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Abstract
Purpose  Approximately, 30% patients after radical prostatectomy (RP) will undergo post-operative biochemical recurrence 
(BCR). Present stratification method by TNM staging and Gleason score was not adequate to screen high-risk patients. In 
this study, we intended to identify a novel set of differentially expressed gene (DEG) signature that can predict BCR after RP.
Materials/patients  358 patients after RP with follow-up data were extracted from The Cancer Genome Atlas (TCGA), among 
which 61 patients had undergone BCR. Key DEGs were confirmed by the intersection of GSE35988 and TCGA_PCa dataset, 
and their gene expression data were also extracted from TCGA_PCa dataset. Kaplan–Meier plot and Cox proportion hazard 
regression model were applied to assess the relationship between risk score and survival outcome (BCR).
Results  310 DEGs were confirmed in two prostate cancer dataset. 6 DEGs (SMIM22, NINL, NRG2, TOP2A, REPS2, and 
TPCN2) were selected to construct a risk score formula. The risk score was a powerful predictive factor independent of 
TNM stage (HR 3.045, 95% CI 1.655–5.602, p < 0.001).
Conclusion  In this study, a novel 6-gene signature with robust predictive ability on post-operative BCR was constructed and 
4 genes (SMIM22, NRG2, NINL and TPCN2) in the 6-gene signature were not reported to be associated with prostate cancer.
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Introduction

Approximately, 23–34% prostate cancer patients will 
undergo post-operative disease relapse, initially with 
increased serum prostate specific antigen (PSA) value. 
Some patients with BCR will progress to local recurrence 
and distant metastasis. Although androgen deprivation 
therapy and salvage radiation therapy are effective manage-
ment for these patients, with a period of disease control, part 
of the hormone-sensitive prostate cancer patients develops 
into the stage of castration resistance (castration resistance 
prostate cancer/CRPC) [1]. In this regard, BCR is an earlier 

intervention time point than CRPC, and effective assess-
ment of the risk of BCR is a key clinical issue in prostate 
cancer management. Certain clinical and pathological indi-
cators such as TNM stage, Gleason score and serum PSA 
have been employed in prediction of BCR. Nevertheless, 
in virtue of the heterogeneity in prostate cancer, patients 
with same clinical pathologic parameters always progressed 
to diverse consequences. Hence, the discovery of addictive 
prognostic factors to improve patients’ management after 
RP is desirable.

Numerous factors have been investigated for enhancing 
the predictive ability of clinical and pathological parameters. 
High serum alkaline phosphatase [2], lncRNA TMPO-AS1 
[3], and NAP1L6 [4] were reported to be significantly asso-
ciated with prostate cancer survival. Besides single mol-
ecule, multiple gene signatures such as Oncotype DX [5], 
Prolaris [6], Decipher [7], and sigMuc1NW [8] have also 
been explored the association with prostate cancer prognosis 
after RP. Although these indicators and others not mentioned 
here contributed to improve clinical decision and patients’ 
management, their clinical utilization deserves further 

 *	 R.‑L. Liu 
	 ranlu_liu@126.com

1	 Department of Urology, National Key Clinical Specialty 
of Urology, The Second Hospital of Tianjin Medical 
University, Tianjin Medical University, Tianjin 300211, 
China

2	 Present Address: Department of Urology, Rugao City 
People’s Hospital, Rugao, Jiangsu Province, China

http://orcid.org/0000-0002-3514-4173
http://crossmark.crossref.org/dialog/?doi=10.1007/s12094-018-02029-z&domain=pdf


1068	 Clinical and Translational Oncology (2019) 21:1067–1075

1 3

validation [9, 10]. So far, there has no assay recommended 
by EAU or AUA guidelines for clinical prediction.

Nowadays, the application of microarray and RNA-
sequencing technology has deepened our recognition of the 
tumorigenesis and development of prostate cancer. The gene 
expression omnibus (GEO) provides substantial informa-
tion about gene expression profile. Besides gene expres-
sion profile, The Cancer Genomic Atlas (TCGA) is also a 
follow-up dataset of prostate cancer (PCa) patients after RP, 
which facilitates the survival analysis. In this study, we first 
identified the key DEGs by combining the GEO and TCGA 
dataset and then constructed a 6-gene signature associated 
with BCR by survival analysis. Finally, its independent prog-
nostic value was further investigated.

Materials and methods

Data acquisition and pretreatment

The gene expression profile of GSE35988 [11] was obtained 
from GEO (http://www.ncbi.nlm.nih.gov/geo). Then, we 
compared the differential expression between the prostate 
cancer tissue and normal prostate tissue via online tool: 
GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r​/). The 
RNA-sequencing data of TCGA prostate adenocarcinoma 
(TCGA_PCa) were available on the website of Gene Expres-
sion Profiling Interactive Analysis/GEPIA [12] (http://gepia​
.cance​r-pku.cn/index​.html). And the differential expres-
sion analysis of TCGA_PCa was conducted using GEPIA 
online tool. The statistical analysis of these two online tools: 
GEO2R and GEPIA was based on limma R package. The 
significant level: adjusted p value (adj. p value) was set as 
0.05 to reduce the false-positive rate. The criterion of Fold 
change was set as |logFC| ≥ 1.

The Clinical data and RNA expression data of TCGA 
prostate adenocarcinoma [13] (up to Aug 11, 2017) were 
downloaded from TCGA official website (https​://porta​l.gdc.
cance​r.gov/). The downloaded data type of gene expression 
was fragments per kilobase of exon per million fragments 
mapped (FPKM); then, this data type was converted to 
transcripts per million (TPM) by a bioinformatics engineer 
[14]. The exclusion criteria of PCa patients were used as fol-
lows: (1) pathologic result is not prostate adenocarcinoma, 
(2) patients with clinical data but not biochemical recur-
rence data, and (3) patients whose vital clinical information 
involving American Joint Committee on Cancer (AJCC) 
TNM stage [15] is missed. At last, 358 patients, both having 
clinical data and gene expression data, were obtained in our 
study for survival analysis, as shown in supplementary mate-
rial 1 (http://dx.doi.org/10.13140​/RG.2.2.13131​.44324​).

The series matrix file of GSE55945 [16] was downloaded 
from website GEO (https​://www.ncbi.nlm.nih.gov/geo/query​

/acc.cgi?acc=gse55​945). And the probe IDs were converted 
into gene symbols via online tool g:profile [17] (http://biit.
cs.ut.ee/gprof​iler/).

Statistics analysis and data mining

The association between expression level of DEGs and bio-
chemical free survival was analyzed by univariable cox pro-
portional hazard regression model and log-rank test (median 
as cutoff point) [18]. DEGs were considered with prognostic 
values if their p values were less than 0.05. The DEGs with 
statistical significance were assessed in multivariable cox 
regression model to construct a predictive model. Then, a 
risk score formula was constructed using the expression 
level of DEGs and their coefficients calculated in the mul-
tivariable Cox regression model. The risk score of each 
patient was then calculated and patients were ranked into 
low-risk group and high-risk group using median as cutoff 
point. The prognostic effect of risk score was assessed in 
Kaplan–Meier estimate using log-rank test to evaluating its 
statistical significance. Univariable and multivariable Cox 
regression analysis was also conducted. The association 
between the risk score and clinical pathological character-
istic used Chi-square test. All analysis conducted above were 
taken in SPSS 16.0 and the criteria of statistical significance 
was set as p < 0.05.

Functional enrichment analysis was conducted in Funrich 
software version 3.1.1 [19].

The normalized gene expression data were extracted from 
series matrix of GSE55945 and the differential expression 
analysis was conducted in SPSS using two-tailed student’s t 
test with p < 0.05 as statistical test criteria.

All the graphs in this study were drawn in GraphPad 
Prism 7.0 software.

Results

Identification of key DEGs

The GEO2R analysis for GSE35988 was conducted between 
49 samples of localized prostate cancer and 12 samples of 
benign prostate tissue, using data in platform GPL6480. 
According to the filtering criteria mentioned above, the 
result showed that there were 767 DEGs, among which 312 
genes were upregulated and 455 genes were downregulated.

The differential expression analysis in TCGA_PCa data-
set showed that 3017 genes were selected, among which 690 
genes were upregulated and 2327 genes were downregulated.

At last, 310 DEGs were confirmed to be appeared in two 
dataset as shown in Venn diagram (Fig. 1) and supplemen-
tary material 2 (http://dx.doi.org/10.13140​/RG.2.2.28230​
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.93766​). Among them, there were 96 upregulated genes and 
214 downregulated genes.

Establishment of gene signature with prognostic 
value

Patients’ characteristics involved in this study are shown in 
Table 1. The median follow-up time of censored patients was 
512 days. To investigate whether the DEGs were related to 
BCR survival outcome, the 310 genes were taken into statis-
tical analysis using univariable Cox regression and log-rank 
test. And the result showed that 19 DEGs were significantly 
related to BCR-free survival (p < 0.05), as shown in Table 2 
and Fig. 2.

All these 19 DEGs were taken into multivariable cox 
regression model and the method of variables entering 
into equation was Forward Stepwise (Likelihood Ratio)/
Forward:LR in SPSS. When the 6 genes: SMIM22, REPS2, 
TPCN2, NINL, TOP2A, NRG2 entered into equation, the 
model was successfully established and all 6 genes had sta-
tistical significance (all p < 0.05, Fig. 2; Table 3).

According to the coefficients from multivariable cox 
regression model and the gene expression levels, risk score 
formula was created as follows: risk score = (− 0.744 * expres-
sion level of SMIM22) + (− 0.809 * expression level of 
REPS2) + (0.568 * expression level of TPCN2) + 0.681 * expres-
sion level of NINL + 0.686 * expression level of 
TOP2A + (− 0.962 * expression level of NRG2). The gene 
expression level used in risk score formula was 0 or 1, rep-
resenting low expression and high expression, respectively. 

Fig. 1   Venn diagram of dif-
ferentially expressed genes. 
Venn diagram of differentially 
expressed genes in the datasets: 
GSE35988 and TCGA_PCa

Table 1   Clinical and pathologic characteristics of analyzed patients

Variables Study cohort

No. patients 358
Age at initial pathologic diagnosis
Median (range) 62 (41, 78)
AJCC pathologic T stage
T2 123 (34.3%)
T3 228 (63.7%)
T4 7 (2.0%)
AJCC pathologic N stage
N0 292 (81.6%)
N1 66 (18.4%)
AJCC clinical M stage
M0 356 (99.4%)
M1 2 (0.6%)
AJCC TNM stage
Stage II 122 (34.1%)
Stage III 165 (46.1%)
Stage IV 71 (19.8%)
Gleason score
< 7 18 (5.0%)
= 7 179 (50.0%)
> 7 161 (45.0%)
Biochemical recurrence
Yes 61 (17.0%)
No 297 (83.0%)

http://dx.doi.org/10.13140/RG.2.2.28230.93766
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Patients were then ranked into two groups by risk score. Fur-
thermore, the relationship between risk score and clinical path-
ological parameters was analyzed (Table 4). The result showed 
that pathologic T stage, N stage, TNM stage and Gleason score 
had significant difference between the low-risk group and high-
risk group, but age was not.

Kaplan–Meier plots showed that the patients with high-
risk score inclined to present a worse BCR-free survival 
probability (Fig. 3a). To evaluate the independent prognostic 
effect of the 6-gene signature in predicting BCR, the uni-
variable and multivariable cox proportion hazard regression 
model was applied (Table 5). In light of the TNM stage inte-
grated with the information of pT and pN, pT and pN were 
not involved in survival analysis. The results showed that 
in univariable analysis, risk score, Gleason score and TNM 
stage instead of age had predictive ability on BCR. And in 
multivariable stepwise cox regression analysis, the risk score 
still kept its prognostic effect independent of TNM stage.

The prognostic effect of risk score in different 
Gleason score subgroup

Due to that Gleason score was not permitted to enter into 
multivariable cox regression equation and the association 
between Gleason score and risk score, a subgroup analysis 
was conducted to justify whether the prognostic effect of risk 

Table 2   Univariable BCR-free survival analysis of 310 DEGs

Univariate cox regression model

HR(95% CI) p value

NINL 1.878 (1.122–3.143) p = 0.016
COL18A1 1.984 (1.179–3.337) p = 0.010
SH3PXD2A 1.668 (1.002–2.779) p = 0.049
GDPD1 1.761 (1.053–2.944) p = 0.031
TPCN2 2.393 (1.406–4.074) p = 0.001
TOP2A 2.788 (1.591–4.885) p < 0.001
ACTC1 0.588 (0.350–0.987) p = 0.044
REPS2 0.550 (0.326–0.929) p = 0.025
LYZ 1.680 (1.008–2.799) p = 0.046
AGR3 1.714 (1.024–2.869) p = 0.040
SMIM22 0.499 (0.295–0.842) p = 0.009
COL10A1 1.896 (1.123–3.200) p = 0.017
HOXD9 1.841 (1.095–3.095) p = 0.021
GMDS 0.558 (0.331–0.941) p = 0.029
CENPF 2.028 (1.187–3.463) p = 0.010
NRG2 0.524 (0.309–0.890) p = 0.017
NBL1 0.578 (0.346–0.967) p = 0.037
CA14 0.461 (0.268–0.794) p = 0.005
PROK1 0.554 (0.328–0.934) p = 0.027

Fig. 2   Kaplan–Meier plots based on the 6 differentially expressed 
genes. Kaplan–Meier plots of BCR-free survival for 358 PCa patients 
grouped by single gene constituting the 6-gene signature. Patients 
were divided into two groups: high expression group and low expres-

sion group, based on the gene expression level using the median as 
cutoff point. The comparison method of two survival curves was 
Log-rank test. a SMIM22, b NINL, c TPCN2, d NRG2, e TOP2A, 
f REPS2
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score is suitable for all patients regardless of Gleason score. 
The survival analysis demonstrated that in both subgroups: 
Gleason score ≤ 7 (n = 197) and Gleason score > 7 (n = 161), 
the survival difference between high-risk score and low-risk 
score was significant (all p < 0.01, Fig. 3b–d).

Functional enrichment analysis

The Gene ontology and KEGG pathway analysis was con-
ducted (Fig. 4). The results showed that the 6 genes were 
enriched in biological process (BP) including cell growth, 
regulation of nucleic acid metabolism, transport and cell 
communication. For molecular function (MF), these genes 
were enriched in growth factor activity, DNA topoisomerase 

activity, calcium ion binging and ion channel activity. And 
for cell component (CC) analysis, these genes were located 
in centriole, nuclear chromosome, kinetochore, and DNA 
topoisomerase complex. In addition, these genes were 
involved in ErbB2/ErbB3 signaling, ErbB4 signaling, cell 
cycle, mitotic and et al.

Validation of 6 DEGs

The expression difference between cancer group and nor-
mal prostate tissue group of these 6 genes was compared in 
GSE55945. As shown in Fig. 5, their differential expression 
was consistent with that of GSE35988 and TCGA PCa.

Discussion

At present, the indication for post-operative adjuvant therapy 
of prostate cancer is confined to pathological TNM stag-
ing as pT3 and pN+, positive surgical margins and Glea-
son score ≥ 7 [1]. However, some patients without these 
signs still develop to BCR, the risk stratification needs to 
be updated.

TCGA-PCa dataset, a large-scale, prospective post-
operative follow-up cohort research was exploited in our 
study. In order to thoroughly explore the high dimensional 
gene expression data and not just focus on genes at a 
specific pathway [6] or genes author interested in [17], 
the strategy for variable selection was set as follows: (a) 
Using the strict criteria of adj. p < 0.05 and |logFC| ≥ 1 to 
get DEGs and then identification of common DEGs in the 
two datasets: GSE35988 and TCGA-PCa. (b) The com-
mon DEGs were under univariate survival analysis and, 
subsequently, the DEGs with statistical significance were 
further analyzed in multivariate cox regression model to 
achieve optimal model and risk score formula. (c) The 
independent predictive value was then investigated for 
the new variable: risk score, combined with clinical 
and pathological parameters. This strategy for predic-
tive factors selection could avoid the variable elimina-
tion of clinical and pathological parameters when they 
entered into multivariate cox regression model with the 
high dimensional transcriptomic data at the same time 
[20]. After the analysis above, the 6-gene signature was 
eventually constructed with powerful predictive ability on 
BCR, independent of TNM stage. In the light of the asso-
ciation between risk score and Gleason score, we divided 
patients into two subgroups: Gleason ≤ 7, and Gleason 
score > 7 and conducted subgroup survival analysis. Sur-
prisingly, in the subgroup: Gleason score ≤ 7, risk score 
was demonstrated to be a predictive factor (Log-rank test 
p < 0.01), and the result was also statistically significant 
in subgroup: Gleason score > 7. This result revealed that 

Table 3   Multivariable BCR-free survival analysis of 19 DEGs

Coefficient Multivariate cox regression model

HR (95% CI) p value

SMIM22 − 0.744 0.475 (0.275–0.821) p = 0.008
REPS2 − 0.809 0.445 (0.261–0.760) p = 0.003
TPCN2 0.568 1.765 (1.015–3.069) p = 0.044
NINL 0.681 1.976 (1.129–3.460) p = 0.017
TOP2A 0.686 1.986 (1.087–3.629) p = 0.026
NRG2 − 0.962 0.382 (0.208–0.702) p = 0.002

Table 4   the association between risk score and clinical pathological 
parameters

a Represents Fish’s exact test value

Low risk n (%) High risk n (%) χ2 p value

Age at diag-
nosis

0.013 0.909

 ≤ 62 89 (48.9%) 85 (48.3%)
 >62 93 (51.1%) 91 (51.7%)

Pathologic T 
stage

12.901a < 0.001

 T2 77 (42.3%) 46 (26.1%)
 T3 104 (57.1%) 124 (70.5%)
 T4 1 (0.55%) 6 (3.4%)

Pathologic N 
stage

9.920 0.002

 N0 160 (87.9%) 132 (75.0%)
 N1 22 (12.1%) 44 (25.0%)

TNM stage 16.090 < 0.001
 Stage II 76 (41.8%) 46 (26.1%)
 Stage III 83 (45.6%) 82 (46.6%)
 Stage IV 23 (12.6%) 48 (27.3%)

Gleason score 35.500 < 0.001
 < 7 17 (9.3%) 1 (0.6%)
 = 7 108 (59.3%) 71 (40.3%)
 > 7 57 (31.3%) 104 (59.1%)
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the predictive effect of risk score may be independent of 
Gleason score, although this needs further validation in 
another follow-up cohort.

Downregulation of SMIM22, or named CASIMO1 [21] 
was reported in breast cancer to decreased cell proliferation 
and restraint of cell motility, by affecting its downstream 

Fig. 3   Kaplan–Meier plots of Risk score in the entire patients group 
and Gleason score subgroups. a Kaplan–Meier plots of BCR-free sur-
vival in the entire patient group (358 patients). Patients were divided 
into two groups: high-risk score group and low-risk score, using 
median-risk score as cutoff point. b Comparing means of risk score 
in different Gleason score subgroups by Students’ t test. **Represents 
p < 0.01. c Kaplan–Meier plots of BCR-free survival in the subgroup 

1: Gleason score ≤ 7 (197 patients). Patients were divided into two 
groups: high-risk score group and low-risk score, using median risk 
score as cutoff point. d Kaplan–Meier plots of BCR-free survival 
in the subgroup 2: Gleason score > 7 (161 patients). Patients were 
divided into two groups: high-risk score group and low-risk score, 
using median-risk score as cutoff point

Table 5   Univariable and 
multivariable cox regression 
analysis of 6-gene signature for 
BCR-free survival

**Statistic significance p < 0.01

Univariable model Multivariable model

HR (95% CI) p value HR (95% CI) p value

Risk score(low or high) 3.815 (2.100–6.932) < 0.001** 3.045 (1.655–5.602) < 0.001**
TNM stage (stage II, III, or IV) 2.059 (1.444–2.935) < 0.001** 1.714 (1.192–2.464) 0.004**
Gleason score (< 7, = 7, or > 7) 3.166 (1.854–5.404) < 0.001** Not enter into equation –
Age (≤ 62 or > 62) 1.213 (0.734–2.005) 0.452 Not enter into equation –
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phosphorylation of ERK. NRG2 [22, 23] was shown to inter-
act with ErbB family of receptors promoting cell growth 
and differentiation. The primary function of NINL/Nlp [24] 
is to promote microtubule nucleation. Its aberrant expres-
sion in cancer cells could render cell tumorigenic. TPCN2 
[25] belonged to a recently described class of NAADP- and 
PI(3,5)P2-sensitive Ca2+—permeable cation channels in 
the endolysosomal system of cells whose downregulation 
induced abrogating migration of metastatic cancer cells 
in vitro. In our knowledge, there was no research reported 
the relationship between the 4 genes (SMIM22, NINL, 

NRG2, and TPCN2) and prostate cancer, and the exact 
molecular mechanism of these four genes in prostate cancer 
development and progression deserved further investigation.

The decreased expression of REPS2/POB1 [26–29] in 
androgen-independent prostate cancer cell lines results in 
loss control of growth factor signaling and, therefore, in loss 
control of cell proliferation. Our finding that high expres-
sion of RESP2 in patients after RP may be associated with 
decreased risk of BCR (Table 2, HR 0.550, p = 0.025) was 
consistent with the previous study. TOP2A [30] was dem-
onstrated to enhance androgen signaling by promoting tran-
scription of androgen responsive genes, therefore contribut-
ing to hormone-independent cell growth and proliferation. 
Collectively, the 6-gene signature was involved in various 
signaling pathway and participated in diverse biological 
process. These may contribute to its powerful ability in 
predicting BCR. In addition, we further validated the dif-
ferential expression of the 6 genes in another public dataset: 
GSE55945 (all p < 0.05).

Some limitation of this research should take into account. 
Firstly, the exact molecular mechanism of SMIM22, NRG2, 
NINL and TPCN2 in prostate cancer had not been explored 
in our research. Secondly, the variables: serum PSA and sur-
gical margin were not provided by the TCGA_PCa dataset, 
so the relationship between the novel gene signature and the 
two variables was not explored. Thirdly, the construction 
of this gene signature was based on TCGA-PCa follow-up 
cohort, without validation in a prospective clinical cohort 
study.

Fig. 4   Functional enrichment analysis on the 6 differentially expressed genes (DEGs). a Biological pathways the 6 DEGs involved in. b Biologi-
cal process the 6 DEGs involved in. c Cellular component the 6 DEGs involved in. d Molecular function of the 6 DEGs

Fig. 5   The expression of six differentially expressed genes in 
GSE55945. The normalized gene expression values of the 6 DEGs 
in prostate cancer tissue group and normal prostate tissue group were 
compared by Student’s t test. *Represents p < 0.05
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Conclusion

We derived the key DEGs using public dataset: GSE35988 
and TCGA-PCa, and then thoroughly analyzed their pre-
dictive ability on post-operative biochemical recurrence. 
Eventually, a novel multi-gene set was constructed with 
robust prediction of BCR, and its predictive ability was 
independent of TNM stage. Among the 6-gene signature, 
4 genes (SMIM22, NRG2, NINL and TPCN2) have not 
been reported the relationship with prostate cancer. This 
novel predictive system will have attractive applications to 
improve post-operative patients’ management, if validated 
in other prospective clinical trial.
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