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The Tussle Between Mycobacteria and Host: To Eat or Not To Eat

Asani Bhaduri1 • Richa Misra2 • Neeru Dhamija3

Received: 26 May 2015 / Accepted: 4 July 2015 / Published online: 11 July 2015

� Association of Microbiologists of India 2015

Abstract Autophagy is a catabolic process of cellular

homeostasis evolutionarily conserved in eukaryotes. To

block infection of intracellular bacterial pathogens, meta-

zoans deploy autophagy for pathogen clearance through

phago-lysosome formation and specific bactericidal pep-

tides. Although an array of research have publicized the

host regulatory factors, the function of bacterial effectors

are yet to be understood in detail. In this article, we focus

on the autophagic response to one of the most successful

intracellular bacteria Mycobacterium tuberculosis.
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Mycobacterium tuberculosis, the causative agent of tuber-

culosis, has probably killed more people than any other

microbial pathogen in the history of human civilization.

The emerging drug-resistant forms of M. tuberculosis

coupled with HIV co-infection pose a threat never felt

before. Although various reasons have been suggested for

development of drug resistance among different microbes

[1], the ways with which M. tuberculosis adapt and

improvise in order to survive remains a mystery. Apart

from possessing a plethora of regulatory proteins for its

survival and pathogenicity [2, 3], it is also known to secrete

a gamut of virulence factors to thwart of host immune-

defence [4]. This scenario warrants investigation both

towards search of new drug targets as well as discovery of

new drugs [5–7]. Fortunately in the recent years several

drugs have been developed to address the issue of multi-

drug resistance tuberculosis, two prominent examples

being TMC-207 (bedaquiline) which is already granted

approval and 24-desmethylrifampicin (a rifamycin deriva-

tive), a drug found to be effective against multidrug-re-

sistance tuberculosis [8, 9]. Although studies are underway

to see the effect of newer candidates against mycobacterial

infections, we are ignorant about the effect of anti-my-

cobacterial antibiotics on host–pathogen tussle especially

in autophagy networks. One study indicates that azi-

thromycin blocks autophagy pathway and its long term use

predispose cystic fibrosis patients to non-tuberculous

mycobacterial infections [10]. However, the mycobacterial

infection process comprises of a complicated patho-phys-

iology which needs to be thoroughly understood before

therapeutic intervention.

Autophagy is a protective cellular process ubiquitously

present in eukaryotic organisms. Although the facets of

autophagy have been known for quite some time, recent

advances in the past decade have thrown new light on

autophagy as an immune-defence mechanism against

tuberculosis infection. It is now perceived that host deploy

autophagy to tackle M. tuberculosis in two different ways:

one to eradicate mycobacteria by promoting the

autophagosome–lysosome fusion and the other to deliver

mycobactericidal peptides/enzymes in the mature lysoso-

mal vesicles [11]. However, the ability of M. tuberculosis

to utilize its virulence factors to avoid the phago-lysosomal

fusion and establish the infection is well documented [4].

Despite decades of ongoing research on various aspects of

tuberculosis, we are still data deficient on the exact
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mechanism of granuloma formation and transmission from

the perspective of the involved mycobacterial factors. To

add to the complexity, it is now emerging that different

strains or lineages of M. tuberculosis could behave differ-

ently in infection process and even within a single host

there could be different strategies employed by mycobac-

teria. Perhaps that’s why it is not surprising to know that

mycobacteria could escape to cytosol in contrast to the

classical view of capturing the pathogen in phagosome

compartment [12]. The ability of mycobacteria to have a

back-up route for all the defence manoeuvres it encounters

is a fact that is hard to fathom. Autophagy is no exception.

An extensive array of research has revealed the intricate

network of macroautophagy in tuberculosis [11]. However,

most of it is directed towards the host factors and we still

understand very little about the contribution or counter-

action of mycobacterial virulence factors. Murine LRG47,

orthologue of human IRGM (immunity-related GTPase

family, M) was the first of such host factors to be identified

which promotes autophagy in a process involving inter-

feron gamma (IFN-c) a key pro-inflammatory cytokine [13,

14]. Several cytokines have displayed mixed profile in

mycobacterial infection and subsequent autophagy pro-

cesses. While Th1 response seems to favour autophagy,

cytokines from the Th2 groups have been shown to be

counteractive [15]. Recent reports also speculate function

of IL-1 and Th17 responses in bacterial containment and

regulation of inflation [11]. Very recently, a cyclic dinu-

cleotide has also been reported to induce autophagy via

IFN-b induction [16]. Another group of fine-tuning regu-

lators are the microRNAs which regulate gene expression

of many immunity related genes by targeting mRNAs for

translational repression or degradation [17]. Recent trends

suggest modulation of autophagy by these regulatory

RNAs; however, the exact role remains unclear. While

miR-155 is found to be involved in autophagy through

inhibition of Ras homologue enriched in brain (RHEB)

[18], two other microRNAs, namely miR-125a and miR-

30A, have been shown to abrogate autophagy [19, 20]. The

other dimension of autophagy research involves bacterici-

dal proteins/enzymes exploited by host. Ubiquitylated-

peptides and p62 are some of the host factors with proven

action against mycobacteria [21, 22]. While a number of

cellular factors have been reported, the mycobacterial

counter-response to autophagy is a complex and less-un-

derstood scenario (Table 1). Two proteins, Eis and LpqH

are reported to be involved in contrasting manner. While

LpqH is involved in autophagy regulation through cal-

citriol (1,25-dihydroxyvitamin D3) mediated vitamin D

receptor signalling, the Eis (enhanced intracellular sur-

vival) protein inhibits autophagy with a process thought to

involve dual specificity protein phosphatase 16 and redox

signalling [23, 24]. Our work with secreted modulatory

protein PpiA has revealed a number of interacting partners

in host which are directly or indirectly linked with various

autophagy pathways. These include the vacuolar ATPase

subunit ATP6VOE1, the well-documented autophagy pro-

tein STING/TMEM173 (Stimulator of interferon genes),

and KXD1 (KxDL motif containing 1) [25]. There is an

urgent need to identify other such mycobacterial factors

aimed at influencing/modulating autophagy to unveil

mycobacterial survival strategies. One such intricate phe-

nomenon involves the type seven secretion system (T7SS

or ESX) of mycobacteria. ESX systems are known for

secreting virulence factors but a recent study highlighted

the involvement of ESX-1 in promoting autophagy through

permeabilization of phagosomal membrane due to which

extracellular DNA is detected by autophagy regulator

STING [26]. However, it could be a ploy by mycobacteria

to increase the pro-inflammatory response to create a

habitable micro-niche/granuloma for itself. The support for

this argument comes from another study where ESX sys-

tem is shown to inhibit autophagy in dendritic cells [27].

While we were writing this article, three studies indepen-

dently and simultaneously identified cyclic GMP–AMP

synthase (cGAS) as the host sensor for mycobacterial

extracellular DNA. The collective understanding from

these studies reveals that the activation of IFN-b is medi-

ated through STING/TBK1/IRF3 signal transduction which

is initiated through cGAMP produced by cGAS upon

detection of mycobacterial DNA [28–30]. On the patho-

genic front, a previously known virulence factor is also

recently shown to be involved in autophagy. Work by Hu

and colleagues suggest that mycobacterial acid phos-

phatase SapM targets host Rab7 GTPase to inhibit the

fusion of autophagosome and lysosome [31]. The autop-

hagic response against mycobacteria is a multipartite pro-

cess involving pathogen recognition, phagosome

maturation and lysosomal targeting of mycobactericidal

peptides, the complexity of which has only started to

unfold [32–34].

While host-autophagy modulating agents and cellular

autophagy processes are being studied extensively, several

questions need to be addressed in the mycobacterial front.

The foremost need is to identify all the mycobacterial

factors involved in inhibiting/modulating the autophagy

processes. Do mycobacteria have designated virulence

factors to tackle autophagy? Do the active and latent

mycobacteria behave differently in tackling autophagy?

What happens to the bacteria that escape to cytosol?

Investigating these pathogen perspectives will give a better

understanding of the temporal and spatial regulation of

autophagy inside the host. The observations that there are

both pro and anti-autophagic factors inside mycobacteria

escalate the complexity of mycobacterial population

dynamics. If mycobacterial population deliberately
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sacrifices few co-inhabitants in order to jump-start the

inflammation process, it remains to be seen whether the

therapeutic strategies enhancing autophagy will actually be

effective or counter-productive.

Several aspects of autophagy during the course of

tuberculosis infection process are being investigated by

scientists around the world and the list is ever-increasing. A

thorough understanding of autophagosome-mycobacterial

interaction with equal emphasis to both the partners could

give us better leads to pharmacological intervention

strategies.
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