
Abstract Class I PI3K is composed of heterodimeric lipid 
kinases regulating essential cellular functions including 
proliferation, apoptosis and metabolism. Class I PI3K 
isoforms are commonly amplifi ed in different cancer types 
and the PI3K catalytic subunit, PIK3CA, has been found 
mutated in a variable proportion of tumours of different 
origin. Furthermore, PI3K has been shown to mediate on-
cogenic signalling induced by several oncogenes such as 
HER2 or Ras. These facts suggest that PI3K might be a 
good target for anticancer drug discovery. Today, the rise of 
PI3K inhibitors and their fi rst in vivo results have cleared 
much of the path for the development of PI3K inhibitors 
for anticancer therapy. Here we will review the PI3K path-
way and the pharmacological results of PI3K inhibition.
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The PI3K pathway

PTEN is a dual lipid and protein phosphatase. Its primary 
target is the lipid phosphatidylinositol-3,4,5-triphosphate 
(PIP3) [1], the product of phosphatidylinositol 3 kinase 
(PI3K). Loss of PTEN function, as well as PI3K activa-
tion, results in accumulation of PIP3, triggering the activa-
tion of its downstream effectors, PDK1, AKT/PKB and 
Rac1/Cdc42. The PI3K family is divided into 4 classes. 
Three of them have phosphorylated lipids as their main 
targets while class IV (mTOR, ATM, ATR and DNA-PK) 
has phosphorylated proteins. Class I, the most broadly 
studied, and the one we generally refer to in this review, 
is composed of heterodimers formed by a catalytic sub-
unit (p110, ,  and ) and a regulatory subunit. Class 
I can be subdivided into 2 subclasses: Ia, formed by the 
combination of p110,  or  and a regulatory subunit 
(p85, p65 or p55), and Ib, formed by p110 and p101 
regulatory subunit [2]. Activation of PI3K is induced by 
growth factors and insulin targeting the catalytic subunit 
to the membrane where it is in close proximity with its 
substrate, mainly PIP2. AKT contains a C-terminal pleck-
strin homology (PH) domain, which binds the membrane-
bound PIP3. AKT activity is regulated by PI3K activity in 
two steps. First, PIP3 recruits AKT to the cell membrane 
through AKT PH domain binding, permitting its activation 
by PDK1 [3]. PDK1 also contains a PH domain, which 
binds the membrane-bound PIP3, triggering its activation. 
Activated PDK1 phosphorylates AKT at T308, activating 
its ser/thr kinase activity. Once phosphorylated in T308, 
further activation occurs by phosphorylation at S473 by 
the complex mTORC2 or DNA-PK (Fig. 1). Activation of 
AKT results in the suppression of apoptosis induced by 
a number of stimuli including growth factor withdrawal, 
detachment of extracellular matrix, UV irradiation, cell 
cycle discordance and activation of FAS signalling [3–5]. 
Hyperactivated AKT has also been shown to promote cell 

*Supported by an unrestricted educational grant
from Pfi zer

L. Paz-Ares · R. García-Carbonero
Medical Oncology
Hospital Universitario Virgen del Rocío
Sevilla, Spain

C. Blanco-Aparicio
Experimental Therapeutics Programme
Spanish National Cancer Research Centre
Madrid, Spain

A. Carnero (�)
Instituto de Biomedicina de Sevilla
Consejo Superior de Investigaciones Científi cas
Avda. Manuel Siurot, s/n
ES-41013 Sevilla, Spain
e-mail: acarnero@ibis-sevilla.es

Clin Transl Oncol (2009) 11:572-579
DOI 10.1007/s12094-009-0407-x

E D U C AT I O N A L  S E R I E S  G r e e n  S e r i e s *

Inhibiting PI3K as a therapeutic strategy against cancer

Luis Paz-Ares · Carmen Blanco-Aparicio · Rocío García-Carbonero · Amancio Carnero

Received: 2 June 2009 / Accepted: 6 August 2009

MOLECULAR TARGETS IN ONCOLOGY



Clin Transl Oncol (2009) 11:572-579 573

proliferation, cell growth and metabolism, resistance to 
hypoxia and migration [3, 6–10].

AKT is a serine/threonine kinase that enhances cell 
survival by blocking the function of proapoptotic proteins 
such as Bcl-2 family members [11, 12]. AKT also phos-
phorylates the FOXO family members FOXO, FOXO3a 
and FOXO4 [13] while they are in the nucleus, creating a 
binding site for 14-3-3 proteins, which trigger their export 
from the nucleus. Through this mechanism, AKT blocks 
FOXO-mediated transcription of target genes that promote 
apoptosis, cell-cycle arrest and metabolic processes. AKT 
also exerts some of its cell-survival effects through the 
modifi cation of nutrient uptake and metabolism (reviewed 
in [5, 14]). AKT activation can stimulate proliferation 
through multiple downstream targets impinging on cell-
cycle regulation. AKT phosphorylates the cyclin-dependent 
kinase inhibitors p21Cip1/WAF1 and p27Kip1, promoting 
its cytosolic localisation [15–18], and preventing its cell-
cycle inhibitory effects. AKT activation can enhance the 
rate of glycolysis by promoting its ability to express glyco-
lytic enzymes through HIF [19, 20]. 

Deletion of AKT1 reversed the survival phenotype in 
PTEN null cells and abrogated its growth advantage [21]. 
Similarly, inactivation of AKT by dominant negative mu-
tants inhibits the survival advantage provided by activated 
class I PI3K [22]. These and other results underline the es-
sential role of AKT in the PTEN/PI3K pathway [23–27]. 

PI3K may control multiple pathways (PIP3 depen-
dent or independent), besides the AKT pathway. PIP3-
dependent functions, not related to AKT, might be PDK1 
dependent as suggested by the hypomorphic PDK1 mice 

[28]. Reduced levels of PDK1 expression in PTEN(±) mice 
markedly protect these animals from developing a wide 
range of tumours. PDK1 has been shown to phosphorylate 
the critical residue in the activation loops of all AGC kinase 
family members including AKTs, SGKs, S6K, PKA, PKC, 
RSK and protein kinase N [2, 29]. Furthermore, other pro-
teins might also be recruited and activated by an increase in 
PIP3 [4, 30]. The PH domain was the fi rst phosphoinosit-
ide-binding domain identifi ed. It is present in the largest 
number of proteins and is associated with the formation 
of signalling complexes on the plasma membrane. Recent 
studies identified other novel phosphoinositide-binding 
domains (Fab1p, YOTB, Vps27p, EEA1, Phox homology 
and epsin N-terminal homology (ENTH)), extending the 
functional versatility of the pathway (Fig. 2). 

Therefore, targeting PI3K, the most proximal pathway 
component, is expected to present advantages over target-
ing more distal components such as AKT and mTOR. 
Inhibitors of PI3K diminish signalling to Rac as well as 
AKT, providing a broader inhibition of downstream signal-
ling than distal inhibition.

The validation of PI3K as a drug target comes from dif-
ferent genetic sources. MEFs from p110–/– mice showed 
impaired tyrosine kinase signalling coupled to growth 
factors and are resistant for transformation with many ty-
rosine kinase oncogenes and Ras [31]. Although PIK3CB 
does not seem to be the target of mutations, it is activated 
in tumours with PTEN mutations. Indeed, tumours with 
PTEN mutations can be inhibited by selective targeting of 
PIK3CB [32, 33]. Thus, while targeting PI3K is expected 
to reverse the effects of PI3K mutations and PIK3CA 

Fig. 1 General scheme of the PKB/AKT pathway
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amplifi cation, targeting both PI3K and PI3K might be 
required for optimal effi cacy in PTEN mutant tumours. 
PI3K and PI3K may be particularly important in blood-
derived neoplasms [33].

RAS 

Activating point mutations in the genes encoding the Ras 
subfamily of small GTP-binding proteins contribute to the 
formation of a large proportion of human tumours [34]. 
The expression of this active version of Ras promotes 
tumour initiation by activating at least three different ef-
fectors: Raf, PI3K and RalGEFs [35–39]. Raf is a serine/
threonine kinase that is localised to the plasma membrane 
from the cytoplasm and activated by GTP-Ras. Activated 
Raf proteins then initiate a MAP kinase (MAPK) signal 
transduction cascade leading to transformed morphologies, 
anchorage-independent growth and angiogenesis [38, 40]. 
Finally, the RalGEFs family of guanine exchange factors 
are activated via their recruitment to the plasma membrane 
by GTP-Ras [41]. In human cells it has been reported that 
the Ras effector pathways MAPK, RalGEF and PI3K are 
required to initiate tumour growth [42–45]. Conversely, 
activation of the PI3K/AKT pathway replaced Ras once tu-
mours formed, although other effectors were still activated 
independently of Ras, presumably by factors provided upon 
the establishment of the tumour microenvironment. Thus, 
as tumorigenesis progresses the addiction of cancers to 

their initiating oncogene is reduced to, at least in the case 
of Ras, the PI3K/AKT pathway [45]. The genetic proof of 
the PI3K pathway relevance in ras-induced transformation 
was provided by Gupta and co-workers [46]. They gener-
ated mice with a mutant PI3KCA unable to interact with 
Ras. Cells from these mice show proliferative defects and 
selective disruption of signalling from growth factors to 
PI3K. They are highly resistant to endogenous Ras onco-
gene-induced tumorigenesis. The interaction of Ras with 
p110 is thus required in vivo for certain normal growth 
factor signalling and for Ras-driven tumour formation [46]. 
However, recent data from mouse models suggest that 
PI3K inhibitors effi ciently block PI3K mutant-dependent 
lung tumours, but not tumours induced by oncogenic Ras 
[47]. However, combined PI3K and MEK inhibitor treat-
ment effi ciently blocks ras-dependent tumours. These data 
are consistent with those of Yu et al. [48], who found that 
PI3K inhibition resistance in cells is mainly determined by 
MEK pathway activation.

PI3K pathway in tumours 

The PTEN/PI3K pathway is highly involved in cancer. 
PTEN activity is lost by mutations, deletions or promoter 
methylation silencing at high frequency in many primary 
and metastatic human cancers [10, 49]. Germline mutations 
of PTEN are found in Cowden, Bannayan-Riley-Ruvalcaba 
and Proteus-like syndromes, all familial cancer predisposi-

Fig. 2 General scheme of the alternative signalling to canonical AKT activation
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tion syndromes [50–53]. Recently, many activating muta-
tions have been described in the PI3KCA gene (coding 
for the p110 catalytic subunit of PI3K) to be present in 
human tumours [49, 54]. The three most frequently ob-
served PI3-kinase mutations: E542K, E545K and H1047R, 
showed enhanced catalytic activity [55], comparable to 
membrane-bound myr-p110. They are able to constitu-
tively activate AKT and produce transcriptional activa-
tion. These enhanced biochemical capabilities translate to 
enhanced oncogenic activity of the PI3K mutants [56, 57]. 
Mouse models expressing activating mutations of PI3KCA 
found in human lung tumours (p110–1047H) have been 
reported to produce lung adenocarcinomas. These tumours 
revert upon cessation of mutant PI3K expression [47]. We 
have targeted p110 to the cellular membrane activating 
PI3K in the mammary glands of transgenic mice [58, 59]. 
These mice are prone to spontaneous neoplasias [60, 61]. 
The oncogenic mutations have only been detected in the 
PI3KCA gene (p110 isoform), despite the observations 
that the activation, by membrane tagging, of all the class I 
PI3K isoforms have oncogenic potential [22, 56, 57].

Activation without mutations of PI3K are reported to oc-
cur in breast [62–64], ovarian [63, 65, 66], pancreatic [67], 
oesophageal [68], thyroid [69] and other cancers [49, 70].

This pathway is unique in that every major node is 
frequently mutated or amplifi ed in a wide variety of solid 
tumours. Receptor tyrosine kinases upstream of PI3K, the 
p110, AKT and the negative regulator PTEN are all fre-
quently altered in cancer. Several other genes of the path-
way can act as tumour suppressors such as TSC1, TSC2 
or LKB1, which carry germline familial mutations, FOXO 

proteins and, probably, the phosphatases PHLPP and SHIP 
(Fig. 3).

However a closer analysis of some mutations in this 
pathway indicated there is no mutual exclusivity but in many 
cases coexisting mutations [71]. Coexistence of two or more 
PI3K pathway mutations in a single tumour would suggest 
differences in oncogenic mechanisms, given that there would 
be no selective advantage for cells bearing redundant muta-
tions. Overall, PI3KCA mutations and PTEN loss coexist 
in breast, endometrial and colon cancers. Ras and PI3KCA 
mutations are mutually exclusive in endometrial cancers but 
coexist in colorectal cancers. This suggests that constitu-
tively active RAS and PIK3CA may function synergistically 
in the colorectal epithelium to confer an important selective 
advantage [71]. In breast, HER2 is amplifi ed in 30% of tu-
mours [72] and appears to coexist with both PIK3CA muta-
tions and PTEN loss. In fact, the coexistence of PTEN loss 
and HER2 amplifi cation was critical to understanding trastu-
zumab resistance in HER2-positive breast cancers [73–75]. 
This suggests that PTEN loss and HER2 overexpression 
have redundant abilities to activate PI3K [71]. 

These data suggest that although PI3K may be a good 
target for therapeutic intervention, we have to be careful to 
understand the redundancy mechanisms before application 
to a specifi c subset of patients.

Therapeutic implications

The PI3K inhibitors LY294002 and wortmannin, both 
targeting the catalytic site of p110, have been largely used 

Fig. 3 General overview of PI3K pathway alterations found in human tumours
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as research tools to elucidate the value of PI3K as a thera-
peutic target. LY294002 and wortmannin have been found 
to be rather non-selective at active concentrations and pres-
ent a toxic profi le unsuitable for human testing [76–78]. 
However, some derivatives of these compounds have been 
generated and promoted to clinical testing. SF1126 is a wa-
ter-soluble prodrug of LY294002 conjugated to a targeting 
peptide designed to increase solubility and bind to tumour 
vasculature [79]. This targeted prodrug enhances tumour 
delivery of the active inhibitor, improving antitumour effi -
cacy and tolerability in xenograft models. LY294002 inhib-
its other kinases including mTOR, DNA-PK, PIM1, PLK1 
and CK2, and induces oxidative stress in cancer cells inde-
pendent of its PI3K inhibition. Phase I showed that SF1126 
was well tolerated with no grade 3/4 drug-related toxicities 
reported. Thirty percent of patients showed stable disease 
for 8 weeks. Pharmacokinetics studies showed active 
hydrolysis of the product to LY294002 with evidence of 
target pathway inhibition and rapid clearing after termina-
tion [80]. 

Prodrugs of wortmannin have also been developed 
intended to extend its half-life in biological systems, and 
analogues created, which improve its pharmacologic prop-
erties [81]. PX-866 and PWT-458 are irreversible semi-
synthetic PEGylated derivatives of wortmannin selective 
for the PI3K,  and  isoforms [82, 83] that have higher 
therapeutic index in preclinical animal models compared 
to the parent compound. PX866 has also been included in 
phase I tests during 2008.

Many ATP derivative compounds have been found 
through screening campaigns and developed by MedChem 
with varying specifi city for PI3K isoforms and other PIK 
family members, and their selectivity profi les have been 
determined through extensive profiling [77, 84]. Thus, 
many imidazopyridines, pyridopyrimidines, quinazolyne 
derivatives, thiazoles, azolepyrimidine derivatives and 
other chemotypes have been claimed as PI3K inhibitors 
[78]. Despite this, few compounds exhibit pharmacologic 
profi les suitable for advancement beyond preclinical testing 
[84]. These compounds are reported to be panClass I in-
hibitors with IC50 at nanomolar range [84]. Many of them 
are non-selective towards mTOR and DNA-PK [84]. All of 
them showed classic PI3K pathway inhibition in cells and 
in vivo, and are reported to possess antitumour activity in 
several xenograft models [2, 77, 85]. Overall, the activity 
of these ATP-competitive PI3K modulators translates well 
to in vivo models of human cancer. They are well toler-
ated and displayed disease stasis or even tumour regression 
when administered orally [86–88].

XL147 is a selective inhibitor of class I PI3K isoforms. 
In preclinical cancer models XL147 is cytostatic or cy-
toreductive as monotherapy and enhances the effi cacy of 
targeted agents and chemotherapeutics [89, 90]. A phase 1 
dose escalation study assessed the safety, pharmacokinet-
ics, pharmacodynamics and effi cacy of this compound in 
advanced solid tumours. XL147 was generally well toler-
ated, with the most common drug-related toxicity being 

skin rash. However, some grade 3 toxicities were observed 
[91]. A trend suggesting augmented food-induced changes 
in insulin was evident; however, glucose was minimally 
affected. XL147 reduced levels of phosphorylated PI3K 
pathway components in surrogated tissues and tumours 
in an exposure-dependent manner. In 2 patients dosed at 
the MTD, reductions of 70% in PI3K pathway signal-
ling were observed in tumour tissue without compensatory 
upregulation of MEK/ERK phosphorylation. Prolonged 
stable disease for more than 6 months has been observed in 
9 patients including 4 NSCLC [91]. 

XL765 is a potent and dual inhibitor of class I PI3K 
isoforms and mTOR. XL765 has shown dose-dependent 
target modulation and tumour growth inhibition or shrink-
age in multiple human xenografts [92, 93]. Thirty-four 
patients have been dosed with XL765 at different regimens 
[94]. The most common drug-related adverse events were 
elevated liver enzymes, nausea and diarrhoea. XL765 
augmented food-induced increases in plasma insulin, but 
not glucose, in an exposure-dependent fashion. Robust 
pharmacodynamic modulation of PI3K pathway signalling 
in surrogated tissues and tumours was evident following 
administration of XL765. Five patients had durable stable 
disease for more than 3 months [94]. 

GDC-0941 is a potent and selective oral inhibitor of 
class I PI3K with 3 nM IC50 for the p110 subunit in vitro 
and 28 nM IC50 in a cell-based pAKT assay and demon-
strates broad activity in breast, ovarian, lung and prostate 
cancer models [84]. A phase I dose escalation study was 
performed in patients with solid tumours. GDC-0941 was 
generally well tolerated with no drug-related grade 3 or 4 
toxicities observed. Grade 1 diarrhoea, nausea, dysgeusia, 
peripheral sensory neuropathy, dry mouth, thrombocytope-
nia and increased aspartate aminotransferase have been 
observed [95]. Preliminary data show decreased levels of 
pAKT in platelet-rich plasma correlating with GDC-0941 
plasma concentrations. GDC-0941 effects on FDG-PET 
imaging are being assessed, with 1 patient with HER2+ 
metastatic breast cancer showing a reduction in FDG up-
take and improvement of a chest wall lesion. GDC-0941 
is generally well tolerated when administered at doses as-
sociated with inhibition of pAKT in surrogate tissues. Evi-
dence of activity in tumour tissue has also been observed. 
Potential signs of anti-tumour activity have been observed 
in approximately 20% of patients [96]. 

BEZ235 and BTG226 are potent and dual PI3K-mTOR 
oral inhibitors with low nM IC50 for the PI3K and the 
mTOR activity in vitro and 15 nM IC50 in a cell-based 
pAKT assay. However, BEZ235 also shows strong DNA-
PK inhibition. Both compounds entered phase I testing. A 
phase I/II, multicentre, open-label study of BEZ235, ad-
ministered orally on a continuous daily dosing schedule in 
adult patients with advanced solid malignancies, followed 
by a safety expansion part and a phase II expansion part in 
breast tumours is currently ongoing. An effort will be made 
to enrich the trial population with Cowden syndrome pa-
tients with advanced solid malignancies [97].
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CAL-101 (IC87114) is the only isoform-specifi c in-
hibitor reported to be in clinical trials for haematologic 
malignancies. CAL-101 specifically inhibits the PI3K 
[98]. The PI3K p110 isoform is highly expressed in cells 
of haematopoietic origin and plays a key role in B-cell 
maturation and function. CAL-101 is a potent inhibitor 
of PI3K p110 (IC

50
=65 nM) with 40–300-fold selectiv-

ity compared to other PI3K isoforms. In vitro studies of 
CAL-101 showed inhibition of pAKT expression and/
or apoptotic effects against primary chronic lymphocytic 
leukaemia (CLL) and acute myeloid leukaemia (AML) 
cells and against a range of leukaemia and lymphoma 
cell lines. In an ongoing phase 1 dose escalation study in 
patients with relapsed/refractory CLL or select B-cell non-
Hodgkin’s lymphoma, CAL-101 was administered orally 
twice daily for 28 days per cycle. No treatment-related ad-
verse events greater than grade 1 have been seen. Two of 6 
patients attained partial response and 4 have stable disease. 
Partial responses were observed after 2 cycles of 50 mg in 
a patient with mantle cell lymphoma with 6 prior therapies, 
and after 1 cycle of 100 mg in a patient with follicular 
lymphoma with 6 prior therapies, including autologous 
stem cell transplant. Early results from a phase 1 study of 
the oral PI3K p110 inhibitor CAL-101 show that it is well 
tolerated and has preliminary clinical activity in patients 
with B-cell malignancies [99].

Therapeutic combinations

The inhibitors of PI3K sensitise cancer cells to various 
types of conventional chemotherapy. LY294002 increases 
cytotoxicity induced by antimicrotubule agents such as 
taxanes and vinca alkaloids in glioma, ovarian cancer, oe-
sophageal cancer, sarcoma and lung cancer cells in vitro 
and in vivo [100–103]. Wortmannin treatment sensitised 
cells to paclitaxel, cisplatin, gemcitabine or 5-fl uorouracil 
[100, 104, 105], where potentiation of apoptosis caused 
by wortmannin was associated with inhibition of AKT 
activation. Potentiation of gemcitabine-induced apoptosis 
by PI3K inhibitors was associated with decreased Akt 
phosphorylation and increased levels of BAX in mito-
chondria [103]. Additionally, several studies have identi-
fi ed PI3K inhibitors as radiosensitisers and augmentation 
of radiation-induced cytotoxicity has been observed with 
suboptimal doses of wortmannin [106, 107] and LY294002 
(Blanco and Carnero, Unpublished results). Similar results 

have been observed in vitro and in vivo between other PI3K 
inhibitors and many cytotoxic treatments used in oncologic 
therapy today [77].

Another possible approach is to combine inhibition of 
the PI3K/AKT/mTOR pathway with inhibition of a paral-
lel prosurvival signalling pathway such as the MEK/ERK 
pathway [108]. This approach abrogates compensatory 
activation of other prosurvival pathways when the PI3K/
AKT/mTOR pathway is inhibited. For example, combin-
ing an inhibitor of PI3K with an inhibitor of MEK causes a 
synergistic increase in apoptosis in both PTEN mutant and 
wild-type cells [109]. Cancer cell lines with mutant PTEN, 
which have high levels of AKT, are resistant to EGFR an-
tagonists such as gefi tinib and treatment with LY294002 
restores gefi tinib sensitivity [109]. Many different PI3K in-
hibitors can restore sensitivity to EGFR inhibitors. NSCLC 
cells transfected with gefi tinib-sensitising EGFR mutations 
had increased levels of activated Akt and these cells were 
more sensitive than their wild-type counterparts not only to 
gefi tinib, but also to LY294002 [110]. PX-866 was able to 
abolish gefi tinib resistance in NSCLC xenografts [111]. 

Another potentially useful combination is proximal 
inhibition of erbB2, with distal inhibition of PI3K, AKT 
or mTOR. Inhibition of AKT phosphorylation is a require-
ment for the anti-proliferative effects of the erbB2 antago-
nist, trastuzumab, and trastuzumab-resistant cells exhibit 
sustained activation of the PI3K/AKT/mTOR pathway 
[73, 112]. In breast cancer cell lines and xenografts, PI3K 
inhibitors restored sensitivity to trastuzumab, concomi-
tant with induction of apoptosis and inhibition of tumour 
growth [88, 113]. In addition to combining PI3K/AKT/
mTOR inhibitors with agents that inhibit either the same 
or parallel prosurvival signalling pathways, PI3K/AKT/
mTOR inhibitors have also been combined with targeted 
agents that defy easy categorisation such as imatinib and 
those that do not directly affect signalling pathways, such 
as histone deacetylase (HDAC) inhibitors [114, 115] and 
proteasome inhibitors [116]. Although the mechanisms be-
hind the effi cacy of these combinations are not completely 
understood, they represent potentially useful combinations 
for patients whose tumours do not respond to more conven-
tional therapy regimens.
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