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Abstract  Bacterioruberin (BR) is a fat-soluble, dipolar, 
reddish pigment predominantly found in halophilic archaea. 
BR is a rare C50 carotenoid from the xanthophyll family, 
and it has been extensively studied for its potent antioxidant 
properties, such as its ability to protect cells from oxida-
tive stress. In addition, several studies have shown that BR-
rich extracts and its derivatives exhibit significant antiviral, 
antidiabetic, antibacterial, and anti-inflammatory effects, 
making them ideal candidates for the development of novel 
therapeutic interventions against various diseases. Although 
it possesses remarkable biological properties, studies related 
to the regulatory aspects of biosynthesis, in vitro and in vivo 
studies of purified BR have been rare. However, investiga-
tions are needed to explore the potential application of BR in 

various industries. Additionally, optimization of the culture 
conditions of BR-producing haloarchaea could pave the way 
for their sustainable production and utilization. The current 
review provides comprehensive information on BR, which 
includes the sources of this compound and its bioproduc-
tion, extraction, stability, toxicity, and biological activities 
in relation to its commercial applications. This review also 
discusses the potential challenges and limitations associated 
with BR bioproduction and its utilization in various indus-
tries. In addition, this treatise highlights the need for further 
research to optimize production and extraction methods and 
explore avenues for novel applications of BR in various sec-
tors, such as pharmaceuticals, food, and cosmetics.

 *	 Sathishkumar Ramalingam 
	 rsathish@buc.edu.in

	 Mouliraj Palanisamy 
	 moulirajpalanisamy@gmail.com

1	 Plant Genetic Engineering Laboratory, Department 
of Biotechnology, Bharathiar University, Coimbatore, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12088-024-01312-8&domain=pdf
http://orcid.org/0009-0007-1880-1817
http://orcid.org/0000-0002-3145-7324


	 Indian J Microbiol

1 3

Graphical Abstract 

Keywords  Bacterioruberin · C50-carotenoid · Xanthophyll · Haloarchaea · Antioxidant

Introduction

Carotenoids are an important class of plant-based pigments 
that occur ubiquitously in nature [1]. As of now, > 1200 
naturally occurring carotenoids have been identified and 
are distributed into two fragments: oxygenated carotenoids, 
known as xanthophylls and nonoxygenated carotenoids, 
known as carotenes. All these compounds have been iso-
lated from bacteria (especially Cyanobacteria), eubacteria, 
archaebacteria, fungi (yeast), algae (both micro- and mac-
roalgae) and higher plants [1–6]. Carotenoids are known to 
be involved in the reduction of free radicals, which helps 
to promote animal health by boosting the immune system 
and strengthening the endocrine system. However, since ani-
mals are unable to produce carotenoids, they need to obtain 
these compounds solely from their diet [5, 7]. Currently, the 
Carotenoids Database provides information on 1204 carot-
enoids, the majority of which have a C40 hydrocarbon skel-
eton (1121 carotenoids). However, there are fewer C30 (37 
carotenoids), C35 (5 carotenoids), C45 (13 carotenoids), and 
C50 hydrocarbon skeletons (33 molecules), and the number 
of these compounds is continuing to increase as researchers 
discover new forms of carotenoids [6, 8]. Those carotenoids 

with a C45 or C50 hydrocarbon skeleton are called higher 
carotenoids [4]. Decaprenoxanthin, a C50 carotenoid, was 
first isolated from Flavobacterium dehydrogenans in 1966 
and is the first carotenoid with more than 40 carbon atoms 
[1]. Since then, > 40 different kinds of higher carotenoids 
have been reported [4]. These higher carotenoid contents are 
mainly found in moderately to extremely halophilic archaea 
(halobacteria) [9]. Higher carotenoids are considered to be 
rare on the basis of their distribution among different taxa, 
and some of these carotenoids are C45 carotenoids, e.g., 
nonaflavuxanthin [10]; C50 carotenoids, e.g., bacterioru-
berin [11]; flavuxanthin [10, 12]; sarcinaxanthin [13, 14]; 
and decaprenoxanthin [12].

Bacterioruberin

Bacterioruberin (BR) is known to be a rare C50 carotenoid 
that is mainly found in halophilic archaea. BR is slightly or 
poorly soluble in water. It is a highly lipophilic molecule 
and can be dissolved in organic solvents and oils. It is 
a red‒orange xanthophyll pigment responsible for the 
coloration observed in halophilic organisms [15, 16]. 
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This carotenoid has 50 carbon atoms (C50) and possesses 
a longer system of conjugated double bonds than the 
C40 carotenoids often found in other organisms, such as 
plants, microalgae, fungi, and bacteria. Haloarchaea also 
contain C40 carotenoids, such as phytoene, lycopene, and 
beta-carotene, but in low quantities; these compounds 
are proposed to be the metabolic intermediates in the 
biosynthesis of C50 carotenoids [17]. The BR is known 
to serve as a highly diagnostic biomarker for halobacteria. 
It has been observed that some high-molecular-weight 
biomarkers could not be detected since they pose great 
challenges to analysing them by employing routinely 
used GC–MS techniques [18]. Carotenoids are known to 
play a crucial role in photosynthesis by absorbing light 
energy and protecting cells from harmful free radicals. 
On the other hand, BR not only provide antioxidant and 
sunlight protection activity but also aid in maintaining the 
structural integrity of bio-membranes when exposed to 
extreme salt concentrations. This unique adaptation allows 
halophilic archaea to survive in high-salinity environments 
[18]. It has been shown that C50 carotenoids, comparable 
to BR, are crucial for enhancing the stability of bio-
membranes in psychrophiles. Due to this cellular level 
adaptability, these organisms are adapted to survive at 
extremely cold temperatures and continue to perform 
cellular functions normally. Furthermore, the rigidity 
of the biomembrane afforded by C50 carotenoids may 
also guard against damage caused by unfavourable 
freezing and thawing conditions in the environment 
[19, 20]. In addition, BR is known to confer resistance 
to gamma irradiation, intense light, and DNA damage 
caused by ultraviolet (UV) irradiation, radiography, and 
H2O2 exposure [21]. The potent free radical scavenging 
properties of BR make it a suitable candidate for use as 
a feed supplement in the aquaculture industry [22]. The 
present review offers a comprehensive overview of BR, 
with a focus on its diverse sources, biosynthesis, extraction 
methods, storage conditions, stability profiles, potential 
toxicity, bioproduction processes, varied biological 
properties, and its applications. This review provides a 
depth of information into every aspect of BR and sets the 
groundwork for understanding and harnessing the potential 
of this unique compound. To the best of our knowledge, 
this is the first review of C50-carotenoid bacterioruberin.

History of Bacterioruberin

Helena Franciska Maria Petter, a microbiologist, 
significantly contributed to our understanding of halophiles 
through her doctoral thesis on halophilic microorganisms. 
She carried out her research at the University of Utrecht, 
Utrecht, Netherlands, in the 1930s. Her thesis is titled "Over 

roode en andere bacterieën van gezouten visch" (On red and 
other bacteria of salted fish) [11, 23]. Her research focused on 
studying various species of halophilic prokaryotes, primarily 
red pigment-producing members of the Halobacteriaceae 
population, which were isolated from salted fish and Trapani 
salt collected from a cannery in Bergen, Norway. Her 
isolates included rod-shaped bacteria as well as coccoid and 
sarcina-shaped bacteria. Her research included descriptions 
of "Bacterium trapanicum” and Bacterium halobium", 
which are currently known as Halobacterium trapanicum 
and Halobacterium salinarum, respectively. In 1932, she 
isolated two crystalline carotenoids, α-BR and β-BR, from 
a bacterium named Bacterium halobium [24]. Helena Petter 
was the first to isolate and name the pink-colored carotenoid 
of Halobacteriaceae as bacterioruberin [25].

Sources of Bacterioruberin

The natural sources of BR are archaea, such as haloarchaea 
or halophilic archaea, and a few other extremophiles, such 
as psychrophiles (Arthrobacter, Micrococcus), Azospirillum 
sp., and radioresistant bacteria (Rubrobacter) [26]. BRs 
are produced predominantly by most of the members of 
Halobacteriaceae and Haloferacaceae (Table  1). It is 
abundant in halobacteria, and these bacteria are ubiquitous 
in salty habitats such as salt lakes and evaporating seawater 
pools. Thus, BR could be valuable biomarker for identifying 
and studying these unique microbial communities [18]. 
Halobacteriaceae are easy to distinguish by Raman 
spectroscopy due to the presence of distinctive carotenoid 
pigments (BR and its derivatives) [27–29]. Using different 
analytical techniques, researchers have reported the presence 
of BR and its derivatives in diverse microorganisms. The 
various microbial sources of BR and its derivatives are listed 
in Table 1.

Deposition of Bacterioruberin in Animals

Flamingos and pelicans glow in vibrant pink or reddish 
colors due to pigments that they cannot synthesize de novo. 
The primary source of these colours is carotenoids, which 
are found in food substances such as microalgae (Dunaliella) 
and small shrimp (Artemia) that are high in carotenoids. 
Recent research has indicated that microorganisms such as 
Haloarchaea inhabiting salt lakes and ponds where these 
birds nest may significantly contribute to the pink‒reddish 
coloration of flamingos’ feathers. Interestingly, it has been 
discovered that the feathers of flamingos contain live cells of 
Haloarchaea belonging to the genera Halococcus and Hal-
ogeometricum. In addition, pigment analysis of the feathers 
of these birds revealed the presence of BR and its deriva-
tives [89, 90]. However, further research is needed to deter-
mine whether Haloarchaea may play a role in regulating 
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Table 1   Various microbial 
sources of bacterioruberin and 
its derivatives

Microorganism sources References

Halorhabdus utahensis [30]
Arthrobacter agilis GS1
Janthinobacterium lividum GW1

[31]

Arthrobacter agilis WB28 [32]
Salinicoccus roseus EMK96 [33]
Haloarcula sp. OS (HAE) [34]
Natronococcus sp. TC6
Halorubrum tebenquichense SU10

[35]

Arthrobacter agilis NP20 [15]
Halorubrum sp. HRM-150 [36]
Arthrobacter sp. NamB2 [37]
Haloferax mediterranei [38]
Halorubrum ruber MBLA0099 [39]
Kocuria rosea RAM1 [26]
Haloterrigena thermotolerans K15 [40]
Halogeometricum sp. ME3
Haloarcula sp. BT9
Haloferax sp. ME16

[41]

Haloarcula sp. TeSe-41
Haloarcula sp. ALT-23
Halorubrum tebenquichense Te Se-85
Halorubrum tebenquichense Te Se-86
Haloarcula sp. TeSe-89
Haloarcula sp. TeSe-51

[42]

Halorubrum sp. [7]
Haloferax alexandrinus GUSF‑1 (KF796625) [43]
Haloarcula sp. M1 CA_13B53
Halorubrum sp. M2 Fb21
Halolamina sp. M3 UAH-SP14
Halorubrum sp. M4 SD683
Halorubrum sp. M5 Fb21
Halorubrum sp. M6 Fb21
Halorubrum sp. M7 Fb21
Halorubrum sp. M8 E302-1

[44]

Halomicrobium mukohataei DSM 12286
Haloarcula salaria JCM 15759
Haloarcula japonica JCM 7785
Haloarcula vallismortis ATCC 29715
Halomicrobium mukohataei JP 60
Haloferax volcanii DS2
Halomicrobium katesii CECT 7257

[45]

Haloterrigena sp. SGH1 [46]
Arthrobacter agilis DSM 20550
Arthrobacter bussei DSM 109896

[47]

Haloferax volcanii [48]
Arthrobacter agilis 50cyt [49]
Aquisalibacillus elongatus MB592
Salinicoccus sesuvii MB597
Halomonas aquamarina MB598

[50]

Halogeometricum rufum RO1-4
Halogeometricum limi RO1-6
Haladaptatus litoreus RO1-28
Haloferax Haloplanus vescus RO5-8
Halopelagius inordinatus RO5-2
Halogranum rubrum RO2-11
Haloferax volcanii CGMCC 1.2150

[51]

Haloferax mediterranei R4 (ATCC 33500 T) [52]
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Table 1   (continued) Microorganism sources References

Haloterrigena turkmenica [53]
Halorubrum sp. SH1 [54]
Halorubrum sp. TBZ126
Halorubrum chaoviator Halo-G

[55]

Haloarcula japonica TR-1(JCM 7785 T) [56]
Halobacterium sp. SP-2
Halorubrum sp. SP-4

[57]

Natronobacterium gregoryi DSMZ 3393 [58]
Halobacterium halobium M8 [59]
Halobacterium salinarum NRC-1
Halobacterium salinarum R1
Halorubrum sodomense
Haloarcula valismortis
Salinibacter ruber

[27]

Halococcus morrhuae
Halobacterium salinarium

[60]

Halorubrum sp. SS-12 [61]
Haloferax mediterranei ATCC 33500 [62]
Halobacterium salinarium HM3
Halobacterium salinarium HM322
Halobacterium salinarium HPC1-2
Halobacterium salinarium AS133

[63]

Haloquadratum walsbyi [64]
Natrinema pallidum [28]
Haloferax alexandrinus TM [65, 66]
Arthrobacter agilis [20]
Curtobacterium flaccumfaciens pvar poinsettiae [67]
Halobacterium salinarum ATCC 33170
(Formerly Halobacterium cutirubrum or Halobacterium salinarum NRC 34002)

[68]

Micrococcus roseus MTCC 678 [69]
Micrococcus roseus [70]
Haloferax mediterranei [71]
Haloferax volcanii DS2 [72]
Rubrobacter radiotolerans [73]
Haloferax denitrificans comb. nov [74]
Haloarcula hispanica
Haloferax gibbonsii

[75]

Halobacterium denitrificans ATCC 35960 [76]
Halobacterium cutirubrum
Halobacterium halobium
Halobacterium salinarium
Halobacterium marismortui
Halobacterium saccharovorum
Halobacterium vallismortis

[77]

Azospirillum brasilense Cd [78]
Halobacterium marismortui [79]
Halobacterium salinarum ATCC 33170
(Formerly Halobacterium cutirubrum or Halobacterium salinarum NRC 34002)

[80]

Arthrobacter glacialis [81]
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environmental factors that affect bird plumage coloration or 
perhaps in shielding feather microstructures from UV radia-
tion [89]. As a result, BR is now considered to be a new 
pigment that needs to be investigated in relation to animal 
coloration in marine environments.

Biosynthesis of Bacterioruberin

Until 2015, only three biosynthetic pathways of C50 carot-
enoids, the ε-cyclic C50  carotenoid decaprenoxanthin 
in Corynebacterium glutamicum [12, 91, 92], the γ-cyclic 
C50  carotenoid sarcinaxanthin in  Micrococcus luteus 
NCTC2665 [93] and the β-cyclic C50 carotenoid 2,2′-bis-(4-
hydroxy-3-methybut-2-enyl)-β,β-carotene in the Dietzia sp. 
strain CQ4 [94], have been described based on their chemi-
cal structures. In 2015, Ying Yang and his coworkers at the 
Tokyo Institute of Technology, Yokohama, Japan, first elu-
cidated the complete biosynthetic pathway of the C50-carot-
enoid-BR in Haloarcula japonica, an extremely halophilic 
archaeon. Their research showed that a gene cluster com-
prising three genes, C0505, C0506, and C0507, encodes 
the C50 carotenoid 2′′, 3′′-hydratase (CruF), a bifunctional 
lycopene elongase and 1,2-hydratase (LyeJ), and the carot-
enoid 3,4-desaturase (CrtD), respectively. In H. japonica, 
a series of chemical reactions converting lycopene into BR 
are catalyzed by the three carotenoid biosynthetic enzymes 
mentioned above [95]. The discovery of this biosynthesis 
pathway has provided valuable insights into the production 
of BR and a conceptual basis for investigating the intrica-
cies of carotenoid biosynthesis pathways in other halophilic 
archaea.

The biosynthesis pathway of BR involves a series of 
enzymatic reactions that occur within the cell (Fig. 1). These 
reactions are responsible for the bioproduction of a set of 
precursors that eventually form BR. All carotenoids are 
synthesized from common precursors, namely, isopentenyl 
diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), 
which are synthesized via either the well-known mevalonate 
(MVA) pathway or the recently discovered non-mevalonate 
pathway (MEP) [96]. Several enzymatic steps are involved in 
the initiation of carotenoid biosynthesis, including the con-
densation of IPP and DMAPP to produce geranyl pyrophos-
phate (GPP), which is catalyzed by geranyl pyrophosphate 
synthase (dimethylallyl transferase, or GPPS) (IspA). Sub-
sequently, farnesyl pyrophosphate synthase (FPPS) (IspA) 
catalyzes the condensation of GPP with another molecule of 
IPP to produce farnesyl pyrophosphate (FPP). The enzyme 
GGPP synthase (CrtE) converts FPP into the main carot-
enoid precursor geranylgeranyl pyrophosphate (GGPP). The 
enzyme phytoene synthase (CrtB) converts GGPP, a key pre-
cursor in the biosynthesis of carotenoids, into phytoene. The 
first reaction specific to the carotenoid branch of isoprenoid 
metabolism is the formation of phytoene, a compound found 
in all carotenogenic organisms [97]. The enzyme phytoene 
desaturase (CrtI) converts phytoene to lycopene. These 
enzymes introduce double bonds and rearrange the car-
bon skeleton of phytoene to form lycopene. Lycopene is an 
important key molecule in global carotenogenesis since it is 
the precursor for several carotenogenic branches. Thus, lyco-
pene has been unequivocally established to be a precursor 
for the synthesis of relevant carotenoids in nature, such as 
lutein and its precursors and derivatives, neurosporaxanthin, 

Table 1   (continued) Microorganism sources References

Halococcus morrhuae NRC 16015
(Formerly Sarcina morrhuae, 16015)
Halobacterium salinarium NRC 34002
Halobacterium cutirubrum 54001
Anzoebobacter morrhuae 51001
Halobacterizrm salinarium PN
Halobacterium halobium M 34014
Sarcina litoralis 16006
Halobacterium halobium 34020

[82]

Halobacterium cutirubrum NRC 34001 (Currently called Halobacterium salinarum ATCC 
33170)

Halobacterium halobium NRC 34020
(Currently called Halobacterium salinarum ATCC 43214)

[83]

Halophilic bacteria (Unknown) [84]
Corynebacterium poinsettiae
Halobacterium salinarum

[85]

Halophilic bacteria BOS 66 [86]
Corynebacterium poinsettiae [87]
Halobacterium salinarum [88]
Halobacterium salinarum
(Formerly Bacterium halobium)

[11]
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Fig. 1   Biosynthesis of Bacterioruberin
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Table 2   Isomers of bacterioruberin (C50H76O4)

(a) to (e): The presence of these bacterioruberin isomers was reported in some research papers, but the clear or exact chemical structure and 
IUPAC name of the compound were not available. [(a) 15-cis- Bacterioruberin [53], (b) 5-cis-9-cis- Bacterioruberin [20, 53, 72], (c) 5-cis-26-
cis- Bacterioruberin [42], (d) 9-cis-9-cis- Bacterioruberin [20, 30], (e) 9-cis-26-cis- Bacterioruberin [42]]

Common name IUPAC name Chemical structure

All-trans- Bacterioruberin
(Bacterioruberin)

(2S,2’S)-2,2’-
Bis-(3-hydroxy-
3-methylbutyl)-3,4,3’,4’-
tetrahydro-1,2,1’,2’-
tetrahydro-psi,psi-caro-
tene-1,1’-diol

5-cis- Bacterioruberin (5Z,2S,2’S)-2,2’-
Bis-(3-hydroxy-
3-methylbutyl)-3,4,3’,4’-
tetrahydro-1,2,1’,2’-
tetrahydro-psi,psi-caro-
tene-1,1’-diol

9-cis- Bacterioruberin (9Z,2S,2’S)-2,2’-
Bis-(3-hydroxy-
3-methylbutyl)-3,4,3’,4’-
tetrahydro-1,2,1’,2’-
tetrahydro-psi,psi-caro-
tene-1,1’-diol

13-cis- Bacterioruberin (13Z,2S,2’S)-2,2’-
Bis-(3-hydroxy-
3-methylbutyl)-3,4,3’,4’-
tetrahydro-1,2,1’,2’-
tetrahydro-psi,psi-caro-
tene-1,1’-diol

15-cis- Bacterioruberin (a) Not available Not available
5-cis-9-cis- Bacterioruberin (b) Not available Not available
5-cis-26-cis- Bacterioruberin 

(c)
Not available Not available

9-cis-9-cis- Bacterioruberin (d) Not available Not available
9-cis-26-cis- Bacterioruberin 

(e)
Not available Not available
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and the C50 carotenoid BR [95–97]. LyeJ, CrtD, and CruF 
are the three key enzymes responsible for the conversion of 
lycopene to BR [8, 96].

The conversion of lycopene to dihydro-isopentenyl-dehy-
dro-rhodopin (DH-IDR) is one of the crucial intermediate 
steps in BR biosynthesis. This reaction is catalyzed by the 
bifunctional lycopene elongase and 1,2-hydratase enzyme 

(LyeJ), which also plays a key role in converting isopen-
tenyl-dehydro-rhodopin (IDR) to dihydro-bis-anhydro-BR 
(DH-BABR) and DH-IDR to tetrahydro-bis-anhydro-BR 
(TH-BABR). Carotenoid 3,4-desaturase (CrtD) is known to 
play important roles in the conversion of dihydro-isopen-
tenyl-dehydro-rhodopin (DH-IDR) to isopentenyl-dehydro-
rhodopin (IDR) and dihydro-bis-anhydro-BR (DH-BABR) 

Fig. 2   (a) Chemical strcuture of bacterioruberin; (b) Structure 
of bacterioruberin; (c) Chemical structure of bacterioruberin: the 
thirteen conjugated carbon‒carbon (C=C) double bonds (red) that 

together form the chromophore (aliphatic tridecaene chromophore) of 
the molecule are highlighted in red
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to bisanhydro-BR (BABR). In addition, it is also known to 
catalyze the conversion of TH-BABR to DH-BABR. This 
enzyme facilitates the removal of hydrogen atoms from 
specific positions within the molecule, leading to the for-
mation of important carotenoids. The enzyme C50 carot-
enoid 2’’,3’’-hydratase (CruF) is responsible for the final 2 
steps of BR biosynthesis. This enzyme plays a crucial role 
in the conversion of bis-anhydro-BR (BABR) to BR through 
two hydration reactions. The first step involves the hydra-
tion of bis-anhydro-BR (BABR) to form mono-anhydro-BR 
(MABR), followed by the second step where mono-anhy-
dro-BR (MABR) is further hydrated to yield BR [95]. The 
enzymes involved in the biosynthesis of different forms of 
carotenoids are considered important biocatalysts because 
they are involved in multiple steps in their biosynthesis. It 
is also pertinent to mention that enzymes involved in BR 
biosynthesis are not exempt from their catalytic role in this 
bioproduction process.

The regulation of BR biosynthesis in haloarchaea is a 
relatively unexplored field of study. However, recent stud-
ies show that the LonB protease (membrane protease), 
found in the cell membrane of haloarchaea, plays a crucial 
role in controlling this process. One study clearly demon-
strates that LonB deficiency correlates with elevated levels 
of BR, strongly suggesting the direct involvement of LonB 
in regulating BR biosynthesis [98]. Furthermore, another 
study reveals that LonB deficiency induces cellular over pig-
mentation, indicating alterations in carotenoid production, 
including BR [99]. Further investigation revealed that LonB 
protease targets phytoene synthase (PSY), a key enzyme in 
carotenoid biosynthesis, including BR. The rapid degrada-
tion of PSY upon LonB induction underscores the protease’s 
role in modulating BR biosynthesis through targeted deg-
radation of key enzymes like PSY [100]. Moreover, addi-
tional research provides compelling evidence suggesting that 
LonB may selectively recognize specific sequences, such as 
the C-terminal region of PSY, facilitating its degradation 
and thereby influencing BR production [101]. Collectively, 
these findings propose a mechanistic model wherein LonB 
protease finely tunes cellular BR levels by targeting key 
enzymes like PSY for degradation, thus intricately regulat-
ing BR biosynthesis in response to environmental stimuli.

Chemical Structure of Bacterioruberin and its 
Derivatives

BR is a member of the xanthophyll family because it con-
tains not only carbon and hydrogen but also oxygen atoms 
(Fig. 2a). The molecular formula of BR is C50H76O4, and 
the International Union of Pure and Applied Chemistry 
(IUPAC) name for BR is (2S,2′S)-2,2′-bis(3-hydroxy-3-
methylbutyl)-3,4,3′,4′-tetradehydro-1,2,1′,2′-tetrahydro-y,y-
carotene-1,1′-diol. BR was found to be a C50 carotenoid Ta
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with a unique molecular structure compared to other carot-
enoids. It comprises a primary conjugated isoprenoid chain 
length of 13 C=C units. Moreover, it has no subsidiary con-
jugation arising from terminal groups, which contain only 
four hydroxyl groups [102]. BR is a tertiary alcohol and 
a tetrol (a polyhydric alcohol with four hydroxyl groups; 
Fig. 2b) [88]. It is a fat-soluble pigment [15, 103]. BR has 
a molecular weight of 741.1 g mol−1. The melting point of 
BR is 225 °C. BR exhibits a series of geometrical isomers 
(Cis/E or Trans/Z). These isomers arise due to the difference 
in the positions of the double bonds within the carbon chain 
(Table 2). The variation in the double bond position gives 
rise to distinct spatial arrangements, resulting in different 
physical and chemical properties for each of the isomers. 
These isomers exhibit a wide range of colours, ranging from 
deep red to orange. All these isomers are found in natural 
sources (halophilic archaea). The geometric isomers of BR 
are all-trans-BR, 5-cis-BR, 9-cis-BR, 13-cis-BR, 15-cis-BR, 

5-cis-9-cis-BR, 5-cis-26-cis-BR, 9-cis-9-cis-BR, and 
9-cis-26-cis-BR [53]. In addition, different BR derivatives 
(Table 3) have been identified in various organisms, such as 
halophilic archaea and bacteria, but have not been studied 
for their biological activities. All these derivatives are rare 
and novel compounds that exhibit variations in their chemi-
cal structures and possess unique characteristics. Some of 
these derivatives include mono-, di-, tri-, and tetra-anhydro-
BR. In addition, BR has glycosylated derivatives, including 
mono-, di-, and tetra-glycoside-BR. The varied chemical 
structures of these derivatives make them promising candi-
dates for further research on their biological activities and 
therapeutic uses. However, there are no reports available 
suggesting that BR derivatives possess significant biological 
activity. Therefore, additional studies are needed to explore 
the potential benefits and limitations of these derivatives in 
different biological systems.

Fig. 3   (a) Superior position of 
bacterioruberin; (b) Biochem-
istry and biological roles of 
bacterioruberin
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Biochemistry of Bacterioruberin

Conjugated systems with < 8 conjugated double bonds 
appear colourless to the human eye and absorb only in the 
UV region. With each double bond added, the excitation 
wavelength increases, requiring less energy to be excited, 
and the color we observe can range from yellow to red [104]. 
Therefore, the red color of BR is due to the 13 conjugated 
double bonds at the centre of the compound (Fig. 2c). The 
conjugated C = C chain of BR is found in the hydropho-
bic core of lipid bilayers, with glucose moieties anchored 
in the hydrophilic region and branched fatty acid moieties 
curved back into the hydrophobic region (Fig. 3a), thereby 
reinforcing the cell membrane of halophilic archaea [105]. 
Variations in the orientation of carotenoids can significantly 
impact membrane properties. Carotenoids like zeaxanthin, 
with two polar end groups spanning the membrane, can 
act as structural "rivets," enhancing membrane rigidity 
and mechanical strength. Building on this, it was proposed 
that BR, with its four hydroxyl substituents, could act as 
a similar "rivet" in haloarchaeal cell membranes. Despite 
their similar lengths, BR integrates more effectively into 
lipid vesicles than zeaxanthin or decapreno-zeaxanthin. 
Therefore, the integration of BR into the haloarchaeal lipid 
vesicles has some effect on membrane fluidity, acts as a 
barrier to water, allows permeability to oxygen and other 
molecules, and increases the rigidity of bilayers (Fig. 3b); 
thus, strains can survive in hypersaline or low-temperature 
conditions [62, 106, 107]. In addition, BR has been proven 
to present greater antioxidant activity than other commer-
cially available carotenoids, such as beta-carotene, ascorbic 
acid, butylated hydroxytoluene (BHT), lycopene, astaxan-
thin, alpha-tocopherol, and trolox (a water-soluble deriva-
tive of vitamin E) [33, 46, 53, 56], because it can traverse 
the cell membrane from the inside to the outside (Fig. 3a). 
Molecular dynamics simulations revealed that the thickness 
of the archaeal tetraether monolayer is 39 Å. The length of 
the BR is 38 Å, which indicates that the BR can connect 
both leaflets of the phospholipid bilayer in specific regions 
of the cell membrane and easily interact with transmem-
brane proteins [108]. BRs are not occurred free in cells but 
appear to be rather firmly bound to proteins. When the cells 
are lysed by exposing them to low salt concentrations, an 
almost clear red solution is obtained from which the pig-
ment cannot be extracted by nonpolar solvents. This also 
applied to cell extracts made through sonic disintegration. 
When such cell extracts are heated, the pigment remains 
attached to the precipitated protein. However, the pigment-
protein complex splits when the protein is precipitated by 
polar organic solvents [109]. Microbial rhodopsins (MR) 

are a class of photoreceptors found in halophilic archaea 
and bacteria. They are retinal-binding proteins that share a 
seven-transmembrane structure and a light-sensitive retinal 
molecule (a primary chromophore) that is covalently bound 
to a lysine residue on helix G through a protonated Schiff 
base linkage [110]. MR is also an integral membrane protein 
that provides light-dependent ion transport, which captures 
and utilizes sunlight for the synthesis of ATP [111] and sen-
sory functions in halophilic cells. Additionally, it has been 
found to play a role in an array of biological processes, such 
as phototaxis. Certain proteins contain not only the retinal 
chromophore but also a noncovalently bound pigmented 
carotenoid molecule as the second chromophore to enable 
their function (e.g., BR, Fig. 3a) [110]. The C50 carotenoid 
“bacterioruberin” was identified as a second chromophore in 
some MRs and is thought to protect against photobleaching. 
Research via crystallographic studies demonstrated that BR 
is tightly aligned in the crevices between the adjacent protein 
subunits within the trimer of archaerhodopsins [111–113], 
cruxrhodopsins [114], deltarhodopsins [115], and halorho-
dopsins [103, 116].

Bioproduction of Bacterioruberin and its Current 
Status of Commercialization

Only a few studies have attempted to enhance the bioproduc-
tion of BR in halobacteria. Several recent studies on the pro-
duction of BR from haloarchaea have reported that the pro-
duction of this rare C50 carotenoid may be readily enhanced 
by modifying culture conditions, such as pH, oxygen avail-
ability, salt concentrations, light incidence, and temperature 
[117]. Additionally, the biosynthesis of BR has been shown 
to be induced by the presence of different compounds, such 
as aniline [118]. One finding suggested that the response 
surface methodology (RSM) approach is highly useful for 
determining the optimal conditions of cell culture, such as 
temperature, pH, and salinity, for large-scale production 
of BR by haloarchaea [52]. On the other hand, Noby et al. 
reported that cheese whey-based medium has been proven 
to be a potent and nutritious supplement for producing BR 
from Arthrobacter agilis NP20. This newly developed, cost-
effective medium highlights the great potential for large-
scale bioproduction of BR. Furthermore, the results of the 
study suggested that the use of this rare C50 carotenoid in 
the food, cosmetics, and pharmaceutical industries could be 
achieved through the low-cost production of BR from whey-
based media [15]. In addition, a few other researchers have 
worked on the optimization of culture conditions to aug-
ment the BR yield and biomass of halobacteria, with a focus 
on commercial applications [54]. For instance, the yield of 
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BR from H. volanii increased 1.7-fold under low-salt condi-
tions but decreased cell growth under osmotic stress [119]. 
To address this, a 2-step cultivation of H. mediterranei was 
tested in a 20-L jar fermenter, in which the biomass was 
first produced under optimal growth conditions and subse-
quently transferred to a hypoosmotic medium optimized for 
BR production. This process increased production 6.4-fold 
in fermented broth [62]. However, this process increases the 
number of cultivation steps and work needed for production. 
Furthermore, single-step cultivation of H. mediterranei at 
relatively low salt concentrations under optimized condi-
tions was shown to increase both the BR yield and biomass 
concentration. At a salt concentration of 230 g/L, this spe-
cies yielded 125 mg/L total carotenoids and a maximum cell 
density of 7.7 × 109 cells/mL. This remarkable increase in 
productivity represents the highest production ever reported 
for a wild-type strain. This increase corresponds to a 4.4-
fold increase in yield and a 20% increase in biomass [120]. 
Additionally, hyperpigmented mutants, known as HVLON3, 
exhibited even more impressive performance, producing BR 
at an astonishing rate of 3.14 mg/g CDM, which is approxi-
mately 15 times higher than that of the wild type (0.2 mg/g 
CDM). This unprecedented achievement resulted in the 
highest yield ever observed for haloarchaea [98, 121].

As mentioned before, only a few studies on haloarchaea 
carotenoid accumulation support the idea that these micro-
organisms might be good carotenoid producers, specifically 
for BR and other C50 carotenoid pigments. All these stud-
ies reported that accelerating the rapid growth of halophilic 
archaea requires high salt concentrations (from 20 to 25% 
w/v) in the culture medium. However, it has been observed 
that promoting higher level of carotenoid accumulation in 
halophilic bacteria requires a relatively lower concentration 
of NaCl, which is < 16% w/v. It was also observed that a 
lower salt concentration of NaCl leads to slower growth rates 
or even cell lysis. Therefore, carotenoid accumulation and 
the growth of halophilic archaea are often inversely related. 
In addition to the salinity of the culture medium, other phys-
icochemical factors, such as pH and temperature, have been 
shown to significantly affect the accumulation of carotenoids 
and the growth rate of halophilic microorganisms [102].

In the current scenario, the only commercially available 
products from archaea were extracted from halophilic 
archaea: C50-BR and C30-Squalene (two nonpolar 
archaeolipids), Bacteriorhodopsin (a membrane-bound 
protein), and Di- or tetraether lipids. These products do not 
qualify for “Biotechnological Readiness Level 3” (BTRL 
3), which means that even though they are commercialized, 
none of them are manufactured on an industrial scale. 
Instead, their demand is fulfilled by selling very small 
quantities of these products at very expensive prices [22]. 
Currently, only two companies have commercialized 
cosmetic products in micro quantities that contain BR as 

an active ingredient or a BR-rich extract. It is predicted that 
more companies may enter the market in the near future.

Storage, Stability and Toxicity of Bacterioruberin

The stability of BR under various environmental 
conditions is not well understood. Investigating the 
effects of temperature, pH, and light exposure on the 
stability of BR could provide valuable insights into its 
potential applications. Mongkol Yachai’s PhD thesis 
titled "Carotenoid Production by Halophilic Archaea and 
Its Applications" [63] indicated that BR extracted from 
H. salinarum HM3 exhibited good stability under high-
temperature conditions and light exposure in soybean oil 
and surimi paste (a paste made from bigeye snapper fish). No 
color bleeding was observed in white surimi gel containing 
BR under steaming. During refrigerated storage, the color 
of the surimi gels supplemented with BR slightly changed. 
Moreover, BR is known to prevent lipid oxidation in surimi 
gels during storage and does not alter the taste or texture of 
the gel. BR was found to be stable at 70–90 °C in soybean 
oil, with 78%-87% retention of the BR content [63]. In 
addition, this study further investigated the acute oral 
toxicity of BR from H. salinarum HM3 in Wistar rats (50 
rats). During the course of the study, fifty rats were divided 
into 5 groups (5 from each sex) and fed BR in soybean oil 
at different dosages (0, 125, 250, 500, 1000 mg/kg/day). At 
24 h intervals, the Wistar rats were carefully examined for 
symptoms of toxicity. Both male and female rats fed BR 
exhibited a slight decrease in body weight gain during the 
first week. In the second week, no significant differences 
were observed in male rats, but female rats showed decreases 
in body weight gain at 1000 mg/kg/day BR. No deaths 
were observed in any group during the 14-day study, and 
all surviving rats did not exhibit any major pathological 
lesions [63]. Therefore, the stability and nontoxicity of BR 
at high temperatures make it a valuable ingredient for food, 
pharmaceutical, and nutraceutical applications. Microbial 
pigments are widely used in textile and paper printing as a 
long-term alternative to synthetic dyes [122]. According to 
this, BR’s vibrant red color and stability make it an excellent 
candidate for the future development of environmentally 
friendly and safe natural colorants for various industries. 
Additionally, the growing consumer demand for clean label 
products has further fuelled interest in natural pigments like 
BR. As a result, it is inferred that BR can be effectively used 
in the production of heat-resistant items, food, and textile 
coloring agents.

Extraction and Analysis of Bacterioruberin

BR is present in the claret membrane of haloarchaeal cells, is 
slightly soluble in water and is a highly lipophilic molecule 
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that can be dissolved in organic solvents. Extracting BR pig-
ments involves several steps, including cell lysis, centrifuga-
tion, solvent extraction, and chromatography. Cell bleaching 
by cell lysis involves breaking the haloarchaeal cell mem-
brane through sonication [95, 123], freeze‒thawing [53], 
lyophilization [46], or homogenization [124]. Once the halo-
archaea cells have been lysed, centrifugation is used to sepa-
rate the cell components from the BR-containing superna-
tant. The supernatant was subsequently subjected to solvent 
extraction, in which a suitable solvent was used to dissolve 
and extract BR pigments from other cellular components. 
Methanol [53, 124], acetone [51], or a methanol/acetone 
mixture [55, 56, 121] are the most widely used solvents for 
extracting BR. Chromatography techniques, such as liquid 
chromatography‒mass spectrometry (LC‒MS), thin-layer 
chromatography, gas chromatography‒mass spectrometry 
(GC‒MS), and high-performance liquid chromatography 
(HPLC), are being extensively employed to analyse, quan-
tify, purify, and separate BR from other cellular components. 
BR is characterized by analysing their molecular structure 
and chemical properties through various techniques. These 
methods include UV‒visible Spectroscopy [15], Ultrahigh-
Performance Liquid Chromatography (UHPLC) [125], and 
Mass Spectrometry (MS) [63] to determine the absorp-
tion spectrum (430–530 nm), retention time, and molecu-
lar weight (741.1 g mol−1), respectively. Additionally, the 
functional groups present in BR and its chemical structure 
were determined by employing Fourier Transform Infrared 
Spectroscopy (FTIR) [43], Raman Spectroscopy [46], and 
Nuclear Magnetic Resonance (NMR) spectroscopy [56]. 
These techniques provide information about the composi-
tion and chemical properties of BR. Some of the extraction 
methods and analysis techniques for BR are listed in Table 4. 
Most of the studies listed in Table 4 extracted the total carot-
enoids from archaea and estimated the percentage of BR as 
a function of total carotenoid content (TCC). It could be 
inferred that only a few studies have extracted and purified 
BR to homogeneity.

Bioavailability of Bacterioruberin

The term "bioavailability" describes how much carotenoids 
are absorbed through circulation and made available for 
both physiological processes and storage in the human body. 
Factors such as digestion, absorption, movement, and storage 
influence carotenoid availability. Sometimes, crystallization 
of carotenoids can decrease their bioavailability, with only 
five percent being absorbed in the intestine. However, several 
investigations have shown that thermal treatment increases 
carotenoid availability by disrupting cell walls and loosening 
bonds [5]. The ability of BR to be absorbed and utilized 
by the human body is referred to as its bioavailability. The 
potential health benefits of BR, including its antioxidant 
activity and several other biological properties, have been 
studied. Understanding its bioavailability is important 
for determining its effectiveness as a therapeutic agent or 
nutritional supplement. Due to its chemical lability, poor 
water solubility, and low bioavailability, the application 
potential of this compound has significantly decreased, 
especially for therapeutic uses [127]. Additionally, factors 
such as dosage, formulation, and individual variations may 
also influence bioavailability. Until now, there has been no 
clear evidence to suggest that its bioavailability is limited. 
However, further research is needed to fully understand how 
BR is metabolized and distributed in the body. It can be 
inferred that Lipinski’s rule of five methodology might be 
useful in identifying bioavailability and pharmacokinetic 
drug properties by employing computational methodologies. 
According to Lipinski’s rule, an active compound or drug 
(orally active) with good permeability has the following 
criteria: molecular weight (MW) < 450  g  mol−1, log 
P ≤ 5, hydrogen bond acceptor (HBA) < 4, hydrogen bond 
donor (HBD) < 7, and polar surface (PSA) < 90 Å2 [128]. 
According to Lipinski’s rule and based on the information 
available from both the PubChem and carotenoid databases 
[6], BR has various drug properties, as listed in Table 5, 
which show almost reasonable drug likeness criteria.

Table 5   Bioavailability of 
bacterioruberin (according to 
Lipinski’s rule)

An active compound/drug should 
posses

Bacterioruberin

Molecular weight (MW)  < 450 g mol−1 741.1 g mol−1

Topological polar surface areA (PSA)  < 90 Å2 80.9 Å2

Hydrogen bond donor count (HBD)  < 7 4
Hydrogen bond acceptor count (HBA)  < 4 4
XLOGP3-AA (log P value)  ≤ 5 13.7
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Table 6   Biological properties of bacterioruberin-rich carotenoid pigments and bacterioruberin

Source Biological activities References

BR rich carotenoid pigments
Halorubrum sp. HRM-150 (CGMCC 17350) Antioxidant activity [124]
Arthrobacter agilis NP20 Antioxidant activity [15]
Haloarcula sp. OS (HAE) Anti-inflammatory activity and Intracellular ROS Assessment [34]
Haloferax mediterranei R-4 (ATCC33500) Antiproliferative activity [133]
Haloarcula sp. A15 Cytotoxicity (induces apoptosis in breast cancer cells) and 

anticancer activity
[134, 135]

Natronococcus sp. TC6
Halorubrum tebenquichense SU10

Antioxidant and the matrix metallopeptidase 9 (MMP-9) 
inhibition activities

[35]

Halorhabdus utahensis Hyaluronidase inhibition assay and Antioxidant activity [30]
Kocuria rosea RAM1 Antibacterial, anti‑inflammatory, antioxidant, cytotoxicity, 

wound healing, anticancer, antidiabetic, and antiviral activities
[26]

Haloferax mediterranei R-4 Antioxidant, Antiglycemic (α-glucosidase, α-amylase), and 
Antilipidemic (lipase) activities

[38]

Haloterrigena thermotolerans K15 Antioxidant activity [40]
Haloferax sp. ME16, Halogeometricum sp. ME3, Haloarcula sp. 

BT9
Antioxidant, and antibacterial activities [41]

Halorubrum tebenquichense Te Se-85, Halorubrum 
tebenquichense Te Se-86, Haloarcula sp. ALT-23, Haloarcula 
sp. TeSe-41, Haloarcula sp. TeSe-51, Haloarcula sp. TeSe-89

Antioxidant and cholinesterase enzymes inhibitory activities [42]

Haloferax alexandrinus GUSF-1 (KF796625) Antioxidant activity [43]
Halorubrum sp. BS2 Antioxidant, and antibacterial activities [136]
Natrialba sp. M6 Anticancer and antiviral activities [132]
Haloferax volcanii HVLON3 Antioxidant activity and enhance sperm cells viability [121]
Halomonas aquamarine, Aquisalibacillus elongatus, 

Salinicoccus sesuvii
Antioxidant, antifungal, and antibacterial activities [50]

Halogeometricum rufum RO1-4, Halogeometricum limi RO1-6, 
Haladaptatus litoreus RO1-28, Haloferax Haloplanus vescus 
RO5-8, Halopelagius inordinatus RO5-2, Halogranum rubrum 
RO2-11, Haloferax volcanii CGMCC 1.2150

Antioxidant, anti-haemolytic, and anticancer activities [51]

Haloterrigena turkmenica DSM-5511 Antioxidant activity [53]
Halobacterium halobium M8 Antiproliferative and antioxidant activities [59]
Halococcus morrhuae, Halobacterium salinarium Antioxidant activity [60]
BR rich cell suspension/halo-archaea extracts
Halobacterium salinarum ET 1001 Antioxidant activity [137]
Haloarcula hispanica HM1, Halobacterium salinarum HM2 Antimicrobial, neuroprotective (Acetylcholinesterase), 

antidiabetic (α-glucosidase, α-amylase), antioxidant, anti-
inflammatory (Cyclooxygenase 2) and anti-algal activities

[17]

Halobacterium salinarum ATCC 33170
(Formerly Halobacterium cutirubrum or Halobacterium 

salinarum NRC 34002)

Resistant to DNA damaging agents (H2O2, mitomycin-C), 
Photoprotective (Gamma-irradiation), and Radio protective 
(UV) activities

[68]

Bacterioruberin (pure)
Haloterrigena sp. SGH1 Cytotoxicity and antioxidant activity [46]
Haloarcula japonica TR-1 (JCM 7785 T) Antioxidant activity [56]
Halobacterium salinarum HM3 Antioxidant activity [63]
Rubrobacter radiotolerans Antioxidant activity [131]
Bacterioruberin loaded nanoparticles/nanovesicles
Halorubrum tebenquichense Anti-proliferative, anti-inflammatory, antioxidant, anti-psoriatic 

and anti-Staphylococcus aureus activities
[138]

Halorubrum tebenquichense Antioxidant, cytotoxicity, anti-haemolytic and anti-inflammatory 
activities

[127]

Halorubrum tebenquichense Anti-inflammatory and antioxidant activities [139]
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Biological Properties of Bacterioruberin

The carotenoids produced by halophilic archaea exhibit a 
stronger antioxidant capacity than the carotenoids produced 
by other microbes (whether they are extremophilic or not). 
BR, a fat-soluble, bright red carotenoid pigment produced 
by halophilic archaea, has potent and superior antioxidant 
activity [15]. According to antioxidant studies on carotenoids 
so far, the capacity for oxygen-reactive species (ROS) 
scavenging depends on the concentration of carotenoids. 
This means that higher concentrations of carotenoids 
generally result in greater antioxidant activity. Therefore, 
increasing the concentration of carotenoids in a system 
can potentially enhance its overall antioxidant capacity. 
Carotenoids with longer carbon chains and more pairs of 
conjugated double bonds tend to have greater antioxidant 
capacities [56, 129]. Additionally, the functional groups and 
their positions within the carotenoid molecule [129, 130], as 
well as oxygen-containing substituents [56], can also affect 
its antioxidant activity. BR contains 13 carbon double bonds, 
which are more than the nine carbon double bonds of beta-
carotene. Therefore, BR is a more effective radical scavenger 
than beta-carotene is [56, 131]. Furthermore, studies have 
shown that increasing the concentration of BR can increase 
its overall antioxidant activity, making it an effective 
natural antioxidant. On the other hand, carotenoid extracts 
from halophilic archaea, which are rich in BR, exhibit 
antimicrobial, anti-haemolytic [51], anticancer [26], and 
antiviral activities [132]; enhance sperm cell viability during 
freezing and thawing [121]; and inhibit cholinesterase [42]. 
The potential of BR extract to repair UV-induced damage 
to human DNA strands has led to research into its potential 
for preventing skin cancer [68]. The various biological 
properties of the BR and BR-rich carotenoid extracts are 
listed in Table  6. Most of the studies so far have used 
BR-rich total carotenoid pigment extracts and evaluated the 
biological properties of total carotenoid pigments. However, 
further investigations are needed to determine the individual 
contributions of BR and its potential applications in various 
fields. Currently, there is limited research on the specific 
effects of BR. Most related studies have evaluated its anti-
inflammatory and antioxidant effects (Table 6). Therefore, 
there is still a lack of comprehensive understanding of its 
other potential benefits. Further research is needed to explore 
the potential therapeutic applications of BR beyond its 
antioxidant and anti-inflammatory properties. Investigating 
its impact on immune function, cellular signalling pathways, 
and disease prevention could provide valuable insights into 
its biological properties. Additionally, studying the safety 
profile and potential side effects of BR is crucial for its 
future use in clinical settings. 

Current Applications of Bacterioruberin

Animal Uses

Aquaculture industry: BR is considered a potential feed 
additive in aquaculture. Metazoans that thrive in salt get 
their food from halophilic archaea. For instance, Artemia 
may thrive by consuming nutrients from a mono-diet 
that is based on halophilic archaea [140]. In one study, 
researchers reported that the feed containing Haloferax 
volcani improved Artemia nauplii biomass production and 
antioxidant content, with BR being the major contributor 
[141]. In another study, Wei et  al. applied carotenoids 
containing Archaea Halorubrum to aquaculture for the 
first time. The Halorubrum strain used in their study is a 
high-BR-producing halobacteria. The Halorubrum strain 
was fermented in a culture medium, and the cells were fed 
to Litopenaeus vanammei post-larvae through A. nauplii 
enrichment. The results showed that Halorubrum-enriched 
A. nauplii improved L. vanamme survival and growth. 
The study discovered that dietary supplementation with 
Halorubrum had a beneficial impact on L. vanammei’s 
ability to tolerate osmotic stress and ammonia stress. 
This could be linked to the antioxidative capacity of BR, 
which exists in the archaea. The results suggest that the 
red halophilic archaea Halorubrum could be a useful feed 
supplement in shrimp larviculture [7].

Human Uses

Cosmetic industry: HALOTEK, a Germany-based company, 
has recently launched a product called Halorubin, which 
is a skincare product made from a natural haloarchaeal 
ingredient, BR [142]. Another company,  ADEKA, a 
Japanese company, uses halorubin (a BR-rich source) as 
an active ingredient in more than 15 COSMOS-approved 
cosmetic products. Some of the  ADEKA products that 
have halorubin as an active ingredient are Pure Serum 
Retinal, Pure Serum Retinal Jellified, Perfect Eye Contour, 
Regenerating Retinal Face Cream, Transparent Pectin Gel 
Lotion, Crystal Make-Up Remover, The Oléo Cleansing 
Balm, Clear Night Scalp Serum, Natural Concrete Perfume, 
Crystalline Hand Gel Care, Silky Body Spray, Purified Anti-
Acne, Blue Light Power Mask, and Refresh Transparent 
Cleansing Oil [143]. These halorubin-based products 
are found to provide several healthcare benefits for the 
skin. Its unique formula combines the power of BR with 
a variety of advanced skincare solutions. These products 
offer a comprehensive barrier against environmental 
stressors due to their ability to protect against ultraviolet 
and the consequent DNA damage. Furthermore, its radical 
scavenging activity helps to combat signs of aging and 
promote skin rejuvenation, making it an ideal choice for 
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those looking for effective anti-pollution, sun care, and 
regenerative face cosmetics [143].

While BR currently finds applications in aquaculture and 
cosmetics, its potential biological properties suggest it may 
have future applications in other industries, including food 
and pharmaceuticals. Research and development in this area 
may uncover additional uses for BR in the future.

Limitations and Conclusion

According to the current literature, BR has various 
biological properties, including protection against DNA 
damage; antioxidant, antimicrobial, anti-inflammatory, 
and anticancer activity; and use as a natural food colorant. 
Because of these properties, there will be increased demand 
for BR in the near future. However, the effects of BR on 
human nutrition, metabolism, and intracellular targets 
have not yet been unequivocally reported. Until now, BR 
has not been used in preclinical trials due to constraints 
related to limited biological sources, optimized cell culture 
conditions, and a lack of understanding of its potential 
therapeutic applications. Its unique structure and biological 
properties and recent advancements in research have sparked 
interest in exploring the therapeutic applications of BR, 
opening doors for future clinical research. Accordingly, it 
is being emphasized that intense research is needed to fully 
understand the benefits and limitations of BR in preclinical 
settings before progressing to clinical trials. Furthermore, 
there is a scarcity of research on the potential health benefits 
of pure BR. Many of the biological properties discussed 
in the literature are based on BR-rich extracts. Thus, the 
existing lacuna in research findings and the consequent 
speculation related to the projected biological properties 
of pure BR need to be substantiated with appropriate 
methodologies and research studies. Hence, there is a need 
for extensive research to evaluate the possible biological 
properties of BR. Additionally, it is important to investigate 
the potential interactions of BR with other compounds 
commonly found in environmental samples to better 
understand its stability and potential applications. Further, it 
is crucial to explore the effect of different storage conditions, 
such as temperature and light exposure, on BR’s longevity, 
which will provide valuable insights for its practical use in 
various industries. Overall, a comprehensive understanding 
of BR’s stability and toxicity profile is crucial for its 
successful integration into biotechnological and biomedical 
applications. Currently, there is no synthetic source of BR 
available; it is predominantly present in natural resources 
such as halophilic archaea. Despite the fact that haloarchaea 
species have the innate ability to produce BR, especially 
under optimized culture conditions, the production of 
BR in a laboratory setting and on large scales remains a 

challenge, making it difficult to investigate its potential 
applications and benefits. Only a few studies have been 
conducted on the optimization of culture conditions for 
haloarchaea to produce BR under in  vitro conditions. 
Accordingly, further investigations are needed to fully 
understand and maximize its potential for commercial use. 
There is growing interest in optimizing culture conditions 
for high production of BR as well as in searching for 
alternative production methods due to the limitations in the 
in vitro production of BR from haloarchaea. Researchers 
are actively investigating synthetic and biotechnological 
approaches for increasing the production of BR that involve 
the utilization of genetic engineering methodologies to 
augment BR biosynthesis in halobacteria and other hosts. 
One promising approach involves harnessing the power of 
CRISPR-Cas9 technology to directly manipulate the genes 
responsible for BR biosynthesis. This innovative technique 
holds great potential for significantly boosting BR yields. 
Moreover, advancements in metabolic engineering offer 
another avenue for enhancing the metabolic pathways 
involved in BR bioproduction, thereby leading to increased 
yields. Furthermore, it is important to explore the feasibility 
of genetically modifying plants or microbes to serve as a 
sustainable and cost-effective source of BR production. 
By employing these cutting-edge approaches, it is hoped 
that the benefits of BR can be fully assessed and that 
the demand for BR in sectors such as pharmaceuticals, 
cosmetics, and food production can be effectively met in 
the near future. Furthermore, further investigations are 
needed to understand the intricacies of BR biosynthesis 
and the regulatory mechanisms of the BR biosynthesis 
pathway. By delving deeper into BR biosynthesis and its 
regulation, researchers can uncover the intricate mechanisms 
underlying BR production and elucidate the factors that 
influence its production. This knowledge could ultimately 
pave the way for enhanced production strategies and the 
utilization of BR in various industries. Additionally, the 
need for the development of cost-effective and scalable 
production methods for BR is crucial for its widespread 
commercialization.
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