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Abstract
The present study was conducted to test the efficacy of Serendipita indica in Brassica juncea against cadmium (Cd) stress. Cd 
is a trace element that enters into plants through contaminated soil. Serendipita indica is a fungal endophyte which colonizes 
and benefits exceptionally large group of plants. Roots of 3-days old B. juncea seedlings were inoculated with S. indica and 
raised in toxic Cd concentrations (10 µM, 30 µM and 50 µM Cd) till 12 days after inoculation in plant growth chamber with 
conditions of 16-h light/8-h dark photoperiod, temperature 25 °C (± 2 °C) and 80% relative humidity. The seedlings were 
tested for various morpho-physiological parameters like seed germination, plant biomass and %age heavy metal tolerance 
index. Also, various non-enzymatic antioxidants like vitamin A, vitamin C, phenols, flavonoids, total soluble sugars, reduc-
ing and non-reducing sugars were analyzed. Cd led to reduction in the % age germination of B. juncea seeds. Serendipita 
indica inoculation incremented the growth parameters like fresh weight, dry weight, root length, shoot length which were 
diminished by Cd stress. Enhancement of 20.66% in root length was observed in inoculated and Cd stressed seedlings. The 
content of phenols increased under unstressed conditions by 26.6% and by 55.29% under Cd stressed conditions in S. indica 
inoculated seedlings along with increasing contents of vitamin A and C. Overall, the content of carbohydrates was enhanced 
with S. indica inoculation. The study suggests that S. indica endophyte has great potential in boosting growth and physi-
ological parameters which help in managing Cd stress in B. juncea.
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Introduction

Plants develop mutualistic relationships with a wide array 
of microorganisms residing internally or externally in 
their vicinity [1]. Fungal root endophytes are microorgan-
isms that harbor inside the plant roots without causing 
any apparent damage, thereby forming a symbiotic type of 
association [2, 3]. These symbiotic fungal root endophytes 
have gained significant attention because of their poten-
tial role in promoting the growth of the plants they reside 
in, along with inculcating stress tolerance against various 
environmental stressors [4–6]. Among the various known 
endophytes, S. indica (also known as Piriformopsora 
indica) has gained significant attention as it has emerged 
as an intriguing candidate to promote plant growth by 
enhancing nutrient acquisition, hormonal production, and 
shielding against environmental adversities [7, 8]. Seren-
dipita indica has been a popular endophyte ever since its 
discovery in the rhizospheric zone of the woody shrubs 
Prosopis juliflora and Zizyphus nummularia in the Thar 
Desert of northwestern India [9]. Serendipita indica is 
characterized by producing pear-shaped chlamydospores 
and belongs to the order Sebacinales (Basidiomycota) [9]. 
It tends to produce axenic cultures and colonize a broad 
spectrum of plant species [7–10]. Owing to the remarkable 

versatility of S. indica, its symbiotic association with the 
roots of plants underscores its potential to help plants 
combat environmental stress conditions and fortify plants’ 
capacity to retaliate against stressors, thereby presenting 
itself as a potential sustainable candidate for agricultural 
productivity enhancement.

Plants in their natural environment are posed with 
numerous conditions of environmental stress and heavy 
metal stress is one of the major condition of stress that 
plant experiences [11]. Elevation in anthropogenic activi-
ties like mining, coal burning, use of chemical fertiliz-
ers, pesticides, paint industries, automobile industries, 
and many more has posed a significant threat to all living 
organisms by increasing the levels of environmental pollu-
tion by infiltrating the soil–water system with an immense 
amount of pollutants [11, 12]. Heavy metal pollution has 
become a pressing issue in the environmental and agricul-
tural sciences, as it poses serious implications for plants 
because of their sessile nature [13]. Cadmium (Cd) is one 
such heavy metal that holds no biological significance and 
is known to cause toxicity symptoms even at minute con-
centrations like 0.001–0.1 mg/L [14]. Cd is a trace ele-
ment with a high density that does not undergo decompo-
sition and thus persists in the main sink of contamination, 
which is soil, thereby posing serious health implications 
to organisms at almost all trophic levels [15–17]. In plants, 
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Cd toxicity disrupts the metabolic machinery of plants 
by impacting enzyme activities, photosynthesis, mineral 
nutrition, and redox homeostasis, leading to oxidative 
stress due to imbalance in reactive oxygen species (ROS), 
DNA damage, and finally impacting yield by reducing 
the overall growth parameters [11, 18, 19]. Therefore, Cd 
toxicity is a serious threat to plants as they cannot escape 
contaminated soils and have to develop a shielding ten-
dency against such stressors, and this defensive property 
can be built with the help of root endophytes like S. indica.

Brassica juncea (Indian Mustard) is an essential oilseed 
crop belonging to Brassicaceae and is widely utilized as 
an as an agricultural crop across the globe. Although B. 
juncea, being a hyperaccumulator, has a high tolerance 
for Cd, the growth parameters decline significantly [20]. 
Therefore, there is a need to add to the shielding capac-
ity of B. juncea against Cd stress. S. indica is known to 
shield a variety of plants against different heavy metal 
stressors like zinc (Zn), lead (Pb), Cd, nickel (Ni), arsenic 
(As), and copper (Cu) [21–23]. S. indica helps plants fight 
against HM stress by inhibiting the uptake of metals, effec-
tive sequestration, enhancing the efficiency of antioxidant 
defense system to overcome oxidative stress, improving 
accumulation of osmolytes, improving morpho-physiolog-
ical characters, photosynthetic efficiency and strengthen-
ing the non-enzymatic antioxidant defense mechanism 
of plants thereby improving overall growth and metabo-
lism [21–25]. A large amount of contaminants, like Cd, 
in the soil challenges food security by directly targeting 
the vitality of the crops. Also, the use of synthetic ferti-
lizers and other yield-promoting chemicals will deterio-
rate soil health. Therefore, it has become a pressing issue 
that demands an urgent search for a sustainable solution. 
Therefore, it will be interesting to explore the role of S. 
indica as a root endophyte in B. juncea against Cd stress.

The study endeavors to present a sustainable solution to 
enhance B. juncea’s resilience against Cd toxicity, which is 
in coherence with the United Nations Sustainable Develop-
ment Goals (SDGs), specifically SDG 2 (zero hunger) and 
SDG 3 (good health and well-being) by promoting food 
security through a sustainable approach like S. indica inocu-
lation. Furthermore, it also relates to SDG 15 (Life on Land), 
which emphasizes protecting the ecosystem where soil and 
plants are integral parts. Therefore, utilizing S. indica can 
be beneficial in protecting plants from Cd toxicity and pro-
moting their growth sustainably, thereby aligning with the 
objectives of the SDGs. The present study seeks to add to 
the existing reservoir of knowledge on the potential role of 
fungal root endophytes (S. indica) in developing resilience 
in B. juncea exposed to Cd toxicity and present a sustainable 
opportunity to shield crops against stress by employing root 
endophytes. The present research aims to test efficacy of S. 
indica inoculation in roots of B. juncea for improving vari-
ous morpho-physiological parameters along with enhanc-
ing various non-enzymatic defense parameters like phenols, 
flavonoids, sugars and vitamin contents which prove to be 
beneficial in overcoming Cd stress conditions.

Materials and Methods

Culturing and Inoculation of Fungal Endophyte, 
Preparation of Plant Material

Culturing of S. indica was done using composition of Hill 
and Kafer medium and pH was set at 6.5 [26]. Liquid cul-
tures used for inoculation were obtained at temperature condi-
tions of 28 °C at 120 rpm for 3–5 days in a shaking incuba-
tor (Fig. 1A). Seeds of B. juncea cv RLC-3 were procured 
from Department of Plant Breeding and Genetics, Punjab 

Fig. 1  Schematic representation of culturing and colonisation of S. indica in B. juncea (A) Cultures of S. indica (B) Root colonisation in B. jun-
cea (C) Morphology of inoculated and non-inoculated roots (visible enhanced differentiation)
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Agricultural University, Ludhiana. Seeds were surface steri-
lised using 0.05% sodium hypochlorite for about 15 min fol-
lowed by washing with double distilled water (DDW). The 
seeds were sowed over petri-plates lined with whatman filter 
paper containing different concentrations of Cd (10, 30, 50 µM 
 CdCl2).The seeds were raised for three days and three days old 
seedlings were inoculated with liquid cultures of S. indica and 
then transferred to germinating towel sheets (14.5 × 42.5 cm) 
following cigar roll method and double distilled water was 
taken as physiological control (CN). The germinating towel 
rolls were transferred to beakers containing 500 ml solutions 
of aforementioned Cd concentrations. The seedlings were 
raised as three biological replicates in plant growth chamber 
with conditions of 16-h light/8-h dark photoperiod, tempera-
ture 25 °C (± 2 °C) and 80% relative humidity. The harvesting 
of seedlings of B. juncea was done 12 days after inoculation 
(DAI). The inoculation in seedlings was checked through 
microscopic studies using light microscope. For staining, 
the roots of B. juncea were harvested and washed with DDW 
and stored in 10% potassium hydroxide (KOH) followed by 
normalization with 1N hydrochloric acid and the roots were 
stained using 0.02% trypan blue later observed under light 
microscope at at 40 × magnification (Fig. 1B).

The following combinations were studied Double distilled 
water Control (CN), 10 µM Cd, 30 µM Cd, 50 µM Cd, S. 
indica inoculated, S. indica + 10 µM Cd, S.indica + 30 µM Cd 
and S.indica + 50 µM Cd.

%age Seed Germination

The seeds were deemed to have germinated when the radical 
was at least 1 cm long. The seed germination rate was calcu-
lated 72 h after treatment. The germination rate (%) was equal 
to the number of germinated seeds at 72 h/total number of 
seeds (%). It was calculated as: Number of seeds that germi-
nated/Total number of seeds × 100.

Estimation of Seedling Biomass

For the purpose of evaluating fresh weight (FW), dry weight 
(DW), shoot length (SL), root length (RL), and other param-
eters of 50 seedlings from each treatment in three biological 
replicates were chosen. The RL and SL were manually meas-
ured in centimeters (cm) and their FW was calculated using a 
weighing balance. Seedlings were dried in an oven at 70 °C for 
48 h before being weighed to determine their DW. The units of 
DW and FW were recorded in milligrams (mg).

%age heavy metal tolerance index:

Dry weight of treated plants∕Dry weight of untreated plants × 100

Total Soluble Sugar, RS and NRS

Total soluble sugar (TSS) content was determined following 
the method of Ref. [27]. A 0.5 g dried sample was homoge-
nized in 80% ethanol and centrifuged at 3000 × g for 15 min. 
After that, ethanol extract (50 µL) was mixed with 0.95 mL 
distilled water, and 3 mL cold anthrone reagent was added 
with continuous shaking. The reaction mixture was heated 
in boiling water for 10 min, cooled rapidly, and the optical 
density was measured at 630 nm. The estimation of reduc-
ing sugars (RS) was performed using the [28] method and 
determining absorbance at 620 nm using a spectrophotom-
eter (Beckman 640 D, USA). Non-reducing sugar (NRS) 
content was determined by subtracting the amount of reduc-
ing sugars from the total soluble sugars, and the results were 
expressed as mg/g DW tissue.

Vitamin C and A

Ascorbic acid content in fresh tissue was determined fol-
lowing [29] by homogenizing 500 mg of tissue in metaphos-
phoric Citrate Buffer (pH 5.4) and centrifuging at 3000 × g 
for 5 min. The resulting extract (2 mL) was mixed with 8 mL 
of 2, 6-Dichlorophenol Indophenols dye, and ascorbic acid 
concentration was quantified at 530 nm, reported in mg  g−1 
FW. Vitamin A estimation was performed using the method 
described by Ref. [30]. For extraction, 1 g of fresh shoot tis-
sue was homogenized in 1.0 mL of 2 N KOH in 90% alcohol 
followed by heating and later cooling. The extraction was 
done using 10 ml of petroleum ether in separating funnel 
and the 5 ml of aliquot of the extract of petroleum ether was 
evaporated at 60 °C followed by addition of 1 ml of chlo-
roform and for estimation 2 mL of trichloroacetic acid was 
added and absorbance was taken at 620 nm and results were 
calculated using standard vitamin A.

Total Phenol Content and Total Flavonoid Content

The method for extracting and measuring total phenol con-
tent (TPC) and total flavonoid content (TFC) followed the 
procedure outlined by Jaafar et al. 2010. In brief, 0.5 g of 
plant tissue was homogenized in 3 mL of methanol. After 
centrifuging the homogenate at 5000 rpm for 10 min, used 
the supernatant for quantification. For total phenolics, 
200 µl of the extract was mixed with Folin–Ciocalteu rea-
gent (1.5 mL) and left at 22 °C for 5 min before adding 
sodium carbonate (1.5 mL). The final mixture was incubated 
in the dark at room temperature for 60 min, and measured 
absorbance at 725 nm. Results were expressed as μg  g−1 DW 
and gallic acid was used as stamdard. For total flavonoid 
determination, a sample of 1 mL was mixed with  NaNO3 
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(0.3 mL) in a covered test tube, followed by the addition of 
10%  AlCl3 (0.3 mL) and 1 M NaOH (2 mL). The absorb-
ance of this mixture was measured at 510 nm using rutin as 
a standard, and the results were expressed as μg  g−1 DW.

Statistical analysis

Statistical analyses were performed using Graph Pad Prism 
v8, with one-way ANOVA and Tukey’s test (p < 0.05) for 
multiple comparisons. Standard deviation is represented by 
the error bar (SD ≤ 0.05). A significant difference has been 
marked by the stars above the bars. The experiment was 
conducted in three biological duplicates.

Results

Inoculation with S. indica Helps to Improve 
the Growth Parameters of B. juncea Seedlings Under 
Cd Stress

Seed germination, seedling vitality, and optimum biomass 
are considered to be essential traits that determine the effi-
cient productivity of the plant in the field. Therefore, any 
condition of stress during the initial phase of growth proves 
to be deteriorating for the plants. The seed germination per-
centage was calculated in the present study to underpin the 
effect of different concentrations of Cd on seed germination, 
and the results were compared with CN. %age seed germina-
tion was found to be reduced in all three Cd concentrations 
(10 µM, 30 µM and 50 µM Cd), and the highest decline in 
seed germination was found in 50 µM Cd-stressed B. juncea 
seeds, which presented a decline of 31.52% as compared to 
that of CN seedlings. The seedlings after root emergence 
were inoculated with S. indica, and the remaining param-
eters were analyzed. The plant biomass parameters decline 
significantly (Table 1).

Furthermore, a noticeable decline in RL and SL was 
observed in the case of metal-stressed seedlings, where 
it was found that a significant decrease in RL of 27.44%, 
23.17%, and 33.24% was found in 10 µM, 30 µM, and 50 µM 
Cd-exposed seedlings, respectively, as compared to CN 
(Fig. 2A). However, it was observed that inoculating seed-
lings with S. indica helped in mitigating the impacts of Cd 
stress in B. juncea seedlings. RL was found to increase in 
the case of inoculated seedlings as compared to Cd-stressed 
seedlings, and maximum enhancement was found in the 
case of 50 µM Cd-exposed inoculated seedlings, which was 
20.66% higher as compared to metal treatment of 50 µM Cd. 
Also, a visibly more differentiation in root morphology was 
evident in S. indica inoculated roots (Fig. 1C). Similarly, in 
case of SL of B. juncea seedlings, a maximum decline of 
40.42% was observed at 50 µM Cd, which was the highest 

decline in SL as compared to CN seedlings (Fig. 2B). Again, 
an increasing trend was observed in SL when inoculated 
with S. indica which suggests the mitigation potential of 
this fungal endophyte against Cd stress in maintaining the 
morphology of the seedlings that were exposed to Cd stress 
right from germination.

FW and DW are other essential parameters of growth as 
they give an idea about the healthy biomass of the seedlings. 
Cd stress impacted the FW and DW of B. juncea seedlings, 
which is evident from the results. A declining trend in both 
FW and DW was observed when the concentration of Cd 
was increased from 10 to 50 µM, signifying a more delete-
rious impact of a higher concentration of the heavy metal 
Cd (Fig. 2C & D). Nevertheless, S.indica + 30 µM and S. 
indica + 50 µM showed an increase in DW of 22.96% and 
22.67%,respectively, as compared to the respective Cd con-
centrations of 30 µM Cd and 50 µM Cd exposed seedlings 
of B. juncea (Fig. 2D). Maximum enhancement of FW was 
found at S.indica + 50 µM Cd treatment, which was 9.13% 
higher as compared to only 50 µM Cd treatment (Fig. 2C). 
Owing to the improved DW by S. indica inoculation, the 
percentage heavy metal tolerance index was found to be 
improved as compared to the respective Cd stress conditions.

Carbohydrate Machinery Improved with S. indica 
Inoculation

TSS is the ultimate source of energy for plants and is read-
ily available for utilization. Under Cd-stressed seedlings, 
it was evident from the results that a reduction in TSS was 
found as compared to CN seedlings, and the maximum 
reduction was at 50 µM Cd, which was an 18.55% decline 
as compared to Cd, which signifies the deleterious impact 
of Cd on photosynthesis and ultimately TSS (Fig. 3A). 
Furthermore, the S. indica inoculated seedlings demon-
strated an increment of 16.67% in TSS as compared to 
CN seedlings, along with improving the content of TSS 
in Cd-stressed seedlings, thereby giving a clear indica-
tion of an endophyte-mediated improved carbon energy 
source. An increase of 4.7%, 15.89%, and 25.08% was 

Table 1  Effects of S. indica on plant growth parameters and heavy 
metal tolerance index under different concentration levels of Cd

*P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001 indicate 
increasing levels of statistical significance

Traits Mean square values

RL 3.16****
SL 2.31****
FW 27355****
DW 630****
Heavy metal tolerance index % 816.4****
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found in S. indica inoculated in seedlings experiencing 
stress of 10 µM Cd, 30 µM Cd, and 50 µM Cd, respectively 
(Fig. 3A). Incoulation with S. indica helped in increasing 
the contents of RS, and an increment of 40.48% in RS 
was found as compared to CN seedlings (Fig. 3B). The 
content of RS was reduced under Cd-stressed seedlings, 
and the maximum decline was at 30 µM Cd, and this was 
increased by 10.06% when inoculated with the endophyte 
S. indica. A similar decrease in NRS content was evident 
in Cd-stressed seedlings of B. juncea, but the maximum 
decline was at 50 µM Cd, which was a 35.14% decrease 
as compared to CN seedlings, but inoculation of S. indica 
enhanced it to 30.52% as compared to metal-stressed seed-
lings (Fig. 3C).

Effect of S. indica + Cd on the Vitamin A and C 
Content of B. juncea Seedlings

The content of vitamin A was found to increase under the 
condition of Cd stress, which was 20.12%, 23.17%, and 6.7% 
increases in 10 µM Cd, 30 µM Cd, and 50 µM Cd treatments, 
respectively, as compared to CN seedlings (Fig. 4A). The 
least increase in vitamin A was at 50 µM Cd, which suggests 
toxic effects of Cd that weaken the machinery of plants after 
prolonged exposures. Serendipita indica inoculation helped 
to maintain levels of vitamin A and seedlings inoculated 
with S. indica exhibited a 19.51% increase in content as 
compared to CN seedlings. In the case of vitamin C content, 
similar trends of increase under Cd-stressed seedlings were 
observed and S. indica inoculated seedlings demonstrated 

Fig. 2  Effect of S. indica on seedling growth parameters under different Cd concentrations. Growth parameters: A RL (root length), B SL (shoot 
length), C FW (fresh weight), and D DW (dry weight)
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a notable increase of 6.33% as compared to CN seedlings 
(Fig. 4B).

Cd Stress Increases TPC and TFC

TPC is found to increase in conditions of heavy metal stress, 
which is a response of plants to act against any stressful con-
dition. These biomolecules act as excellent chelating agents 
and have tendency to act as ROS scavengers. An increase 
in TPC was found under all the treatments with Cd, and 
again, the maximum increase was evident in the 50 µM Cd 
treatment. Notably, the results revealed that S. indica inocu-
lation increased the levels of phenols as compared to CN 
seedlings but reduced the level in the case of metal-stressed 
seedlings as compared to their respective metal concentra-
tions. Serendipita indica inoculation enhanced the levels of 
TPC by 26.66% as compared to CN seedlings, which can 
provide evidence to explore S. indica for biofortification of 
B. juncea seedlings (Fig. 5A). Furthermore, the maximum 
increase in TPC in the combination of Cd and S. indica was 
found in S. indica + 30 µM treatment, which was 55.29% 
more as compared to the CN seedlings of B. juncea. Simi-
larly, in the case of TFC, an increase in content under Cd 
was evident from the biochemical results, and the S. indica 
inoculation demonstrated an increase of 9% as compared to 
CN seedlings of B. juncea (Fig. 5B). Also, in the case of Cd-
stressed seedlings inoculated with S. indica, it was observed 
that S. indica + 30 µM treatment showed an enhancement of 
28.13% as compared to the respective metal concentration 
of 30 µM Cd.

Overall, the results of this study revealed that S. indica is 
a potential endophyte for improving growth parameters in 
terms of FW, DW, RL, and SL. Also, S. indica inoculation 

Fig. 3  Effect of S. indica on carbohydrate content under different Cd 
concentrations. A TSS (total soluble sugars), B RS (reducing sugars), 
and C NRS (non reducing sugars)

Fig. 4  Effect of S. indica on vitamin A (A) and vitamin C (B) under 
different levels of cadmium (Cd) stress

Fig. 5  Effect of S. indica on phenol and flavanol content under differ-
ent levels of cadmium (Cd) stress. A TPC (total phenol content) and 
B TFC (total flavonoid content)
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improved the contents of sugar, which suggests the role of 
this endophyte in improving the energy source of seedlings 
even under Cd stress. Furthermore, managing the levels of 
TPC and TFC proves the efficacy of S. indica in mitigating 
the deleterious impacts of Cd stress as phenols are known 
to play roles of chelating agents and ROS scavengers along 
with other growth stimulating functions.

Discussion

Cd toxicity detrimentally impacts overall health of the plants 
[31]. It significantly declines the productivity of plants as 
it leads to oxidative burst due to Cd entry into plants, dis-
rupts cellular machinery, hinders metabolism and normal 
physiology of plants like mineral nutrition, thereby impact-
ing optimum governing of the metabolic processes [11, 
15, 31, 32]. Cd holds no biological role in plants therefore; 
any minute concentration of it will lead to toxic effects. 
The same has been evident in the results of present study 
where Cd impacted all the metabolic processes beginning 
from seed germination. The seed germination was found to 
decrease in the results of the study thereby suggesting the 
phytotoxic impacts of Cd on the reserve food materials of 
the seed which accelerates the reduction in seed germination 
%age [33–35]. Also, reduction in seed germination can be 
attributed to the detrimental effects of Cd on seeds’ reserve 
food and functioning of enzymes which trigger mobiliza-
tion of reserve food materials [33]. Similar reduction in seed 
germination has been observed in studies of Vigna radiata, 
Oryza sativa and Triticum aestivum [33–35]. Furthermore, 
Cd impacts the seedling growth which was evident from 
the reduction of SL and RL in B. juncea seedlings and the 
similar results have been obtained in O. sativa and mung-
bean seedlings thereby demonstrating the impacts of Cd on 
early seedling growth traits [33, 34]. Reduction in SL, RL, 
FW and DW was evident in C. cajan seedlings and T. aes-
tivum seedlings exposed to toxic levels of Cd [18, 36, 37]. 
The reduction in the biomass characteristics of early plant 
growth when exposed to Cd stress in present study suggests 
that even minimal concentration of Cd leads to deteriorat-
ing outcomes pertaining to seedling growth which directly 
impact the future plant health (Fig. 2). The reduction in 
growth parameters can directly be attributed to interference 
of Cd with cell division which leads to perturbed growth 
[38]. However, in order to build a strong retaliating capacity 
of B. juncea seedlings, inoculation with S. indica proved to 
be beneficial in ameliorating the growth parameters like RL, 
SL, FW and DW. The improved growth traits with S. indica 
inoculation have been reported previously in different plant 
species under variety of stress condition [39–41]. Addition-
ally, S. indica can be inoculated in broad spectrum of plants 

[42] and this study adds to the previous research of success-
ful colonization of S. indica in B. juncea [43].

One of the major targets during stress is carbohydrate 
content of a plant and sugar contents show fluctuation dur-
ing conditions of stress [44, 45]. Results of the present study 
revealed increase in TSS and RS content during mild toxic 
concentrations of Cd (10 µM Cd) and this further declined 
during higher Cd concentration (50  µM Cd) (Fig.  3). 
Increase in content of sugars has been reported under heavy 
metal stress condition as a response of plant to act against 
stress [44, 46]. Sugars act as vital energy sources for the 
plants and help them to combat stress condition along with 
acting as ROS scavengers and osmolytes during conditions 
of stress thereby adding to the stress management efficacy 
of the plants [45–50]. Reducing sugars have tendency to 
neutralize ROS being produced during stress, therefore, car-
bohydrates have dual role of scavenging ROS besides acting 
as energy sources [50]. Serendipita indica inoculation has 
been known to enhance the levels of carbohydrates in terms 
of TSS, NRS and RS under both stressed and unstressed con-
ditions [51, 52]. Nevertheless, this study adds to the existing 
reservoir of knowledge that S. indica inoculation helps in 
enhancing sugars in B. juncea.

Vitamin C is known to play several physiological func-
tions in living organisms along with acting as a potential 
antioxidant [53]. It has direct role to play in scavenging 
ROS and chelation of Cd ions [11]. The results of the pre-
sent study revealed that S. indica inoculation enhanced the 
levels of Vitamin C which helps in strengthening the non-
enzymatic antioxidant defense system of B. juncea seedlings 
under Cd stress along with promoting the nutritional value 
[54]. Contents of vitamin A were found to enhance under 
treatment of both Cd stress and S. indica inoculation. Endo-
phytes have been reported to enhance the levels of vitamins 
in various crops which pinpoints their role in shielding the 
plants as well as biofortification [55, 56]. Furthermore, this 
is pioneer study to report S. indica inoculation effect on vita-
min content in B. juncea seedlings under Cd stress which 
can be further explored and use S. indica as potent candidate 
of biofortification.

A substantial increase in TPC and TFC was detected in 
B. juncea seedlings with or without S. indica inoculation 
exposed to Cd stress conditions (Fig. 5). TPC and TFC act 
as essential metabolites in plants which are known to play 
variety of roles under heavy metal stress [57, 58]. They are 
essential chelating agents which help in sequestering Cd ions 
thereby preventing them to cause metabolic damage to plants 
[59]. Also, phenols and flavonoids have tendency to act as 
antioxidants and neutralize ROS which are produced during 
conditions of Cd stress and avoid any inevitable damage 
associated with them [57, 59, 60]. Increase in content in 
TPC and TFC is a strategy of plant to avoid any deleterious 
impacts of stress and similar results have been obtained by 
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Ref. [18, 59]. Serendipita indica inoculation is known to 
increase tolerance ability of plants under heavy metal stress 
by enhancing secondary metabolites like TFC and TPC 
[23]. Therefore, this study presents a significant evidence 
of enhancement of TPC and TFC with S. indica inoculation 
which is beneficial in improving chelating capacity of plants 
along with consolidating the antioxidant defense system of 
plants.

Role of endophyte S. indica can be greatly acknowledged 
in inculcating Cd stress tolerance in B. juncea seedlings as 
per the results of present study. Serendipita indica is reported 
to shield rice against Cd stress conditions as reported by 
Adil et al. [61], in soybean [62], wheat [63], fenugreek [64]. 
Serendipita indica helps in strengthening the healthy estab-
lishment of seeding stage of the crop which is necessary It 
is imperative to elucidate the molecular mechanisms under-
lying this potential of endophyte before its implications in 
fields under variable environmental cues.

Conclusion

The study tested the efficacy of S. indica inoculation against 
toxicity of Cd in B. juncea seedlings. The major advantage 
of utilizing S. indica in the study is that it is capable of pro-
ducing axenic cultures and inoculates with broad spectrum 
of plants and provides them immense benefits as obtained 
in B. juncea. Serendipita indica has been proved to be ben-
eficial in the present study as it improved overall growth 
parameters like RL, SL, FW and DW along with enhancing 
the carbohydrate levels which serve as source of energy for 
plants along with acting as non-enzymatic defense molecules 
to scavenge ROS. It also managed levels of vitamins, TPC 
and TFC which also have role in scavenging ROS which 
may be generated upon entry of Cd into B. juncea seedlings. 
The enhanced tolerance level of B. juncea against Cd stress 
helped in inculcating tolerance without compromising the 
growth which suggests S. indica can be utilized as microbial 
partner in phytoremediation as well as bioremediation pro-
cess. However, this study requires field experimental valida-
tions which are in progress. Overall, S. indica has potential 
to enhance capacity of B. juncea seedlings to overcome Cd 
stress without compromising its growth.
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