of MET 
(mesenchymal–epithelial transition), both in  vitro and 
in vivo [151]; ectopic expression of let-7a downregulated 
CCR7 (CC chemokines receptor 7) gene expression in PC-3 
cells [152]. Mounting evidence supports that miRNAs play 
a vital role in regulating EMT in prostate cancer and, thus, 
in the present review we have summarized the role played 
by each of these four dysregulated microRNAs in regulating 
EMT in molecular level in prostate cancer from the existing 
literature.

MicroRNA‑141 and EMT

The most potent inducer of EMT, Zeb1, is shown to have a 
suppressive role on miR-200 family with the most prominent 
on miR-141 and miR-200c in many cancers such as breast, 
pancreatic and colorectal cancer [153]. Zeb1 is shown to 
directly repress transcription of these microRNAs by bind-
ing to two conserved sites in their promoter regions [153]. 
Also, another potent inducer of EMT, TGFβ2, is a putative 
target of miR-141, exhibiting a regulatory loop between 
EMT induction and miR-141 expression [153]. However, 
unlike other members of miR-200 family, which are well 
known suppressors of EMT, miR-141 is only partial inhibi-
tor of EMT that suppresses Zeb1 and Vimentin but without 
much effect on other mesenchymal markers such as Zeb2, 
Snail1, Snail2, Twist and Fibronectin, thus indicating induc-
tion of partial MET (mesenchymal–epithelial transition) 
phenotype [154].

MicroRNA‑375 and EMT

Various groups have demonstrated that miR-375 is elevated 
in prostate cancer [155, 156]; however, there is only a sin-
gle report showing the association of miR-375 with EMT. 
The study reported that miR-375 was upregulated in PCa 
cell lines possessing epithelial phenotype, whereas it was 
downregulated in cells having mesenchymal phenotypes, 

indicating miR-375 to be an epithelial marker in prostate 
cancer cells [157]. The authors have reported that miR-375 
acts as a tumor suppressor and also as an inducer of metasta-
sis, in a stage dependent manner [157]. They have also iden-
tified yes-associated protein 1 (YAP-1) as the downstream 
target of miR-375 and have shown that knockdown of YAP-1 
in prostate cancer cells leads to downregulation of mesen-
chymal phenotypes viz., Vimentin and Fibronectin, indicat-
ing YAP-1 to be a mesenchymal marker [157]. Additionally, 
this study also reported that miR-375 is negatively regulated 
by Zeb-1, which is a key regulator of EMT. Knockdown of 
Zeb-1 downregulated the expression of miR-375 with the 
eventual loss of YAP1, indicating YAP1 to be a key down-
stream target of miR-375 in mediating EMT [157].

MicroRNA‑221 and EMT

MiR-221 is a key regulator of EMT in luminal breast can-
cer cells [158] and there exists a direct correlation between 
miR-221 expression and E-cadherin repression [159]. Also, 
it directly targets trichorhinophalangeal 1 (TRPS1), which 
transcriptionally represses Zeb2 and Dicer, a potent EMT 
inducer and a key regulator of microRNA maturation, 
respectively, in pancreatic and breast cancer cells [22, 158]. 
However, the role of miR-221 in regulation of EMT in pros-
tate cancer is not yet established to the best of our knowledge 
and more research in the area is needed.

MicroRNA‑21 and EMT

Prostate cancer cells are believed to be originated from basal 
cells but express luminal markers and shows functional 
properties of basal cells [160–162]. The basal cell compart-
ment expresses B cell translocation gene 2 (BTG2) [163] 
along with ∆Np63α, an isoform of p63 and is responsible 
for maintaining stemness and controls differentiation dur-
ing prostate organogenesis [164, 165]. Loss of ∆Np63α is 
associated with the acquisition of EMT phenotype [166]. 
Basal protein (BTG2) is a tumor suppressor and its loss 
is associated with enhanced extracellular signal-regulated 
kinase 1 (ERK) signaling in prostate cells and is postulated 
to be associated with the acquisition of EMT phenotype in 
PCa cells [167]. The expression of miR-21 is upregulated in 
androgen-independent RWPE-2, PC-3 and DU145, whereas 
it is downregulated in androgen-dependent LNCaP and 
22Rv1 compared to non-neoplastic RWPE-1 cells and pros-
tate epithelial cells (PrEC) [168]; consistently, the BTG2 
expression inversely correlates with miR-21 expression in 
PCa cells [168]. Studies have shown that miR-21 targets 
BTG2 and leads towards the phenotypic shift of prostatic 
basal cells towards luminal phenotype with the acquisition 
of EMT like features and tumorigenecity [167]. Also, the 
restoration of BTG2 levels in RWPE-2 cells that expresses 
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a higher level of mesenchymal markers could shift the EMT 
phenotype with downregulation of Vimentin, Fibronectin, 
cytokeratins 8 and 18 (CK8-18) and with upregulation of 
p63 [167].

Taken together, the above studies indicate that miR-141 
and miR-375 works as inhibitor of EMT targeting various 
genes involved in the EMT process although miR-141 is 
reported to be a partial inhibitor of EMT. However, miR-21 
is reported to exert oncogenic effects by inducing phenotypic 
shift in PCa cells, thereby acquiring malignant features. 
The correlation between miR-221 and EMT has not been 
assessed to the best of our knowledge. Thus, further studies 
revealing the function of miR-221 in EMT are required.

MicroRNAs and apoptosis

Apoptosis is programmed cell death with certain morpho-
logical changes such as cell shrinkage, membrane blebbing, 
chromatin condensation and nuclear fragmentation [169]. 
During the transformation of a normal cell to a malignant 
one, evasion of cell death is one of the major hallmarks and 
is accomplished by the impaired balance between pro-apop-
totic and anti-apoptotic proteins, reduced caspase activity 
and disrupted death receptor signaling [170]. Dysregulated 
microRNA expression is associated with tumorigenesis 
and microRNAs are reported to act as both pro-apoptotic 
and anti-apoptotic in various cancers [171]. For instance, 
miR-491 induces apoptosis in colorectal cancer by regulat-
ing BCL-XL (BCL2-like 1 isoform) [172], miR-133a sup-
presses osteosarcoma progression by inducing apoptosis by 
targeting BCL-XL and Mcl-1 [173], in pancreatic cancer 
miR-1284 is reported to induce apoptosis by regulating 
PI3K/Akt pathway [174], in breast cancer cells miR-125b 
targets Bak1 and is associated with inhibition of apoptosis 
in Taxol-resistant cancer cells [175]. Similarly in case of 
prostate cancer, various miRNAs are reported to regulate 
apoptosis; for instance, miR-218 plays a tumor suppressive 
role and induces apoptosis by targeting an oncogene TPD52 
(tumor protein D52) which is upregulated in prostate cancer 
[176]; similarly, miR-466 induced apoptosis in metastatic 
prostate cancer cells (PC-3 and DU145) with simultaneous 
induction of G0/G1 cell cycle arrest [177]; miR-143 induced 
apoptosis in LNCaP cells by inhibiting BCl-2 expression 
[178]; miR-1180 induced apoptosis in PCa cells by target-
ing TRAF1 (TNF receptor-associated factor 1) and BAG2 
[B cell lymphoma 2 (Bcl 2)-associated athanogene 2] [179]. 
Thus, we see that there exists a correlation between dys-
regulated miRNA expression and apoptosis. In the present 
review, we have discussed the current knowledge about each 
of these four most dysregulated microRNAs, viz., miR-141, 
miR-375, miR-221 and miR-21 in apoptosis in PCa.

MicroRNA‑141 and apoptosis

MiR-141 is shown to regulate cell death pathway in many 
cancers. For instance, miR-141 overexpression is associated 
with apoptosis induction in osteosarcoma by targeting ZEB1 
and ZEB2 [180]; in pancreatic cancer, miR-141 acts as an 
apoptosis inducer by targeting mitogen-activated protein 
kinase isoform 4 (MAP4K4); however, in case of hepatocel-
lular carcinoma downregulation of miR-141 promotes apop-
tosis by modulating hepatocyte nuclear factor 3β (HNF-3β) 
[181]. In prostate cancer, miR-141-3p acts as an inhibitor of 
apoptosis as shown by downregulation of various apoptosis-
related mRNAs such as p21, p27, Bax and Caspase-3 upon 
miR-141-3p mimic treatment and was upregulated on treat-
ment with miR-141-3p inhibitors [103, 182].

MicroRNA‑375 and apoptosis

MiR-375 expression is lowest in RWPE-1 cell line and high-
est in 22Rv1; however, in PC-3 cell line it shows moder-
ate expression [97]. Forced expression of miR-375 could 
increase the level of apoptosis in PC-3 cells (metastatic pros-
tate cell line); however, in RWPE-1 cells (a benign prostate 
cell line) there was no change in the level of apoptosis, thus 
suggesting that deregulated expression of miR-375 is only 
relevant in malignant prostate cancer [97]. Also, inhibition 
of miR-375 expression in 22Rv1 could increase the level of 
apoptosis, suggesting that miR-375 can have an oncogenic 
phenotype (in 22Rv1) as well as tumor suppressive pheno-
type (in PC-3) in the same tumor model [97].

MicroRNA‑221 and apoptosis

MiR-221 positively regulates apoptosis in androgen-inde-
pendent PC-3 and DU145 by increasing the caspase 3/7 
activity and simultaneous activation of JAK/STAT pathway 
by negatively regulating suppressor of cytokine signaling 3 
(SOCS3) and interferon regulatory factor 2 (IRF2) and, thus, 
acts as a tumor suppressor [183]. However, another study 
revealed that miR-221 negatively regulates apoptosis in PCa 
cells, both PC-3 and LNCaP with a simultaneous increase 
in proliferation and decrease in Caspase-3 and Caspase-10 
activity by inhibiting TNF-α/CHX-induced apoptosis [19]. 
It was also observed that knocking down of miR-221 was 
associated with increased expression of Caspase-10 and 
sensitizing cells to apoptosis [19]. Thus, it shows that there 
are contradictory data regarding the role of miR-221 being 
tumor suppressor or an oncogene in prostate cancer.

MicroRNA‑21 and apoptosis

MiR-21 is known to play a role in tumorigenesis in various 
malignancies [184, 185], including prostate cancer [186] 
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by targeting various genes that are tumor suppressors in 
nature [187]. One such tumor suppressor gene is FBXO11 
(a member of the F-box subfamily lacking a distinct unifying 
domain) which has been identified as a target of miR-21 by 
microarray analysis [187]. FBXO11 targets various proteins 
that play a role in cell cycle control, apoptosis, metastasis, 
differentiation and also tags proteins for proteosomal deg-
radation by ubiquitination [187]. In prostate cancer mod-
els, FBXO11 acts as an inducer of apoptosis and sensitizes 
DU145 cells to apoptosis [187]. Thus, miR-21 regulates 
apoptosis in prostate cancer.

Collectively, the above studies revealed that miR-141 
and miR-21 act as oncogenic miRNAs in regulating apop-
tosis in PCa; however, miR-375 acts as both oncogenic and 
tumor suppressor miRNA in regulating apoptosis in PCa. 
Also there are contradictory data reported regarding the 
role played by miR-221 in apoptosis in PCa. Thus, further 
research exploring the signaling pathways and functional 
targets of this panel of miRNAs needs to be conducted.

Conclusion

Dysregulated microRNA profile is associated with prostate 
cancer aggressiveness and affects various critical cellular 
processes viz., proliferation, apoptosis, EMT and androgen 
receptor signaling (Table 2). Although various studies in 
the last decade have tried to study the relationship between 
microRNAs and PCa, there is high variability in the data 
reported. In the present review, we have identified a panel of 
four consistently dysregulated microRNAs in prostate cancer 
and have prepared a comprehensive list of their experimen-
tally validated targets both in vitro and in vivo. Thus, vali-
dation of these promising candidate microRNAs in larger, 
prospective cohort will not only define their exact role in 
prostate cancer progression but may also be used as potential 
prognostic and diagnostic markers in prostate cancer.

The implication of this panel of four microRNAs in PCa 
management demands uniformity in the study design, sam-
pling method and profiling platform used. Thus, minimizing 
the ambiguity associated with miRNA profiling studies and 
developing a gold standard technique might help in near 
future to bring this panel of miRNAs from bench to bed side.
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