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Abstract Cholera, a known diarrheal disease is associ-

ated with various risk factors like hypovolemic shock, rice

watery stools, and death in developing countries. The

overuse of antibiotics to treat cholera imposed a selective

pressure for the emergence and spread of multi-drug re-

sistant Vibrio cholerae strains. The failure of conventional

antimicrobial therapy urged the researchers to find an al-

ternative therapy that could meddle the cholera murmurs

(Quorum Sensing). It seems to effectively overcome the

conventional cholera therapies in parallel to decrease the

morbidity and mortality rate in the developing countries.

The paramount objective of this review essentially focuses

on the different Quorum Sensing (QS) regulatory switches

governing virulence and pathogenicity of Vibrio cholerae.

This review also provides an insight into the plausible QS

targets that could be exploited to bring about a break-

through to the prevailing cholera therapy.
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Cholera, the Diarrheal Disease

Diarrheal outbreaks have hampered the normal lives of

people in developing and under -developed countries. Poor

sanitation and hygiene practices have been the root causes

behind such outbreaks. Cholera, the diarrheal disease is an

outcome of infestation of the human intestine and its milieu

with Vibrio cholerae. Two serotypes of the organism viz.,

the O1 and the O139 have been responsible for pandemic

outbreaks throughout. Cholera has been a subject of re-

search from many centuries and has influenced people

throughout in their perspective views regarding the disease,

ranging from the Miasmatic theory of 19th century which

made people believe that this disease was spread through

miasma (bad air) [1] to the current bacterial communica-

tion (Quorum Sensing) mediated disease progression [2].

World Health Organization (WHO) reports suggest that

about 1.4–4.3 million cholera cases are incident every year

in the globe of which nearly 28,000–1,42,000 lives are

swiped out. Fifteen discrete outbreaks of cholera were

documented during 1971–2010 [3]. The mortality rates due

to cholera in 2011 increased by 57.96 and 3.62 % when

compared to 2009 and 2010 [4, 5]. Reports suggest that

numbers of cholera cases in India are more than the ones

that are submitted to WHO Weekly Epidemiological

Record. Epidemic outbreaks in India were largely due to

the regular pilgrims to the Ganges river [6]. According to

one of the reports, about 37,783 cholera cases (84 deaths)

were incidents in the country between 1997 and 2006 but

only very less numbers were given for WHO Records [7].

Among Asian region, the Indian subcontinent continues to

be a hub for cholera cases with an occurrence of 78 %. In

the year 2013, an aggregate of 47 nations from all main-

land’s reported 1,29,064 incidences of cholera to WHO, of

which 43 % was accounted for from Africa and 47 % from

the America where a huge episode that began in Haiti at the

end of October 2010 additionally influenced the Dominican

Republic.

The cholera tainted patient ought to be basically sup-

plemented with liquids and electrolytes along with antibi-

otics to counteract lack of hydration formally. This was

done through intravenous using sterile, pyrogen free
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intravenous solution or by using ORS which contains salts

like NaCl (3.5 gm), KCl (1.5 gm), NaHCO3(2.5 gm) and

glucose (New formula of all rehydration salt, which reduce

osmolarity [8]. Conventional therapy employs the admin-

istration of antibiotics as a means of relieving the worsened

diarrheal conditions. As defined by CDC (Center for Dis-

ease Control) doxycycline/tetracycline are given as a first

line treatment in adults whereas azithromycin/ery-

thromycin are given for children and pregnant women.

Furazolidone, erythromycin, trimethoprim-Sulphamethox-

azole, chloramphenicol, azithromycin, ciprofloxacin are

preferred for adult administration [9–12]. The significant

detriment of the antibiotic is that it will abbreviate the time

of infection instead of counter-acting the disease. Currently

used vaccines are WC-rBS and BivWC, where the WC-rBS

(marketed as Dukoral) is a monovalent vaccine consist of

attenuated V. cholerae O1 along with recombinant cholera

toxin B subunit. BivWC (marketed as Shancol and

mORCVAX), a bivalent vaccine consist of inactivated V.

cholerae O139. Vibrio cholerae has a unique property so

that they can exist in an autochthonous state in river,

brackish water estuaries and coastal waters and also in

dwarfish forms under nutrient deprived conditions as a

viable but non cultivable form.

The foremost limitation with the conventional antibiotic

therapy is the development of MDR strains of Vibrio

cholerae make this therapy abortive [9, 13]. Clinical isolates

of V. cholerae strain causative executor for various outbreaks

have become impervious to numerous antibiotics including

tetracycline, ampicillin, nalidixic acid, streptomycin, sul-

phonamides, trimethoprim, gentamicin, ciprofloxacin etc.

[14, 15]. Reports say that people infected with these MDR

strains exhibits features indicating more severe illness than

patients affected with wild strains. The infection cause by the

MDR strains are paramount not just on the grounds that they

are harder to treat, additionally, on the grounds that they may

prompt higher morbidity and mortality rate [16]. Therefore,

it is an era to overlook the limitations of anti-bacterial ap-

proach with anti-virulent therapies on meddling the quorum

sensing (Vibrio cholerae murmurs) to counteract cholera

[17]. This can be achieved either by interrupting the syn-

thesis of QS signaling molecules or by blocking the receptor

molecules thus disturbing the interaction between signaling

molecules and receptor [18, 19].

Quorum Sensing: The Bacterial Samvada

The discrete behavioral pattern of bacteria to the diverse

milieu they face is an outcome of the cell to cell communi-

cation between them called Quorum Sensing (QS) [20].

Chemicals known as autoinducers serve as dialect for the

bacterial cells [21]. These autoinducers promotes group

behavior in bacteria to establish their virulence traits as they

are being sensed by their own populations/different

populations [22, 23]. Bacteria define a high degree of signal

specificity owing to the differences in the structures of QS

signals and its binding domains of the receptor protein [24].

It is also known that bacteria use three classes of highly

species specific and non-species specific autoinducers to

elicit QS response. The most widely used species specific

signal are Acyl-homoserine lactone (AHL) in the Gram

negative bacteria, whereas oligopeptide in the Gram-positive

bacteria [25]. Most of the other class of autoinducer (AI-2), is

known to be a derivative of 4,5-dihydroxy-2,3-pentanedione

(DPD), was found to be non-species specific that mediates

crosstalk between inter-specious [26]. Just like people of

different regions have different dialects; prokaryotes also

have cell signaling variants e.g., Streptococcus pyogenes that

resides in the pharyngeal tract has peptides as the cell sig-

naling molecule whereas, Uropathogenic E.coli (UPEC), a

resident of urinary tract has Acyl Homo Serine Lactones

(AHSL) as the cell signaling moiety [27, 28]. The autoin-

ducer concentration is directly proportional to the cell den-

sity and its concentration reaches a threshold level at HCD is

being sensed by surface receptors and elicits a response at the

target gene level expression via activation or repression [29].

This adaptive aggressive behavior is most predominantly

observed in bacteria like Pseudomonas aeruginosa, Uro-

pathogenic Escherichia coli etc., paradoxically, the converse

happens in case of Vibrio cholerae i.e., under conditions of

LCD (Low Cell Density) state virulence factors are ex-

pressed and at HCD (High Cell Density) state, virulence is

repressed. Additionally, at HCD activation of HapA

(Haemagglutinin Protease) occurs which facilitates the dis-

semination of the bacterial cells from the human intestinal

cells.

Quorum Sensing in Vibrio cholerae

There are three QS systems in Vibrio cholerae which

converge to regulate virulence identified till date. System I

is the Cholera Autoinducer-1 (CAI-1)/CqsS system re-

sponsible for inter-vibrio and intra-species communication

[2, 30, 31] System II—Autoinducer-2 (AI-2)/LuxP/Q re-

sponsible for inter species communication [2, 30, 31] and

the System III – Unknown signals/VarS which is yet to be

explored [32]. At LCD, both the enzymes CqsA and LuxS

that synthesize CAI-1 & AI-2 [30, 33] produce them in a

lower concentration. CqsS is the transmembrane receptor

for CAI-1 and LuxP/Q is the periplasmic/transmembrane

receptor for AI-2. These receptors are bifunctional i.e. at

LCD they behave as kinases transferring the phosphate

group to the downstream proteins and HCD they behave as

phosphatases removing the phosphate groups from the
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phosphorylated proteins. Lower concentration of these

signals leads to an ineffective binding to their cognate

receptors. Consequently, the receptors serve as kinases to

mediate the phosphate flow a protein called LuxU and this,

further transfers it to the regulator protein LuxO (Fig. 1).

LuxO is the point of convergence of both the system I and

II [2, 31, 34, 35]. System III converges with System I and

System II at LuxO protein through activation of VarS/A

pathway but the exact mechanism of the series of steps

that occur to activate LuxO is unknown [2, 32]. Phos-

phorylated LuxO along with r54 is in turn, a transcrip-

tional activator of the Quorum regulatory RNAs (Qrr1-4).

Qrr1-4 bound to the RNA chaperone Hfq, binds to mRNA

transcript of HapR (the global virulence repressor protein

in Vibrio cholerae) and renders the translation of HapR

impossible [36].

HapR is a transcriptional repressor of VpsT, the latter is a

transcriptional activator of genes required for biofilm for-

mation [30, 37]. HapR also represses the production of

AphA, a protein needed for activation of Cholera Toxin (CT)

and Toxin Co-regulated Pilus (the main virulence factors of

Vibrio cholerae). HapR represses haemolysin, the major

virulence factor of Vibrio cholerae Biotype Eltor both tran-

scriptionally and post-translationally [38]. HapR is also an

activator of HapA protease and RNA polymerase sigma

factor (rpoS r54). HapA protease serves as a ‘‘detachase’’ in

detaching the Vibrio cholerae cells from the human cells, via

digestion of GM-1 receptor of human intestinal cells, which

serves as a bridge between bacterial and human cells [39].

r54 increases the stress response of the bacterial cells to

extreme nutrition and oxidative conditions [40]. Thus, under

LCD conditions, virulence factors like Cholera toxin, Toxin

co-regulated pilus, Haemolysin, Biofilm are expressed but

factors like HapA protease, r54 are repressed because of the

absence of the regulatory protein of HapR. Hence, it could be

inferred that ‘‘virulence and autoinducer concentration are

inversely proportional’’ in case of Vibrio cholerae.

At HCD, the binding of the signals, CAI-1 and AI-2 to

their respective cognate receptors CqsS and LuxP/Q will be

achieved. This binding switches these receptors from func-

tioning as kinase to phosphatase enzymes. Ultimately, de-

phosphorylation of LuxO protein, takes place which brings

about repression in qrr1-4 production. Qrr1-4 repression

subsequently leads to a successful translation of HapR

mRNA transcript. As a result, virulence factors like hae-

molysin, Biofilm, Cholera Toxin, Toxin co-regulated pilus

are repressed and HapA protease and r54 are expressed at

HCD conditions (Fig. 2). Thus, virulence is repressed at

Fig. 1 Vibrio cholerae quorum sensing circuit at LCD state
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HCD and established at LCD reflecting on the fleeting and

ephemeral life style of Vibrio cholerae i.e. they have a short

stay at intestinal environment completion of LCD gives them

a positive signal to switch their life style in fecal environment

and get disseminated from the intestine of host cells.

Therefore, probing QS systems in Vibrio cholerae is an ap-

proach to arrive at novel anti-virulent drugs for an MDR

scenario free Cholera therapy. So, throughout this review the

plausible QS components (signals, receptors, sensors,

regulators, regulatory RNAs) have been addressed that could

be exploited to disrupt or attenuate the species specific and

non-specific mediated quorum sensing as potential antimi-

crobial targets.

Plausible Targets

Signals/Autoinducers

CAI-1 and AI-2

The two autoinducers, cholera autoinducer-1 (CAI-1) and

autoinducer-2 (AI-2) synergistically impose their control to

their target gene expression. It is well documented that the

species specific signal, CAI-1 is the stronger, whereas the

LuxS is known to synthesize the weaker signal AI-2 (fu-

ranosyl borate diester (2S, 4S) -2-methyl-2,3,3,4-tetrahy-

droxytetrahydrofuran borate). The catalytic process of

LuxS involves the fragmentation of a byproduct of SAM

metabolism, (S) -ribosyl-homocysteine (SRH), to produce

homocysteine and the AI-2 precursor, 4,5-dihydroxy- 2,3-

pentanedione (DPD). DPD spontaneously cyclizes and

borate is chelated to yield AI-2, identified as (2S,4S)-2-

methyl-2,3,4- tetrahydroxytetrahydrofuran-borate [41, 42].

The CAI-1 (Cholera Autoinducer-1), a stronger signal, was

previously identified as (S)-3-hydroxytridecan-4-one

known to require the enzyme CqsA for its biosynthesis [33,

43]. The sole substrate for CqsA substrates are (S)-2-

aminobutyrate and decanoyl coenzyme A, and the product

of the reaction is 3-aminotridecan-4-one, dubbed amino-

CAI-1 is a pyridoxal phosphate-dependent acyl-CoA

transferase reaction. Further, amino-CAI-1 is being con-

verted to CAI-1 via a CqsA-independent mechanism and

greater than or equal to100 times more CAI-1 release is

observed than amino-CAI-1. V. cholerae QS response is

being elicited on sensing the signals, amino-CAI-1 or CAI-

Fig. 2 Vibrio cholerae quorum sensing circuit at HCD state
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1, but forseen to show any significant response to the CAI-

1 variants [44]. In coherence to this, a commensal E. coli

manipulated to express the cqsA gene that produced a

variant CAI-1 inhibits pathogenesis of V. cholerae in an

infant mouse model [45] provides an insight that targeting

the stronger signal with its structural and functional mimic

would probably lead to the development of an anticholera

treatmnt.

Receptor

CqsS

Bacteria are ubiquitous with Two-component systems

(TCS) systems that are used to adapt to environmental

changes [46]. CqsS, a unique TCS system in Vibrio

cholerae (CqsSvc) known to be highly conserved (70 %) in

the transmembrane ligand sensing domains among all

Vibrio species as it detects CAI-1 molecules with the ex-

tended side chains either with 10-carbon or 8-carbon [47].

The residues Cys170/Phe175 was found to be crucial in the

CqsSvc as it signifies the ligand chain length [44]. The

CqsSvc Sensor histidine kinases has a N-terminal trans-

membrane sensing domains, dimerization histidine phos-

photransfer (DHp) domains and C-terminal catalytic ATP-

binding (CA) domains [48]. It has been theoretically de-

fined to have two-state model for histidine kinases with a

‘‘kinase on’’ and a ‘‘kinase off’’ mechanism [49]. In re-

sponse to the CAI-1 (HCD), the binding switches the CqsS

to an ‘‘kinase off’’ state (phosphotase) and results in the

dephosphorylation of phosphorylated response regulators

(LuxU * P; LuxO * P). Significantly at LCD condition,

the switch is reversed to ‘‘kinase off’’ state, where the

His194 is critical for the phosphate flow to the DHp do-

main as it is evidenced that the H194Q do affect the

phosphate flow. Also mutation in the highly conserved

glycine residue CqsG379A/G381A of the CA domain was

also found to be incapable of autophosphorylation are

known to be critical for ATP binding. In accordance to this,

researchers have also evidenced to hinder the QS system on

targeting those key residues of the CqsS receptor that affect

the phosphate flow [50].

LuxPQ

LuxP, a factor belonging to the large protein family

PBPs (Periplasmic Binding Protein) sense the weaker

non species specific autoinducer, AI-2 to elicit its QS

response. [51]. Notably, it interacts with AI-2 molecules

in conjugation with a two-component sensor kinase,

LuxQ with a hybrid of a periplasmic sensor domain and

cytoplasmic histidine domains [52]. Irrespective of LuxP

interaction with AI-2 or not, the unliganded apoform

hold open to have specific interaction through the PAS

domain with the LuxQ (LuxQp) [53]. The PAS domain

is quite similar to that of PBPs protein and the LuxP will

bind to the tandem PAS folds present in the LuxQ.

These PAS folds have prosthetic qroups that help them

to bind to ligand molecules [54]. Therefore, the ligand

AI-2 interaction regulates LuxQ activity on bringing

structural changes in the constitutively associated LuxP:

LuxQ complex. Notably, at LCD state, the intrinsic ki-

nase activity of LuxQ would cross phosphorylate the

histidine residues within the histidine kinase domain [55]

and at HCD state, a retrograde flow of phosphate group.

It is also known, that the LuxQ intrinsic activity of ki-

nase is being reduced/converted to phosphatase with AI-

2 interaction via integrating the signal to the regulator,

LuxR [56].

Regulators

HapR

The master regulator, HapR belong to the family members,

TetR and QacR with nine a helices [57]. The C-terminal

dimerization interface mediates its contact with its target

DNA binding site, aphA promoter. The HapR DNA-bind-

ing domain at the N-terminal region is composed of three a

O

O
B-

O

CH3HO

HO

OHHO

AI-2
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helices, a 1, a 2 and a 3 and a dominant electropositive

surface was noticed in the HTH motif (helices a 2 and a 3).

The dimerization interface promote the HTH motif to be

competent to interact to its DNA binding domain without

making any significant conformational change in the kink

in the a 7 helices as it results with an extended a 5 helix.

The residues surrounding helix a 3, (Ser50, Val51, Ala52,

Thr53, Phe55, and Asn56) were found to show either polar

or hydrophobic base-specific interactions in the major

groove of DNA. Also, these residues Arg10, Arg12, Arg18,

Lys19, Arg33, Arg37, His40, and Arg61 was found to

show significant interaction with the phosphate backbone

to provide additional stability to the regulator binding to

DNA. The mutational studies (F55A- defective; T53A–

weak) have revealed to show higher DNA binding affinity

(base-specific interaction) lies in the a 3 (Thr 53 and

Phe55) to efficiently bind to aphA promoter to repress

biofilm phenotype [58]. Also, HapR molecules has tunnel

(C-Terminal) to help the movement of the solvent mole-

cules that contacts an binding pocket (amphipathic cavity)

for an unidentified ligand similarly present in the TetR

protein molecules. The cAMP- receptor protein (CRP) was

found to lower the HapR expression level via integrated

with the environmental signals to enhance the growth of

organisms in both the human host and the environment

[59].

LuxU

LuxU a Phosphorelay protein has two independent func-

tional domains to receive sensory signals (phosphate re-

ceiver domain) from a sensory kinase (phosphate donor

domain) and integrate the signals to LuxO [60]. At LCD

state, kinase switch on and phosphate flow from the sen-

sory kinase, is being transferred to response regulatory

protein, named LuxO and it is reversed at HCD state [61].

LuxU with an aminoacid sequence of length 133a.a show

greater sequence similarity to other phosphorelay proteins,

(HPt), BvgS, ArcB, and Ypd. Its phosphorelay function is

highly defined by a conserved His residue (His 58) and it is

consistent with the surrounded positively charged residues

(Lys54 and Lys61) provides an ultimate binding site for the

negatively charged phosphate [62]. We also speculate

LuxU, a hub for signal integration as V. cholerae QS relies

on two parallel sensory pathways, CAI-1/CqsS and AI-2/

LuxPQ where the output converges at LuxU [2]. Similar

sensory mechanism has been revealed in the related bac-

terium V. harveyi, where the information flow from three

parallel sensors, CqsS, LuxPQ and LuxN converges at

LuxU [63]. The Vibrio QS pathway ensures to have a

central domain architecture (LuxU) that means to perform

the enzymatic activities required for phosphotransfer to and

dephosphorylation of its target proteins. Also LuxU me-

diated phospho-flow in both directions is well documented

as a feed-back regulation [64].

LuxO

LuxO, a NtrC family regulator act as a genetic switch to in-

fluence the biofilm formation, toxin production, phosphory-

lation and bioluminescence in Vibrio species [31]. The LuxO

has two separate N-terminal regulatory and C-terminal DNA

binding domain where the oligomerization or AAA? ATPase

domain is located between the receiver domain and a helix

turn helix (HTH) motif [31, 65, 66]. The HTH motif are known

to recognize enhancer like sequence between 100 and 150

base pairs present in upstream of the promoter of the target

genes. ATPase domain with its walker A and B motif and

Arginine finger motif at active state will recruit the core RNA

polymerase with the sigma factor (r) to promote the transition

from closed to open complex. The Walker A motif has con-

sensus sequence GXXXGXGX (X means any amino acid)

shows higher affinity of interaction with the target DNA

binding site and the magnesium ion present in B motif co-

ordinates the stability of this complex. The key residues of

LuxO that increases its stability to its DNA binding site are

four aliphatic amino acid residues and two negatively charged

residues [62]. Also, the Arginine finger motif with the con-

served Arg residues probably found to aid ATP binding and

hydrolysis as it is required to remodel the closed DNA com-

plex. The critical role of LuxO includes to accept phosphate

group then activated to bind to its target site in DNA enhanced

by Fis and with the hydrolysis of ATP [53]. Its efficiency of

activation/deactivation entirely depends on the concentration

of the signal, AI-2 and CAI-2 as it is directly proportional to

the cell density state. So, LuxO is activated in the LCD state

and vice versa in the HCD state. Recent studies have also

shown to characterize novel inhibitors (ML366 and 5-thio-6-

azauracil derivatives) to selectively inhibit the ATPase do-

main of LuxO (response regulatory protein) and reverse the

LCD to a HCD condition [31, 67].

Qrrl

Qrrls are the small regulatory RNAs that control the tran-

scription of target genes involved in establishing Vibrio cho-

lerae pathogenicity. The cells at LCD state, the signals (AI-2)

integrate to various regulators like, LuxO enhances the ex-

pression of the small regulatory RNAs (Qrrl), likely to an-

tisense with the HapR mRNA most probably protecting its

50UTR- ribosome binding site (RBS) from preventing its

initiation of translation and also repress its action of regulating

the target gene expression. It has also been observed that the
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Qrrls shows negative feedback regulation of repressing the

translation of LuxO protein and their interaction to its target

mRNA are being stabilized by an RNA chaperone, Hfq [68,

69]. The Qrrl protection of its target mRNA would act as

signal sequence to be either degraded or to prevent them from

translation. Base pairing of Qrrl RNA to its target mRNA is

aided with the first two stem loops (S1) and (S2) the third stem

loop (S3) stabilizes the complex and the fourth stem loop (S4)

act as terminator probably it means to provide an intrinsic

strength to respond to the QS response [70].

ToxR

Vibrio cholerae respond to environmental factors as it triggers

the expression of membrane bound regulatory protein, ToxR

and elicit QS response. The regulator, ToxR has two separate

N-terminal cytoplamic domain (binds to DNA molecules) and

C- terminal periplasmic domain (interact with transmembrane

protein) [71]. The role of ToxS protein is very essential for the

activation of ToxR gene, although its functional significance is

not clear other than it is known to stabilize and dimerise the

Tox R protein [71, 72]. Combined effect of ToxR-ToxS

complex is well known to activate OmpU, OmpT and porins

molecules [73]. The cells should have an equal balance of

porin molecules to resist against bile and intestinal coloniza-

tion. The main target of ToxR-ToxS is the ToxT, as it is trig-

gered with the factor complex, TcpP-TcpH that result in the

CT toxin. It has been well documented that the factor complex,

TcpP-TcpH is regulated by the apha gene at the LCD state.

The ToxR (control of virulence) gene expression has been

related to have influenced with the environmental cues where

the cAMP-CRP system was found to be critical in its regula-

tion. When the concentration of cAMP increases, the cAMP-

CRP complex is formed and thus repress the expression of the

gene, tcpPH as both CRP and AphAB binding site overlap at

tcpPH promoter [59]. Since the global regulator, cAMP-CRP

exhibit combinatorial control and its influence over ToxR

regulon under various environmental condition provides an

insight to explore the involvement of multiple overlapping

systems on its control (Fig. 3).

Fig. 3 Vibrio cholerae quorum

sensing circuit response to

environmental cues
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Conclusion

The review has established that the signals AI-2/CAI-1/en-

vironmental cues elicit QS response via QS molecules

(regulators, small regulatory RNA etc.) to establish Vibrio

cholerae pathogenicity. Notably, exploiting QS molecules

might be a novel strategy to discover novel anti-infectives or

anti-virulent molecules for cholera therapy. Earlier reports

accounted to use similar approach for the development of

anti-pathogenic compounds from Terminalia chebula Retz

to quench AHL mediated QS in Pseudomonas aeruginosa

PAO1 and sponge derived compounds against Serratia

marcescens [74, 75]. Our earlier studies have identified CAI-

1 mimic molecules from Melia dubia leaves and its potency

to establish QS in Vibrio cholerae has opened the roads to a

new anti-virulent Cholera therapy employing QS mimic

molecules [76]. We could also prove that the methanol ex-

tract of Melia dubia seed will competitively inhibit SdiA

(quorum regulator) in E.coli thus inhibits the hemolysin,

biofilm production and motility of the bacteria [77]. Any QS

based anti-virulent therapy aims at reversal of the CqsS and

LuxP/Q molecular switch from kinase to phosphatase i.e.

mimics HCD conditions in an LCD state. This anti-virulent

strategy is highly efficacious since it completely eliminates

the possibility of development of MDR strains, making the

therapy effective and also eliminates the subsequent need for

strain tracking. Hence, interfering with Vibrio cholerae

murmurs is a way employed currently to combat Cholera and

recover Cholera victims.
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