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Abstract In this study, the medium requirements to

increase the production of xylitol by using Candida trop-

icalis (CT) have been investigated. The technique of single

addition or omission of medium components was applied

to determine the nutritional requirements. The addition of

amino acids such as Asp, Glu, Gln, Asn, Thr, and Gly had

no significant effect on CT growth. However, in the

absence of other metal ions, there was a higher concen-

tration of cell growth and xylitol production when only

Zn2? was present in the medium. The analysis of various

vitamins unveiled that biotin and thiamine were the only

vitamins required for the growth of CT. Surprisingly, when

only biotin was present in the medium as a vitamin, there

was less growth of CT than when the medium was com-

plete, but the amount of xylitol released was significantly

higher. Overall, this study will increase the xylitol pro-

duction using the single omission or addtion technique.
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Introduction

Xylitol, a five-carbon alcoholic sugar, is popular in the

food industry due to its non-carcinogenicity and lack of

dependence on insulin [1–4]. People with diabetes and

people with low glucose-6-phosphate dehydrogenase do

not require insulin and glucose-6-phosphate dehydrogenase

when consuming xylitol, which makes it a suitable alter-

native for these people [5, 6]. Xylitol is currently manu-

factured from xylose, the five-carbon sugar derived from

hemicellulose hydrolysates, through a chemical process

using Ni/Al2O3 as a catalyst [7–12].

The type of media utilized during fermentation greatly

influences the chemical or nutritional environment, which

in turn significantly influences the productivity and the

economics of a fermentation process [13–18]. The media

used to promote high productivity in commercial/industrial

fermentation are mainly developed from complex sources

of carbon and nitrogen [19]. However, the rate of growth

and the activity of metabolic processes may be affected

strongly by the type and ratio of nutrients provided to the

culture. Due to this inherent inconsistency of natural origin,

the fermentation performance may vary from lot to lot [20].

Yeast extract (YE) is used in the fermentation of xylitol,

and thus xylitol is produced using microbial fermentation

using YE as one of the medium ingredients. However, the

variation yields have been observed due to unknown

variations of YE. On top of that, the high price of YE

hinders its uses in industrial applications. Moreover, the

medium cost is one of the major factors in economic xylitol

production [21–26]. Therefore, replacing YE with a syn-

thetic defined medium (SDM) is required to lower the cost

of medium and performance variability while maintaining

the production yield [27]. Additionally, when producing

xylitol, the performance consistency of synthetic-defined
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media should be comparable to that of YE. When the

concentration of nitrogen is high, the recovery and purifi-

cation of xylitol production become very difficult. Xylitol

purification is simplified because no additional contami-

nants are added to the media, leading to a lower production

cost [28]. Hence, it’s indeed crucial for the metabolic

investigation to have a precise growth medium for the

microorganisms, which really supports high yield and

productivity. Therefore, SDM which enables exponential

growth with high xylitol production while eliminating or

adding the need for a single medium component, has been

developed in the current study.

Materials and Methods

Microorganism and Media

Candida tropicalis KFCC-10690 was used in this study

because it is an established member of the Candida genus

[29]. Freezing of the cell stock was done at - 70 �C. This
medium consists of 5 g/L YE and 20 g/L glucose. For

fermentation, there were 5–33% xylose, 10 g/L YE, and

0–90 g/L glucose in a complex medium that had a con-

centration of 5 g/L KH2PO4. Finished materials were made

up into separate batches of medium and dense components,

which consisting of carbohydrates, basal salts, amino acids,

vitamins, and metals [30–32]. The components of SDM

were sterilized by a membrane filtration method [33]

(Millex-GV filter; Millipore Corp., Bedford, Mass), and the

working cultures of CT were propagated in SDM. Further,

cultures were centrifuged and washed twice in 50 mM

potassium phosphate and at the pH of 6.5 to elimination of

carryover nutrients. For the inocula, 5% (vol/vol) expo-

nentially growing cells were used.

Fermentation Conditions

Inoculation was carried out on a 500 mL flask with

100 mL of culture medium for 10 h at 30 �C and 250 rpm.

The resulting culture broth, diluted to a total volume of

10% (v/v), was transferred to a 500 mL flask and used to

inoculate a 5-L jar fermenter, which was filled with

100 mL of production medium until it was 2.8–3.5 L of

production medium (Kobiotech. Co., Republic of Korea).

Complex media contains 200 g/L of xylose, 17 g/L of

glucose, 1.3 g/L of KH2PO4, 2.5 g/L of (NH4)2SO4,

0.13 g/L of MgSO4, and 5 g/L of YE. SDM contains urea

3.1 g/L, xylose 200 g/L, glucose 17 g/L, KH2PO4 1.3 g/L,

MgSO4 0.13 g/L, biotin 16.5 g/L, folic acid 7.5 lg/L, thi-
amine 2.65 mg/L, boric acid 0.5 mg/L, copper sulfate

0.04 mg/L, potassium iodide 0.1 mg/L, ferric chloride

0.2 mg/L, manganese sulfate 0.4 mg/L, sodium molybdate

0.2 mg/L, and zinc sulfate 5.0 mg/L. Experiments in jar

fermenters were conducted at 30 �C in a fed-batch mode

controlling the pH at 4.8. The peristaltic pump (10–50 mL/

h) continuously fed the solution of xylose or the mixture of

xylose and glucose, which was aerated at 0.5 vvm. The

agitation was increased from 250 to 750 rpm to maintain

the percentage of dissolved oxygen above 20 until the cell

mass reached 14 g/L; it was then decreased to 340 rpm to

limit the concentration of dissolved oxygen.

Enzyme Assay

Cultured cells were collected by centrifuging at

10,000 rpm for 15 min. Washing was carried out with

0.1 M Tris–HCl (pH 7.8), 0.5 mM EDTA, and 5 mM

mercaptoethanol. Further, the cells were resuspended in a

buffer [34] containing 20 mM Tris–HCl (pH 7.8), 10 mM

MgCl2, 1 mM EDTA, 1 mM dithiothreitol, and 1 mM

phenylmethylsulphonylfluoride. Glass beads of 0.5 mm in

diameter were used for the suspension. (Sigma, USA). To

determine the xylose reductase (XR) activity, a decrease in

the absorbance at 340 nm was measured after the addition

of D-xylose, a marker for NADPH oxidation (Sigma, USA)

[35].

Analytical Methods

A Bradford assay has been used to estimate protein con-

centration, and bovine serum albumin is being used as a

standard [36]. To estimate the concentrations of xylitol,

glucose, and xylose, HPLC coupled to an RI detector

(Waters 410, USA) and a High-Performance Carbohydrate

Column (4.6 mm 9 250 mm, Waters, USA) were used.

Acetonitrile/water (85:15 v/v) was used as a mobile phase

at a 1.5 mL/min flow rate.

Results and Discussion

Influence of Nitrogen Source

A defined medium with a sole carbon source and a sole

nitrogen source was designed in order to investigate the

effect of the substrates on xylitol production. A shake flask

system was developed to explore a range of inorganic and

organic nitrogen sources in culturing a defined medium

containing 200 g/L xylose and 17 g/L glucose as the car-

bon source. Ammonia, which is an important component of

nitrogen metabolism in yeast, was also tested alongside two

other common nitrogen sources, urea and nitrate, and CT

grew on all of the nitrogen sources, indicating that they had

been consuming it. With the exception of the ammonium

acetate experiment, all experiments found that the glucose
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supply had been depleted after 40 h. Although inorganic

nitrogen sources like ammonium tartrate, ammonium

nitrate, ammonium acetate, and sodium nitrate were con-

sumed for biomass formation, the production of xylitol was

poor after 60 h of cultivation. However, urea has been

found to produce xylitol similar to the level achieved by

complex media by YE.

Effect of Amino Acids, Nucleic Acids, and Buffers

The cell growth and the amount of xylitol did not change

regardless of whether single or multiple amino acids were

added, and the same results have been observed when

nucleic acids such as guanine, xanthine, adenine, and uracil

were omitted from the growth medium. Moreover, no

major changes were found in the growth and xylitol pro-

duction of the strain when tenfold lower levels of buffers,

such as phosphate, citrate, and acetate, were added.

(Table 1).

Effect of Metal Ions on the Growth and Xylitol

Production

By excluding one metal ion at a time, the metal ion

requirement of CT in SDM was determined. The strain

grew well when NiCl2 and CoCl2 were omitted individu-

ally, and the cell growth was slightly inhibited when FeCl2,

CoCl2, H3BO3, Na2MoO4, MnCl2, and CuCl2 were exclu-

ded. However, in the absence of ZnCl2, the growth of CT

was significantly decreased, and it appeared to be crucial

for cell growth (Table 1). Thus, to determine the effect of

Zn2? on cell growth and xylitol production, a 5-L jar fer-

menter was used. To that end, various concentrations of

ZnCl2 were tested in the range of 0 to 10 mg/L. The fer-

mentation conditions were provided in the ‘‘Materials and

Methods’’ section. Xylitol gave the greatest yield and

productivity at a concentration of 5 mg/L of ZnCl2
(Table 2). Further, an SDM mixture produced by the

addition of optimal concentration of ZnSO4 (5 mg/L) was

as effective as the complete metal mixture of SDM has

been observed to promote cell growth and xylitol produc-

tion. XR activity of supernatants obtained from cultures

grown without zinc were assayed with and without ZnCl2
added to the samples, and no significant activities were

found, even when the samples were incubated with zinc for

1 h at 37 �C before the assay. This suggests that zinc does

not increase the level of XR activity by an enzyme

mechanism. However, it seems to play a metabolic role and

is needed during growth to induce significant protease

production [37].

Table 1 Nutrient requirements

of C. tropicalis in synthetic

defined medium investigated by

addition or omission of a single

medium component

Added medium component OD600
a Omitted medium component OD600

a

None 14.4 Phosphate 11.2

L-Alanine 14.3 MgSO4 13.0

L-Arginine 14.7 H3BO3 13.3

L-Asparagine 14.7 MnCl2 12.4

L-Leucine 14.4 ZnCl2 5.6

L-Glutamic acid 14.5 CuSO4 13.1

L-Glutamine 14.3 FeCl2 13.5

Glycine 14.4 NiCl2 14.6

L-Lysine 14.6 CoCl2 14.3

L-Phenylalanine 14.3 Na2MoO4 13.5

L-Proline 14.3 Biotin 13.4

L-Serine 14.5 Inositol 15.1

L-Tryptophan 14.7 Folic acid 14.5

L-Tyrosine 14.7 q-Aminobenzoic acid 14.9

L-Valine 14.5 Nicotinic acid 14.4

L-Histidine 14.4 Pantothenate 14.8

L-Cysteine 14.6 Pyridoxamine 15.0

Adenine 14.8 Pyridoxine 15.2

Guanine 14.2 Riboflavin 10.5

Uracil 14.5 Thiamine 8.7

Xanthine 14.3

Values are the means ± standard deviations of triplicate measurements
aOD measurements were performed after 48 h of incubation
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Effect of Vitamins on the Growth and Xylitol

Production

In the absence of any individual vitamin, only riboflavin

and thiamine were detected as essential nutrients for

growth. In contrast, a similar OD was found when other

vitamins were overlooked. Further, we found that folic

acid, q-Aminobenzoic acid, pantothenate, inositol, niacin,

and pyridoxine were unnecessary for cell growth. A single

omission of the nonessential vitamins did not change the

specific production of xylitol [37, 38], but when biotin was

overlooked, the specific xylitol production was signifi-

cantly decreased, and it emerged to be essential for xylitol

production (Table 3). When CT was grown in a medium

lacking vitamins except for riboflavin, biotin, and thiamine,

the OD of the cultures was getting lower after 48 h. In

contrast, the specific xylitol production was increased

significantly (Table 3). Biotin limitation decreased the

xylose consumption of CT, and the decrease became more

significant as the initial concentration of biotin decreased.

Biotin acts as a prosthetic group for carboxylases, and it is

unclear why its limitation results in more xylitol

accumulation.

Xylitol Production Using a 5-L Jar Fermenter

Finally, a pH-controlled fed-batch culture experiment was

carried out to compare the cell growth and xylitol pro-

duction by CT in the complex medium and the SDM. The

composition of the SDM met the nutritional requirements

of the strains and took advantage of the beneficial effects in

the downstream process. Fermentation of CT in complex

medium containing is represented in Fig. 1. During the

glucose consumption, pH decreased from 6.4 to 4.8;

thereafter, pH increased to 6.8 until the end of the fer-

mentation process. In the SDM, CT grew up with a mini-

mal growth rate of 0.18 h-1 and a final OD of 47.7 and

produced 260 g of xylitol per liter with a conversion yield

of 81.5% when grown in a pH-controlled fed-batch culture.

On the other hand, in the complex medium, the growth rate

was 0.23 h-1, and the final OD was 47.1, while the xylitol

production was 251 g L-1 with the conversion yield of

78.1% (Table 4). Further, It has been observed that in both

the complex medium and the SDM, xylitol production

continued after growth had come to an end. Still, beyond

the stationary growth phase, more xylitol production was

observed in the SDM than in the complex medium.

Moreover, the addition to SDM of the ten amino acids

(Gln, Leu, Ile, Val, Met, His, Arg, Trp, Pro, and Phe) did

not increase the xylitol production of CT.

Table 2 Effect of ZnSO4 concentration on the cell growth and xylitol

production

Conc. of ZnSO4 (mg/L)

0 1.0 5.0 10.0

Cell conc. (OD600) 47.9 47.7 43.4 38.5

Produced xylitol (g/L) 186 260 252 246

Yield (Volumetric, %) 54.3 77.1 77.2 74.7

Productivity (g/L h) 2.10 3.31 3.63 3.32

Table 3 Effect of individual and multiple omission of essential vitamins on the xylitol production by C. tropicalis in defined medium

Omission Xylitol (g/L) Specific xylitol production (g/g of dry cell weight)a

None 114 10.6

q-Aminobenzoic acid 117 10.8

Biotin 2.8 0.27

Calcium pantothenate 118 11.0

Folic acid 114 10.5

Inositol 112 10.2

Niacin 118 10.8

Pyridoxine 113 10.2

Riboflavin 108 10.1

Thiamine 103 9.90

All essential vitaminsb except riboflavin, biotin, and thiamine 119 11.2

aThe specific xylitol production was calculated from a standard curve of OD600 against cell dry weight
bAll essential vitamins: q-Aminobenzoic acid, biotin, calcium pantothenate, folic acid, inositol, niacin, pyridoxine hydrochloride, riboflavin,

thiamine
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Conclusions

In this work, we developed a synthetic and cheap medium

to allow reproducible xylitol production without variation

in yields and productivity. The technique of single addition

or omission of medium components revealed that the

amino acids such as Asp, Glu, Gln, Asn, Thr, and Gly were

slightly affecting the growth of CT. Further, we observed

that the amount of cell growth and xylitol production was

more significant when Zn2? ion was present in the medium

and other metal ions were not. In addition, it has been

observed that CT required only biotin and thiamine as

individual vitamins. Surprisingly, when only biotin was

present in the medium as a vitamin, the amount of xylitol

production was significantly greater than in the complete

medium.
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