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Abstract In the recent years, microalgae have captured

researchers’ attention as the alternative feedstock for var-

ious bioenergy production such as biodiesel, biohydrogen,

and bioethanol. Cultivating microalgae in wastewaters to

simultaneously bioremediate the nutrient-rich wastewater

and maintain a high biomass yield is a more economical

and environmentally friendly approach. The incorporation

of algal–bacterial interaction reveals the mutual relation-

ship of microorganisms where algae are primary producers

of organic compounds from CO2, and heterotrophic bac-

teria are secondary consumers decomposing the organic

compounds produced from algae. This review would pro-

vide an insight on the challenges and future development of

algal–bacterial consortium and its contribution in promot-

ing a sustainable route to greener industry. It is believed

that microalgal-bacterial consortia will be implemented in

the near-future for sub-sequential treatment of wastewater

bioremediation, bioenergy production and CO2 fixation,

promoting sustainability and making extraordinary

advancement in life sciences sectors.
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Introduction

It is undeniable that microalgae play a significant role in

representing the fundamental plant producers and promis-

ing feedstock in the biological community. In the recent

years, microalgae has been placed in the spotlight as the

alternative feedstock for renewable bioenergy production.

The awareness of utilizing microalgae as an alternative

feedstock has evolved from laboratory research into

industrial scale mainly stemming from the economic and

environmental benefits that have been reported by numer-

ous studies [1–3]. The ability of these photosynthetic

microalgae to absorb carbon as nutrients has mitigated the

concerns on carbon dioxide (CO2) release to the atmo-

sphere and this makes them attractive for the emerging

circular bioeconomy comprising of carbon footprint

reduction with renewable soruces generation [4]. Consid-

ering the impractical cost of typical microalgae cultivation

(i.e., using cultivation medium and water), the substitution

of medium with wastewater sources through assimilation of

nutrients from wastewater sources has shown great pro-

spects [1, 3]. This approach will be more economical and

environmentally friendly in the upstream processing by

simultaneously bioremediating the nutrient-rich wastewater

and maintaining a high biomass yield [5].

Alternatively, ecological studies revealed that specific

groups of bacteria have similar association with certain

microalgae through synergistic influence to obtain physical

and metabolism benefits [6]. The incorporation of algal–

bacterial interaction revealed the mutual relationship of
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microorganisms where algae are primary producers of

organic compounds from CO2, and heterotrophic bacteria

are secondary consumers that decompose these organic

compounds produced [7]. The limitations associated with

microalgae cultivation could be addressed by introducing

algal–bacterial symbiosis which can provide a positive

effect on the upsurge of algal growth, spore germination,

pathogen resistance, harvesting process and morphogene-

sis, making it beneficial for various biotechnological

applications [8]. Ongoing researches on algal–bacterial

consortia have been recognised for their scientific contri-

bution in promoting sustainability and greener industry for

creating advancement and impact to life sciences research

[9–11].

The writing and conceptualization of this review was

conducted via online databases search to identify similar

research studies, where four keywords (i.e. microalgal-

bacterial; bioenergy; environmental management and

bioremediation) were used to identify related articles (46

results found) to obtain information from peer-reviewed

journals, scientific reports and books related to this review

topic. Subsequently, this review focused on articles within

5 years (2015–2020) and 43 relevant articles were found.

Among these articles, their suitability and relevancy were

manually screened before included into the review. The

selected articles were categorized into their respective sub-

sections namely bioenergy production, wastewater biore-

mediation and environmental management. This review

will provide insights on the future development of algal–

bacterial consortia and its contribution in promoting a

sustainable route to greener industry.

Insights of Microalgal-Bacterial Consortia
in Wastewater Bioremediation

Wastewater sources such as municipal wastewater, indus-

trial wastewater, rubber effluent and palm oil mill effluent

have to be treated before discharging into water bodies as

they composed of large amount of contaminants (e.g.,

ammonium ions (NH4
?), nitrate ions (NO3

-) and phos-

phate ion (PO4
3-) [12]. Microalgal-bacterial consortium

has shown its capabilities for bioremediating contaminants,

absorbing nutrients, reducing chemical oxygen demand

(COD), total dissolved phosphorus (TDP), total dissolved

nitrogen (TDN) and biochemical/biological oxygen

demand (BOD) as a biological tool for environmental

control [13]. The symbiosis interaction between microal-

gal-bacterial consortium undergoes exchange of O2, CO2

and NH4
? ions in the wastewater treatment process, where

these bacteria oxidize organic carbon compounds in the

wastewater sources and convert them into CO2 (Fig. 1).

The produced CO2 by bacteria was then respirated by these

algae for photosynthesis and conversion of CO2 to algal

cell materials [14]. The removal efficiency of nutrient from

wastewater sources with symbiosis interaction of microal-

gal-bacterial will also increase with rise in the biological

metabolism of biomass growth. Apart from its utilization

for detoxifying organic and inorganic pollutant from

wastewater sources, it can recover resources for bioecon-

omy of both high- and low-value products (i.e. fertilizers,

algal-based plastics and fibres and aquaculture feed).

Table 1 summarized the microalgal-bacterial consortium

used in various wastewater bioremediation.

Insight of Microalgal-Bacterial Consortia
in Bioenergy and Bioproduct Production

Microalgae-based biofuels are considered an important

energy source due to its availability, rapid productivity and

CO2 fixation in regards to the current world energy crisis

[25, 26]. There are various bioenergy and bioproducts

production such as biochar, biofuels and even secondary

metabolite available from utilizing microalgae. The pro-

cess ‘‘pyrolysis’’ is to convert algal biomass into biochar

which is enriched with carbon to enhance the pH of acidic

soil condition. The composition of these algal-based bio-

char composed of high nutrient content (i.e. nitrogen,

phosphorus and inorganic element) to enhance the soil

fertility for agricultural purposes. Besides that, algal-based

biochar has also been subjected as bio-sorbents for

wastewater remediation purposes due to its specific func-

tional group presence on the surface of biochar [27].

As for biofuel production (e.g., biodiesel and biohy-

drogen), these anaerobic bacteria and microalgae consortia

will undergo direct or indirect pyrolysis to produce bio-

hydrogen. It has been proposed that the production of O2

from microalgae are done through respiration by the bac-

teria which is beneficial in maintaining an anaerobic

environment for biohydrogen production without sulfur

deprivation [28]. This finding was supported by Wirth et al.

[29] revealing that Rhizobium sp. consumed O2 concen-

tration of 21.0% to 4.5% in 12 h, which simultaneously

allowed 1.15 ± 0.01 ml/L of H2 produced by microalgae

biomass in the next 16 h. However, there was no H2 pro-

duction by microalgae biomass without the presence of

Rhizobium sp. in the microalgal culture. On the other hand,

the presence of these bacteria enhanced the growth rate of

microalgae by providing phytohormones or macro- and

micro-nutrients within 10–70% biomass productivity [10].

This was supported by Leong et al. [1] who reported the

feasibility of microalgal-bacterial interaction in promoting

simultaneous nitrification and assimilation activities for

high biomass and lipid production of 1.42 g/L and 0.242 g/

L, respectively in municipal wastewater. These are
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several studies associated to the evaluation of microalgal-

bacterial consortia for biofuel production [24, 30–34].

Recent researches have shown the potential of these

microalgae as a prospective source of valuable bioproduct

for direct human supplement and nutritional product [35].

The transformation of microalgal-bacterial biomass into

high value-added commodities would provide a more

sustainable and economical process for the downstream

bioprocessing industries. For instance, the biosynthesis

of polyhydroxyalkanoates (PHAs) derived from microal-

gal-bacterial consortia and it is considered as a promising

green alternative over conventional petrochemical-based

plastics [36]. The properties of PHAs obtained from bac-

terial-based is similar with the conventional plastics, but

with added-value such as biodegradability and biocom-

patibility properties [37]. It has been successfully demon-

strated by Fradinho et al. [38] on utilizing microalgal-

bacterial consortia for the production of PHA content as

high as 20% PHA storage yield per acetate depending on

the culture condition [38]. Despite of its advantages, the

commercialization of utilizing microalgal-bacterial con-

sortia remains a challenge where external factors that

includes the capital cost, market demand, public accep-

tance, environmental and health risk are needed to be

addressed [39].

Insight of Microalgal-Bacterial Consortia
in Greenhouse Gases CO2 Fixation

Carbon dioxide, CO2 is one of the main contributors of

greenhouse effect exhaust from fossil fuel combustion

which is directly contributed to global warming. Based on

recent study, the CO2 concentration is over 400 ppm,

which is the highest level in over 800,000 years [40]. As

mentioned above, microalgae have the capability in con-

suming high values of CO2 by converting them into

chemical energy with the presence of sunlight; as com-

pared to terrestrial plant, CO2 fixation efficiency of

microalgae are 10 to 50-folds higher [41]. In the microal-

gal-bacterial symbiotic interaction, the exchange of sub-

strate CO2 and O2 are needed for both algae growth and

CO2 fixation. As proposed by Subashchandrabose et al.

[42], microalgal-consortium is a more environmentally

friendly method towards carbon mitigation. This revealed

that photosynthetic microalgae are proficient resources for

CO2 fixation in the framework of a sustainable low-carbon

economy [43].

It has also been reported that Thalassiosira pseudonana

diatom, and heterotrophic bacteria Pelagibacter sp.

HTCC1062 (SAR11) increases the carbon fixation rate by

20.3% [44]. Moreover, this was supported by Gao et al.

[45] who conducted the co-culturing of Chlorella vulgaris

with activated sludge bacteria and the results exhibited

optimal CO2 removal efficiency of 63.48%. Table 2

Fig. 1 Symbiosis interaction

between microalgal-bacterial

interaction in the wastewater

treatment
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Table 1 Microalgal-bacterial consortia utilized in various wastewater bioremediation

Algae Bacteria Source of wastewater Total nutrients removal

efficiency

References

Chlorella
vulgaris (No.

FACHB-8)

Bacillus licheniformis (No. 1.7461) Municipal river in the Yangpu District

of Shanghai, China

COD: 86.6% (175.8 mg

L-l)

TDP: 80.3% (4.97 mg

L-l)

TDN: 88.9% (31.2 mg

L-l)

[15]

Chlorella sp. Heterotrophic bacteria Municipal wastewater from Trento

Nord WWTP

COD: 86.0 ± 2%

(37.0 mg L-l)

Total Kjeldahl nitrogen,

TKN: 97.0 ± 3%

(0.5 ± 0.7 mg NH4
?-N/

L

[16]

Scenedesmus
quadricauda
(AG10003)

Activated sludge from local sewage

treatment plant in Daejeon, Republic of

Korea

Coke wastewater of a steel

manufacturing company in the

Republic of Korea

NH4
?-N removal: 8.3 mg

L-1 d-1

Total phenol: 27.3%

[17]

Chlorella
vulgaris (AG

30,007)

Pseudomonas putida Synthetic municipal wastewater COD: 86.0% (490.0 mg

L-l)

NH4
?-N removal: 85.0%:

(190.0 mg L-l)

PO4
3-P removal: 66.0%

(40.0 mg L-l)

[18]

Chlorella
vulgaris

Rhizobium sp. Synthetic municipal wastewater Total organic carbon:

TOC 60.8% (127.0 mg

L-l)

Total nitrogen: 69.1%

(21.7 mg L-l)

Total phosphate: 98.9%

(0.07 mg L-l)

[19]

Scenedesmus
acuminatus

Filamentous bacteria Milk whey processing wastewater COD: 93.0% (982.0 mg

L-l)

TDN: 88.0% (52.0 mg

L-l)

Total phosphate: 69.0%

(17.0 mg L-l)

NH4
?-N removal 88.0%

(31.0 mg L-l)

[20]

Chlorella
sorokiniana
(FACHB-275)

Activated sludge bacteria from

municipal WWTP, Wuhan, China

Domestic wastewater in Wuhan, China COD 88.0–90.0%

(2500 mg L-l)

NH4
?—N removal:

82.0–98.0% (2500 mg

L-l)

PO4
3-P removal:

92.0–98.0% (2500 mg

L-l)

[21]

Chlorella sp. Beijerinckia fluminensis Vinegar production wastewater from

Hengshun Vinegar Industry Co., Ltd.,

Zhenjiang, Jiangsu, China

COD: 76.7% (740 mg

L-l)

Total nitrogen: 78.7%

(20.5 mg L-l)

Total phosphate: 74.8%

(7.4 mg L-l)

[22]

Indian J Microbiol (July–Sept 2021) 61(3):262–269 265

123



summarized the CO2 removal efficiency by microalgal-

bacterial consortia. Based on these published articles and

evaluation in this review, microalgal-bacterial consortia

will be implemented in the near-future for sub-sequential

treatment of wastewater bioremediation, bioenergy pro-

duction and CO2 fixation.

Challenges and Perspectives

The algal-bacterial symbiosis has higher proficiency to

bioremediate toxic contaminants from the wastewater

compared to the single bacterial or algal system because it

can compensate in terms of pollutant removal, cost-effi-

cient aeration, and greenhouse gases sequestration. How-

ever, consortia involving microalgae and mixed microflora

from activated sludge are not usually focused on, and the

complexity of the microorganisms in the consortia leads to

difficulty in controlling the system stability and this would

affect the outcome of wastewater treatment [49]. The

screening study of specific symbiotic bacterial strains and

subsequent selective establishment of a stable system are

essential. Enzymology requires further exploration, par-

ticularly the enzymatic mechanism between microalgae

and bacteria throughout the wastewater bioremediation

process. Moreover, algal-bacterial consortia shows poten-

tial for improved biohydrogen production, but it still has

low recovery rates and yields, even way before its readi-

ness to industrial application. Strategies such as genetic

modifications, cell immobilization, physiological treat-

ments like Mg deprivation, light modulation and oxygen

scavengers should be investigated for further improvement

of H2 production. For an economic production of biofuel

and final commercialization of microalgal-bacterial

bioenergy, techno-economic assessment (TEA) and life

cycle assessment (LCA) are important tools in terms of

Table 1 continued

Algae Bacteria Source of wastewater Total nutrients removal

efficiency

References

Selenastrum
bibraianum

Activated sludge bacteria from printing

and dyeing wastewater treatment plant

in Shihezi, China

Printing and dyeing wastewater

treatment plant in Shihezi, China

COD: 70.0–85.0%

NH4
?-N removal:

84.9–89.7%

Total phosphate:

30.2–37.7%

[23]

Navicula sp. Comamonada-ceae and Nitroso-
monadaceae, ammonia oxidizing

bacteria

Municipal wastewater treatment plant

in Tianjin, China

COD: 95% (600 mg. L-l)

NH4
?-N removal:[ 99%

(50 mg. L-l)

Total phosphate:

31.0–42.0%

[24]

Table 2 Microalgal-bacterial consortia in CO2 fixation

Microalgae Bacteria Experimental set-up condition CO2 removal

rate

References

Tetraselmis chuii
and

Nannochloropsis
gaditana

Algal pond bacteria 39 L photobioreactor, 1767 lmol m-2 s-1,

12 h:12 h light:dark cycles, 24% of CO2, 76%

of N2 and 498 ± 63 mg m-3 of toluene

89.0–97.0% [46]

Chlorella vulgaris Activated sludge collected from

wastewater treatment plant of

Nanjing, Jiangsu, China

16.8 L glass photobioreactor,

200 lmol m-2 s-1, 34.69 ± 2.46% (v/v) of

CO2

53.24–63.48% [45]

Scenedesmus
obliquus

Activated sludge collected from

wastewater treatment plant of

Nanjing, Jiangsu, China

16.8 L glass photobioreactor,

200 lmol m-2 s-1, 34.69 ± 2.46% (v/v) of

CO2

51.46–62.29% [45]

Chlorella vulgaris Mixed anaerobic sludge collected

from the bottom of septic tank

500 mL bubble column photobioreactors,

24 lmol m-2 s-1, 12 h using cool white

fluorescent, 10 ± 2% CO2 (v/v)

190.9 ± 8.6 mg

L-1d-1
[47]

Chlorella vulgaris Nitrifier-enriched activated sludge

from municipal wastewater

treatment plant

1 L conical flask, 2000 lx 90% (156 mg) [48]
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resource availability, economic feasibility, productivity of

microalgal-bacterial consortia, environmental sustainabil-

ity, quality of energy dynamics and renewability. On the

other hand, promising biotechnological applications of

microalgae-bacterial consortia such as CO2 fixation are

lacking of convincing data from the actual applications

based on the current knowledge [50]. This is because these

studies are conducted in lab units and has not been applied

in scale-up conditions such as different system capacity

and external factors like seasonable environmental chan-

ges may also affect the algal-bacterial system. Hence,

besides studies on community structures and interaction

between microalgae and bacteria, future research requires

large scale outdoor experiments to evaluate its economic

viability and sustainability of these biotechnological

applications.

Conclusion

In brief, the system of algal–bacterial consortium can be

applied in wastewater bioremediation, bioenergy produc-

tion and CO2 fixation. The utilization of algal–bacterial

symbiotic system in wastewater treatment technology can

result in higher algal biomass and higher contaminant

removal, thus minimizing the cultivation of microalgae

culture and bioremediation cost for polluted wastewaters.

Moreover, anaerobic bacteria and microalgae consortia

undergo direct or indirect pyrolysis to produce biohydrogen

and they can maintain an anaerobic environment for bio-

hydrogen production since bacteria consumes the oxygen

produced by microalgae. Additionally, microalgal-bacterial

consortium can increase the carbon fixation rate with much

higher efficiency compared to terrestrial plants. The pro-

cesses utilizing microalgal-bacterial consortia are indeed

renewable and sustainable technology to be applied in the

current microalgal industry, along with more future

research on microalgal-bacterial interaction mechanism,

economical analysis for the commercialization and up-

scaling for further potential applications.
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