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the majority of these biological parameters to normal levels, 
along with increase antioxidant enzyme activities, as well as 
an improvement of histopathological changes, suggesting 
their protective effects.
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Introduction

Nowadays, consumers are conscious of the relationship 
between diet and health. Therefore, the newly produced fer-
mented food would not only satisfy hunger and meet nutri-
tional values but also prevent chronic diseases and have a 
good impact on both physical and mental health on wellbe-
ing. Fermentation technology is one of the oldest, simplest 
and most economical methods for producing and preserv-
ing food and beverages, as well as for improving the nutri-
tional, sensory and shelf-life properties of the products [1]. 
In addition, fermentation process induced by microorgan-
isms resulting in conversion of carbohydrates into alcohols 
or organic acids and enhance the extraction of the bioactive 
metabolites [2].

The demand for functional beverages products has risen 
and probiotics are used to create ready-to-drink beverages 
made from fruits and vegetables. Fermented foods with 
plant origin have been evaluated as vectors for administra-
tion of probiotic lactic acid bacterial cultures following the 
proficiency of the production of vegetable based fermented 
products via lactic acid bacteria [3].

In recent years, there has been an increased interest in 
the production of fermented beverages especially probi-
otics due to their health beneficial effects and nutritional 
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properties. Fermented food and beverage contain abundant 
enzymes, vitamins, minerals, and secondary metabolites [4]. 
Aromatic and medicinal plants are very useful for selective 
bioprocesses because they already contain a variety of bioac-
tive components, such as phenolic compounds, carotenoids, 
anthocyanins, and tocopherols [5]. In addition, the plants 
materials can be provided with an optimal environment for 
the growth of lactic acid bacteria (LAB) [6].

Several authors have successfully obtained fermented 
beverages with strong antioxidant activity from vegetables, 
fruits, or plants [7–9]. For example, Sauerkraut, olives, 
cucumbers, and kimchi, are world-famous fermented fruit 
and vegetable items that provide health benefits [10]. Fer-
mentation has many advantages and features, making this 
approach useful for improving the organic and nutritional 
qualities of fermented food and beverage based fruits and 
vegetables [10]. In particular, LAB, mediated fermenta-
tion can decrease phytate and trypsin inhibitors and hydro-
lyze tannic acid [11, 12]. Moreover, during the fermenta-
tion process, many new compounds are synthesized, such 
as isoflavones, water-soluble vitamins, and vitamin K2 
(menaquinone-7), which play a significant role in human 
health [13, 14]. Functional foods are considered to promote 
health-boosting effects in addition to their nutritional value, 
which are attributed to the content of biologically active 
components in adequate amounts [10].

Aroma is vital for assessing the quality of fermented 
plant beverages and is heavily influenced by the type and 
amount of volatile compounds present. Studying these com-
pounds during fermentation is actively researched to track 
their changes over time and their potential effects on distinct 
aroma characteristics and overall flavor. During fermented 
beverage storage under different conditions, the volatile 
composition can be changed due to the appearance of some 
volatiles that may change the fermented beverage aroma 
quality [15]. Therefore, the flavor of products is an impor-
tant factor for consumers to adhere to long-term use. Some 
natural medicinal plant raw materials generally have bad 
flavors, such as grass and bitterness [16]. So, it is difficult 
for consumers to persist in consumption. Results of studies 
have shown that microbial fermentation can reduce the odor 
of plants such as grass [17, 18]. Therefore, the fermentation 
technology improving efficacy and flavor to develop func-
tional beverages with both efficacy and good flavor, which 
could give pleasant-positive aroma attributes to the flavor of 
the beverages [9, 14].

Functional beverages-based plants that contain signifi-
cant amounts of bioactive compounds can offer several 
health benefits. Numerous recent studies showed the sig-
nificance of antioxidant compounds in scavenging free 
radicals in the human body and preventing diseases [19, 
20]. Moreover, previous investigations have indicated the 
importance of fermented medicinal herbs as a substrate 

with a good source of natural antioxidants due to bioactive 
metabolites such as phenolic compounds, which have the 
potential to reduce the risk of oxidative stress-related dis-
eases such as cancer, coronary heart disease, and athero-
sclerosis [9, 21, 22]. For instance, they can prevent some 
damaging physiological activities including metabolic and 
cardiovascular diseases [23]. A comprehensive inventory 
of microorganisms and their status as GRAS (generally 
recognized as safe) and/or QPS (qualified presumption 
of safety) organisms for the intended use is provided by 
Bourdichon and Casaregola [24].

Therapeutic claims for fermented beverages exist for 
non-communicable diseases (obesity, diabetes, cardio-
vascular disease, hypertension, metabolic syndrome), gut 
health (allergies, food intolerance, inflammatory diseases) 
and gastrointestinal tract cancer [25, 26].

Kidneys and liver play an important role in body func-
tions, such as regulating water fluid levels, metabolism, 
biotransformation (glycolysis, lipids, and amino acids), 
and detoxification of exogenous chemicals which are 
toxic to human health [27]. Currently, many xenobiotics 
produced by environmental pollutants cause major health 
problems worldwide. Carbon tetrachloride  (CCl4) has 
well-known dangerous effects; it can cause hepatotoxicity 
and nephrotoxicity [27]. Under the effect of  CCl4, there 
is a decrease in hepatic content of cytochrome  P450; com-
plex of enzymes which are responsible for the oxidation 
of xenobiotic chemicals including drugs, pesticides, and 
carcinogens. In laboratory assays,  CCl4 is widely used to 
induce liver damages [28]. The number of patients pre-
senting with kidney and liver disorders is increasing at 
an alarming rate [29]. Nowadays, there are approximately 
over one million people worldwide who require dialysis 
or a functioning graft. Kidney and liver replacement have 
been the only therapy for end stage of renal failure, and 
dialysis has remained the only alternative when a kidney 
transplant is not possible [29].

The necessity for developing an antioxidant-based 
preventative and therapeutic approach as an alternative 
to conventional medications used to treat organ damage 
caused by xenobiotics is increasing. In view of these find-
ings, the current investigation aimed at the production of 
three functional beverages from aromatic and medicinal 
plants and determine their antioxidant activity and protec-
tive effect on hepatotoxicity and nephrotoxicity induced by 
carbon tetrachloride in vivo. The physicochemical proper-
ties were characterized by pH, titration acidity, total sugar, 
total flavonoids, total tannins and total polyphenols. The 
antioxidant activity was evaluated by DPPH, ·and  ABTS· 
scavenging activity and Reducing power (FRAP value). 
Volatile flavor compounds were determined by gas chro-
matography–mass spectrometry (GC–MS).
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Materials and Methods

Plant Materials and Fermentation

The plant materials used for the formulation of each of the 
three FPBs are shown in Table 1. A voucher specimen from 
each of those species was kindly identified by Pr. Abder-
razak Smaoui and deposited at the Laboratory of Aromatic 
and Medicinal Plants at the Center of Biotechnology of 
Borj-Cedria. In each of the three FPBs, the following species 
were used at the same rate (Table 1). The only difference is 
the addition of 150 g of Cucurbita maxima, Citrus sinensis 
and Daucus carota materials in NutrBio A, NutrBio B, and 
NutrBio C, respectively. Concerning the fermentation pro-
cess, the selected plant materials were washed with distilled 
water and then submerged in 1 L bottles containing 30 g/l of 
organic sugarcane molasses dissolved in sterilized distillated 
water, the solution was sterilized by pasteurization (80 °C in 
15 min) [9]. For the purpose of fermentation, a ready to use 
inoculum with activated suspension at average of 7 ×  106 to 
7 ×  108 CFU at pH = 3.5 was added to each batch at the rate 
of 6% (v/v). The bottles were set to ferment without shaking 
or opening for 30 days at room temperature. Then, the three 
beverages were sterilized by filtration through 0.2 μm filters 
and preserved at + 4 °C until use.

Activation of Effective Microorganisms (EM‑1 AMA)

The commercial consortiums start culture of EM-1 AMA 
offered by Effective Microorganisms Technology Tunisia 

(AMTT, a company in our Ecopark producing natural 
products based on GRAS microorganisms (lactic acid bac-
teria, acetic acid bacteria, yeasts) the only genuine Saion-
EM producer and distributor of products from the mother 
of Saion-EM green technology owner (Sanko Sangyo 
Co. Ltd.) (www. saion- em. co. jp). The product was based 
on the original formulation developed in 1994 by [30] 
known as effective microorganisms (EM-1 AMA). It was 
inoculated inside an autoclaved 40% (v/v) molasses which 
was mixed with  H2O. Activation of the EM-1 AMA was 
carried out by incubating the broth inside the incubator 
(Memmert, Germany) at 35 ± 1 °C. Activation was car-
ried out for 7 days where microbial activity was assayed 
through changes in pH and sugar concentration. Accord-
ing to standard EM inoculation procedure, activated EM-1 
AMA were introduced with 40% (v/v) molasses into the 
aquaculture wastewater to ensure sufficient carbon source.

Fermentative Parameters

Acidity was measured by titration using 0.1 M NaOH 
solution and phenolphthalein as indicator. The pH was 
measured using a calibrated Hanna pH meter. Total sug-
ars were assessed by an ATC refractometer (Brix 0–32%). 
The determination of reducing sugars was assessed using 
the DNS method as described by [31]. The results were 
expressed as the means of three replicates.

Table 1  Plant materials used for the fermentation process to prepare the Fermented-plant beverages (sufficient quantity for: 1 L)

Plant species Botanical family Used Organ NutriBio A (g) NutriBio B (g) NutriBio C (g)

Nigella sativa Ranunculaceae Dried seeds 5 5 5
Foeniculum Vulgare Apiaceae Dried seeds 28 28 28
Linum usitatissimum Linaceae Dried seeds 10 10 10
Vitis vinifera Vitaceae Dried seeds 10 10 10
Lavandula multifida Lamiacées Fresh leaves 18 18 18
Periploca laevigata Apocynaceae Fresh roots 10 10 10
Thymus algeriensis Lamiaceae Fresh leaves 33 33 33
Zingiber officinale Zingiberaceae Fresh roots 20 20 20
Olea europaea Oleaceae Fresh leaves 5 5 5
Climatis flammula Renonculacées Fresh leaves 5 5 5
Asphodelus tenuifolius Asphodelaceae Fresh leaves 5 5 5
Globularia vulgaris Globulariaceae Fresh leaves 5 5 5
Erodium hirtum Geraniaceae Fresh roots 10 10 10
Erodium glaucophyllum Geraniaceae Fresh roots 10 10 10
Cucurbita maxima Cucurbitaceae Fruits 150 – –
Citrus sinensis Cucurbitaceae Fruits – 150 –
Daucus carota Daucus Roots – – 150
Organic sugar cane molasses Poaceae – 30 30 30

http://www.saion-em.co.jp
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Phytochemical Composition

Total Polyphenol Contents

The determinations of the total phenolic contents were 
carried out according to the Folin-Ciocalteu method as 
described by [32]. A volume of 0.5 mL of Folin–Ciocalteu 
reagent and 1.25 mL of  Na2CO3 (7% w/v) was added to 
0.125 mL of each fermented beverage. The absorbance of 
each sample was measured by spectrophotometer UV—Vis-
ible Agilent Cary 60. at 765 nm after incubation of the tubes 
for 90 min in the dark. Total polyphenols content, expressed 
as µg Gallic acid equivalents per mL of fermented beverage 
(mg GAE/mL).

Total Flavonoids Content

The determinations of the total flavonoid’s contents were 
carried out according to the method reported by [33]. The 
analyses were performed in triplicate. Total flavonoids, 
expressed in mg of quercetin equivalent per mL of fermented 
beverage (mg QE/mL), were estimated with respect to the 
quercetin standard curve (concentration range: 100 -750 µg/
mL).

Condensed Tannin Contents

The determination of the condensed tannins contents was 
carried out according to the method reported by [34]. The 
analyses were performed in triplicate. The quantity of the 
condensed tannins, expressed as mg catechin equivalent per 
mL of fermented beverage (mg CE/mL), was determined 
using a catechin calibration curve (100 – 750 µg/mL).

Headspace Solid‑Phase Microextraction of Volatile 
Compounds (HS SPME GC–MS)

The volatile compounds were analyzed by Headspace Solid-
Phase Microextraction (HS-SPME) coupled with Gas Chro-
matography Mass Spectrometry (GC–MS) as previously 
described [35]. The released ions will be classified according 
to their mass/charge ratio (m/z). The analysis is carried out 
by a chromatograph coupled to an Agilent (Agilent Tech-
nologies, Palo Alto, CA, USA) mass spectrometer (5975C 
inert XL MSD) and electron impact ionization (70 eV). An 
HP-5MS capillary column (30 m × 0.25 mm, 0.25 μm film 
thickness) coated with 5% phenyl methyl silicone and 95% 
dimethylpolysiloxane (Agilent Technologies, Palo Alto, CA, 
USA) was used. The volatile compounds were identified 
by matching their mass spectra with those in the NIST1.l 
library of MS spectra. The Kovats retention index (RI) was 
calculated with a homologous series of n-alkanes  (C6-C28) 
under the same conditions applied for the sample analyses. 

The volatile compounds with odor activity value > 1 were 
considered to contribute to the aroma of the fermented bev-
erages [36].

In Vitro Antioxidant Activity Determination

The antioxidant activities of different FPBs were determined 
by four different but complementary tests: α-diphenyl-β-
picrylhydrazyl (DPPH) free radical scavenging method and 
 ABTS·+ radical scavenging assay according to the methods 
described by [32]. Furthermore, Ferric reducing power assay 
(FRAP) was assessed following the procedure described by 
[34] and reported by Prieto [37]. The appearance of the blue 
green color was measured at 700 nm on UV–Vis spectro-
photometer Agilent Cary 60. The results were expressed as 
the means of three replicates.

In Vivo Experiments

Experimental Animals

This study was conducted with permission from the Exper-
imental Animal Commodities of Soukra and obtained 
according to the ethical approval from the Bio-Medical 
Ethics Committee of the Pasteur Institute of Tunis, Tunisia, 
2019/2/I/ LR16IPT09/V2. Swiss albino mice about 22–25 g 
body weight (bw) were used. All animal experiments were 
conducted with permission from the Tunisian Code of Prac-
tice for the Care and Use of Animals for Scientific Purposes 
and also according to the European convention for the pro-
tection of vertebrate animals used for experimental and 
other scientific purposes. Animals were kept for 2 weeks to 
be acclimatized prior to the investigation. Throughout the 
experimentation period, animals were given a standard pellet 
diet and water ad libitum.

Acute Toxicity Study

The control group received distilled water orally while the 
other groups received different doses of FPBs (5, 10, 50, 
and100 mg/kg of bw) and monitored for toxic symptoms and 
death rate during 12 h and 72 h.

Ccl4‑Induced Hepato and Nephro‑Toxicity in Mice

Experimental Design

The animals were divided into five groups, with six mice 
in each group. Oral Treatments were carried out as fol-
lows: (1) The first group named Control (saline); (2) the 
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second group named Tox (saline and  CCl4) received normal 
saline (10 mL/kg bw) each Meanwhile; (3) the third group 
named A (NutriBio A, and  CCl4); (4) fourth group named B 
(NutriBio B,  CCl4); and (5) fifth group named B (NutriBio 
C,  CCl4), groups were administered with 5 mg/kg bw of 
NurtiBio A, NutriBio B and NutriBio C, respectively. All 
treatments (saline and FPBs) were given for 15 consecutive 
days. On day 15, animals in groups 2, 3, 4, and 5 were intra-
peritoneally injected with  CCl4 in corn oil (1:10, v/v) [38]. 
Animals in group 1 were used as  CCl4-negative control. 24 h 
after  CCl4 injection, animals were scarified; serum, kidneys, 
and liver were pooled and conserved at -80 °C until use.

Blood Biochemical Analysis

After treatment, the animals were weighed and sacrificed 
by decapitation in order to minimize the handling stress, 
and the trunk blood was collected, immediately. The serum 
was prepared by centrifugation (1500 rpm, 15 min, and 
4 °C). Serum was used to perform the biochemical assays 
for Aspartate Aminotransferase (AST), Alanine Aminotrans-
ferase (ALT), Alkaline Phosphatase (ALP), Blood Urea 
Nitrogen (BUN), total protein (TP), Glucose (GLU), Total 
Bilirubin (T-BIL), Creatinine (Crea) and total cholesterol 
(T-CHO) was determined using biochemistry analyzer at the 
Biochemistry laboratory in La Rabta Hospital, Tunis.

Measurement of MDA, SOD, CAT, and GPx in Liver 
and Kidney Homogenates

A total of 0.5 g of each tissue (kidney, liver) was homog-
enized in ninefold (w/v) cold normal saline and centrifuged 
at 2000×g for 10 min. The obtained supernatants were used 
to quantify the MDA, SOD, CAT and GPx [34]. Tissue pro-
tein content was also determined according to the method 
described by [39] using bovine serum albumin as standard.

Histopathological Studies

Liver and kidney sections fixed in formalin solution were 
washed with distilled water and treated by a series of alcohol 

baths and embedded in paraffin. Sections of 4 to 6 μm thick-
ness were made using microtome and stained with hema-
toxylin–eosin (HandE) and then observed with an Axi-
ophot Zeiss Light Microscope at 40×, magnification (Zeiss, 
Germany).

Statistical Analysis

The results are expressed as mean ± standard error of the 
mean. The intergroup variation between various groups was 
measured by one-way analysis of variance (ANOVA) fol-
lowed by Tukey’s HSD Post-Hoc tests for multiple com-
parisons with statistical significance of p < 0.05. Data were 
analyzed using SPSS software, version 20.0. (Armonk, NY: 
IBM Corp).

Results

Fermentation Parameters

The results presented in Table 2 underscore a notable trans-
formation in the samples obtained from the fermentation of 
sugarcane molasses and plant raw materials by the chosen 
consortium. This transformative process brought about a 
substantial reduction in pH values, accompanied by a subse-
quent elevation in titratable acidity. This shift can be attrib-
uted to the liberation of a range of organic acids, including 
lactic, acetic, formic, and malic acids, among others. These 
acids, generated during the fermentation, contribute to the 
observed changes in pH and acidity. Specifically, the pH 
levels of the samples underwent a significant drop from their 
initial values of 6.4 ± 0.2, 6.5 ± 0.2, and 5.8 ± 0.2 for NutrBio 
A, NutrBio B, and NutrBio C, respectively. This decrease 
culminated in pH values of 3.8 ± 0.2, 3.3 ± 0.3, and 4.2 ± 0.5 
for the respective samples after fermentation. This shift in 
pH indicates the profound impact of the fermentation pro-
cess on the chemical nature of the samples.

Furthermore, the concentration of sugars within these 
samples exhibited a discernible decline following the fer-
mentation process. This reduction in sugar content led to the 

Table 2  Physico-chemical 
parameter of three fermented 
beverages from aromatic and 
medicinal plants before and 
after fermentation FPBs

Results are expressed as mean of 3 experiments of three different batches. Within a given column, data 
bearing different lowercase letters indicate a significant difference between the beverages before and after 
fermentation for a given parameter (p < 0.05)

Before fermentation After fermentation

NutrBio A NutrBio B NutrBio C NutrBio A NutrBio B NutrBio C

pH 6.4 ± 0.2a 6.5 ± 0.2a 5.8 ± 0.2a 3.8 ± 0.2b 3.3 ± 0.3b 4.2 ± 0.5b

Titrable acidity 0.7 ± 0.1c 1.6 ± 0.1c 0.8 ± 0.04c 3.5 ± 0.2d 3.2 ± 0.2d 3.7 ± 0.02d

Total sugars (mg/l) 62.2 ± 3.1e 68.11 ±  4e 65,12 ± 3.8e 13.7 ± 2.2f 12,1 ± 3,3f 11.3 ± 0.5f

Reducing sugars (mg/l) 47.9 ± 1.6g 52.6 ± 0.8g 41.8 ± 1.7g 8.5 ± 1.4h 6.3 ± 0.8h 10.5 ± 0.4h
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development of diverse compositions of hydrolyzed carbo-
hydrates, which possess potential as a valuable fermentation 
medium.

The fermentation process orchestrated by the selected 
consortium brings about substantial modifications in pH, 
acidity, and sugar composition, ultimately fostering the 
development of a transformed medium rich in hydrolyzed 
carbohydrates.

Phenolics, Flavonoids, and Condensed Tannin Contents

The total Phenolics, flavonoids, and condensed tannins 
contents in the beverages are shown in Fig. 1. The FPBs 
exhibited a high content of polyphenolic compounds, with 
NutrBio B showing the highest levels of flavonoids and tan-
nins. Moreover, the three FPBs exhibited high level of poly-
phenols: 183.5 ± 9.5 µg GAE/mL, 242.3 ± 12.4 µg GAE/mL 
and 217.6 ± 8.3 µg GAE/mL for NutrBio A, NutrBio B and 
NutrBio C, respectively. The results showed that NutrBio B 
has the highest level of flavonoids (106.4 ± 7.3 µg RE/mL), 
and tannins (94.2 ± 5.1 µg TA/mL).

It was observed that the FPBs are rich in phenolic com-
pounds, especially NutrBio B, which could be an important 
starting point to explore their biological activities.

Volatile Compound Profiles

Thirty-one compounds were identified with remarkable 
differences between the three beverages (Table 3). Among 
the volatile compounds detected, some are typically pro-
duced by plants and other compounds are generated by 
the LAB metabolism. There were great variations in the 
composition of aroma components. Some compounds 

were detected only in NutrBio A (acetic acid ethyl ester, 
n-acetyl-propanamide, butanoic acid-3-methyl-propyl ester, 
and terpinen-4-ol). Some other compounds were detected 
only in NutrBio B (2-oxopentanedioic acid, 1,3-Dioxane,1-
Butanol, 3-methyl-, acetate, Butanoic acid, Anethole, and 
propyl ester), and few others were detected only in NutrBio 
C (1,2-propanediol diformate, and 4-penten-2-ol). 2-amino-
1,3-propanediol, n-propyl acetate, propanoic acid, propanoic 
acid propyl ester, lactic acid, benzaldehyde, eucalyptol, fen-
chone, 3-octadecyne, estragole, and benzenepropanoic acid 
1-methylethyl ester were found in the three beverages with 
a significant difference between them (p < 0.05). The pri-
mary metabolic actions of the selected strains in food and 
beverage fermentation include their ability to predominantly 
ferment carbohydrates and, to a lesser degree, degrade pro-
teins and fats in the raw materials. This could lead to the 
production of a broad range of metabolites, mainly organic 
acids (for example, lactic, acetic, formic, propionic), pep-
tides, amino acids, along with many volatile and nonvolatile 
low-molecular-mass compounds, such as ketones and esters. 
These results suggest that the aromatic compounds gener-
ated by used mixed-culture (EM-1 AMA) could give positive 
aroma attributes to the flavor of the FPBs, depending on the 
substrate used.

In Vitro Antioxidant Activity

The antioxidant activity of natural products stems from 
their rich content of bioactive compounds, which neutral-
ize harmful free radicals, contributing to overall health 
and disease prevention. The results presented in Table 4 
showed that NutrBio B has the highest ability to quench 
DPPH and ABTS free radicals. Both in DPPH and ABTS 

Fig. 1  Biochemical composi-
tion of three fermented bever-
ages from aromatic and medici-
nal plants. * µg of gallic acid 
equivalent per ml of beverage; 
** µg of rutin equivalent per ml 
of beverage; *** mg of catechin 
equivalent per ml of beverage. 
Results were expressed as the 
mean SD (n = 3). B; Significant 
difference at p < 0.05
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assays, NutrBio B has the lowest  IC50 values (13.4 ± 1.1 
and 15.4 ± 1.5, respectively) which confirms that NutrBio 
B exhibited the highest scavenging activity compared to 
NutrBio A and NutrBio C. In addition, the FRPA was 
expressed as  EC50 (µM Vit C/mL) of fermented bever-
ages. The results showed that the three FPBs are able to 
reduce  Fe+3/ferric cyanide complex to the ferrous form 
and exhibited different reducing activities (Table 4). How-
ever, NutrBio B has the lowest  EC50 (8.3 ± 0.8 µg/mL) 
compared to NutrBio A and C, indicating its highest anti-
oxidant activity and demonstrating the high correlation 
between total phenolics, total flavonoids, condensed tannin 
content, volatile compounds and the antioxidant activities.

Table 3  Volatile flavor 
compounds were determined 
by gas chromatography–mass 
spectrometry (GC–MS) of three 
fermented beverages

Samples % area

Compounds Rt NutrBio A NutrBio B NutrBio C M/Z

Acetic acid ethyl ester 3.179 5.44 NF NF 88
Ethyl Acetate 3.180 4.47 NF 88
Ethyl -2-butoxyacetate 3.328 0.62 0.56 NF 131
Isovaleraldehyde 3.546 2.33 0.75 NF 86
2-methyl-butyraldehyde 3.630 3.75 3.12 NF 86
2-amino-1,3-propanediol 4.097 4.99 7.52 8.36 90
n-propyl acetate 4.282 51.83 48.67 29.82 101
formate 3-methyl-1-butanol 4.644 - 2.37 NF 113
Propanoic acid 4.981 6.69 10.49 36.22 74
Propanoic acid propyl ester 5.857 18.17 14.48 17.92 87
2-Oxopentanedioic acid 6.077 NF 0.89 NF 129
1.2-Propanediol diformate 6.171 NF NF 0.18 132
1.3-Dioxane 6.580 NF 1.80 NF 87
N-acetyl-Propanamide 6.599 0.20 NF NF 115
acetate 3-methyl-1-Butanol 7.089 NF 0.37 NF 115
Butanoic acid-3-methyl-propyl ester 7.475 NF 0.11 NF 101
4-Penten-2-ol NF NF NF 0.49 85
Lactic acid 7.852 0.13 0.34 0.24 87
propyl ester 3-methyl-Butanoic acid 8.410 0.21 NF NF 129
Benzaldehyde 8.623 0.69 0.56 0.69 106
2,5,5-trimethyl-2-Hexene 9.200 NF 0.23 1.15 126
4-methyl-3-Heptanol 9.270 NF 0.24 NF 128
2-butyl-4-methyl-1.3-Dioxolane 9.451 NF 0.58 0.60 143
Eucalyptol 9.960 0.56 0.26 0.69 154
Fenchone 11.295 1.54 1.27 2.00 152
3-Octadecyne 13.425 0.60 0.18 0.59 250
Terpinen-4-ol 13.569 0.31 NF NF 154
Estragole 13.937 1.32 0.30 0.36 148
Anethole 15.379 NF 0.17 NF 148
ethyl ester Benzenepropanoic acid 16.213 NF 0.17 NF 147
Benzenepropanoic acid 1-methylethyl ester 17.313 0.61 0.08 0.69 192

Table 4  Antioxidant activity of three fermented beverages from aro-
matic and medicinal plants FPBs

Results are expressed as mean of 3 experiments of three different 
batches
ABTS·+  IC50(µg/ml) for Trolox was 8.2 ± 1.5
DPPH  IC50 (µg/ml) for BHT was 11.8 ± 0.4
Ferric Reducing Power assay  EC50 (µg/ml) for Vitamin C was 
7.9 ± 0.9

NutrBio A NutrBio B NutrBio C

DPPH IC50 (µg/ml) 17.8 ± 1.6 13.4 ± 1.1 16.5 ± 1.3
ABTS·+ IC50 (µg/ml) 20.6 ± 1.2 15.4 ± 1.5 19.3 ± 0.5
Reducing power EC50 (µg/ml) 13.7 ± 2.7 8.3 ± 0.8 15.2 ± 1.5
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Acute Toxicity

Using mice that weighed between 22 and 25 g, acute toxicity 
was examined after 72 h. Four groups of mice (each group 
comprised of six mice) were given oral administration of 
each of the three FPBs at dosages of 5, 10, 50, and 100 mg/
kg of bw. The control group received physiological water 
(NaCl 0.9%). After administration of fermented beverages, 
the animals did not show any dangerous clinical symptoms 
of toxicity even with a dose as high as 100 mg/kg bw, since 
they keep their normal behavior. In addition, at this dose; 
no mortality was observed during the experiment. Accord-
ingly, for the rest of the in vivo experiments, a dose of 5 mg/
kg bw was chosen to investigate the antioxidant activity, 
hepatoprotective, and nephroprotective effects of all FPBs 
in experimental animals. Taking into account such findings 
together with the present results, it seems that the FPBs 
herein developed could be attributed a GRAS status since 
they don’t show any toxicity effects. Nevertheless, deeper 
toxicological investigation should be considered to prove 
the safety of the products.

CCl4‑Induced Hepato‑ and Nephro‑Toxicity 
in Mice

Evaluation of Hepato‑ and Nephro‑Protective Effects 
of the FPBs

The liver and kidney are the major organs of detoxification 
and metabolism of chemical xenobiotics which are toxic 
to human health. These processes of detoxification can 
be revealed by the alteration in liver biomarker enzymes 
including AST, and ALT. The results illustrated in Table 5 
showed that the serum rates of AST, ALT, ALP, and T-BIL 

significantly decreased (p < 0.001) in the  CCl4-treated 
groups administered with each of the three FPBs when com-
pared to controls (receiving  CCl4 and treated with saline) 
indicating a hepatocyte damage control. The treatment with 
FPBs restored significantly the serum parameter pathologic 
changes towards normal compared with  CCl4 intoxicated 
group (p < 0.001). Functional beverages possess clear 
hepatoprotective effects, which could be attributed to the 
high content of bioactive compounds with high antioxidant 
activity. In addition, the results presented in Table 5 revealed 
that the  CCl4 treatment induced a significant increase in 
plasma urea nitrogen level (14.5 ± 2 U/dL), and creatinine 
level (86.5 ± 5 U/dL) compared to control values (8.5 ± 1.3 
U/dL, and 59.27 ± 0.66 U/ dL, for urea nitrogen, and creati-
nine, respectively), which confirms that the  CCl4 induced 
nephrotoxic effects. However, pretreatment with each of the 
three FPBs restored the level of urea nitrogen and creatinine 
and thus renal functioning significantly (p < 0.01) compared 
to control group. The results showed that NutrBio B exhib-
ited the highest protective effect compared to NutrBio A and 
NutrBio C. Similarly, glucuronic acid and malic acid are also 
by-products of the fermentation which helps in detoxify-
ing the liver. Moreover, supporting the detoxification of the 
liver and kidney, the consumption of FPBs is also known to 
help excrete heavy xenobiotic substances and environmental 
pollutants from the human body through the kidneys. The 
results suggest that the FPBs exhibit high antioxidant activ-
ity and can enhance the nephron and hepato-functionality 
in mice treated with  CCl4, which may strongly contribute 
to stabilize the serum parameters. Moreover,  CCl4-induced 
hepatotoxicity and nephrotoxicity have been largely used in 
the experimental models for liver and kidney damage. The 
fermented beverage pretreatment significantly helped to drop 
activity in serum parameters such as AST, ALT, and ALP, 
and creatinine. This implies a potential hepatoprotective and 

Table 5  Biochemical Serum 
parameter analyses of protective 
effects obtained with FPBs 
(NutrBio A, NutrBio B, and 
NutrBio C) on  CCl4 induced 
kidney and liver toxicity

Biochemical analyses of serum parameter in control and experimental treated mice. Control: (saline); Tox: 
(saline and  CCl4) received normal saline (10 ml/kgbw) each Meanwhile; A: (NutriBio A, and  CCl4); B: 
(NutriBio B,  CCl4); and C: (NutriBio C,  CCl4), groups were administered with 5 mg/kg bw of NurtiBio 
A, NutriBio B and NutriBio C, respectively. Results were expressed as the mean SD (n = 6). ***CCl4 
group versus control group (p < 0.001). ++ and +++CCl4 + fermented beverages (NutrBio A, NutrBio B, and 
NutrBio C) group versus  CCl4 group (p < 0.01 and p < 0.001. respectively)

Groups Control Tox A B C

AST (units) 64.16 ± 0.88 113 ± 5*** 82 ±  3+++ 75 ±  8+++ 84 ±  3+++

ALT (units) 43.33 ± 1.71 103 ± 4*** 58.5 ± 0.8+++ 59.6 ± 1.5+++ 62.4 ±  2+++

ALP (units) 278.5 ± 3.5 362 ± 13*** 259 ±  9+++ 252.6 ±  13+++ 272.2 ± 0.5+++

BUN (µmol/l) 8.5 ± 1.3 14.5 ± 2*** 9.4 ± 0.6++ 9 ± 0.2+++ 9.7 ± 0.5+++

TP (g/l) 64.66 ± 2.11 54.8 ± 2.5** 66.7 ± 4.2++ 68 ± 2.5+++ 65.3 ±  3++

GLU (mmol/l) 5.86 ± 0.5 10.5 ± 0.6** 7.8 ± 0.2++ 7.7 ± 0.4++ 8.2 ± 0.9++

T-BIL (g/l) 2.1 ± 0.08 3.7 ± 0.5*** 2.8 ± 0.1+++ 2.6 ± 0.2+++ 2.9 ± 0.5+++

Creatin (µmol/l) 59.27 ± 0.66 86.5 ± 5*** 69.7 ±  2+++ 67.3 ± 0.1+++ 70 ± 0.4+++

T-CHO (mg/100 ml) 40 ± 0.11 92.5 ± 3** 50.2 ± 0.8++ 46.1 ±  2++ 48.9 ± 1.5++
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nephroprotective effect of FPBs by a possible stabilization of 
the serum membrane mutually with a repair of hepatic tissue 
damage induced by  CCl4. The FPBs were known to help in 
obtaining relief from gout, rheumatism, arthritis, and kidney 
stones, which are conditions associated with the accumula-
tion of toxic substances in the body.

Effects of Fermented Beverages on Lipid Peroxidation, 
SOD, CAT, and GPx Activity

The cells are protected against the excess of Reactive Oxy-
gen Species (ROS) by antioxidant enzymes (e.g., catalase, 

glutathione peroxidase (GPx), superoxide dismutase (SOD), 
and other antioxidants). Oxidative stress is one of the major 
consequences of the health problems caused by hepatotox-
icity and nephrotoxicity. The results illustrated in Fig. 2, 
showed that treatment of mice with  CCl4 induced signifi-
cant increases of renal and hepatic lipid peroxidation levels 
as compared with the control group. However, FPBs treat-
ment restored significantly the lipid peroxidation compared 
to control. Moreover, Fig. 2 clearly shows the effects of  CCl4 
on the antioxidant enzymes (SOD, CAT, and GPx) activi-
ties. Indeed, those activities were significantly decreased in 
 CCl4 treated group compared to the control (not receiving 

Fig. 2  Levels of lipid peroxidation (expressed as TBARS, nmol/mg 
of protein) and antioxidants enzymes (SOD, CAT, GPx) activity (U/
mg protein) in liver and kidney (lower) in control and experimental 
treated mice. Control: (salin); Tox: (salin and  CCl4) received nor-
mal salin (10 ml/kgbw) each Meanwhile; A (NutriBio A, and  CCl4); 

B (NutriBio B and  CCl4); and C (NutriBio C and  CCl4), groups 
were administered with 5 mg/kg bw of NurtiBio A, NutriBio B and 
NutriBio C, respectively. Results were expressed as the mean SD 
(n = 6). B; Significant difference at p < 0.001, A; Significant differ-
ence at p < 0.001, compared to  CCl4 treated group
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 CCl4). For the groups treated with FPBs, we observed an 
increase of SOD, CAT, and GPx activities compared to 
 CCl4-treated animals. The data demonstrate the potential of 
the three FPBs to restore the activity of antioxidant enzymes. 
The administration of different FPBs reversed the damage 
caused by  CCl4 to both liver and kidneys, thus confirming 
their antioxidant potential.

Previous studies have also been carried out to find the 
protective effects of FPBs against  CCl4-induced hepatotoxic-
ity, and the observed effects were attributed to the antioxi-
dant capacity of the beverages, along with their ability to 
enhance hepatic and renal functionality.

Histopathological Studies

Previous results showed that FPBs present a potent protec-
tive effect against nephrotoxicity and hepatotoxicity induced 
by  CCl4. In order to validate these effects, comprehensive 
histopathological evaluations were conducted on kid-
ney and liver tissues. The photomicrographs presented in 
Fig. 3 represent the liver and kidney sections of different 
groups. It clearly appears that the liver section of the con-
trol group showed a normal histological structure. However, 
the  CCl4-treated group showed significant morphological 
changes. These alterations were distinguished by membrane 
cell degradation, focal necrosis, and major vascular conges-
tion that may be attributed to the toxic effects of  CCl4 by 
the generation of ROS, and accordingly causing damage 
to different membrane constituents of the hepatocytes. The 
liver sections of the groups pretreated with FPBs had an 
architecture nearly comparable to the control group without 
any signs of vascular or membrane cell changes (Fig. 3A–C).

In addition, histopathological studies of the glomeruli 
and tubules in the kidney sections of the control (Fig. 3 
control) and FPBs groups (Fig. 3A–C) did not show any 
abnormalities, which confirmed the results obtained for the 
serum parameters of nephron functioning, MDA levels, and 
the antioxidant enzymes SOD, CAT and GPx activities. 
However,  CCl4-treated mice showed visible pathological 
changes, including glomerular atrophy, degenerated tubular 
structure, leukocyte infiltration, and numerous tubular casts 
(Fig. 2. Tox). These renal lesions were protected by treat-
ment with fermented beverages (Fig. 2A–C).

Discussion

The fermentation process induced notable changes in the pH 
values and acidity of the samples. The decrease in pH and 
increase in titratable acidity were attributed to the genera-
tion of various organic acids during fermentation, includ-
ing lactic, acetic, formic, and malic acids [40]. The results 
presented in Table 2, showed that the pH levels dropped 

significantly, reflecting the profound impact of fermentation 
on the chemical nature of the beverages. Additionally, the 
concentration of sugars in the samples decreased, leading to 
the development of a medium rich in hydrolyzed carbohy-
drates. This transformation suggests that the fermentation 
process enhances the potential of the beverages as a valuable 
fermentation medium [40].

Polyphenols constitute one of the most abundant groups 
of substances in plants, including a wide variety of bioac-
tive molecules that contain at least one aromatic ring with 
one or more hydroxyl groups in addition to other substitu-
ents exhibiting large spectra of biological activities. During 
fermentation, many changes of composition occur, lead-
ing to a modified ratio of nutrients and antinutrients and 
therefore the properties of the product, such as bioactivity 
and digestibility are modified [4]. Lactic fermentation of 
plants has been shown to increase the concentration of sev-
eral phenolic compounds [41]. It was shown that the three 
fermented beverages exhibited high content of polyphenols 
around 242.3 ± 12.4 µg GAE/mL. Also, the NutrBio B pos-
sess the high content of polyphenol, flavonoids and tannins 
to compare with the other fermented beverages. The FPBs 
exhibited a high content of polyphenolic compounds, with 
NutrBio B showing the highest levels of flavonoids and tan-
nins. These compounds have potential biological activities 
and might contribute to the health benefits of the beverages. 
NutrBio B, in particular, stood out as having a rich compo-
sition of phenolic compounds, suggesting its potential as a 
source of bioactive compounds for exploring various health-
related applications.

For example, there are aminobutyric acid, polyphenols, 
and flavonoids in fermented pepper leaves beverage prepared 
by [42]. Other investigations tried to use combined tech-
niques to enhance the polyphenols contents in FPBs and 
FPEs. Furthermore, other compounds may be found in FPE 
including caffeic acid, in fermented dandelion beverage [43]. 
In addition, Among the volatile compounds, alcohols are 
regarded as the predominant compounds in the aromatic 
profile of FPBs and are a common terminal end product 
in the degradation of sugar and catabolism of amino acids. 
Volatile ester compounds are generated by the esterification 
of free acids with alcohol [44]. The mixed-culture fermen-
tation resulted in the production of a range of metabolites, 
including organic acids, peptides, amino acids, ketones, 
and esters, which could contribute positively to the sensory 
attributes of the beverages. The study evaluated the antioxi-
dant activity of the FPBs using various assays. NutrBio B 
exhibited the highest ability to quench DPPH and ABTS free 
radicals, indicating strong antioxidant potential. The Ferric 
Reducing Power Assay (FRPA) results also demonstrated 
the antioxidant capacity of the fermented beverages. The 
high antioxidant activity was correlated with the content of 
phenolic compounds, flavonoids, and condensed tannins, as 
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Fig. 3  Photomicrographs of renal tissue and hepatic tissue in control 
and experimental treated mice. kidney and liver sections stained with 
Masson’s trichrome and Sirius red stain (G × 200) (A) and quantified 
by Image J (B). Control: (salin); Tox: (salin and  CCl4) received nor-

mal salin (10 ml/kgbw) each Meanwhile; A: (NutriBio A, and  CCl4); 
B: (NutriBio B and  CCl4); and C: (NutriBio C and  CCl4), groups 
were administered with 5 mg/kg bw of NurtiBio A, NutriBio B and 
NutriBio C, respectively
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well as the presence of volatile compounds. These findings 
suggest that the FPBs could be valuable sources of antioxi-
dants, contributing to overall health and disease prevention.

Nowadays, it’s well known that the nutritional value of 
phenolic compounds is strongly related to their antioxidant 
activity or their ability to counteract oxidative stress, which 
is expressed by excessive production of ROS. Metaboliza-
tion and depolymerization of phenolic compounds corre-
lated with an increase in antioxidant activity that has been 
observed during lactic acid fermentation of plants [33]. 
These correlations have been described by many authors 
[45, 46].

Acute toxicity testing revealed that the FPBs did not 
induce toxic effects in mice even at relatively high doses. 
This suggests a potential GRAS status for the beverages. 
Further toxicological investigations are recommended for 
comprehensive safety assessment. The xenobiotic such as 
the  CCl4 present a high dangers effect on human health, it’s 
well known that it can induce the hepatotoxicity and nephro-
toxicity [47–49]. These processes of detoxification revealed 
by the alteration in liver biomarker enzymes including AST, 
and ALT [34]. Similar to glucuronic acid, malic acid is also 
a byproduct of the fermentation which helps in detoxifying 
the liver [50], Moreover supporting the detoxification of the 
liver and kidney, the consumption of fermented plants bever-
ages also known to help excrete heavy xenobiotic substances 
and environmental pollutants from the human body through 
the kidneys [51]. Several authors have successfully deter-
mined that  CCl4 may induce hepatic cell destruction and 
cause an increase in serum enzyme levels [52]. The results 
showed that the NutrBio B exhibited the highest protective 
effect compared to NutrBio A and NutrBio C.  CCL4-induced 
kidney damage is characterized by increase in serum param-
eter (creatinine), due to tubular necrosis which can induce a 
renal failure [53]. The results suggested that the fermented 
beverages possessing high antioxidant activities can enhance 
the nephron and hepato protective effect of mice treated 
with  CCl4, which may stabilize the serum parameter [54]. 
Moreover,  CCl4, induced hepatotoxicity, and nephrotoxic-
ity have been largely used by experimental model for liver 
and kidney damage [55]. The active metabolites of  CCl4 
can induce hepatic cell destruction, which in turn enhance 
serum enzymes, such as AST and ALT [56]. In this study 
the fermented beverages pretreatment significantly reduced 
the increase of activities in serum parameter such as AST, 
ALT, and ALP, and creatinine due to  CCl4 administration. 
This implies a potential hepatoprotective and nephroprotec-
tive effect of fermented beverages by a possible stabiliza-
tion of serum membrane mutually with a repair of hepatic 
tissue damaged induced by  CCl4, as has been suggested by 
other authors [57]. Fermented beverages consumption has 
been demonstrated to inhibit the activity of  CCl4 and prevent 
liver injury in rats [53]. In vivo studies have suggested that 

Kombucha tea is capable of preventing paracetamol induced 
hepatotoxicity [54]. The fermented plants beverages were 
known to help in obtaining relief from gout, rheumatism, 
arthritis, and kidney stones which are conditions associated 
with the accumulation of toxic substances in the body [58].

The cells are protected against the excess of ROS by 
antioxidant enzymes (e.g., catalase, glutathione peroxidase 
(GPx), superoxide dismutase (SOD), and other antioxi-
dants). However, when ROS overwhelms antioxidant capac-
ity, the cell functions are affected by this imbalance [49]. 
The free radicals and ROS have the ability to start multiple 
chain reactions which will eventually lead to cell damage or 
the death of the affected cell [55]. During the fermentation 
process, many compounds with radical scavenging proper-
ties are released from the plant’s raw material [59]. Poly-
phenols and flavonoids are the main group of compounds 
which are found in plants belonging to flavanol group [59]. 
Polyphenols are considered as having high levels of broad 
antioxidant capacity since they have the ability to scavenge 
free radicals and ROS [60]. Therefore, during the fermenta-
tion process, the total phenolic content increases [9, 60], 
the production of compounds possessing radical scavenging 
properties depends on the metabolites produced [61]. This 
suggests that the fermented functional beverages presented 
nephroprotective and hepatoprotective properties due to their 
antioxidant capacity, which is in accord with previous results 
[62].

However,  CCl4-treated mice showed visible pathological 
changes, including glomerular atrophy, degenerated tubular 
structure, leukocyte infiltration and numerous tubular casts 
Fig. 3 Studies have also been carried out to find protective 
effects of fermented plants beverages against  CCL4-induced 
hepatotoxicity and the results have shown that the antioxi-
dant activity of polyphenol substances of fermented bev-
erages is responsible for this function [33]. These studies 
have further explained that a functional beverage prevents 
the apoptotic cell death of the hepatocytes which is triggered 
from the exposure of the liver to the environmental toxins 
[33]. These renal lesions were protected by treatment with 
fermented beverages. The kidney and liver lesions confirm 
their Hepatoprotective and Nephroprotective effect.

The limitation of this study lies in the influence of various 
factors on the fermentation process, including plant materi-
als, microbial diversity, and fermentation duration. These 
factors might lead to variations in the composition and bio-
activity of FPBs, which could affect their consistency and 
reproducibility. Notably, the results showed that the three 
beverages exhibited high content of bioactive metabolites 
and high antioxidant and biological activity. In fact, these 
works need to be done in the future by multiple analyses in 
biochemistry, microbiology, animal model, and even clinical 
studies for determination other benefits effect on wellbeing 
of FPBs.
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Conclusion

In this work, it was demonstrated for the first time, that the 
antioxidant, hepatoprotective, nephroprotective properties 
and the bioactive composition of the three fermented plants 
beverages. The physiochemical parameter showed that the 
pH, reducing sugar, and total sugar decreased after fermen-
tation and creased of titratable acidity in three fermented 
beverages. On the other hand, the three fermented bever-
ages revealed an enhanced level of polyphenols, flavonoids 
and tannins, especially, NutrBio B. In addition, the GC–MS 
analyses of the three fermented plants beverages showed 
thirty-one interesting volatile compounds, which could give 
pleasant-positive aroma attributes to the flavor of the bever-
ages making fermented aromatic and medicinal plants more 
acceptable to consumers. The highest antioxidant activity 
was observed in the NutrBio B. The three fermented plants 
beverages have the potential to become a functional food 
with both strong antioxidant activity and good flavor.

In addition, the three fermented plant beverages (FPBs) 
possess high hepatoprotective, and nephroprotective, effects 
against  CCl4. They can restore the rates of biochemical indi-
cators, antioxidant, lipid peroxidation, and enzyme activities 
to almost their normal values and prevent kidney and liver 
lesions.

Accordingly, these results indicate that this innovative 
approach, based on fermentation process of aromatic and 
medicinal plants is an innovative and interesting process 
which can be used to enhance and ameliorate secondary 
metabolites production and extraction. Indeed, fermenta-
tion appears to be able to increase the contents of bioactive 
compounds in those beverages, thus improving their biologi-
cal activities which exhibited an excellent protective effect 
and may be considered as a useful source of cellular defense 
agent in liver and kidney tissues against  CCL4.
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