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Abstract Sodium dodecyl sulfate (SDS) is one of the most

commonly used detergent, which exhibits excellent biocidal

activity against various bacteria and fungi. It is commonly

employed in many detergent formulations and is employed

for disinfection purposes. It is shown to be toxic to fishes,

aquatic animals and is also inhibitory to microbes and cya-

nobacteria. We had isolated a strain belonging to Pseudo-

monas aeruginosa N1, from a detergent contaminated pond

situated in Varanasi city India, which was able to degrade

and metabolize SDS as a source of carbon. In the present

investigation, we have studied chemotactic response of this

strain towards SDS. The results clearly indicate that this

strain showed chemotactic response towards SDS. The nat-

ure of chemotaxis was found to be metabolism dependent as

glucose grown cells showed a delayed chemotactic response

towards SDS. This is first study that reported chemotaxis

response for P. aeruginosa towards anionic detergent SDS.
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Abbreviations

SDS Sodium dodecyl sulfate

PBM Phosphate buffered medium

TTC 2,3,5-Triphenyl tetrazolium chloride

NACs Nitro aromatic compounds

2,4-D 2,4-Dichloro phenoxy acetic acid

Introduction

Chemotaxis is defined as movement of bacteria in response

to a chemical gradient [1]. It has been reported that

members of the genus Pseudomonas are known to degrade

and metabolize a wide variety of xenobiotic compounds

and also that they show chemotactic response towards

many of these compounds. These include naphthalene [2],

chlorinated benzoates and 4-hydroxybenzoate [3, 4],

methyl parathion and p-nitrophenol [5], benzene, toluene,

and trichloroethylene [6], nitro-benzoates and amino-ben-

zoates [7], and aromatic acids [8]. It is believed that che-

motaxis plays an important role in metabolism of

xenobiotic compounds as it increases the availability of the

chemical to the microbe and plays a positive role in

metabolism of xenobiotic compounds [9]. Chemotaxis can

be broadly divided in two main types, metabolism depen-

dent and metabolism independent. In metabolism inde-

pendent chemotaxis, bacteria sense the concentration of

chemicals outside the cell with the help of ligand-binding

transmembrane receptors known as methyl-accepting che-

motaxis proteins (MCPs) [9], binding of ligand to MCP

causes flagellar motility [10]. However, in metabolism

dependent movement, chemotactic response requires

metabolism of the attractant/chemical [11].

Sodium dodecyl sulfate (SDS) is a widely used anionic

detergent having excellent biocidal activity against a wide

array of microorganisms. It is employed in many industrial

and household products [12]. Detergents like other xeno-

biotic compounds are discharged in water bodies in huge

amounts, where they show there detrimental effects [13].

SDS is shown to be toxic to aquatic animals [14] and also

to other animals and humans who consume water con-

taminated with detergents [15]. It is also toxic to microbes
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[16]. In aquatic systems, it has the tendency to adsorb to

surfaces of sediments [17]. Biodegradation of SDS is well

studied in Pseudomonas sp. [18]. It is initiated by the

enzyme alkyl sulfatase, which catalyses the cleavage of

sulphate group forming 1-dodecanol [18]. Which is sub-

sequently oxidized by b-oxidation pathway and is utilized

as a carbon source.

We had isolated a strain belonging to Pseudomonas

aeruginosa, capable of metabolizing SDS as a sole source

of carbon from a detergent contaminated pond situated at

Naipura in Varanasi city, India [19]. In the present inves-

tigation, we have characterized its chemotactic response

towards this detergent. Results indicate that this strain was

chemotactic towards SDS in a metabolism dependent

manner. To our knowledge, this is the first report of che-

motaxis P. aeruginosa towards an anionic detergent SDS.

Materials and Methods

Chemicals and Culture Media

SDS (98.5 % purity) was purchased from Sigma-Aldrich,

Inc, St. Louis, MO, USA. The phosphate buffered medium

(PBM) contained (g/L): K2HPO4 1.0, KH2PO4 1.0, NH4Cl

1.0, MgSO4�7H2O 0.20, NaCl 0.5, CaCl2 0.02, pH 7.5. The

medium also contained trace elements (1 mL of stock)

having (g/L): FeCl3�6H2O 0.24, CoCl2�6H2O 0.04,

CuSO4�5H2O 0.06, MnCl2�4H2O 0.03, ZnSO4�7H2O 0.31,

Na2MoO4�2H2O 0.03. After autoclaving, filter sterlized

SDS was added as the sole carbon source at a final con-

centration of 1 g/L (to be used for growth experiments).

Luria–Bertani medium contained (g/L): tryptone, 10.0,

NaCl, 5.0, yeast extract, 5.0 and pH was adjusted to 7.0 (to

be used for inoculum preparation).

Isolation of SDS Degrading Bacteria

Pseudomonas aeruginosa strain N1 was isolated from a

detergent contaminated pond situated in Naipura, Varanasi

city, India, by enrichment technique in PBM medium

containing SDS as a sole carbon source. This pond was

frequently used for washing of clothes [19].

SDS Degradation Study

SDS degradation studies were performed following the

method of Chaturvedi and Kumar [19], with minor modifi-

cation. In biodegradation experiments one flask containing

100 mL PBM was supplemented with SDS (1 g/L) and

another flask was supplemented with SDS and glucose (1 g/L)

respectively. All the experiments were performed in triplicate

and result was depicted as mean ± standard deviation.

Analytical Methods

Growth of bacteria was monitored spectrophotometrically

at 600 nm in a UV-Vis spectrophotometer (Genway, Essex,

UK) (OD of 0.1 at 600 nm corresponds to 108 cell/mL)

[20] and the concentration of SDS was determined by

methylene blue active substance method [19].

Preparation of Enzyme Extracts

The bacterial cells were grown in PBM supplemented with

SDS. During exponential phase of growth, the cells were

harvested by centrifugation of the cultures at 5,000 g for

10 min at 4 �C in a Sorvall RC-5B superspeed refrigerated

centrifuge (Sorvall Instruments, DuPont, Wilmington, DE,

USA). Cell pellets were washed with 10 mL 10 mM Tris–

HCl and was resuspended in 2.5 mL 10 mM Tris–HCl (pH

7.5) (1/100 the original volume). The enzyme extracts were

prepared following the method of Ellis et al. [21].

Alkyl Sulfatase Assay and NATIVE PAGE

Zymography

Alkyl sulfatase assay and zymography of alkyl sulfatase

were carried out following the method of Ellis et al. [21].

Alkyl sulfatase activity in the crude enzyme extracts was

performed in triplicate and results were depicted as

mean ± standard deviation.

Drop Plate Assay for Chemotaxis

Cells were grown in 50 mL PBM containing SDS (1 g/L).

During exponential phase of growth, the cells were cen-

trifuged at 12000 rpm for 10 min at 4 �C in a Sorvall RC-

5B superspeed refrigerated centrifuge (Sorvall Instruments,

DuPont, Wilmington, DE, USA) and washed twice with

10 mL PBM and re-suspended in 2.0 mL PBM. Drop plate

assay medium consisted of PBM, 0.01 % TTC (it is added

to visualize bacteria as it is converted to red color farmezan

crystals by the action of succinate dehydrogenase in

actively growing bacteria), and 2 mL cell suspension in

0.3 % agar. 10 and 30 mg SDS was placed in the center of

two petri plates and chemotactic response was observed

after 9 h of incubation at 37 �C. In control plates, glucose

(10 mg) was placed instead of SDS [22]. To evaluate the

response of SDS grown cells towards both SDS and Glu-

cose, SDS grown cells were mixed with semi solid PBM

medium and poured in petri plates according to the drop

plate assay method. In negative control, heat killed cells

(killed by autoclaving at 121 �C for 20 min) was used in

place of cell suspension.
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Swarm Plate Assay for Chemotaxis

PBM containing 0.16 % agar was autoclaved and cooled to

40–45 �C. To the medium filter sterilized SDS at a final

concentration of 1 g/L and filter sterilized TTC at a final

concentration of 0.01 % were added The medium was

poured and plates were allowed to set. Cells were point

inoculated on the centre of plate by means of a sterile tooth

pick and incubated at 37 �C. Formation of rings was

observed after 9 h of incubation. In control plates, glucose

(1 g/L) was added instead of SDS [22].

Results and Discussion

In the present investigation, chemotactic response of P.

aeruginosa strain N1 towards SDS has been evaluated. This

strain metabolized SDS as a sole carbon source and complete

metabolism of 1 g/L SDS was observed after 12 h of incu-

bation (Fig. 1a). Biodegradation of SDS by this isolate was

also studied in the presence of glucose, which showed that

this strain showed a slow rate of SDS degradation in presence

of glucose (Fig. 1b). After 8 h of incubation, it was observed

that in flask containing SDS (1 g/L), 0.52 g of SDS was

degraded and growth rate was 1.5 9 106 cell/mL/h. Under

similar conditions, in flask containing SDS and glucose

(1 g/L) each, 0.22 g of SDS was degraded and growth rate

was 5.9 9 106 cells/mL/h. This indicates that glucose is the

preferred carbon source for the bacterium and therefore it

was first metabolized. High rate of SDS degradation was

observed in later stages which might be due to low levels of

glucose in the culture medium. Similar reports have been

made by Abboud et al. [23] in a mixed consortium of Aci-

netobacter calcoaceticus and Pantoea agglomerans. In their

study, significant reduction in SDS degradation was

observed in presence of carbon sources such as glucose,

sucrose, and maltose respectively. These results do not

confirm that alkyl sulfatase, key enzyme in SDS metabolism

is inducible in nature. Inducible nature of alkyl sulfatase was

confirmed by estimation of alkyl sulfates activity in crude

cell extracts of strain N1 grown in presence of SDS and

glucose separately. It was observed that during exponential

phase of growth, specific enzyme activity was 0.134 ±

0.004 U mg protein-1 in SDS grown cells. However, in

glucose grown cells no alkyl sulfatase activity was observed.

This result was further confirmed by NATIVE PAGE

zymography of crude cells extracts of SDS and glucose

grown cells of P. aeruginosa strain N1. It became evident

from (Online Resource 1) that in cells grown in presence of

SDS a single band of alkyl sulfatase was visible. Whereas, in

cells grown in presence of glucose, no band was observed.

So, it was concluded that the enzyme alkyl sulfatase was

inducible in nature.

Chemotactic response of this isolate towards SDS was

studied by swarm plate assay, results indicated that P.

aeruginosa strain N1 was chemotactic towards SDS. When

this isolate was point inoculated on swarm assay plates, it

metabolized SDS and a growth ring was observed. This

isolate showed chemotaxis towards glucose also (Online

Resource 2). The growth rate of this isolate was different,

when grown in minimal medium (PBM) containing glucose

and SDS. In presence of SDS, the growth was too slow.

The lag phase was long (4 h) as compared to that in glu-

cose (1.5 h) and also the cell yields were also low

3.24 9 107 cells/mL after 16 h of incubation, as compared

to 7.56 9 107 cell/mL after 12 h of incubation in presence

of glucose. This was also observed in the swarm plate

assay. In plates containing glucose, the rings were observed

after 7–8 h of inoculation of the culture but in plates

containing SDS, the rings were observed after 12 h of

inoculation. This was clearly due to different growth rates

of this strain in presence of glucose and SDS, respectively.

Results observed are in accordance with previous reports,

which indicate that biodegradable xenobiotic compounds

also act as chemoattractants [2, 5–7]. Many aromatic acids

have been reported to be attractants for Pseudomonas

putida PRS2000 [8]. Chemotaxis of Burkholderia sp. strain

SJ98 towards different NACs has also been reported [22].

It was observed that strain SJ98 was chemotactic towards

various substituted nitrophenols [24]. Hawkins and Har-

wood [25] have reported the chemotaxis of Ralstonia eu-

tropha JMP123 towards 2,4-D.

Chemotactic response was further confirmed by drop

plate assay, the results confirmed the chemotactic response

of this strain towards SDS (Online Resource 3B). In control

plates, glucose grown cells were poured and glucose was

placed in the centre. Chemotactic response in control plates

was observed after 4 h of incubation (Online Resource

3A), however in test plates containing SDS, the response

was visible after 4–5 h, but it was faint as compared to

control. After 9 h of incubation, it was clearly visible.

However, in both control and test plate’s one notable dif-

ference was observed. In control plates containing glucose,

it was observed that the cells had migrated up to the centre

of the plate, where glucose was placed. In test plates

containing SDS, it was seen that the cells did not migrate to

the centre of the plate but they stayed away from it,

forming a ring. In order to confirm whether the chemotactic

response of the isolate was due to flagellar dependent

motility and was not due to interaction of SDS with bac-

terial cell wall (as both are negatively charged). Drop plate

assay was performed by employing heat killed cells (neg-

ative control). It was observed that heat killed cells did not

show any response towards SDS. Drop plate assay was

performed by varying the concentration of SDS. In one

plate 10 mg SDS was placed (Online Resource 3B) and in
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another plate 30 mg SDS was placed (Online Resource 3C)

and chemotactic response was observed. It was seen that, in

the plate containing 30 mg SDS, the ring had a greater

diameter as compared to ring formed in presence of 10 mg

SDS. It was observed that by increasing concentrations of

SDS, the diameter of the ring increased, but these strains

were still chemotactic towards SDS. This might be due to

the fact that SDS was toxic to the bacterium. Hence, they

stayed at a point where the concentration of SDS was well

tolerated by the bacterium and a ring was observed.

When chemotactic response of this isolate towards

SDS was confirmed, it was important to study whether the

chemotactic response was metabolism dependent or

metabolism independent. It has been shown previously

that the enzyme alkyl sulfatase involved in biodegradation

of SDS is inducible and in glucose grown cell no alkyl

sulfatase activity was observed. So, chemotactic response

of glucose grown cells towards SDS was tested using

drop plate assay method. It was observed that glucose

grown cells were chemotactic towards SDS (Online

Resource 3E). Further, chemotactic response of SDS

grown cells towards glucose was tested (Online Resource

3D). SDS-grown cell showed a delayed chemotactic

response towards glucose. It was postulated that glucose

is a preferable carbon source, so the cells were chemo-

tactic towards glucose. It was important to study the

response of SDS grown cells towards both SDS and

glucose (Online Resource 3F). It was seen that the cells

were chemotactic towards both SDS and glucose. Che-

motactic response towards 1-dodecanol (first metabolite

generated after SDS degradation) was evaluated (Online

Resource 3G). The strain showed chemotactic response

towards 1-dodecanol also. This confirms metabolism

dependent chemotaxis of this strain towards SDS. In

negative control, response of heat killed cells towards

SDS and glucose was checked (Online Resource 3 H&I).

It was observed that heat killed cells did not show chemo

taxis. It has been reported that Escherichia coli exhibits

metabolism-dependent chemotaxis towards glycerol [26].

Rhodobacter sphaeroides shows chemotaxis towards a

wide range of amino acids, organic acids, and sugars [27].

Metabolism-dependent chemotaxis is similar to other

bacterial behavioral responses collectively known as

energy taxis, defined as a behavioral response to stimuli

affecting cellular energy levels [28]. The overall process

of energy taxis is similar to chemotaxis, the main dif-

ference lies in the mechanism whereby the signal for

energy taxis is sensed by signal-transduction pathway

[29]. Studies have demonstrated that this process involves

specialized energy sensors that detect changes in intra-

cellular energy levels. An increase or decrease in energy

level is perceived as a signal [30]. Molecules that take

part in this process are terminal electron acceptors, light,

redox-active compounds and metabolizable substrates that

are electron donors [31]. The best example of this kind of

receptor system is exhibited by Aer protein of E. coli,

which is responsible for aerotaxis. Aer is present on cell

membrane and it consists of a single, N terminal sensory

domain called PAS domain, which is present in cyto-

plasm. PAS domain binds to FAD cofactor. Oxidation and

reduction of this cofactor generates a signal, which is

perceived by Aer protein [32]. Based on data of growth

behavior and enzymatic pathway of SDS degradation of

P. aeruginosa strain N1, it is evident that this strain has

metabolism dependent chemotactic response. This is a

tentative conclusion; a detailed study is required to elu-

cidate the exact mechanism of chemotaxis towards SDS

as exhibited by P. aeruginosa strain N1.
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Fig. 1 Time course study of biodegradation of SDS by P. aeruginosa

Strain N1. a Degradation of SDS in PBM. b Degradation of SDS in

PBM in presence of glucose. The growth experiments were conducted

in triplicates, values are depicted as mean of triplicates ± standard

deviation
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