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Abstract Bacillus subtilis XF-1 has been used as a bio-

control agent of clubroot disease of crucifers infected by

Plasmodiophora brassicae, an obligate pathogen. In order

to maximize the growth inhibition of the pathogen, random

mutagenesis using N-methyl-N0-nitro-N-nitrosoguanidine

was applied to strain XF-1. The efficacy of 226 selected

mutants was assessed against the growth of an indicator

fungal pathogen: Fusarium solani using agar plate assay

and the disruptive effects on the resting spores of P.

brassicae. Four mutants exhibited inhibition activity sig-

nificantly higher than the wild type. The cell extracts of

these mutants and the XF-1 were subjected to matrix-

assisted laser desorption ionization-time of flight mass

spectra analysis, and three families of cyclic lipopeptides

(CLPs) fengycin, surfactin and iturin were identified from

the parental strain and the screened mutants. However, the

relative contents and compound diversity changed after

mutagenesis, and there was slight variation in the surfactin

and fengycin. Notably, only 5 iturin components were

discovered from the wild strain XF-1, but 13 were obtained

from the mutant strains, and the relative CLPs contents of

all mutant strains increased substantially. The results sug-

gested that CLPs might be one of main biocontrol mech-

anisms of the clubroot disease by XF-1. The 4 mutants are

far more effective than the parental strain, and they would

be promising biocontrol candidates not only against P.

brassicae but probably other plant diseases caused by

fungi.
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Bacillus subtilis XF-1 (XF-1), is a patented strain for

controlling the clubroot disease of crucifers infected by

Plasmodiophora brassicae, an obligate plant pathogen

[1–3]. Isolated from the Chinese cabbage rhizosphere, XF-

1 produced a diversity of cyclic lipopeptides (CLPs): fen-

gycins, surfactins and iturins which proved to be antago-

nistic against a broad spectrum of bacterial and fungal

phytopathogens. These CLPs, usually synthesized by

nonribosomal peptide synthetases (NRPSs) [4], are also

known as biocontrol agents for plant disease reduction [5].

In addition, they are also involved in the biofilm formation,

colonization and cell motility of Bacillus and Pseudomonas

[6], as well as in the systemic stimulation of immune

system of the host plant [7]. Thus, XF-1 has great poten-

tials in the environmental and phytopathogen control, but

the application has been hampered by the low activity of

the wild strain resulting in low yield of CLPs. Therefore, it
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is important to enhance the activity of the strain, while

increasing CLPs production. Random mutagenesis by

either physical or chemical means has been known as a

useful tool for the improvement of biocontrol agents and/or

antifungal metabolite producers [6].

In the present survey, we induced random chemical

mutagenesis in XF-1 using N-methyl-N0-nitro-N-nitroso-

guanidine (NTG) [8] in order to improve its antagonistic

activity against P. brassicae. The efficacy of the mutants

was screened based on their inhibition effects on the

growth of a facultative indicator plant-pathogenic fungus:

Fusarium solani on agar plates isolated from the rhizo-

sphere of Panax notoginseng in Yunnan Province of China

[1], and the disruptive effects on the resting spores of P.

brassicae, extracted from the Chinese cabbage club root rot

[3]. Subsequently, the CLPs were evaluated with Matrix-

assisted laser desorption ionization-time of flight mass

spectra analysis (MALDI-TOF-MS) [9] by comparing the

parental strain with the screened mutants.

From 226 fungal colonies that showed decrease in

growth diameters, 4 mutants with high activity were

selected for further evaluation and they demonstrated sig-

nificant differences (p \ 0.01) when compared to the wild

type (Fig. 1). The resting spores of P. brassicae were sub-

spherical to spherical with well-defined spore wall in the

control without B. subtilis [10]. However, after treated with

the parental strain XF-1, and especially the mutants XF-

1A, XF-1C, XF-1D, XF-1E, the resting spores became

deformed or ruptured (Fig S1) [3] .

Mass spectra obtained from all strains showed very

clear peak clusters (Figs.S2*6). Three families of CLPs:

fengycin, surfactin and iturin could be observed in the

mass spectra and all of CLPs detected are listed in

Table 1. The diversity of the surfactin and fengycin

families was very similar, but iturin family was very

different: Only 5 iturin components were discovered

from the wild strain XF-1, but 13 were obtained from the

mutant strains. The relative content of three families

varied, especially for the iturin family which increased

by 3–10 times more than the original strain (Table 1),

suggesting that the chemical mutagenesis could enhance

the production of itutins, and greatly enriched the iturin

constitution diversity.

The four mutant strains were obtained after random

mutagenesis with NTG and the relative contents and

compound diversity of CLPs (fengycin, surfactin and i-

turin) were enhanced. Since they showed greater inhibi-

tion effect on the growth of F. solaini and caused more

resting spores of P. brassicae to become deformed and

ruptured, they should be much better candidates than the

parental strain as the biocontrol agent. It is of interest to

note that 13 iturin components were discovered from the

mutant strains in contrast to only 5 from the wild strain

XF-1, suggesting that NTG mutagenesis could enhance

the production of itutin, and greatly enriched the iturin

constitution diversity, leading to the possible development

of high yield iturin antibiotic strains of B. subtilis. The

iturin family, encompassing iturin A and C, bacillomycin

D, F, L and LC, and mycosubtilin are heptapeptide

molecules with a b-amino fatty acid chain, comprised of

14–17 carbons and exhibit strong antifungal activity

against a wide range of yeast and fungi [5], by forming

small vesicles and by aggregating membrane-spanning

particles to disrupt the plasma membrane. The iturin

Fig. 1 Antifungal activity of

Bacillus subtilis strains against

Fusarium solani (F) (wild type:

XF-1; mutants XF-1C, XF-1D,

XF-1E represented respectfully

by A, C, D and E)
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family compounds not only act as antibiotics, but also

play an important role in the swarming/mobility behavior

of production strain [13].
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