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Abstract Presently, fossil fuels are extensively employed

as major sources of energy, and their uses are considered

unsustainable due to emissions of obnoxious gases on the

burning of fossil fuels, which can lead to severe environ-

mental complications, including human health. To tackle

these issues, various processes are developing to waste as a

feed to generate eco-friendly fuels. The biological pro-

duction of fuels is considered to be more beneficial than

physicochemical methods due to their environmentally

friendly nature, high rate of conversion at ambient physi-

ological conditions, and less energy-intensive. Among

various biofuels, hydrogen (H2) is considered as a won-

derful due to high calorific value and generate water

molecule as end product on the burning. The H2 production

from biowaste is demonstrated, and agri-food waste can be

potentially used as a feedstock due to their high

biodegradability over lignocellulosic-based biomass. Still,

the H2 production is uneconomical from biowaste in fuel

competing market because of low yields and increased

capital and operational expenses. Anaerobic digestion is

widely used for waste management and the generation of

value-added products. This article is highlighting the

valorization of agri-food waste to biofuels in single (H2)

and two-stage bioprocesses of H2 and CH4 production.
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Introduction

Nature is progressing via sustainable mechanisms. There-

fore living organisms are strongly harmonized through

environmental changes. Energy utilization is significantly

increasing in developed countries as compared to devel-

oping countries, and nearly 15% of the World’s population

is consuming over half of the total energy consumption

[1, 2]. The exponential increase of world populations

(* 7.9 billion) in the past few decades is pressuring too

much burden for sustainable development. Primarily, we

rely on fossil-based sources to fulfill its increasing energy

demands in societal and industrial areas [3–5]. The eco-

nomic development hinders due to deteriorating stocks of

non-renewable energy-based assets. An alternative to these

energy sources, biofuels-based energy sources such as

hydrogen (H2) [6–8], biogas mainly methane (CH4) [9, 10],

ethanol [11], methanol [12–15], and biodiesel [16, 17], are

more helpful to minimize the emission of harmful gases via

the burning of fossil fuels and also their eco-friendly nat-

ure. A large quantum biowaste(s) is generated through our

daily lives and various human activities [18–20]. Thus, the

utilization of biowaste(s) for generating useful for various

kinds of biomolecules such as biofuels [21–25], biopoly-

mers such polyhydroxyalkanoates (PHAs) [26–30], and

bioelectricity [31, 32]. Biological processes have been

proved more beneficial for biotransformation applications
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than physical or chemical methods, which are primarily

considered high energy-intensive processes [33–38]. Fur-

ther, the biocatalyst’s properties can be significantly

improved through genetic and protein engineering or

related synthetic approaches for their potential applications

[39–44]. Also, biological-derived products, materials or

microbes themselves can be potentially applied in the area

of microbial pathogenesis to improve microbes, human,

and plants health [45–53]. Recent pandemic arising due to

viral infection is a significant influence of human thinking

for better management of population sustainability and

environmental issues research over other non-related areas

[54–56].

The energy resources-based predictions suggested that

coal deposits will be utilized over the next Century. In

contrast, petroleum-based deposits will be used up within

few decades [10, 57]. Also, the environmental worsening is

a significant concern, which is significantly associated with

the extensive uses of these non-renewable energies.

Renewable energy resources are vital for sustainable

development [10, 58–61]. However, from the past few

decades, alternative energy sources to fossil fuels are rec-

ognized as a significant area of research. The production of

biofuels, especially H2 can be more beneficial using bio-

waste as a low-cost feed over costly pure sugar

[1, 19, 62–64]. The various approaches have been used for

the utilization of biowaste(s)-based feedstocks to produce

biofuels such as H2 and CH4 [10]. The production of these

biofuels is extensively studied using various biowastes

from agricultural, municipal, industrial, and synthetic ori-

gins. The production of H2 is largely demonstrated using

mixed cultures (MCs) over pure cultures as an inoculum

due to their better metabolism [10, 65, 66]. The use of

integrative processes such as H2 production followed by

CH4 can be adopted at a large scale to improve the bio-

process economy. This article presents the status of the

production of biofuels from agri-food waste in single- and

two-stage. Further, the bioprocess improvement strategies

for sustainable development have been discussed.

Biowastes

Globally, a significant advancement in life-routine and

industrialization has generated a severe problem by accu-

mulating various kinds of waste (including biowastes) and

their negative environmental impact [3, 67, 68]. The

challenges of their management have earned considerable

public and political recognition in current times. Therefore,

minimization of wastes generation through their manage-

ment is highly recommended for sustainable development.

In addition, we are highly relying on unsustainable fossil

fuels-based energy sources that can lead to environmental

pollution via the emission of harmful gases, and they (fossil

fuels) may be depleted in the following centuries. How-

ever, in the past few decades, the generation of biofuels

such as H2, CH4, methanol, ethanol, and biodiesel is

demonstrated as an alternative to fossil fuels [9, 11, 17, 69].

The production of biofuels from biowastes can be carried

out to solve these waste management issues and biofuels

and the environmental benefits. The primary sources of

wastes can distribute in various groups based on their

origin, such as agricultural, industrial, municipal, and

biomedical [1, 19]. The quantum of wastes can be varied at

regional and cultural levels. Despite the numerous envi-

ronmental regulations and rules, a small level has been

accomplished primarily in developing countries to mini-

mize the generation of wastes [10]. In recent times, the

generation of wastes in Indian major cities is escalating

high rate (* 1.5%) of total wastes quantum [2]. However,

the handling of a large quantum of waste is needed through

practical methods in an economical manner. Various

wastes management technologies have been used,

includes—(1) AD, (2) composting, (3) incineration, (4)

landfilling, (5) recycling, and (6) dumping (especially in

the open) [10]. These methods can be used individually or

in combination for effective waste management and

showed some benefits over each other. The brief benefits of

different waste management methods such as landfilling

and dumping (open) are widely adopted globally, con-

tributing up to 80% of the total waste management methods

presented in Table 1 [10]. In contrast, AD and composting

are equally used with very low combined contributions of

10–12% that is equal to the recycling method. The agri-

food waste such as cereals (no-edible parts), fruits, and

vegetables are generated in considerable amounts in mar-

kets. These kinds of biowaste are highly biodegradable that

can be easily managed via their valorization to value-added

products or other envirometal applications [66, 70–72].

However, biowastes-based generation of biofuels is con-

sidered to be potentially applicable technologies for sus-

tainable development.

Biofuels Production from Biowastes

The major biofuels such as H2 [8, 10], CH4 [10, 73],

methanol [74, 75], ethanol [11], biodiesel [17], production

is expected to reduce global warming. These are probable

to take fundamental developments in biofuels production

[10]. The biofuels production are broadly classified into

four generations: (1) 1st generation—this type of biofuels

(biodiesel, bioethanol, biogas) is produced largely from

agricultural-based crops, sugarcane, sugar beet, wheat, rice,

corn, and sunflower through hydrolysis and fermentation,

(2) 2nd generation—this generation of fuels are produced
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using non-edible plant parts, (3) 3rd generation—biofuels

such as ethanol and biodiesel were produced via photo-

synthetic algae and genetically engineered plants through

biochemical and thermochemical bioprocesses, and (4) 4th

generation—this type of biofuels are produced through

advanced photobiological solar or electric fuels (Fig. 1).

The main drawback of this generation of fuels is a conflict

of ‘‘food vs. fuel’’ [76].

The selection of suitable fuel for future uses can meet

different criteria such as (1) convenient in transportation,

(2) safe to use, (3) easily transform to another form of

energy, (4) environmentally friendly nature, (5) high uti-

lization efficiency, and (6) inexpensive to use [1, 10].

Among various available biofuels based on the above cri-

teria, H2 can be considered as a wonder fuel for sustainable

development. Biologically H2 has been produced from

numerous microbes by using cheap raw materials such as

biowastes. Lignocellulose-based biowastes are abundantly

accessible [77]. Due to their complex nature, the pretreat-

ment of biowastes is considered a satiable approach to

produce soluble sugars for easy utilization towards biofuels

(H2) through fermentation. Primarily, lignocellulosic

biowastes are consists of cellulose, hemicellulose and lig-

nin. However, the hydrolysis of biomass largely depends

on the type of pretreatment approaches due to significant

variations in their compositions. The different pretreat-

ments of biomass approaches have been used to generate

fermentable sugars, includes physical (microwave and

pyrolysis), chemical (acidic and alkaline), (3) physical–

chemical-based (ultra-sonication and steam explosion), and

(4) biological (microbial and enzymatic) [11, 76]. In the

case of enzymatic pretreatment of biowastes, the following

cellulase, xylanase, b-glucosidase, and laccase can be used

for direct hydrolysis or to decrease the toxicity of hydro-

lysate [8, 78–81].

The biological pretreatment methods can be considered

as eco-friendly as compared to physical, chemical, or their

combinations [10, 76]. Still, the economic H2 production

from biowaste is challenging due to partial utilization of

feed and bioprocess scaling-up. Also, the present produc-

tion cost of H2 through biological routes is higher than

available energy sources. In general, the integrative

approaches are proved more beneficial for value-added

bioproducts that can improve the process economy.

Table 1 The management procedures for valorization or disposal of wastes

Process Contribution (%) Benefits

Anaerobic digestion 6.30 Provide renewable energy (biogas) and/to generate electricity

Reduce pollution, smell, pathogens, and weed seeds

Conservation of agricultural land

Generate fertilizer

Composting 5.05 Embolden microorganisms to produce humus (nutrient-filled materials)

Soil enrichments and conquer plant infections and pests

Decrease methane emissions

Reduce chemical fertilizers requirement

Incineration 6.45 Reduce waste quantity, and efficient waste management

Generation of energy and pollution reduction

It prevents methane generation and operated in any weather

Reduce harmful microbes and chemicals

Landfilling 37.4 Advanced landfills are eco-friendly, and an excellent energy source

An easy method to keep clean city and town

Helpful to manage all kinds of wastes

Economical

Dumping (in open) 32.2 The simplest method and requires a small area

Very economical

Convenient

Source for shelter and nutrients

Recycling 12.6 Provide a livable environment for a sustainable future

Reduce quantity for waste management by other methods

Conserve natural resources

Improve economy and save energy
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Various integrative approaches such as H2 followed photo

fermentative H2, CH4 or PHAs have been reported

[10, 21, 66]. The utilization of PHAs for the biotechno-

logical applications can be more useful because of their

novel therapeutic uses such as antimicrobial, tissue engi-

neering, and drugs carrier [82–86]. Also, the techno-eco-

nomics analysis suggested that these integrative processes

will be more desirable over single-stage H2 production

from sugars or biowastes [10, 21].

Anaerobic Digestion

AD is considered one of the oldest bioprocesses for wastes

utilization. Biowastes are very complex; thus, different

strategies such as AD have been employed for their val-

orization to useful bioproducts such as H2 and CH4

[10, 57]. AD is a multi-step process and primarily carried

to utilize complex materials such as biowastes using

indigenous microbial populations or externally added cul-

tures. The AD is carried out in four steps that are classified

as (a) hydrolysis, (b) acidogenesis, (c) acetogenesis and

(d) methanogenesis [10]. In the AD 1st step, the biowaste

(complex organics) are hydrolyzed to simple sugars, fatty

and amino acids by hydrolytic enzymes such as amylase,

cellulase, protease, and lipase activity of microbial cul-

tures. This group of cultures is known as hydrolytic fer-

mentation bacteria, and they provide hydrolyzed substrates

to the next step of the bacterial population (Acidogenesis).

At the 2nd step of acidogenesis (fastest step in the AD), the

partially hydrolyzed substrate was further broken down by

enzymatic reaction of cultures. Acidogenic bacteria are

very fast growing with lower than an hour of doubling time

and especially generates volatile fatty acids (VFAs), and

gases, includes H2, carbon dioxide (CO2), and ammonia.

The 3rd stage of AD is known as acetogenesis, and during

this stage, largely acetic acid is produced by acetogens

along with H2 and CO2. This stage microbial population is

slow-growing with a more significant doubling time about

50-fold higher to acidogens (2nd stage). Thus, this stage’s

success primarily depends on cooperation between their

microbial populations to achieve better efficiency. The 4th

stage of AD is known as methanogenesis and is considered

the terminal stage of AD (Fig. 2). At this step, methano-

gens are producing CH4 directly from acetate or H2 and

CO2 mixture as a biogas [10, 18]. Methanogens are phy-

logenetically diverse groups of unique bacteria that are

called archaebacteria. Through the AD of biowastes, the

biological oxygen demand, as well as chemical oxygen

demand (COD), can be significantly reduced, and this

process can all offer various environmental, and socio-

economic benefits via the generation of renewable fuels. In

addition to numerous benefits, AD can exhibit limitations

such as strict anaerobic conditions requirement susceptible

towards even low presence of oxygen amount) concentra-

tions, and slow metabolic activities of methanogens [1, 10].

Apart from H2 and CH4, the VFAs generated during the

acidogenesis stage in AD can be potentially used to pro-

duce PHAs.

Fig. 1 The generations of

biofuels production from

various feed-stocks
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Biohydrogen Producers and Their Biodiversity

Among various candidates, H2 is recognized as a promising

future fuel due to its high caloric energy (141.9 MJ/kg) and

non-polluting potential [10]. The H2 can be produced using

natural gases, biomass, coal, and fossil fuels. In the present

scenario, * 90% of H2 is produced through fossil-fuels

[1, 10]. Biologically produced H2 showed benefits like

moderate production conditions, and an environmenal-

friendly bioprocess over various physicochemical pro-

cesses [65]. The biological methods to produce H2,

include—dark-fermentation (DF), photo-fermentation,

photolysis, and electrochemical processes. The fermenta-

tive H2 generation is a novel aspect, and it is considered

suitable when biowaste is used as feed. H2 production is

occurred by hydrogenases through excess protons release

via reversible reaction of H2 $ 2H? ? 2e- [1–3]. Based

on the type of metal contents, hydrogenases are categorized

into [Fe–Fe]- (naturally involves for H2 generation),

[NiFe]- (such as uptake-hydrogenases, bidirectional cyto-

plasmic-hydrogenases, cytoplasmic H2 sensors and

cyanobacterial uptake-hydrogenases, and H2-evolving

hydrogenases), and [Fe]-containing enzymes. The meta-

bolic pathway of H2 involves the generation of pyruvate

from glucose via Embden–Meyerhof–Parnas cycle or gly-

colytic pathway [3]. Further, formate is produced from

pyruvate through pyruvate formate lyase. The generation of

H2 involved different pathways into facultative (such as

Escherichia via hydrogenase and formate-dehydrogenase)

and strict anaerobic (like Clostridium through pyruvate

ferredoxin oxidoreductase (POR) and H2-POR) organisms

(Fig. 2). In photo-fermentation H2 evolution occurs in

bacterial by nitrogenase via capturing solar energy [19].

The biotransformation of hexose to H2 by dark- and photo-

fermentative organisms are demonstrated as following

from Eqs. 1, 2, 3, 4, 5, 6 [1, 10]:

Hexose þ 2H2O ! 2 Acetate þ 4H2 þ 2CO2 ð1Þ
Hexose ! Butyrate þ 2H2 þ 2CO2 ð2Þ
Hexose þ 6H2O þ light Sunð Þ ! 12 H2 þ 6 CO2

ð3Þ
Hexose ! lactate or ethanol ð4Þ
Acetate þ 2H2O þ light ! 4H2 þ 2CO2 ð5Þ
Butyrate þ 6H2O þ light ! 10H2 þ 4CO2 ð6Þ

The taxonomically diverse microbes have been used to

generate H2—(1) Archaea such as Methanobacterium,

Pyrococcus and Methylotrophs; (2) Actinobacteria such as

Mycobacterium; (3) Cyanobacteria like Anabaena, Calo-

thrix, Nostoc, and Spirulina; (4) Firmicutes such as

Bacillus, Clostridium, Caldicellulosiruptor, and Frankia;

(5) Bacteroidetes or Chlorobi like Acetomicrobium,

Chlorobium, and Bacteroides; (6) Thermotogae such as

Thermotoga; (7) Fusobacteria like Fusobacteriai; (8)

Alpha-proteobacteria such as Rhizobium, Rhodobacter, and

Rhodopseudomonas; (9) Beta-proteobacteria like Alcali-

genes and Rubrivivax; (10) Delta-proteobacteria such as

Fig. 2 Bioprocess illustrations

for the first-stage (hydrogen)

and second-stage (hydrogen and

methane) biofuels production

from agri-food waste
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Desulfovibrio; (11) Epsilon-proteobacteria like Campy-

lobacter; and (12) Gamma-proteobacteria like Azotobacter,

Enterobacter, Escherichia, Pseudomonas, Citrobacter and

Klebsiella [1]. Overall, along with a few unique H2-pro-

ducers, a lower H2 production to stoichiometric yield has

been described. In DF production, H2-producers like

Bacillus, Clostridium, Caldicellulosiruptor, and Enter-

obacter have shown yield * 3.8 mol of H2/mol of gelu-

cose [19]. Whereas photo-fermentative H2-producers like

Rhodobacter and Rhodopseudomonas have reported

yield * 9.0 mol of H2/mol of hexose [10, 87]. The key

benefits are associated with DF over photo-fermentative

include—lower energy input, and high production effi-

ciency. The fermentative H2 yield can be improved by

various approaches such as (1) pretreatment of biowaste as

feed, (2) uses of nanoparticles and metal ions, (3) use of

selective defined MCs (DMCs) over pure culture, (4) co-

digestion of feed, (5) use of metabolically engineered H2-

producers. The H2-produces can be engineered to eliminate

lactate dehydrogenase, uptake hydrogenase, or fumarate

reductase encoding genes [1, 10]. These genetically mod-

ified H2-producers are limited by the fact that H2 produc-

tion is associated with undesirable influences such as lower

yield and poor utilization of feed [1, 10, 88]. Overall, H2

production by engineered microbes can be boosted through

inhibition of H2 production competitive pathways,

designing unique pathways, or over-expressing genes

related to H2-production [10]. Alternatively, the uses of

immobilization of biocatalysts (either cell-free or cell-

based systems especially enzymes) are well stabilized to

improve various biotransformations [89–97]. Numerous

kinds of support such as solids and polymeric materials

have been used to developed efficient biocatalysts espe-

cially whole cells [14, 36, 67, 77]. Additionally, the uses of

low-cost supports such as lignocellulosic-derived bio-

wastes can be more beneficial for economical biotransfor-

mation over costly polymers. However, immobilized H2-

producers can be potentially enhanced H2 yield over free

cells, especially under continuous culture conditions

[2, 77]. Nanomaterials play a crucial role in biohydrogen

production and improved yield up to sixfold as compared

to control [10, 64]. Also, nanomaterials exhibit selective

antimicrobial properties towards specific organisms that

potentially can be effectively employed for the enrichment

of H2-producers in mixed populations containing non-

producers [64, 98, 99].

Biofuels Production from Agri-Food Wastes

Single-Stage Biohydrogen

The maximum 2 and 4 mol/mol of glucose can be pro-

duced through the generation of acetate and butyrate as

soul metabolite intermediates, respectively [1, 19]. In

contrast, H2 generation is inhibited in the fermentative

conversion of hexose to lactate or ethanol. From the past

few decades, primarily various initiatives carried out to

identify efficient H2-producers with desirable features to

use diverse kinds of feed. Broadly, undefined MCs (UMCs)

have been adopted to produce H2 from biowaste over pure

cultures due to their higher substrate specificity and sta-

bility towards undesirable changes during fermentation like

pH and feed. Still, lower H2 yields are achieved to

4 mol/mol of hexose because of the generation of unde-

sirable metabolite intermediates such as butyrate, propi-

onate, lactate, and ethanol instead of acetate [1, 10]. The

production of H2 is highly varied by the composition of

feed. The agricultural-based food wastes composition for

cellulose, hemicellulose, and lignin are presented in

Table 2. The cellulosic (cellulose and hemicellulose) and

lignin contents are highly varied among wastes. However,

the production of H2 is mainly dependent on the cellulosic

content of wastes and the potential of H2-producers to

metabolize them directly or after pretreatment [100].

The H2 production under batch and continuous culture

conditions from various agricultural-based food waste has

been shown in Table 3. Under batch conditions, the H2

production of ranges from 8.3 L/kg of COD to 239 L/kg of

feed [101, 102]. Whereas H2 yields from 54.0 L/kg of total

solids (TS) to 635 L/kg of volatile solids (VS) under

continuous mode [21, 103]. Overall, these studies sug-

gested that the continuous mode of H2 production is more

beneficial to achieve nearly 6.5-folds better H2 yield than

the batch culture conditions. Agri-food wastes such as

Agave tequilana bagasse, cheese whey, rice husk, sugar

beet, and sugarcane molasses reported H2 yield of

0.92–2.10 mol/mol of glucose [104–108]. Among these

feeds and cultures, the association of molasses and

Caldicellulosiruptor saccharolyticus DSM 8903 founded

more beneficial to achieve a maximum yield of

2.10 mol/mol of glucose over other cultures either in pure

form (Bacillus cereus and Clostridium thermocellum

DSMZ 1313) or anaerobic sludge as UMCs and different

biowastes combinations. Under batch mode, the combina-

tion of potato peals with Parageobacillus thermoglucosi-

dasius KCTC 33,548 and DMCs resulted in yields up to

0.83 L/L of feed and 92 L/kg of TS, respectively

[5, 59, 109]. In contrast, potato starch founded more ben-

eficial to achieve higher production of 151 L/kg of feed
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[110]. The supplementation of glucose to pea-shells

hydrolysate recorded high production up to 75.0 L/kg of TS

over pea-shells (microbially hydrolyzed) as compared to

pea-shells with yields of 65.0 L/kg of TS [20, 21]. Also, the

organic fraction of municipal solid waste (OFMSW)

showed quite similar H2 production of 62.5 L/kg of VS

under batch-mode by UMCs [111]. These findings sug-

gested that a suitable combination of feed and H2-pro-

ducing cultures can be desirable to achieve a high yield.

The vegetables, fruit, and cheese whey mixture exhib-

ited * 44-folds lower H2 yields to those recorded of 553

L/kg of VS from mixed fruit wastes (Table 3) [101, 103].

The combinations of the various agri-biowastes mixture

(two to six different combinations) along with corre-

sponding controls proved beneficial to produce H2 by

DMCs and the high H2 production varied between 54.0 and

102 L/kg of TS [5, 59, 62]. Similarly, higher H2 yield of

166, and 199 L/kg of feed from cassava and sweet potato-

based starch, respectively, were also reported [110]. In

contrast, an association of banana, grape, melon, orange to

MCs noted maximum H2 yields up to 403 L/kg of VS under

continuous mode [103]. In batch mode, the H2 production

from food waste recorded a higher production of 220 L/kg

of feed over 35.1, 93.4, and 119 L/kg of feed from cassava

pulp, cheese whey, and cassava waste, respectively

[101, 112, 113]. Based on yield among the various agri-

food wastes, apple waste can be potentially utilized as a

suitable feed for commercial biohydrogen production in the

near future.

Two-Stage Process of Biohydrogen and Methane

In general, under single-stage DF H2 production the partial

valorization of biowaste has occurred and bioprocess seems

less economical due to the maximum H2 yield achievable

of only 33% to total theoretical production of 12 mol/mol

of hexose [1, 19]. Therefore, to improve DF process effi-

ciency, various over integrating approaches have been

demonstrated to produce value-added biofules biomole-

cules (H2, CH4, butanol, and biodiesel) and eco-friendly

biodegradable polymers (PHAs) a substitute to manmade

plastics [10, 70]. Thus, such integrative bioprocesses as the

biorefinery approach can endorse better management of

wastes and environmental pollution along with the gener-

ation of various renewable products. The combination of

DF H2 generation followed with AD to produce CH4 can

achieve almost complete utilization of feed (Fig. 2).

[1, 10]. The two-stage integrative generation of H2 and

CH4 from agri-food wastes is presented in Table 4. Gen-

erally, the MCs inoculum employed at the H2 production

stage requires pretreatment like heat to enrich H2-produces

and minimize methanogens (H2 consumers). In contrast,

the CH4 stage inoculum can be directly used as an inocu-

lum instead of any initial pretreatment (naturally selected).

Giordano et al. demonstrated integrative production of 177

L of H2/kg of COD, and 243 L of CH4/kg of COD from

wheat (Common and durum), mashed and steamed peels of

potato, respectively. These findings suggested that feed can

significantly altered the production of H2 and CH4 by

granular sludge [114]. In contrast, a quite similar produc-

tion of H2 and CH4 was recorded from potato peels and rice

by anaerobic sludge as inoculum [115].

Agri-food pure wastes such as banana peels, beans,

cassava residues, potato, cheese whey, and sugarcane

bagasse reported H2 and CH4 up to 253 and 507 L/kg of

total VS (TVS), respectively (Table 4) [116–120]. In

contrast, a lower H2 up to 87.5 L/L of feed and higher CH4

yields up to 570 L/kg of COD observed from OFMSW as a

mixture of agri-food to other type wastes [121–123]. A

quite comparable production of 223 L of H2/kg of VS and

277 L of CH4/kg of VS was noted from rice residue and

Chlorella pyrenoidosa [124]. The association of food

wastes resulted in yields of H2 and CH4—(1) up to 218 and

432 L/kg of VS by anaerobic sludge, and (2) 135 and 510

L/kg of VS by seed sludge as inoculum, respectively

[125–127]. Similarly, food waste in different combinations

to olive husk, garden, and activated sludge produced up to

87.0 NL of H2/kg of VS and 682 L of CH4/kg of TS

[128–130]. Significant variations are observed to integra-

tive generation of H2 and CH4 from agri-food wastes that

can be associated with compositions of sugars in feed,

fermentation conditions, mode of production, and types of

inoculums (Table 2). Overall, among the other agri-food

wastes, potato, and a mixture of vegetables to other wastes

Table 2 Cellulose,

hemicellulose, and lignin

composition of few agricultural

origin wastes

Agricultural waste Cellulose Hemicellulose Lignin Others

Rice husk 35.1–41.1 17.6–38.3 18.8–26.6 11.8–22.5

Banana peels 11.5–44.0 18.4–25.5 8.05–9.80 29.5–53.3

Barley bran 37.1–44.1 30.4–34.9 19.8–25.5 8.20–19.4

Sugarcane bagasse 39.2–58.2 9.20–25.8 13.4–18.4 16.6–19.2

Apple pomace 36.0–42.5 11.0–18.8 19.0–23.7 15.0–34.0

Cassava 38.8–56.5 7.2–12.6 11.8–12.2 18.7–42.8

Olive husk 31.9–36.4 21.9–26.8 26.0–26.5 10.8–19.7
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recorded maximum productions of 253 L of H2/kg of TVS

and 730 L/kg of VS at first and second stages of integrative

bioprocess, respectively [120, 130]. Thus, these wastes

combinations can be more beneficial to produced higher H2

and CH4 in the future. Additionally, the lower H2 genera-

tion at the first-stage of the integrative bioprocess can be

improved via the uses of DMCs, novel culture or geneti-

cally engineered culture over UMCs [10, 132, 133].

Conclusions and Prospects

The key challenges of H2 production are associated with

the costly sugars as primary feed and lower H2 yield to

4 mol/mol of hexose under DF conditions. Biowastes,

including agri-food wastes, are desirable alternative low-

cost feed to produce biohydrogen. However, the available

quantum of these wastes is highly variable, especially in

Table 3 Biohydrogen generation by dark-fermentation of various agri-food wastes

Agri-biowaste Culture Biohydrogen Reference

Mode Yield

Agave tequilana bagasse Anaerobic sludge Continuous 1.53 mol/mol of

hexose

[105]

Agri-biowaste mixtures Defined mixed cultures (DCMs) Batch 54.0–102 L/kg of TS [5, 62]

Apple Mixed culture Continuous 635 L/kg of VS [103]

Apple pomace DCMs Batch 60.0–83.0 L/kg of TS [5, 59]

Banana Mixed culture Continuous 403 L/kg of VS [103]

Cassava pulp Soil-based mixed culture Batch 35.1 L/kg of feed [113]

Cassava starch Anaerobic sludge Batch 166 L/kg of starch [110]

Cassava waste Cattle dung Batch 119 L/kg of feed [112]

Cheese whey Anaerobic sludge Continuous 1.97 mol/mol of

hexose

[106]

Mixed culture Batch 93.4 L/kg of COD [101]

Corn starch Anaerobic sludge Batch 177 L/kg of starch [110]

Grape Mixed culture Continuous 384 L/kg of VS [103]

Date fruit waste Enterobacter aerogenes ATCC 13,408 Batch 144–239 L/kg of feed [102]

Food waste Cattle dung Batch 220 L/kg of feed [112]

Melon Mixed culture Continuous 352 L/kg of VS [103]

Mixed fruit wastes Mixed culture Continuous 553 L/kg of VS

Onion-peels DCMs Batch 56.0–86.0 L/kg of TS [5, 59]

Orange Mixed culture Continuous 403 L/kg of VS [103]

The organic fraction of municipal solid

waste

Anaerobic digestion sludge Batch 62.5 L/ kg of VS [111]

Pea-shells DMCs Batch 65.0 L/kg of TS [20]

Pea-shells hydrolysate DMCs Batch 75.0 L/kg of TS [21]

DMCs Continuous 54.0 L/kg of TS

Potato peels Parageobacillus thermoglucosidasius KCTC
33,548

Batch 0.83 L/L [109]

DCMs Batch 64.0–92.0 L/kg of TS [5, 59]

Potato starch Anaerobic sludge Batch 151 L/kg of starch [110]

Rice husk Bacillus cereus 1.37 mol/mol of

hexose

[107]

Sugar beet molasses Caldicellulosiruptor saccharolyticus DSM 8903 Batch 2.10 mol/mol of

hexose

[104]

Sugarcane bagasse Clostridium thermocellum DSMZ 1313 Batch 0.92 mol/mol of

hexose

[108]

Sweet potato starch Anaerobic sludge Batch 199 L/kg of starch [110]

Vegetable and fruits Mixed culture Batch 8.3 L/kg of COD [101]

Vegetable, fruit, and cheese whey Mixed culture Batch 12.5 L/kg of COD
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cases of seasonal waste that can be a limiting factor for

sustainable H2 production via environmentally friendly

technologies. Also, feedstocks (biowastes) mobilization is

a vital concern to produce from biomass. Due to the

complex nature of biowastes and variations in their cellu-

losic contents can also influence biohydrogen production.

Thus, the utilization of biowastes (type) can impact overall

prospects of their use such as the production of H2 through

DF and CH4 via AD. These obstacles may be undertaken

through the development of cost-effective biowastes pre-

treatment techniques via focusing on the improvement of

bioprocess efficiency by the valorization of waste to

increase H2 yield. The bioprocess-based technologies to

produce H2 are in different levels of developmental stages.

In typical, various studies have been focused on H2 pro-

duction bioprocess through—(1) reduce capital invest-

ments, different operational expenses, including

maintenance), revenue (profits either directly or indirectly)

Table 4 Two-stage bioprocesses for hydrogen and methane production from various agri-food wastes

Agri-waste Stage I—Biohydrogen Stage II—Biomethane Reference

Culture Yield Culture Yield

Banana peels Anaerobic sludge 210 L/kg of VS Anaerobic

sludge

284 L/kg of VS [117]

Bean waste Seed sludge 152 L/kg of TVS Seed sludge 463 L/kg of TVS [120]

Cassava residues Mixed culture 118 L/kg of TS Mixed culture 308 L/kg of TS [119]

Cheese whey Anaerobic sludge 137 L/kg of COD Anaerobic

sludge

250 L/kg of

COD

[116]

Common wheat Granular sludge 47.0 L/kg of

COD

Granular sludge 202 L/kg of

COD

[114]

Durum wheat Granular sludge 76.0 L/kg of

COD

Granular sludge 243 L/kg of

COD

Food waste Anaerobic sludge 215 L/kg of COD Anaerobic

sludge

311 L/kg of

COD

[125]

218 L/kg of VS Anaerobic

sludge

432 L/kg of VS [127]

Seed sludge 135 L/kg of VS Seed sludge 510 L/kg of VS [126]

Food and olive husk Anaerobic sludge 87.0 NL/kg of VS Anaerobic

sludge

505 NL/kg of VS [128]

Food waste and activated sludge Seed sludge 76.8 L/kg of VS Seed sludge 148 L/kg of VS [130]

Garden and food C. saccharolyticus DSM
8903

46.0 L/kg of TS Anaerobic

sludge

682 L/kg of TS [129]

Mashed potato Granular sludge 177 L/kg of COD Granular sludge 207 L/kg of

COD

[114]

Organic fraction of municipal solid

waste

Anaerobic sludge 24.0 L/kg of VS Anaerobic

sludge

570 L/kg of VS [122]

87.5 L/L Mixed culture 241 L/L [123]

Mixed culture 41.7 L/kg of VS Anaerobic

sludge

300 L/kg of VS [121]

Potato Seed sludge 253 L/kg of TVS Seed sludge 507 L/kg of TVS [120]

Potato peels Anaerobic sludge 103 L/kg of VS Anaerobic

sludge

237 L/kg of VS [115]

Rice Anaerobic sludge 125 L/kg of VS Anaerobic

sludge

232 L/kg of VS

Rice residue and Chlorella pyrenoidosa Anaerobic sludge 223 L/kg of VS Anaerobic

sludge

277 L/kg of VS [124]

Steam potato peeling Granular sludge 134 L/kg of COD Granular sludge 183 L/kg of

COD

[114]

Sugarcane bagasse Cow dung 93.4 L/kg of VS Anaerobic

sludge

222 L/kg of VS [118]

Vegetables and other wastes mixture Seed sludge 79.4 L/kg of VS Seed sludge 730 L/kg of VS [131]
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and cost of the product (H2), and (2) improvement of

technical efficiency of H2 production such as (1) use of

inexpensive-pretreatment methods for hydrolysis of bio-

waste to fermentable sugars, (2) screening efficient and

novel H2-producers, (3) use of metal and nanoparticles to

influence biocatalytic activity especially hydrogenases, (4)

co-digestion of biowastes to improve nutrition balance as

suitable feed, (5) use of selective consortia of DMCs

instead of pure or UMCs (it requires additional pretreat-

ment to the elimination of CH4-producers and enrichment

of H2-producers) to improve metabolization of feed

towards H2, (6) selection of desirable reactor type and (7)

metabolic engineering of biocatalysts. In the current sce-

nario, still, the H2 production cost is substantially high in

addition to the uses of biowaste as low-cost feed due to

higher capital and operation costs. The integration of pure

or MCs-based bioprocesses from agri-food wastes can be

more economically desirable to produce H2 followed by

value-added products at the second stage such as (1) H2 via

photo-fermentative, (2) CH4 through AD, (3) PHAs, or (4)

electricity production.
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