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Abstract Advancement in the next generation sequencing

technologies has led to evolution of the field of genomics

and metagenomics in a slim duration with nominal cost at

precipitous higher rate. While metagenomics and genomics

can be separately used to reveal the culture-independent

and culture-based microbial evolution, respectively,

(meta)genomics together can be used to demonstrate

results at population level revealing in-depth complex

community interactions for specific ecotypes. The field of

metagenomics which started with answering ‘‘who is out

there?’’ based on 16S rRNA gene has evolved immensely

with the precise organismal reconstruction at species/strain

level from the deeply covered metagenome data

outweighing the need to isolate bacteria of which 99% are

de facto non-cultivable. In this review we have underlined

the appeal of metagenomic-derived genomes in providing

insights into the evolutionary patterns, growth dynamics,

genome/gene-specific sweeps, and durability of environ-

mental pressures. We have demonstrated the use of culture-

based genomics and environmental shotgun metagenome

data together to elucidate environment specific genome

modulations via metagenomic recruitments in terms of

gene loss/gain, accessory and core-genome extent. We

further illustrated the benefit of (meta)genomics in the

understanding of infectious diseases by deducing the rela-

tionship between human microbiota and clinical microbi-

ology. This review summarizes the technological advances

in the (meta)genomic strategies using the genome and

metagenome datasets together to increase the resolution of

microbial population studies.

Keywords Metagenomics � Genomics � De novo � Genome

reconstruction � Recruitments

Introduction

With the advent of next generation sequencing (NGS)

technologies, the field of (meta)genomics has revolution-

ized the landscape of microbiology leading to deluge of

environmental and genome sequence data. With the

availability of sequenced bacterial genomes, comparative

genomics has emerged to be indispensable in elucidating

evolutionary forces active across genera or species; how-

ever it remains incompetent to demonstrate results at the

population level of in situ cohorts in an environment

[1–11]. The problem can be resolved to some extent by

using genomics and metagenomics data together delineat-

ing the pan-genome dynamics of a community distinctly

elucidating environment specific lifestyles adopted by

bacteria (Fig. 1) [12, 13].

Ever since its discovery ‘metagenomics’ has been lar-

gely used to decipher the overall taxonomic composition

at an environment focusing more on ‘meta’ and less on

‘genomics’ part except for the organismal reconstruction

at the species/strain or pan-genome level (multiple species

of a specific genus) [12, 14]. While there are numerous

studies based on using genomics and metagenomics

independently, it has not been until recently that the

potential of mining genome and metagenome datasets

together was exploited to unveil complex environment–

host interactions. Using (meta)genomics in sync, can

provide a better understanding of habitat independent
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gene acquisitions and functional contributions of taxa

enriched in an environment [15, 16]. (Meta)genomics can

also predict in situ growth dynamics, environment specific

lifestyles, seasonal dynamics, and gene-specific genome-

wide sweeps across resident populations [17, 18] (Figs. 1,

2). This review intricately covers the (meta)genomic

approaches developed across the decade, starting from the

metagenome-enabled discovery of ‘rare biosphere’ [13]

until today and how using genomics and metagenomics

data conjointly can increase the resolution of investiga-

tions concerned with progressive ecological interactions.

(Meta)genomics Enabled Assessment of Population
Splitting Factors

When an organism is known to be highly abundant or is

isolated from a specific environment along with availability

of metagenome database for the same environment, it

becomes feasible to recruit metagenome reads over refer-

ence genome [2, 19]. This can then be followed by anno-

tation of the unmapped/under-recruited regions known as

metagenomic islands (MGIs) [17, 20]. The MGIs are

implicated to be mobile genetic elements (MGEs) which

Fig. 1 Schematic

representation of workflow for

conducting genomic and

metagenomic surveys both

independently and in

association to elucidate

community dynamics. The steps

with red asterisks are optional

steps in the course of analysis.

‘G’ labeled near bins represent

the genomic segregation from

metagenome data. The name of

assemblers and taxonomic

validation techniques mentioned

in this figure are mere examples

representing generalized

methodologies used in the field

and does not reflect any biased

opinion. However, these

methodologies have been

reviewed in references Oulas

et al. [114] and Sangwan et al.

[24]. (The figure was originally

produced for this review. The

examples for metagenomic

recruitments were re-produced

from Sharma et al. [17])
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are part of the accessory bacterial genomes representing

highly variable region among different lineages in the

population [19]. The steps that can be followed and the

outcomes are enumerated in Fig. 1. This analysis as

depicted in Fig. 1 becomes more attractive for extreme

environments which are characterized by enrichment of the

dominant taxa (Fig. 1). For instance, chemical contami-

nated environment such as hexachlorocyclohexane (HCH)

dumpsite has been found to be dominated by Sphin-

gomonads and Pseudomonads [11, 12]. Similarly, soil

microcosms are dominantly characterized by Rho-

danobacter, Burkholderia, Acidobacteria [13]. The

unmapped stretches across the reference genome called as

Metagenomic Islands (MGIs) are annotated to highlight the

population segregating functions of the in situ cohorts of a

specific environment which otherwise is not possible using

traditional genomics approach [20] (Table 1). The

metagenomic recruitment analyses using environmental

data from stressed niches also reveal the population

dynamics due to slight environmental perturbations and the

Fig. 2 Diagram showing four

major aspects connecting

metagenomics (M) and

genomics (G) as discussed in

the review; a average genome

size estimation of metagenome

data to understand genome

selection pressure,

b understanding the growth

dynamics of specific bacterium

from metagenome data, c SNP

analysis using temporal

metagenomics, and d G?C

driven codon usage and protein

selection analysis across

metagenomic-derived genomes

(The figure was originally

produced for this review. The

concepts for a–d were taken

from Nayfach and Pollard [56],

Korem et al. [16], Bendall et al.

[15], and Ran et al. [74],

respectively)
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habitat specific genomic alterations over indigenous pop-

ulations [21].

The recruitment of metagenome reads over reference

genomes has been used extensively to demonstrate envi-

ronment induced variations across genomes fundamentally

involving alignment of reads on to microbial whole gen-

omes using global alignment algorithms (Table 1). There

are numerous algorithms that can be employed for

metagenomic recruitments; few of the most used software/

pipelines are discussed in the section below. The MGI

annotation across genome of Salinibacter ruber using

environmental data from saturated brines revealed genetic

predominance of the cell wall biogenesis genes across the

island region [19]. This suggested that population varied

with respect to cell envelopes in saline environment

indicating at a global strategy of population against phage

predation owing to low eukaryotic grazing pressure [19]. A

similar study was performed for identification of

pathogenicity markers that employed MGI annotation by

recruiting metagenome reads from healthy patients on

pathogenic bacteria [22]. This led to mapping of virulence

genes specifically in the species with uncharacterized

pathogenicity markers such as Shigella, Escherichia coli,

etc. (Table 1). A study using metagenome recruitment data

across hexachlorocyclohexane (HCH) dumpsite led to

reconstruction of last common ancestor of HCH degrading

Sphingobium species after discounting MGIs and genomic

islands (GIs) which provided an evidence for horizontal

gene transfers (HGT) driven acquisition of HCH degrading

enzyme arsenal mobilized by environmental pollution [12]

Table 1 List of metagenomic surveys performed in association with the genome reconstruction and reference based recruitments demonstrating

different results

S.

No.

Environment Assembly

method

Organism Inference from the study References

1. Saturated brines Metagenomic

recruitment

Salinibacter ruber MGI annotations concluded existence

of a global strategy of bacteria to

escape phage predation across saline

environment

[19]

2. Gut microbiome Metagenomic

recruitment

Shigella, Escherichia coli, Neisseria Determination of virulence markers [22]

3. Freshwater and

hypersaline coastal

lagoons

Metagenomic

recruitment

Alphaproteobacterium HIMB114,

Candidatus pelagibacter,

Synechococcus

Discovery of novel bacteria,

environment specific phylogenetic

variations

[1]

4. Hexachlorocycloh–

exane (HCH) dumpsite

Metagenomic

recruitment

Sphingobium Horizontal gene transfer events [12]

5. Mediterranean sea Metagenomic

recruitment

Acidimicrobiales Differential genotypic enrichment

between deep and shallow waters

[2]

6. Hexachlorocyclohexane

(HCH) dumpsite

Metagenomic

recruitment

Pseudomonas Integron driven gene transfers [17]

7. Hot spring biofilm Metagenomic

recruitment

Cellulosimicrobium Population segregation factor [20]

8. Soil De novo Leifsonia, Rhodanobacter,

Acidobacteria, Sporolactobacillus,

Burkholderia

Deciphering the functional pools of

soil ecotypes

[13]

9. Brackish waters of

Baltic Sea

De novo Actinobacteria, Bacteroidetes,

Cyanobacteria, Verrucomicrobia,

Alpha-, Beta- and

Gammaproteobacteria and

Thaumarchaeota

Seasonal dynamics, lineage-specific

variations in terms of gene content

[18]

10. Gut microbiome De novo Citrobacter Growth dynamics using PTR

coverage ratio

[16]

11. Hot spring biofilm De novo Bdellovibrio Gene loss [23]

12. Brackish waters of

Caspian Sea

De novo Actinobacteria, Thaumarchaea, and

Alphaproteobacteria

Phylogenetic placement revealed

freshwater or marine origin

[14]

13. River system De novo Polynucleobacter Differential functional constraints [24]

14. Freshwater Lake De novo and

metagenomic

recruitment

Genomes Intra-population genetic heterogeneity

by SNP analysis over different time

points (2005–2013), patterns of

gene-gain/gene-loss

[15]
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(Table 1). In addition, metagenome reads based recruit-

ment analysis also revealed the pivotal role of integron and

its associated transposase gene (TnpA6100) in enabling

HGTs as a stress response across Pseudomonas community

inhabiting HCH contaminated environment [17]. Recently,

temporal (meta)genomics using recruitments demonstrated

intra-population heterogeneity across closely related pop-

ulation of Methylotenera via SNP analysis, unraveling the

patterns of gene-gain/loss over time highlighting the role of

environment in genome modulations [15] (Fig. 2; Table 1).

Tools for Read-Based Metagenomic Recruitments

Metagenomic recruitment largely depends on alignment

algorithms and there exist multiple aligners for recruiting/

binning metagenomic reads to a reference genome with

different execution time and efficiency [25]. The most

common formats of raw reads obtained from different

sequencing platforms are FASTQ and FASTA. While

BLAST and BLAT are the most common alignment

algorithms, these are too slow for processing millions of

reads generated from a metagenome [26]. Fast alignment

approaches include Mapping and Assembly with Qualities

(MAQ) [27], Short Oligonucleotide Analysis Package

(SOAPv2) [28], Bowtie [29], Basic Oligonucleotide

Alignment Tool (BOAT) [30], and Burrows Wheeler

Aligner (BWA) [31] (Table 2). Bowtie and BWA both are

based on Burrows Wheeler Transform for compressing the

reference and the query, making it faster in comparison to

BLAST like programs [31]. While MAQ [27] is based on

spaced indexing, SOAP uses seed and hash look-up

table for query and reference sequence. Between Bowtie

and BWA, Bowtie is extensively used for very short reads

while BWA is used for mapping of low-divergent

sequences on to a large reference genome sequence [26].

Global Alignment Short Sequence Search Tool (GASSST)

[32] is software based on global alignments of both short

and long reads against large reference sequence with an

impeccable edge in its ability to perform fast gapped

alignments (Table 2). FR-HIT [26] also performs fragment

recruitment with a higher tolerance for mismatches and

gaps in contrast to SOAP [28], BWA [31] and Bowtie [29]

(Table 2). Similarly, there are many other alignment based

algorithms such as MEGAN [33], MetaPhlAn [34],

PhymmBL [35], and Kraken [36] (Table 2). MEGAN

employs BLAST-based database searching and recruiting

the lowest common ancestor (LCA) to the sequence (reads)

while PhymmBL uses Markov Model on BLAST results to

increase the precision of recruitments [35]. MetaPhlAn

assigns taxonomic assignments to sequences by recruiting

only a subset of reads to clade-specific markers instead of

whole genomes which makes it faster in contrast to other

algorithms for huge metagenome datasets [34]. Kraken,

which is the fastest of all, uses alignments of k-mers over

entire microbial genomes achieving relatively higher pre-

cision (99.20%) at genus level [36]. All these software/

pipelines have been used extensively in numerous studies;

however the precision and efficiency might vary from data

to data (Table 2).

One of the major challenges in metagenomics is binning

of microbial community using very short read sequences.

Most of the mapping techniques as discussed above depend

on 16S rRNA gene databases or essential genes requiring a

read length on a higher side. Most recently Freitas et al.

[37] used hierarchical array of unique signatures. Current

taxonomic profiling methodologies stay biased as gene

based approach depends heavily on correct coding orien-

tations which is not achievable while analyzing metagen-

ome short reads data. GOTTCHA pipeline uses machine

learning to determine the unique genomic region followed

by deciphering the distribution and coverage of these

specific regions [37]. Hence, depending on the type of raw

data and system configuration available at our end, we can

decide on the software to be used for metagenomic

recruitment (Table 2).

Metagenomic recruitments of reference genomes

highlight the relative abundance of genomes or pan-

genomes at the sampling site by using 80–95% of

identity cut-off for alignments, accommodating for spe-

cies level recruitments [2, 12, 19] (Fig. 1). While

exploring the population dynamics of a particular strain,

stringency of the identity cut-off can be increase up to

98–100%. For (meta)genome recruitments generally the

% identity threshold is defined as the number of iden-

tities between read and reference divided by the average

read length. This value has been standardized as 80% for

metagenomic binning over genome i.e. requiring 80%

identity over 80% length of the read [19]. Metagenome

tilling can thus highlight the modulation of the accessory

genomes delineating the population splitting factors

across bacterial ecotypes by annotating the MGIs

(Fig. 1). However, there still lies a bottleneck of pro-

ducing false-positives because of sequencing bias.

Therefore, manual curation remains the most important

step including scanning for tRNA flanking the island

regions, differential G?C content, tetranucleotide fre-

quency, and codon usage skew [19]. The downstream

analysis becomes very important to confirm the accuracy

of MGIs across a genome after recruitment of meta-

genome reads on to reference genomes. Annotation of

the unmapped regions is achieved by basic database

search using programs such as BLAST [38], GHOSTX

[39], GHOSTZ [40], BLAT [41], HMMER [42] etc.

against databases such as NCBI-nr [43], KEGG [44],

Pfam [45], SwissProt [46] etc.

Indian J Microbiol (Jan–Mar 2017) 57(1):23–38 27

123



T
a
b
le

2
L
is
t
o
f
so
ft
w
ar
e
fo
r
re
cr
u
it
m
en
t
o
f
m
et
ag
en
o
m
ic

re
ad
s

S
.

N
o
.

S
o
ft
w
ar
e

S
iz
e
o
f
th
e
re
ad
s

m
ap
p
ed

O
p
er
at
in
g
sy
st
em

L
an
g
u
ag
e

w
ri
tt
en

in

A
lg
o
ri
th
m

L
im

it
at
io
n
s

R
u
n
n
in
g
ti
m
ea

R
ef
er
en
ce
s

1
.

B
L
A
T

2
0
0
,0
0
0
b
p

W
in
d
o
w
s,
L
in
u
x
,

W
eb
-b
as
ed

C
?
?

S
ee
d
an
d
ex
te
n
d

C
an
n
o
t
h
an
d
le

d
at
ab
as
e

la
rg
er

th
an

4
G
b

*
0
.0
0
2
s/
re
ad

[4
1
]

2
.

R
M
A
P

U
p
to

5
0
0
b
p

U
n
ix
/L
in
u
x
,
M
ac

O
S
X
,
P
O
S
IX

O
S

C
?
?

S
ee
d
an
d
ex
te
n
d
w
it
h

in
cr
ea
se
d
m
ap
p
in
g
m
is
-

m
at
ch

sc
o
re
s

C
an
n
o
t
h
an
d
le

in
se
rt
io
n
s/
d
el
et
io
n
s

*
0
.4
6
0
s/
re
ad

[4
8
]

3
.

B
O
A
T

U
p
to

1
5
0
b
p

U
n
ix

li
k
e-
L
in
u
x
,

S
o
la
ri
s

C
?
?

In
d
ex

an
d
se
ar
ch

H
ig
h
co
m
p
u
ta
ti
o
n
ti
m
e,

ca
n
n
o
t
su
p
p
o
rt
p
ai
re
d
-

en
d
al
ig
n
m
en
t
fo
r

re
p
et
it
iv
e
re
g
io
n

m
ap
p
in
g

*
0
.1
2
0
s/
re
ad

[3
0
]

4
.

S
O
A
P
v
2

U
p
to

1
0
2
4
b
p

L
in
u
x
,
M
ac

O
S
X

C
?
?

S
ee
d
an
d
h
as
h
lo
o
k
-u
p
ta
b
le

U
se
s
la
rg
e
m
em

o
ry

i.
e.

[
5
G
b
fo
r
p
ro
ce
ss
in
g

*
0
.0
0
1
s/
re
ad

[2
8
]

5
.

B
o
w
ti
e

U
p
to

1
0
2
4
b
p

L
in
u
x
,
W
in
d
o
w
s,

M
ac

O
S
X

C
?
?

B
u
rr
o
w
s
w
h
ee
le
r
tr
an
sf
o
rm

R
el
at
iv
el
y
le
ss
er

co
n
fi
d
en
t
m
ap
p
in
g

*
0
.0
0
1
s/
re
ad

[2
9
]

6
.

G
A
S
S
S
T

3
6
–
5
0
0
b
p

L
in
u
x

C
?
?

S
ee
d
an
d
ex
te
n
d

C
an
n
o
t
su
p
p
o
rt
p
ai
re
d
-

en
d
al
ig
n
m
en
t
fo
r

re
p
et
it
iv
e
re
g
io
n

m
ap
p
in
g

*
1
.3
9
e-

5
s/
re
ad

[3
2
]

7
.

F
R
-H

IT
U
p
to

3
0
0
0
b
p

L
in
u
x

C
?
?

k-
m
er

b
as
ed

G
en
er
at
es

fa
ls
e

p
o
si
ti
v
es

ac
ro
ss

co
n
se
rv
ed

se
q
u
en
ce
s

*
0
.0
0
5
s/
re
ad

[2
6
]

8
.

K
ra
k
en

U
p
to

2
0
0
b
p

L
in
u
x

C
?
?
,
P
er
l

k-
m
er

b
as
ed

R
el
at
iv
el
y
lo
w
p
re
ci
si
o
n

(F
-s
co
re
)

0
.0
4
e-

2
s/
re
ad

[3
6
]

9
.

G
en
o
m
ic

O
ri
g
in
s
T
h
ro
u
g
h

T
ax
o
n
o
m
ic

C
H
A
ll
en
g
e

(G
O
T
T
C
H
A
)

S
ta
rt
in
g
fr
o
m

1
0
0
b
p

L
in
u
x
,
M
ac

O
S
X

C
,
C
?
?

U
n
iq
u
e
S
ig
n
at
u
re

b
as
ed

(n
o
t
g
en
e
b
as
ed
)

M
is
cl
as
si
fi
ca
ti
o
n
s
at

p
h
y
lu
m

le
v
el

*
0
.0
0
1
s/
re
ad

[3
7
]

1
0
.

N
aı̈
v
e
B
ay
es

C
la
ss
ifi
er

(N
B
C
)

U
p
to

*
2
5
0
b
p

L
in
u
x
,
W
in
d
o
w
s,

W
eb

S
er
v
er

C
?
?
,
Ja
v
a

N
aı̈
v
e
B
ay
es

A
lg
o
ri
th
m
-

m
ac
h
in
e
le
ar
n
in
g

N
o
t
su
it
ab
le

fo
r
lo
n
g
er

re
ad
s

*
9
s/
re
ad

[5
0
]

1
1
.

P
h
y
m
m
B
L

S
ta
rt
in
g
fr
o
m

1
0
0
-b
p

L
in
u
x
,
W
in
d
o
w
s

C
?
?
,
P
er
l

M
ar
k
o
v
M
o
d
el

F
al
se

p
o
si
ti
v
es

an
d
sl
o
w

*
0
.6
3
0
s/
re
ad

[3
5
]

1
2
.

B
W
A

7
0
–
1
0
0
b
p

L
in
u
x

C
?
?
,
Ja
v
a,

P
er
l,
C

B
u
rr
o
w
s
w
h
ee
le
r
tr
an
sf
o
rm

E
rr
o
r
ra
te
is
h
ig
h
in

ca
se

o
f
lo
n
g
er

re
ad
s

*
0
.0
0
1
s/
re
ad

[4
1
]

1
3
.

M
A
Q

U
p
to

6
3
b
p

L
in
u
x

C
,
C
?
?
,
P
er
l

In
d
ex
,
ex
te
n
d
an
d
sc
o
re

C
an
n
o
t
su
p
p
o
rt
si
n
g
le
-

en
d
s
re
ad

m
ap
p
in
g

an
d
lo
n
g
er

re
ad
s

*
0
.0
1
7
s/
re
ad

[2
7
]

1
4
.

M
U
M
m
er

3
.0

D
o
es
n
’t
d
ep
en
d
o
n

th
e
si
ze

o
f
re
ad
s

W
in
d
o
w
s,
L
in
u
x
,

M
ac

O
S
X

Ja
v
a

S
u
ffi
x
tr
ee
s
g
en
er
at
io
n
fo
r

an
ch
o
r
fi
n
d
in
g

L
im

it
s
th
e
si
ze

o
f
re
ad
s

fi
le

th
at

ca
n
b
e

re
cr
u
it
ed

*
1
7
s/
5
M
b
o
f

re
fe
re
n
ce

g
en
o
m
e

[4
7
]

28 Indian J Microbiol (Jan–Mar 2017) 57(1):23–38

123



De novo Segregation of Metagenome Datasets
into Genome Bins

While metagenomic recruitments on a genome can provide

insights into environment specific genome modulations,

assembly of near complete genomes using metagenome

binning can provide accurate functional contribution of an

individual genotype/population in a complex community.

Nonetheless achieving a high fidelity bin without any cross

contamination at strain/species level resolution remains a

challenge with a moderately (coverage) sequenced meta-

genome (Fig. 1). The coverage (sequencing depth) of a

sequenced metagenome remains the most significant

parameter while recovering a genome from environmental

data [51]. However, the ever expanding field of NGS

overcomes this bottleneck leading to the assembly of

genomes even with \1% relative abundance in a meta-

genome [23].

Essentially the recovery of near complete genomes

from metagenomes is based on alignments against refer-

ence genomes and reference databases remain limited due

to an overwhelming unexplored complex community

exceeding the limited reference databases [52, 53]. De

novo metagenome segregation approach uses tetranu-

cleotide frequencies, G?C skew, and coverage which are

assumed to be relatively constant across one genome

(Fig. 1). However, there are known genomes having

inconsistent base compositions and G?C content which

compromise this de novo assembly approach [53].

Another method is based on retrieving set of specific

genes such as 107 essential genes [54], 31 bacterial

marker genes [55] directly from metagenome to separate

organisms. These methodologies although extremely used

are based on gene abundance which is sometimes exactly

identical for closely related organisms and therefore

known to be co-abundant [52]. Recently 7381 co-abun-

dance gene groups (CAGs) were used to recover genomes

from 396 human gut microbiome samples [52]. This

methodology was used to assemble 238 microbial gen-

omes belonging to archaea, bacteria and viruses. In order

to perform benchmarking, 19 of the sampled individuals

were fed with fermented milk products containing Bifi-

dobacterium animalis subsp. lactis CNCM I-2494 which

also has been already sequenced. Using CAGs B. animalis

genomes was reconstructed and 95% of B. animalis ref-

erence genes were recovered from the genomes with

99.9% identity with respect to the reference B. animalis

subsp. lactis CNCM I-2494 [52]. Hence, it is suggested to

use co-abundance gene profiles of environmental meta-

genomes which is capable of segregating taxonomically

related microorganisms with a higher accuracy in contrast

to gene-based or composition based approaches.
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Significance of Average Genome Size (AGS)
Estimations Across Metagenome

Metagenomics besides being used for community profiling,

can also be used to determine relative abundance of gene

families and pathways between different sites. In order to

accurately detect the gene abundance, it is most important

to determine the average genome size (AGS) to give a

statistically significant interpretation of variations of gene

abundances between different metagenomes [56, 57]. AGS

can be simply explained as the average of sizes of genomes

present in a metagenome, which can vary between two

sites thus introducing gene frequency variations or unreal

variations [58]. Therefore, while comparing metagenomes

with different AGS, false positives can be observed or

sometimes stability among genes can be demonstrated

between sites even when there is difference in real (i.e.

false negatives) (Fig. 2a) [59]. AGS also is significant in

estimating the evolutionary forces active on an organism

thriving in a particular environment. Bacterial genome size

demonstrates the environmental pressures, community,

metabolic preferences and lifestyle of an organism [60].

For instance, it has been observed that bacteria with rela-

tively larger genome sizes follow a generalist lifestyle

whereas bacteria with smaller genome sizes follow more

specialized lifestyle [61].

There are multiple softwares to estimate AGS across a

metagenome including most used Genome relative Abun-

dance and Average Size (GAAS) [60] which is based on

BLAST searches of the metagenome reads data against a

database of microbial genomes including bacteria, archaea

and viruses. This approach stays biased as there are

microorganisms which are not submitted in the database

and the metagenome sample to be analyzed might contain

novel organisms. Hence, GAAS is not a choice in case we

are analyzing a metagenome of a unique niche. However,

Raes et al. [58] had devised an approach where the AGS

was calculated based on the abundance of reads assigned to

35 essential genes, which made it much faster. But this

approach still carried a limitation i.e. it could only analyze

metagenomic reads of length greater than 300 bp. In case

of newer sequencing platforms where short reads library

preparation is used, this methodology can’t be used with

accuracy. In order to calculate AGS accurately, by over-

coming above mentioned problems, recently Nayfach and

Pollard [56], designed a pipeline called ‘‘MicrobeCensus’’.

MicrobeCensus depends on determining reads density on

the housekeeping genes and can also be applied on to

metagenome reads as short as 50 bp. This software con-

siders 40 marker genes for the domains of bacteria and

archaea and 114 for all bacteria only [62]. The markers list

for 40 genes comprises of ribosomal protein units S2, S10,

L1, L22, L4, L2, S9, L3, L14B, S5, S19, S7, L16, S13,

L15, L25, L6, L11, L5, S12, L29, S3, S11, L10, S8, L18P,

S15P, S17, L13, L24, translation elongation factor EF-2,

translation initiation factor IF-2, metalloendopeptidase, ffh

signal recognition particle protein, phenylalanyl-tRNA

synthetase beta subunit, phenylalanyl-tRNA synthetase a
subunit, tRNA pseudouridine synthase B, porphobilinogen

deaminase, phosphoribosylformylglycinamidine cyclo-li-

gase, and ribonuclease HII [62]. Further, the accuracy of

MicrobeCencus was established using ‘‘Median Unsigned

Error’’ in order to account for errors due to over- and

under-representation of sequences.

Using (Meta)genomics Data in Deciphering
Growth Dynamics of Bacteria

The metagenomic sequence data can provide an under-

standing of the presence of microbiota at a particular niche

including gut, biofilm, hot spring, etc. Recently Korem

et al. [16] devised a way to obtain information on growth

dynamics of particular bacteria/genome enriched in a

metagenome. This methodology focuses on examining

pattern of sequencing coverage specifically at origin of

replication of bacterial genomes (Fig. 2b). It is well

established that bacterial replication initiates at origin of

replication (ori) bidirectionally, hence the regions already

replicated will have two copies of ori in contrast to

unreplicated regions. The same concept was earlier applied

only on yeast cells with coordinated stage of replication

[63]; however it stands true for all the cells at any stage of

replication as well [64, 65]. Using genome data from

multiple bacteria, it was found that the region in the

proximity of ori is present in high copy number in actively

growing bacteria as compared to the DNA segment present

towards the terminus [63] (Fig. 2b). The ratio of copy

number of region near ori to the DNA segment near ter-

minus is termed as peak-to-trough ratio (PTR) and is a

direct measure of growth rate of the bacterial genome [66].

PTR ratio of greater than 1:1 is a quantitative indicative of

higher growth dynamics. This quantitative relationship was

further proven experimentally using E. coli (strain K-12)

cultures [16]. Similar patterns were observed across E. coli

genomes retrieved from human fecal metagenome samples

to that of in vitro cultures [52, 67, 68]. Using E. coli

genomes from 583 databases, it was found that PTR varied

from 1 to 2.4 which was similar to the ratio obtained in

in vitro experiments i.e. 1–2.6 [16].

Further, as an extension of this concept, it was found

that PTRs can also monitor clinical changes after treatment

by antibiotics. For this, Citrobacter rodentium was treated

with antibiotic erythromycin and PTRs reduced drastically.
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The reduction was evident within 30 min after adminis-

tration. However, during antibiotic recovery (washing of

cultures) an increase was observed. In order to determine

the virulent bacterial activity in a disease condition, C.

rodentium strains (both virulent and non-virulent) were

observed for PTR patterns. For the first five days both the

virulent and non-virulent strains showed similar PTR val-

ues, nevertheless, at 6–9 days post infection PTR values for

virulent strains increased drastically in comparison to non-

virulent strains. This was justified as an indication of

mucosal adhesion and proliferation by virulent strains in

contrast to non-virulent strains at that stage [16]. Further-

more, the FDR (corrected P value \0.005) association

showed significant correlations between PTRs and several

disorders/metabolic conditions like Crohn’s Disease [52],

ulcerative colitis [69], fasting serum insulin, fasting blood

glucose, and Type II diabetes [68].

Evidence for Genome-Wide Sweeps Using
Temporal (Meta)genomics

Microbial communities are comprised of distinct phylo-

genetic groups within ecologically coherent populations

due to high recombination rates of superior genes between

the members of population [70]. In order to study the

genetic heterogeneity, time-series metagenomics along

with de novo genome assembly holds a great potential by

directly tracking the evolutionary patterns driven gene-

gain/loss throughout [15]. De novo reconstruction of gen-

omes from the metagenome data provide the reference

genomes which are again recruited over by the metagen-

ome reads for SNPs deciphering the genetic diversification

within discrete populations [71] (Fig. 2c). This has further

enabled us to directly encapsulate evolutionary models

such as genome-wide sweeps, which were not studied

earlier [72] in the same yet phylogenetically diverse

environment.

Metagenomic recruitment over the assembled reference

genomes demonstrate two types of populations; one called

‘sequence discrete’ populations with recruitment at C99%

identity and the other called ‘close sympatric’ populations

with recruitment \90%. Sequence discrete populations

represent highly similar genotypes with low extent of

diversity which can be analyzed for SNPs. Bendall et al.

[15] reported significantly different i.e. eightfold (SNPs per

Mbp) for two close genotypes of the same genus i.e.

Methylotenera assembled from 9-year study period indi-

cating at astounding intra-population diversity (Fig. 2c).

However, most of the SNPs for discrete populations did not

show amino-acid substitutions. Further, time series

metagenomics can also unveil the gene-gain/loss patterns

across one specific population (reconstructed genome)

[15]. In case the relative abundance for a specific set of

genes is increased over time, it suggests that the gene was

acquired horizontally, whereas in the case of decrease in

frequency of genes proposes that the newly dominant lin-

eage will eventually lack these genes for a specific popu-

lation (i.e. genus or phylum or order) given a constant

functional constraint. Hence, genome wide studies using

temporal metagenomics can provide a clear understanding

of both genome-wide sweeps and gene-specific sweeps

taking place across intra- and inter-populations which can

further explore evolutionary models controlling population

dynamics of an environment.

Using population Genomes to Analyze Differential
Codon Usage Preferences

It has been recently established that microbial communities

at extreme environments evolve faster characterized by a

strong purifying selection in order to undergo genome

optimization under specific functional constraints [73]. De

novo genome reconstruction of uncultivable diversity from

extreme metagenomes can be used to explore relationship

between %G?C, codon usage preferences and protein

selection to validate the evolutionary pressures acting on

the bacterial community under stressed environments

(Fig. 2d). In order to derive the coupling force, correlation

(R) between gene-specific optimal codon frequencies (Fopt)

(an indicative of codon bias) and dN/dS is calculated [74].

It has already been established that strongest positive

coupling exists across Cyanobacteria and Tenericutes fol-

lowed by Firmicutes, Spirochaetes etc. whereas, Acti-

nobacteria group has strong but negative correlation.

Generally, low negative R highlights the selection of

‘‘high-status’’ genes which are central to metabolic path-

ways and thus evolve slowly with overwhelming purifying

selection pressure (Fig. 2d). The value of R also shows

significant relationship with %G?C. For genomes charac-

terized with extreme %G?C, the Fopt values tend to be on

higher side (Fig. 2d). Thus, the dependence of selection

pressure in terms of codon preferences on nucleotide

composition can provide insights into the poorly under-

stood evolution patterns. Therefore, using metagenomics

based genome reconstruction; the habitat specific evolu-

tionary pressure can be estimated employing the genome

data.

Interestingly, it was established that codon usage skew is

specific to metagenome as a whole and is independent of

the bacterial community enriched in the metagenome data

[75]. This suggested that bacterial genera in the same

metagenome can exhibit variable codon usage preferences

but overall the metagenome is characterized by an accu-

mulative codon bias which differs from the other
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metagenome samples markedly just like an observation for

single microbial species/genome [76, 77]. To investigate

phyletic independence, the species specific genes common

between different metagenome samples were retrieved and

distances were calculated between codon usage preferences

of each [78]. It was found that codon usage of compared

phylogenies showed greater variations between metagen-

omes than in different species of the same metagenome.

Similar analysis has also been extended to variable envi-

ronmental conditions which demonstrated that different

species show lower variability of codon usage in case of

constrained environmental conditions [79–81]. Further,

segregated genomic data from the metagenome showed

consistent codon usage patterns within a genome of a

metagenome. Hence, the constitution of sequence compo-

sition across genome and metagenome can elucidate evo-

lutionary pressures in terms of codon choices and protein

selection.

Application of (Meta)genomics in Clinical
Microbiology

HGT driven variations are main contributors of transition

of non-pathogenic bacteria into pathogenic bacteria and

vice versa. Perna et al. [82] compared pathogenic E. coli

O157:H7 to the non-pathogenic bacteria E. coli K-12

which led to the identification of candidate genes specifi-

cally responsible for pathogenesis of the pathogenic E. coli

strains [82]. Furthermore, comparative genomics analysis

across Bacillus strains revealed the significance of mobile

genetic elements in imparting virulence to bacterial strains

[83]. Genomic analyses between pathogenic and non-

pathogenic Mycobacterium tuberculosis strains revealed

new set of pathways in pathogenic strains in contrast to

avirulent strains [84]. Most significant finding of this study

was discovery of alternate metabolic pathways which shed

light into their mechanisms of pathogenesis thus providing

a base for developing diagnostic markers against tubercu-

losis [84]. Comparative genomics has provided significant

information regarding credible virulence determining fac-

tors that can be further targeted for vaccine development.

While comparative genomics has provided insights into the

bacterial evolution of pathogenesis, the metagenomics

approach has also been used for functional screening of

virulence markers overall at an environment [85].

Metagenomics approaches have focused on the predomi-

nance of pathogenic bacteria in natural environments such

as human gut. For instance, Sommer et al.[86] used

metagenomics data to characterize antibiotic resistance

potential of healthy human microbiome. A very strong

correlation has been established between human micro-

biota imbalance and diseases such as irritable bowel

disease [87], obesity [88], cystic fibrosis [89] etc. A

metagenomics approach along with a functional screening

of potential pathogenicity markers and antibiotic resistance

has been used to investigate complex environments [85].

Metagenomic studies have also demonstrated the effect of

factors such as environment, geographical location,

antibiotics, age, and diet on the human gut ecosystem. But

the metagenome sequencing not only sequences the

pathogenic sequences but can also capture the human

genetic sequences [90]. This might lead to an incorrect

understanding of the pathogenic community hosted by

human body. However, this has an advantage of providing

access to the genetic changes that might be taking place in

human body under diseased condition [91]. Additionally,

shotgun sequencing can also identify pathogenic species at

strain level resolution since it is based on whole genome

based markers rather than only 16S rRNA gene [92]. This

has been already reported in the metagenomic sequencing

of cholera patients [93], tuberculosis [94], E. coli [95], and

methicillin-resistant Staphylococcus aureus (MRSA) [96].

Another aspect of metagenomics in the field of clinical

microbiology is targeted antimicrobial therapy after accu-

rate diagnosis of the pathogen which can reduce antibiotic-

associated side effects due to broad-spectrum antibiotic

regimen [97]. This has led to a significant reduction of

mortality rates in patients of ventilator associated pneu-

monia (VAP) [98]. Metagenomics-enabled accurate and

rapid diagnosis of infectious diseases along with under-

standing of antibiotic resistance pattern can empower the

physicians to use targeted antimicrobial therapies [99].

Therefore, both metagenomics and single-species-targeting

genomics of pathogenic bacteria can provide insights into

the pathogenesis and a better understanding of the viru-

lence markers providing a platform for pathogenic diag-

nostics [100].

Application of (Meta)genomics in Fecal Microbial
Transplants

Microbiome analysis is the most recent extension of

metagenomics as of today which makes metagenomics a

direct application in human health. The existence of sym-

biotic relationship between gut microbiota and human

health is well established and human intestine is known to

harbor around 1014 microbes with 35,000 different species

[101, 102]. Interestingly, the number of microbes is nearly

10 times more than the number of cells in the human body

[103]. Human gut microbiota is known to play significant

roles in postnatal structural and functional maturation of

gut, development of immune system and nervous system

[104–106]. Gut microbiota is also identified as to produce

antimicrobial proteins such as cathelicidins, defensins and
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C-type lectins [107, 108]. Imbalance of microbiota can lead

to disease states such as antibiotic-associated diarrhea and

Clostridium difficile infection (CDI). Fecal microbiota

transplantation has proven to be very helpful by restoring

the disturbed microbiota. This was first reported by Ge

Hong, who used fecal transplantation in treating food

poisoning [109], however in modern medicine it was used

for the first time to treat pseudomembranous colitis [110].

As of today there are many clinical reports on using FMT

for disease conditions like CDI, autism, depression,

inflammatory bowel disease, Parkinson, multiple schlero-

sis, obesity [111]. In this scenario metagenomics play a

significant role by determining the microbial content in

both healthy and diseased gut before and after the trans-

plant. In addition to this metagenomics identify dysbiosis/

imbalance of the human gut microbiome in the diseases,

and can also determine novel changes in microbial func-

tions [112].

Computational Challenges in Data Interpretation

With the advent of NGS, data generated for genomes or

metagenomes include millions of short reads, which before

any downstream analysis need to be assembled into man-

ageable data (i.e. genome/metagenome) [113]. Multiple

state-of-art assemblers such as Velvet, Ray, ABySS can

assemble gigabytes of data into 10 and 1000 s of contigs of

genome and metagenome, respectively [113]. Broadly, there

are two types of assemblers: (1) reference based and (2) de

novo assemblers [114]. Reference based assemblers can be

used when there is availability of reference genomes to be

used to order the contigs. These include MIRA4, MetaA-

MOS, Newbler which are not computationally exhaustive

and use a closely related reference genome already depos-

ited in databases [115, 116]. This set of assemblers however

remains biased due to limitation of existing databases and

cannot be used while exploring a unique environment [113].

De novo assemblers can assemble the raw reads into contigs

based on graph theories like de-Bruijn graph without any

reference genome [117]. Tools such as Velvet, MetaVelvet,

ABySS, SOAP, SPAdes, Ray Meta, Meta-IDBA etc. are

among the most used softwares as of today [28, 118–123].

Due to processing of multiple nodes during assembly of

reads, the de novo assemblers are computationally quiet

extensive yet best suited while exploring unique environ-

ments. Metagenome assembly has improved over time but

still it carries many challenges as of today majorly due to

computational memory constraints and the biological com-

plexity of the data [53]. The population bias introduced due

to sequencing leads to predominance of specific genomes

and no or less coverage for others [124]. Hence, in order to

correctly assemble the data, coverage of reads needs to be on

a higher side (*109) [124]. The sequencing errors such as

repeats incorporation has also been challenging for assembly

as they can be misinterpreted for identical regions in one

genome or conserved regions across different species or

homologous segments across closely related strains

[125, 126]. Under these circumstances precise analyses of

assembly metrics such as N50, average coverage, and total

assembly size can be used to measure the efficiency of good

assembly [127]. Detailed discussion of (meta)genome

assemblers remain outside the scope of this review article:

for details please review Refs. [53, 114].

We have now entered the era of challenged data-inter-

pretation shifting from the era of restricted data-generation.

With consistently increasing data, there is a need for

algorithms which can compare huge amount of data.

Multiple algorithms are being scripted every day; however,

they need large memory and specific hardware options

which can be challenging. In addition, every goal in

(meta)genomics requires a different set of algorithms for a

specific objective. There is an increased improvement in

development of data visualization tools given the signifi-

cance of visualization of data in complete data analysis

[128]. Genome analyses tools are largely command line

based and does not work using Graphic User Interface

(GUI) very efficiently due to high throughput data which

hinders the progress of biology labs in this field and

encourages collaborations across multidisciplinary labs.

Conclusions

Expansion of the emerging fields of genomics and

metagenomics can provide an access to the complete

genetic content of a bacterium of interest and community

profile of an environment, respectively. However, the

conventional study of genomics needs culture-based bac-

terial isolation which offers huge bias since more than 99%

of the microorganisms are uncultivable. Therefore,

metagenomics not only provides an overall taxonomic

composition of an environment exhibiting the presence or

absence of microbial entities but can also target a single

unculturable bacterial (species/strain) genomics surpassing

the need for isolation. This review comprehensively sur-

veys the most recent techniques using both genomics and

metagenomics data together which can provide detailed

insights into environmental microbiology (Fig. 2).
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Environmental shaping of codon usage and functional adapta-

tion across microbial communities. Nucleic Acids Res

41:8842–8852. doi:10.1093/nar/gkt673

79. Karlin S, Mrazek J (2000) Predicted highly expressed genes of

diverse prokaryotic genomes. J Bacteriol 182:5238–5250

80. Sharp P, Li W (1987) The codon Adaptation Index—a measure

of directional synonymous codon usage bias, and its potential

applications. Nucleic Acids Res 15:1281–1295

81. Supek F, Vlahovicek K (2005) Comparison of codon usage

measures and their applicability in prediction of microbial gene

expressivity. BMC Bioinformatics 6:15

82. Perna NT, Plunkett G, Burland V, Mau B, Glasner JD, Rose DJ,

Mayhew GF, Evans PS, Gregor J, Kirkpatrick HA, Pósfai G,
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Paulin L, Corander J, Malinen E, Apajalahti J, Palva A (2007)

The fecal microbiota of irritable bowel syndrome patients differs

significantly from that of healthy subjects. Gastroenterology

133:24–33. doi:10.1053/j.gastro.2007.04.005

88. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD,

Gordon JI (2005) Obesity alters gut microbial ecology. Proc

36 Indian J Microbiol (Jan–Mar 2017) 57(1):23–38

123

http://dx.doi.org/10.1371/journal.pcbi.1000593
http://dx.doi.org/10.1146/annurev-micro-090110-102830
http://dx.doi.org/10.1371/journal.pone.0077033
http://dx.doi.org/10.1371/journal.pone.0077033
http://dx.doi.org/10.1186/gb-2012-13-4-r27
http://dx.doi.org/10.1101/gr.117416.110
http://dx.doi.org/10.1016/0022-5193(77)90373-3
http://dx.doi.org/10.1016/0022-5193(77)90373-3
http://dx.doi.org/10.1093/nar/gks990
http://dx.doi.org/10.1038/nature11234
http://dx.doi.org/10.1038/nature11450
http://dx.doi.org/10.1056/NEJM197608192950804
http://dx.doi.org/10.1126/science.1218198
http://dx.doi.org/10.1126/science.1218389
http://dx.doi.org/10.1038/nrmicro3218
http://dx.doi.org/10.1038/srep06205
http://dx.doi.org/10.1038/srep06205
http://dx.doi.org/10.1128/mBio.00956-14
http://dx.doi.org/10.1128/mBio.00956-14
http://dx.doi.org/10.1093/nar/gkt673
http://dx.doi.org/10.1038/35054089
http://dx.doi.org/10.1038/35054089
http://dx.doi.org/10.1038/nature01586
http://dx.doi.org/10.1128/mBio.02020-14
http://dx.doi.org/10.1093/bfgp/elr042
http://dx.doi.org/10.1126/science.1176950
http://dx.doi.org/10.1126/science.1176950
http://dx.doi.org/10.1053/j.gastro.2007.04.005


Natl Acad Sci USA 102:11070–11075. doi:10.1073/pnas.

0504978102

89. Salipante SJ, Sengupta DJ, Rosenthal C, Costa G, Spangler J,

Sims EH, Jacobs MA, Miller SI, Hoogestraat DR, Cookson BT,

McCoy C, Matsen FA, Shendure J, Lee CC, Harkins TT,

Hoffman NG (2013) Rapid 16S rRNA next-generation

sequencing of polymicrobial clinical samples for diagnosis of

complex bacterial infections. PLoS ONE 8:e65226. doi:10.1371/

journal.pone.0065226

90. Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente

JC, Gevers D, Knight R (2011) Experimental and analytical

tools for studying the human microbiome. Nat Rev Genet

13:47–58. doi:10.1038/nrg3129

91. Perez-Losada M, Castro-Nallar E, Bendall ML, Freishtat RJ,

Crandall KA (2015) Dual transcriptomic profiling of host and

microbiota during health and disease in pediatric asthma. PLoS

ONE 10:e0131819. doi:10.1371/journal.pone.0131819

92. Rajendhran J, Gunasekaran P (2011) Microbial phylogeny and

diversity: small subunit ribosomal RNA sequence analysis and

beyond. Microbiol Res 166:99–110. doi:10.1016/j.micres.2010.

02.003

93. Chin C-S, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-

Charles RR, Bullard J, Webster DR, Kasarskis A, Peluso P,

Paxinos EE, Yamaichi Y, Calderwood SB, Mekalanos JJ, Schadt

EE, Waldor MK (2011) The origin of the Haitian cholera out-

break strain. N Engl J Med 364:33–42. doi:10.1056/

NEJMoa1012928

94. Gardy JL, Johnston JC, Sui SJH, Cook VJ, Shah L, Brodkin E,

Rempel S, Moore R, Zhao Y, Holt R, Varhol R, Birol I, Lem M,

Sharma MK, Elwood K, Jones SJM, Brinkman FSL, Brunham

RC, Tang P (2011) Whole-genome sequencing and social-net-

work analysis of a tuberculosis outbreak. N Engl J Med

364:730–739. doi:10.1056/NEJMoa1003176

95. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz

F, Paxinos EE, Sebra R, Chin CS, Iliopoulos D, Klammer A,

Peluso P, Lee L, Kislyuk AO, Bullard J, Kasarskis A, Wang S,

Eid J, Rank D, Redman JC, Steyert SR, Frimodt-Møller J,

Struve C, Petersen AM, Krogfelt KA, Nataro JP, Schadt EE,

Waldor MK (2011) Origins of the E. coli strain causing an

outbreak of hemolytic–uremic syndrome in Germany. N Engl J

Med 365:709–717. doi:10.1056/NEJMoa1106920
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