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� Federación de Sociedades Españolas de Oncologı́a (FESEO) 2016

Abstract Anaplastic lymphoma kinase (ALK) rearrange-

ment is detected in 3–7% of patients with non-small-cell

lung cancer. Crizotinib is an ALK inhibitor, which was

approved in 2011 for the treatment of ALK-positive lung

cancer. Despite the initial enthusiasm, most of the patients

develop resistance within the first year of treatment. The

main mechanisms are secondary mutations and bypass

track activation. Moreover, crizotinib has low penetration

into the central nervous system. The need to overcome

these limitations has led to the development of second-

generation inhibitors that have better effectiveness against

crizotinib-resistant mutations and brain metastases. Ceri-

tinib and alectinib are the only approved drugs of this

group. Many ongoing trials try to define the most appro-

priate agent for the treatment of ALK-positive lung cancer

depending on the responsible mechanism. This review

focuses on the current data regarding the potential mech-

anisms of resistance to ALK inhibitors and the strategies to

overcome it.
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Introduction

Lung cancer is the second most common cancer and the

leading cause of cancer death worldwide [1]. It is estimated

that in 2016, in the United States of America, 224.390 new

cases and 158.080 deaths will occur [2]. Non-small-cell

lung cancer (NSCLC) accounts for 85–90% of cases and

chemotherapy was the standard treatment for it until

recently [3]. However, over the last decade, this approach

has changed thanks to the advances in molecular analysis,

the identification of oncogenic drivers that are responsible

for lung cancer, and the development of targeted therapies

[4]. The first big change happened in 2004 when it was

described that patients with activating mutations in the

epidermal growth factor receptor (EGFR) gene respond

dramatically to EGFR tyrosine kinase inhibitors (TKIs),

such as gefitinib, erlotinib and afatinib [5]. Then, in 2007, it

was discovered that 3–7% of patients with adenocarcinoma

carry an anaplastic lymphoma kinase (ALK) rearrange-

ment. For these patients, ALK inhibitor crizotinib is the

appropriate treatment choice [6].

Targeted therapies increased the progression-free sur-

vival (PFS) and overall survival (OS) in these groups and

started a new era in the treatment of lung cancer [7].

Despite the initial enthusiastic outcomes, it became clear

very soon that the development of acquired resistance is the

main limitation to these therapies [8]. This review

describes how ALK inhibitors (such as crizotinib) work,

the discovery of second- and thirrd-generation inhibitors

(ceritinib, alectinib, brigatinib, lorlatinib), the mechanisms

of resistance, and the ways to overcome it.
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Methods

The data were collected through published reviews, case

reports, articles and studies with publication date from

2007 to 2016. The MEDLINE and the Journal of Thoracic

Oncology were our primary databases and the main cita-

tions searched were ALK rearrangement, ALK-positive

non-small-cell lung cancer, crizotinib, ceritinib, alectinib,

mechanisms of resistance to ALK inhibitors, brain metas-

tases in ALK-positive non-small-cell lung cancer. We

excluded publications that were not written in English.

ALK rearrangement and its role in lung cancer

Anaplastic lymphoma kinase protein belongs to the insulin

receptor tyrosine kinase family. It is encoded by the ALK

gene which is located on chromosome 2p23. As other

receptors, it has an extracellular ligand-binding part, a

transmembrane helix and an intracellular domain that is

responsible for the kinase activation [9]. It was first

detected as part of the fusion protein NPM–ALK in a

translocation between chromosomes 2 and 5, associated

with anaplastic large cell lymphoma [10]. Based on

experiments on mice, ALK protein normally participates in

the development of the nervous system [11]. The most

common ALK mutation is rearrangement which disrupts

the normal structure of the gene. As a result, a fusion gene

is formed and encodes a fusion ALK protein. This kind of

translocation has been associated with oncogenesis as it has

been found in different types of cancer, such as lymphoma,

neuroblastoma and NSCLC [12].

With regard to NSCLC, the first reference was made in

2007 when the EML4–ALK fusion protein was identified

in a patient with lung adenocarcinoma [13]. The fusion

protein arises from an inversion within the chromosome 2

and has many variants depending on the fusion point within

the EML4 gene. It leads to constant activation of the kinase

and the signaling pathways and, consequently, to oncoge-

nesis [14]. ALK rearrangement is described in 3–7% of

NSCLCs. Every patient with lung adenocarcinoma should

now be tested for it using fluorescence in situ hybridization

(FISH) analysis, although it is more common among

younger, female patients with a history of no (or light)

smoking, and no EGFR or KRAS mutations [15, 16]. The

central nervous system (CNS) is the most common site of

metastasis in ALK-positive NSCLC, with frequency from

25 to 40% [17, 18].

Crizotinib

ALK fusion protein is an excellent target in lung cancer

treatment because of its oncogenic role, as it was initially

proved in preclinical models [19]. Clinical trials had the

same promising results when crizotinib was tested. Crizo-

tinib (PF-02341066, Xalkori, Pfizer Inc) is an oral, ATP-

competitive, small-molecule, selective inhibitor targeting

ALK and c-Met tyrosine kinase. In particular, it inhibits the

phosphorylation of ALK when it is activated at nanomolar

concentrations [20]. In the phase I PROFILE 1001 [21] and

phase II PROFILE 1005 [22] trials, the overall response

rate (ORR) was about 60% leading to the accelerated

approval of crizotinib for patients with ALK-rearranged,

locally advanced or metastatic NSCLC [23]. The approval

was granted by Food and Drug Administration (FDA) in

2011. Two more studies showed the superiority of crizo-

tinib over standard chemotherapy in ALK-positive

NSCLC. In the phase III PROFILE 1007 trial, patients,

who had received platinum-based chemotherapy as first-

line treatment and had disease progression, were randomly

administered crizotinib or chemotherapy (pemetrexed or

docetaxel). In the first group, the RR was 65% and the PFS

was 7.7 months, while, in the second group, the results

were 20% and 3.0 months, respectively. There was no

difference in OS for both arms. Patients that were treated

with chemotherapy were able to receive crizotinib after

disease progression. This led to a high crossover rate

between the two groups and, most likely, to the similar

results in OS [24]. The same benefit was demonstrated in

the phase III PROFILE 1014 trial. Previously untreated

patients were randomly assigned to receive crizotinib or

chemotherapy (platinum plus pemetrexed). The RR in the

first group was higher (74 vs 45%), as were the PFS (10.9

vs 7.0 months). There was again no significant difference

in OS due to the patient crossover from the chemotherapy

to the crizotinib arm [25]. In a year, we expect the results

of the phase III PROFILE 1029 trial which compares

crizotinib with chemotherapy as first-line treatment in

patients from eastern Asia [26] (Table 1).

Mechanisms of resistance to crizotinib

Despite the fact that the targeted therapies have introduced

a new era in lung cancer treatment, they have a large

limitation: the development of resistance [27]. Patients who

receive crizotinib experience resistance to the drug within

the first year [28]. This was first described in 2010 when a

patient with ALK-rearranged NSCLC taking crizotinib had

disease progression after 5 months of treatment. A sample

of his pleural effusion was obtained, in which two novel

mutations, L1196M and C1156Y, were detected and

proved to be responsible for the lack of response to the

drug [29]. The mechanisms of resistance can be divided

into two main categories: ALK dominant, when ALK

signaling is still important, and ALK non-dominant, when

there is no connection to ALK [30]. The first group
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includes secondary mutations (31% frequent), copy num-

ber gain (CNG-13%), and their combination (6%). The

second group includes bypass tracks that are activated

(50% frequent) [31].

Apart from the acquired resistance, the primary resis-

tance to crizotinib is also worth considering. The initial RR

is about 60%, which accounts for the lack of response in

some patients. Some possible explanations are the different

variants of the EML4–ALK fusion protein or the false-

positive diagnoses of ALK translocation [32]. Another type

of resistance is the disease progression only in CNS and not

in other organs as crizotinib does not penetrate the blood–

brain barrier sufficiently [33].

ALK dominant mechanisms

Secondary mutations in the ALK gene are the main

mechanisms of this group as it happens in the treatment

with EGFR TKIs [34]. It has already been mentioned that

mutations L1196M and C1156Y were the first to be

detected. L1196M, in particular, changes the ATP-binding

domain and does not allow crizotinib to inhibit ALK,

acting as a gatekeeper mutation [35]. More than ten similar

mutations have been identified, of which the most common

are L1152R [36], G1202R, S1206Y, 1151Tins [37],

G1269A [38], F1174L [39], G1269S, L1198P, and

D1203N [40].

Anaplastic lymphoma kinase amplification due to copy

number gain is another way of developing resistance,

which occurs alone or in combination with secondary

mutations [41]. Finally, the loss of ALK rearrangement as a

possible mechanism is yet to be proved, as the detection of

ALK is influenced by many factors [42].

ALK non-dominant mechanisms

In this category, the activation of alternative signaling

pathways and the mutations in genes not connected with

ALK are the responsible mechanisms of resistance to

crizotinib. The most common are the activation of the

EGFR pathway, as shown by the increased levels of EGFR

phosphorylation in biopsy specimens after crizotinib ther-

apy [8, 43], the mutations in the KRAS gene [38], and the

amplification of the KIT gene [37]. There are, also, some

rarer mechanisms, such as activation of the ErbB family,

activation of the insulin-like growth factor receptor 1 (IGF-

1R) pathway, epithelial–mesenchymal transition induced

by hypoxia, autophagy [31], mutations in CD74-ROS1

Table 1 Efficacy of first- and second-generation ALK inhibitors and ongoing trials

Drugs Clinical trials (phase) Patient number Comparison with ORR (%) PFS (months)

Crizotinib [21, 22, 24–26] PROFILE 1001(I) 143 – 60.8 9.7

PROFILE 1005(II) 259 – 59.8 8.1

PROFILE 1007(III) 347 Pemetrexed or docetaxel 65 vs 20 7.7 vs 3.0

PROFILE 1014(III) 343 Pemetrexed ? platinum 74 vs 45 10.9 vs 7.0

PROFILE 1029(III) Ongoing Chemotherapy

Ceritinib [26, 50, 52–54] ASCEND-1(I) 114 – 58 (naı̈ve) 10.4

56 (crizotinib-resistant) 6.9

ASCEND-2(II) 140 – 38.6 5.7

ASCEND-3(II) 124 – 63.7 –

ASCEND-4(III) Ongoing Pemetrexed ? platinum

ASCEND-5(III) Ongoing Pemetrexed or docetaxel

ASCEND-7(III) Ongoing –

Alectinib [26, 62–65, 75] AF-001JP(I/II) 46 – 93.5 76% (in 2 years)

NP28673(II) 138 – 49.2 11.2

NP28761(II) 87 – 47.8 7.5

AF-002JG(I/II) 47 – 55 –

ALEX(III) Ongoing Crizotinib

Brigatinib [26, 85, 86] NCT01449461(I/II) 137 – 100 (naı̈ve)

69 (crizotinib-resistant) 13.4

ALTA(II) Ongoing –

NCT02706626(II) Not yet recruiting 2nd-gen TKIs

ALTA-1L(III) Recruiting Crizotinib
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[44], activation of the HER family [45] and, of course, in

some cases, no apparent cause can be found. Finally, a case

of ALK-rearranged NSCLC transformed into an SCLC was

recently reported. This mechanism is known to be

responsible for developing resistance to EGFR inhibitors

[46].

Second-generation ALK inhibitors

The previously described limitations to crizotinib therapy

showed the need for development of second-generation

ALK inhibitors for NSCLC. This category includes ceri-

tinib (LDK 378, Zykadia, Novartis) and alectinib

(RO5424802/CH5424802, Alecensa, Chugai-Roche)

whose aim is to enhance ALK inhibition and overcome

resistance mechanisms [30].

Ceritinib

Ceritinib is an oral, ATP-competitive, small-molecule

ALK inhibitor. It has a similar mechanism of action to

crizotinib, but it is 20 times more potent against ALK. It

does not inhibit the MET kinase while it is effective—to

a lesser extent—against the IGF-1 receptor, the insulin

receptor (InsR), and ROS1 [47]. The drug was approved

by FDA in April 2014 for the treatment of patients with

metastatic ALK-positive NSCLC who had disease pro-

gression after receiving crizotinib or are intolerant of it.

The accelerated approval was based on the very

promising results of the ASCEND-1 trial before they were

even published [48, 49]. It is a phase I trial that determined

initially the maximum tolerated dose (MTD) of ceritinib at

750 mg daily. The study was later expanded with the

addition of a larger number of patients who had either

already received crizotinib or not. In the first group, the

ORR was 56% and the PFS was 6.9 months, while in the

second group, the outcomes were 58% and 10.4 months,

respectively [50]. The updated data of ASCEND-1 were

recently published and the PFS was 18.4 months for

crizotinib-naı̈ve patients [51]. Similar successful results

were also described in phase II trials. In ASCEND-2,

ceritinib was administered to patients who had already

been treated with chemotherapy and had been resistant to

crizotinib [52], while in ASCEND-3, ceritinib was given as

first-line treatment [53]. In 2018, two phase III trials will be

complete and their results are expected with great interest:

ASCEND-4 compares ceritinib with chemotherapy

(pemetrexed plus platinum) as first-line treatment and

ASCEND-5 compares the same drugs in patients whose

disease progressed after chemotherapy and crizotinib [54]

(Table 1).

Even if ceritinib was especially developed to tackle the

mechanisms of resistance to crizotinib, it confirmed the

rule of targeted therapies: resistance arose not only in cell

lines, but also in patients that received it. The first dis-

covered mechanisms were the secondary mutations

G1202R and F1174V/C. In one patient, both G1202R and

F1174V/C were found at the same time proving the

heterogeneity in the development of resistance [55]. Other

identified mutations are the G1123S [56], C1156Y,

1151Tins, and L1152R [40] (Table 2). As for copy number

gain, the other ALK dominant mechanism of resistance to

crizotinib, it has not been confirmed for ceritinib [31].

On the contrary, secondary mutations were not detected

in other preclinical studies. The most likely responsible

resistance mechanism is the activation of alternative sig-

naling pathways and, in particular, the NRG1–HER3–

EGFR axis. Neuregulin-1 (NRG1), which is a ligand for

HER3 and activates the EGFR pathway, was found to be

increased in ceritinib-resistant cell lines [57]. Finally, the

overexpression of P-glycoprotein seems to be associated

with poor response to ceritinib therapy [58].

Alectinib

Alectinib is an oral, selective ALK inhibitor, 10 times more

potent than crizotinib [59]. It is also effective against the

leukocyte receptor tyrosine (LTK) and cyclin G-associated

kinases (GAK), but not against IGF-1, InsR and ROS1, like

ceritinib [6]. FDA granted Breakthrough Therapy Designa-

tion (BTD) to alectinib in June 2013 and finally approved it in

December 2015 for patients with advanced ALK-rearranged

NSCLC who had progressed on crizotinib [60]. Japan was

the first country to approve the drug in July 2014 after the

results of the phase I/II AF-001JP trial, which included only

Japanese patients who had not received previous treatment

[61]. The maximum tolerated dose was determined at

300 mg during the first part of the study. Then, in the second

part, alectinib was administered at the same dosage and the

ORR was 93.5% [62], while the 2-year PFS was 76% [63].

Two phase II trials that followed studied the safety and

efficacy of the drug at a daily dose of 600 mg in crizotinib-

resistant patients, without comparing it with any other

treatment. NP28673 recruited patients from all over the

world, while NP28761 included patients only from North

America. The ORR was 49.2 and 47.8%, while the PFS was

11.2 and 7.5 months, respectively [64, 65] (Table 1).

With regard to secondary mutations, they contribute to

the development of resistance to alectinib as well. V1180L

was identified in preclinical models and I1171T in a

patient. They both affect the binding between the drug and

the ALK fusion protein [66]. I1171S [67] and G1202R [68]

have also been detected (Table 2). Furthermore, the
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amplification of the MET gene is a potential mechanism of

resistance, as was found in an in vitro study with the

activation of the Hepatocyte Growth Factor (HGF)–MET

pathway [42] and in the rebiopsy of an alectinib-resistant

patient [69]. The phase II ALRIGHT trial has been

designed based on these data and will gather information

on whether crizotinib can be administered to alectinib-re-

fractory patients as it inhibits both ALK and MET kinases

[70]. Like in ceritinib-resistant patients, the NRG1–HER3–

EGFR axis affects the sensitivity to alectinib [57]. Finally,

we should mention that a case of transformation to SCLC

after treatment with alectinib has been reported [71].

Strategies to overcome resistance

Judging from the above, it becomes clear that almost all

patients with ALK-rearranged NSCLC, who are treated

with ALK inhibitors, have disease progression after a

certain period of time, as they become resistant to these

drugs. In some of them, there is only an increase in the size

of their lesions with no further deterioration of their

symptoms [72]. In the case of crizotinib, there is evidence

that the continuation of the same treatment beyond pro-

gression could be beneficial [73]. This approach has been

withdrawn after the development of the second-generation

ALK inhibitors, especially in patients with rapid progres-

sion [74].

As for ceritinib, the very good response of the crizo-

tinib-refractory patients led to administering the drug as

second-line treatment in this group, unless there are sec-

ondary identified mutations that are responsible for resis-

tance to ceritinib [49, 54]. The phase I–II AF-002JG study

had similar results when it examined the other approved

second-generation ALK inhibitor. Alectinib was adminis-

tered to 47 patients who had developed resistance to

crizotinib at a dose of 600 mg twice daily, which resulted

in an ORR of 55% [75]. There is also an ongoing phase III

trial, ALEX, which compares crizotinib with alectinib as a

first-line treatment in ALK-positive NSCLC [26].

The disease progression only in CNS is a type of

acquired resistance and different strategies have been tes-

ted to overcome it. One of them was the dose escalation of

crizotinib as it does not cross the blood–brain barrier suf-

ficiently, but that did not lead to a better outcome [76]. The

second-generation ALK inhibitors seem to have higher

penetration and response. In the ASCEND-1 and

ASCEND-2 trials, patients with brain metastases that were

resistant to crizotinib and received ceritinib had an

intracranial RR at 35.7 and 39.4%, respectively [77].

ASCEND-7 is still ongoing to evaluate the safety and

efficacy of ceritinib in patients with ALK-rearranged

NSCLC and CNS disease [26]. With regard to alectinib, the

analysis of the NP28761 and NP28673 trials showed a 22%

CRR in patients with brain metastases [78], while in AF-

002JG, the RR was 52% [75]. These results, in combina-

tion with the small number of secondary mutations causing

resistance, make alectinib a very attractive option as a first-

line treatment. Dose escalation of the drug has been used as

an effort to increase response in CNS, but this hypothesis

needs more trials to confirm it [79]. We should also men-

tion the case of leptomeningeal metastases (LM), a rare

form of CNS involvement. Alectinib has been reported to

have good results in patients with ALK-positive NSCLC

and LM after progression on both crizotinib and ceritinib

[80]. Finally, another potential way to accomplish higher

intracranial concentration of ALK inhibitors is to co-ad-

minister them along with an inhibitor of the P-glycoprotein

(P-gp), a transporter of the blood–brain barrier [81].

According to preclinical models, alectinib is not trans-

ported to the brain via the P-gp and, probably, this is why it

has better accumulation and response in CNS [17].

Table 2 Second- and third-generation ALK inhibitors and their effectiveness against crizotinib-resistant mutations

Drugs Targeting Not targeting

Ceritinib

[40, 55, 56]

L1196M, G1269A, S1206Y, F1174L, V1180L C1156Y, G1202R, F1174C, L1152R, 1151Tins,

G1123S

Alectinib [66–68] L1196M, C1156Y, G1269A, S1206Y, L1152R, F1174L,

1151Tins

G1202R, V1180L, I1171T, I1171S

Brigatinib [84] L1196M, C1156Y, G1202R, S1206Y, 1151Tins, D1203N,

F1174C

–

Lorlatinib [32, 87] L1196M, G1202R, G1269A –

Entrectinib [32, 87] L1196M, C1156Y –

ASP3026 [32, 88] L1196M, F1174L –

TSR-011 [32, 87] L1196M

X-396 [32, 89] L1196M, C1156Y –
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Regarding the oligoprogression only in CNS, there is

also the option of focal treatments, such as radiotherapy

(whole-brain radiotherapy-WBRT or stereotactic radio-

surgery-SRS) and local ablative therapy (LAT), alone or in

combination with ALK inhibitors. A recent multi-institu-

tional study showed that patients with ALK-rearranged

NSCLC and brain metastases had prolonged survival when

they received radiotherapy along with ALK TKIs [82]. In

another study of a single institution, it was described that

LAT and continuation of crizotinib offered more than

6 months of additional disease control [83]. However,

more trials are necessary to clarify the role of local

therapies.

Brigatinib (AP26113, Ariad) is another second-genera-

tion ALK inhibitor that is being researched as a way to

overcome resistance to the previously described drugs. It is

an oral inhibitor of EGFR, ALK and ROS1, and is effective

against the EGFR T790M and ALK L1196M, C1156Y,

G1202R, S1206Y, 1151Tins, D1203N, F1174C [84]

mutations (Table 2). In the phase I–II NCT01449461 trial,

patients with ALK-rearranged NSCLC received brigatinib

and the results of the ORR were the following: 100% for

those who had not received any other treatment, 69% for

those who were crizotinib-refractory and 37% for the

patients with brain metastases. Furthermore, we should

mention the ongoing phase II NCT02094573 ALTA trial

for patients with resistance to crizotinib who are given

brigatinib as second-line treatment [26, 85], and the phase

II NCT02706626 trial that will soon recruit patients to

receive the drug after progression on other second-gener-

ation ALK inhibitors [26, 86] (Table 1). On August 30,

2016, the pharmaceutical company that developed briga-

tinib completed its rolling submission of the New Drug

Application (NDA) to the FDA to get an accelerated

approval.

Furthermore, many thirrd-generation ALK inhibitors are

in early stages of development and are especially designed

to be more effective in CNS as well as against the sec-

ondary mutations that cause resistance to other TKIs. The

most important of these are PF-06463922 (lorlatinib, Pfi-

zer), V-396 (Xcovery), X-376, RXDX-101(entrectinib),

ASP3026, TSR-011, CEP-37440, and CEP-28122

[32, 87–89] (Tables 2, 3). A case of a patient, who was

resistant to crizotinib because of the C1156Y mutation and

received lorlatinib, is worth mentioning. When he had

disease progression, he developed another mutation, the

L1198F, which made him sensitive, again, to crizotinib

[90]. This case report is very interesting, but needs to be

proved by more clinical data.

The activation of bypass tracks is a common mechanism

of resistance to ALK inhibitors. For this reason, it could be

a potential target in lung cancer treatment. There are some

ongoing preclinical trials whose purpose is to inhibit ALK

and the EGFR, JIS, IGF-1R pathways at the same time

[31, 91, 92]. The 90-kDa heat shock protein (HSP90)

inhibitors also seem to be very promising. HSP90 is a

molecular chaperone that contributes to the correct for-

mation and stability of proteins. Its inhibition leads to

abnormal function of these proteins, including ALK, as

well as lack of activation of many oncogenic pathways

[28]. IPI-504 (retaspimycin hydrochloride), STA-9090

(ganetespib), AT13387 (onalespib) and AUY922 are inhi-

bitors of this kind, which are used alone or in combination

with ALK TKIs in ongoing trials (NCT01579994,

NCT01712217, NCT01772797) [32].

Discussion and future perspectives

The discovery of the ALK rearrangement and its onco-

genic role, as well as the discovery of the EGFR muta-

tions, revolutionized the NSCLC treatment. In patients

that carry the translocation, standard chemotherapy was

replaced by targeted therapies and, in particular, by

crizotinib that significantly increased the RR and the PFS

of this group. Despite the initial enthusiastic results of all

trials on crizotinib, two limitations became soon clear: the

development of resistance within the first year of treat-

ment and the poor response in CNS where metastases

occur very often in ALK-positive NSCLC. The most

common mechanisms of resistance are secondary muta-

tions and activation of alternative signaling pathways. The

development of novel inhibitors was the next logical step

and two of them, ceritinib and alectinib, have been

approved for the treatment of ALK-rearranged NSCLC.

Unfortunately, the resistance is inevitable even after these

drugs; so different third-generation inhibitors are under

investigation.

A question that needs to be answered about these new

agents is in what sequence they should be administered, so

that the highest clinical benefit is obtained. Doctors face

the following dilemma, namely, whether to use second-

generation inhibitors only after progression on crizotinib so

as to overcome the acquired resistance or to administer

Table 3 Novel ALK inhibitors in early development

Drugs ClinicalTrials.gov identifier Phase

Lorlatinib [26, 32, 87] NCT01970865 I/II

Entrectinib [26, 32, 87] NCT02097810 I/II

ASP3026 [26, 32, 88] NCT01401504 I

X-396 [26, 32, 89] NCT01625234 I/II

TSR-011 [26, 32, 87] NCT02048488 I/II

CEP37440 [26, 32, 87] NCT01922752 I
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them from the start to achieve higher responses. The

superiority of crizotinib compared with chemotherapy as a

first-line treatment has been described in the PROFILE

1014 trial. Similar studies should be done on the other

drugs as well. When complete, ASCEND-4 will offer some

answers with regard to ceritinib, but we have not yet seen a

similar trial on alectinib. The head-to-head comparison of

the different inhibitors is also very important and there are

two ongoing trials of this kind: ALEX, which compares

crizotinib with alectinib, and ALTA-1L between crizotinib

and brigatinib, which is now recruiting patients [26]. Their

results are expected with anticipation. As for crizotinib and

ceritinib, there has been only a recently reported study that

compared data from previous trials after adjusting the

characteristics of the patients and showed an association of

ceritinib with better PFS [93]. The evaluation of the ALK

TKIs should also be focused on their efficacy in CNS to

determine the appropriate therapy for brain metastases.

Alectinib seems to have the best outcomes as it achieves a

sufficient intracranial concentration.

Beyond targeted therapies, there is another field in

Medical Oncology that has been rapidly growing over the

last years: immunotherapy. Nivolumab and pembrolizumab

have been approved for the treatment of patients with

metastatic NSCLC, while ipilimumab is evaluated in a

phase III study. The combination of an ALK inhibitor with

immune checkpoint inhibition might be an effective treat-

ment for ALK-positive NSCLC. There are three ongoing

trials that combine ceritinib with nivolumab (NCT0239

3625), crizotinib with pembrolizumab (NCT02511184),

and crizotinib with ipilimumab (NCT01998126) [26].

Therefore, it is very obvious how important rebiopsy is

when a patient with ALK-rearranged NSCLC develops

disease progression. There needs to be a comparison with

the initial diagnosis to detect any secondary mutations or

overexpressed products of other activated pathways. This is

the only approach that will help us understand the mech-

anisms of resistance, choose the right treatment, and

increase the response and survival of our patients.
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