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Abstract
Network function virtualization is a key enabling technology for the customization of network services in next-generation
networks to support diverse applications. Most enterprise and network services contain specific network functions that are
stitched together in a predefined sequence to form a service function chain. The deployment and scheduling of a service
function chain onto the substrate network play a vital role in deciding the efficiency of resource utilization and the performance
of network management. For a delay-sensitive network service request traversing a service function chain, the end-to-end
packet delay is a crucial parameter that indicates the deployment performance. Transmission, propagation, processing, edge
queueing, and virtualization delays all impact the order in which virtual network functions execute. Service level agreement
violations and incorrect schedules are produced when the controller does not take edge queueing and virtualization delays into
account. In this work, we propose a service function chain scheduling problem for the optimization of the end-to-end delay
while considering transmission, propagation, queueing, virtualization, and processing delays. Then, we propose a scheduling
approach based on the earliest finish times of the physical machines to minimize the end-to-end delay of the service function
chain. The performance of the proposed service function chain scheduling approach using the earliest finish time is evaluated
in terms of end-to-end delay, service level agreement violation ratio, resource utilization, and acceptance ratio. We compare
our proposed algorithm with four existing approaches from the literature. Simulation results show that our proposed approach
outperforms existing approaches in terms of end-to-end delay, service level agreement violation ratio, resource utilization,
and acceptance ratio.

Keywords Network function virtualization · Service function chain scheduling · End-to-end delay · Service level agreement
violation ratio

1 Introduction

Traditional network functions such as firewall (FW), intru-
sion detection system (IDS), network address translator
(NAT), gateway, virtual private network (VPN), traffic mon-
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itor (TM), etc. are executed on hardware middleboxes. Cur-
rent traditional networks have specific location-dependent
services, laborious design and testing time to carry network
functions to the market. Hence, they are incapable of sup-
porting the scalability and flexibility

requirements of communication services for accomplish-
ing the growing demands and upcoming business opportu-
nities. Network function virtualization (NFV) is an archi-
tectural concept that leverages IT virtualization to virtualize
entire classes of network capabilities into building blocks
that can be chained together. It is a disruptive and sig-
nificant paradigm in network service provisioning. NFV
provides flexibility and elasticity to the composition and
deployment of network services by detaching network func-
tional components from built-in hardware. NFV enables
to run the virtualized form of these network functions,
known as virtual network functions (VNFs), on commer-
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cial off-the-shelf servers. Further, NFV can reduce capital
expenditure (CAPEX) and operational expenditure (OPEX)
in the network. Most enterprise and network services con-
sist of specific network functions that are stitched together
in a predefined sequence to form a service function chain
(SFC). Since an SFC request involves a number of VNFs,
achieving an NFV environment raises two concerns namely:
define and implement an SFC request and efficient map-
ping and scheduling VNFs of a given service. The European
Telecommunications Standards Institute (ETSI) is collab-
orating with network operators and equipment vendors to
foster NFV technologies and is currently working on how to
implement SFC requests. However, the aspect of mapping
and scheduling within the realm of VNFs has been subject to
limited investigation, despite its increasing importance.With
the constant growth and evolution of networks alongside the
changing service requirements of users, relying on manual
allocation of VNFs to specific physical machines is imprac-
tical for network operators. Hence, there is a need to explore
more efficient and automated approaches to VNF mapping
and scheduling in order to keep up with the dynamic nature
of modern networks. The deployment and scheduling of the
SFC onto the substrate network plays a vital role in deter-
mining the efficiency of resource utilization and performance
of network management. E2E delay of a delay-sensitive net-
work service request traversing a service function chain is the
main parameter indicating deployment performance. Many
of the research works have explored the VNF deployment
problem for the optimization of E2E delay of the network
service. Few works in the literature [1, 2] formulated the
E2E delay of an SFC as a summation of packet transmission
and propagation delays on each physical link without consid-
ering packet processing delays. However, each packet from
different traffic flows passing through a physical machine
usually requires different amounts of CPU processing time
on the server. Each network service traverses through a vari-
ety of VNFs, thus, the processing of certain SFC requests
can create different types of performance issues. Some SFC
requests have large headers that can slow down CPU pro-
cessing, while others have large packet payloads that demand
longer transmission times. Moreover, the packet arrival pro-
cess at a physical machine correlates with packet processing
and transmission at its preceding physical machines.

In addition to transmission, propagation, and processing
delays, edge queuing and virtualization delays also affect
the scheduling of VNFs and the order in which VNFs are
executed on those physical machines. Service level agree-
ment (SLA) violations and incorrect schedules are produced
when the controller does not take edge queuing and virtual-
ization delays into account.Motivated by this, we formulated
an end-to-end delay-aware SFC deployment and scheduling
problem as an optimization problem while considering edge
queuing delay, virtualization delay, processing delay, trans-

mission delay, and propagation delay. Further, we proposed a
scheduling algorithmbased on the earliest finish time (SEFT)
that specifically addresses the challenge of efficient end to
end delay minimization in NFV-enabled networks. Unlike
existing solutions, SEFT integrates various delays into the
scheduling decision, providing a holistic optimization frame-
work. By considering all the aforementioned delays, the
proposed approach minimizes the total time taken for data
to traverse the SFC, resulting in lower SLA violations and
average end-to-end delays compared to existing approaches
that consider only a subset of these delays. This is particu-
larly important in scenarioswith varying data sizes and a high
number of SFC requests, where precise scheduling is critical
tomaintaining SLA compliance. Compared to other schedul-
ing algorithms, SEFT’s unique combination of VNF ranking
and earliest finish time (EFT) based PM selection offers a
significant improvement in reducing end-to-end delays. The
detailed calculation of upward ranks ensures that the schedul-
ing process considers both individual VNF requirements and
overall SFC dependencies.

The contributions of this paper are summarized as follows:

• SFC mapping and scheduling problem for minimizing
end-to-end delay is formulated as an integer non-linear
programming problem (INLP).

• Transmission delay of virtual links, processing delay of
VNFs at the physical machines, propagation delay, virtu-
alization delay of physical machines, and queueing delay
of physical edges are considered to formulate the end-to-
end delay.

• An SFC scheduling approach based on the earliest finish
time (SEFT) of physical machines is proposed.

• The impact of the end to end delay formulation on
the SLA violations ratio is analysed while considering
the delays such as transmission delay, processing delay,
propagation delay, virtualization delay, edge queueing
delay.

• The performance of the proposed approach is compared
with the existing algorithms in terms of average end-to-
end delay, service level agreement (SLA) violation ratio,
resource utilization, and acceptance ratio.

The outline of the paper is as follows: Section 2 presents
a detailed literature review on SFC deployment and schedul-
ing. The system model and problem formulation are pre-
sented in section 3 and section 4, respectively. The proposed
heuristic based on earliest finish time of VNFs for SFC
scheduling problem is presented in Section 5. The perfor-
mance of the proposed heuristic is evaluated by considering
two benchmark network topologies and comparedwith exist-
ing approaches in Section 6. The concluding remarks are
presented in section 7.
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2 Related work

2.1 VNF placement

Various VNF placement approaches are proposed for the
optimization of energy, cost, delay and resource utilization of
SFCs in the NFV-enabled networks. Some integrate ensem-
ble learning models with matching theory [3], while others
formulate the problem as an integer linear program to mini-
mize resource utilization and power consumption [4]. Deep
reinforcement learning-based VNF placement approaches
aim to improve performance degradation andmigration costs
[5], and strategies like privacy-preserving SFC deployment
across multiple domains focus on resource utilization and
privacy [6].

Furthermore, efforts have been made to minimize energy
consumption and improve resource utilization using match-
ing theory [7]. VNF placement scheme addressing latency
and availability in mobile edge computing networks is pro-
posed in [8], alongside an approach for joint optimization
of bandwidth consumption and link utilization [9]. Addi-
tionally, demand-aware network function placement utilizing
game theory and multi-layer neural network models for pre-
diction are explored in [10] and [11]. Several strategies aim
to minimize resource utilization and operational costs while
meetingQoS requirements [12] and [13]. TheSFCplacement
problem is formulated as an integer linear program to opti-
mize the end to end delay while considering the propagation
delay [14]. The authors of [15] proposed a VNF placement
approach tominimize the end to end delaywhile taking queu-
ing delay into consideration. The SFC deployment problem
is formulated as an integer linear problem, and a heuristic is
proposed for parallel SFC deployment in [16]. These stud-
ies provide valuable insights into optimizingVNFplacement,
but there remains a need for approaches that comprehensively
address end-to-end delay considerations, including transmis-
sion, propagation, processing, queueing, and virtualization
delays.

2.2 SFC placement and routing

In the realm of SFC placement and routing, a variety
of methodologies have been proposed to optimize various
aspects such as packet loss, jitter, delay, and deployment
cost. The authors of [17] introduced a joint VNF place-
ment and routing approach employing the lagrange relax-
ation method to enhance packet loss, jitter, and delay in
NFV-enabled software-defined networks. Complementarily,
a deep reinforcement learning-based model focusing on SFC
deployment cost and delay optimization is presented in [18].
Furthermore, Xu et al. [19] formulated the SFC placement
problem as an integer linear programming problem, while

focusing on enhancing VNF availability through a layered
graph approach. Similarly, [20] introduced a model to
minimize the end-to-end delay by considering both propaga-
tion and processing delays, a framework particularly suited
for SDN environments [21]. A VNF placement and rout-
ing model while considering the transmission delay and
processing delays is proposed in [22]. ToAddress the dynam-
ically varying traffic demands, reinforcement learning-based
approaches for SFC deployment are explored in [23], while
strategies based on Q-learning aimed at improving relia-
bility is introduced in [24]. Additionally, [25] delved into
optimizing end-to-end latency and deployment costs in SFC
placement. In [26, 27], a VNF placement and chaining
approach is proposed to optimize SFC acceptance rates
and provider profits. Meanwhile, Zhang et al.. proposed a
dynamic planning approach for SFCdeployment in fog cloud
computing environments, aiming to enhance resource uti-
lization, throughput, and latency [28]. The authors of [29]
addressed parallel SFC deployment in distributed networks,
emphasizing efficient resource utilization. Furthermore, [30]
proposed a delay-constrained SFCmapping problem tomax-
imize service provider profits while meeting QoS require-
ments.Moreover, [31] formulated anSFCdeploymentmodel
aimed at providing edge intelligence using distributed deep
reinforcement learning. In a different context, [32]explored
VNF placement in content distribution networks tominimize
redundant resource usage. Furthermore, [33] explored SFC
deployment optimization in elastic optic networks, formulat-
ing it as an integer quadratic program to optimize computing
and spectrum resources. [34] addressed VNF placement and
routing problem, aiming tomaximize the number of accepted
requests using a 0-1 integer linear programming model. An
ant colony optimization-inspired dynamic VNF placement
approach is proposed in [35] that focuses onminimizing both
delay and cost factors in the network.

2.3 VNF/SFC scheduling

In the domain of VNF/SFC scheduling, various approaches
have been proposed to optimize delay, availability, relia-
bility, and resource utilization. Riera et al. pioneered VNF
scheduling, formulating the joint VNFmapping and schedul-
ing problem as a flexible job-shop problem [37]. Subsequent
studies, such as [40], addressed VNF scheduling through
mixed integer linear programming and evolutionary algo-
rithms to minimize SFC schedule latency by considering
transmission and processing delays. The authors of [36]
proposed a VNF scheduling model using the evolutionary
algorithm while considering transmission delay. In [41], the
VNF scheduling problem is formulated as an integer nonlin-
ear programmingproblem.The authors introduced aheuristic
to optimize the latency and resiliency of the SFC schedule,
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taking into account the transmission and processing delays
of VNFs. A tabu search based VNF mapping and scheduling
framework while considering the processing delay is pro-
posed in [38]. Qu et al. proposed a scheduling approach
using parallel processing for the NFV-enabled SDNs [42].
This work focuses on improving the reliability and latency
of SFCs. Control scheduling methods, as proposed in [43],
aim to minimize QoS degradation duration by consider-
ing varying reconfiguration delays. Moreover, models for
SFC deployment and flow scheduling in geo-distributed data
centers [44] and NFV-enabled space-air-ground-integrated
networks [45] have been proposed, considering additional
costs and delays due to VNF re-instantiation and migration
for optimizing total deployment cost and end-to-end delay.
The authors of [46] introduced a comprehensive approach
targeting network utilization, cost reduction, and end-to-end
delay optimization. Subsequently, [47] formulated a mixed
integer linear problem to minimize the makespan of all SFCs
while meeting end-to-end delay requirements. Moreover,
Gu et al. presented a fairness-aware flow scheduling frame-
work, addressing equity concerns in VNF scheduling [48],
whileCao et al. proposed anSFCdeployment and scheduling
model tailored for 6Gnetworks, focusing on selecting servers
with abundant resources to embed the SFC [49]. Addi-
tionally, dynamic SFC scheduling models, such as the one
proposed in [50], aim to maximize the number of accepted
SFCs through integer linear programming. Meanwhile, [51]
tackled flow completion time reduction by considering trans-
mission and processing delays.

Further advancements include cost-awareVNFplacement
and scheduling frameworks for dynamic SFCs in public
cloud networks [52], energy-efficient scheduling models
for parallel applications [53], and adaptive SFC schedul-
ing models targeting network performance optimization and
management overhead reduction [54].

While many studies address aspects of scheduling, there
remains a gap in optimizing end-to-end delay comprehen-
sively while considering various delay types. This under-
scores the necessity for holistic scheduling approaches that
address propagation, processing, queueing, and virtualiza-

tiondelays for enhancednetworkperformance and efficiency.
Table 1 represents the comparison of the related works.

3 Systemmodel

In this section, we present the physical network model, SFC
model, and decision variables used in problem formulation.

3.1 Physical networkmodel

An NFV-enabled physical network hosts multiple network
service functions on a commonphysical infrastructure,which
is represented as a graph G =(P,E), where P denotes set of
physical machines (PMs) and E denotes set of physical links
connecting PMs. Multiple VNFs can be instantiated in each
PM to support multiple VNF types. The resource capacity of
each PM j ∈ P is represented by cp j = ccpup j . Each physical
link e j j ′ is represented as a tuple 〈ps, pd , Be j j ′, λe j j ′ 〉, where
ps, pd ∈ P are end points of the edge, Be j j ′ is bandwidth
capacity of the edge, and λe j j ′ is the latency of the physical
edge e j j ′.

3.2 Service function chainmodel

Let S be the set of SFC requests in the system, and q ∈ S
be the qth SFC request. Each SFC request q ∈ S is rep-
resented by a tuple 〈ventr y, Vq , vexi t , Bq , Dq〉. ventr y and
vexi t represent the source and destination of the SFC request.
Vq = {v1, v2, v3..vn} is the predefined set of VNFs through
which SFC request q has to pass through. Bq represents the
bandwidth demand of the SFC request q. Dq represents the
number of data bits to be transmitted from source to destina-
tion of the SFC request q.

3.3 Decision variables

We define three binary decision variables, x j
i,q , w

j j ′
i i ′,q , and

pi,i ′q,q′ to capture the relationship between the SFC request

Table 1 Comparison of related
works

Reference Transmission Propagation Queueing Processing Virtualization
Delay Delay Delay Delay Delay

Qu et al. [36] ✓ ✗ ✗ ✓ ✗

Yang et al. [22] ✓ ✗ ✗ ✓ ✗

Riera et al. [37] ✗ ✗ ✗ ✓ ✗

Mijumbi et al. [38] ✗ ✗ ✗ ✓ ✗

Li et al. [39] ✓ ✗ ✗ ✓ ✗

Mohammad et al. [14] ✗ ✓ ✗ ✗ ✗

Ye et al. [15] ✗ ✗ ✓ ✗ ✗

Our work ✓ ✓ ✓ ✓ ✓
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and the physical network. We introduce the binary decision
variable x j

i,q to the placement state of VNF i on the PM j .
It is set to one if VNF i of SFC q is mapped onto PM j ,
otherwise, it is set to zero. The decision variables used in the
proposed model are summarized in Table 2.

x j
i,q =

{
1 if VNF i of SFC q is mapped onto PM j

0 Otherwise
(1)

w
j j ′
i i ′,q is the binary decision variable that defines the place-

ment state of the virtual link lqii ′ placed on the physical link
e j j ′.It is set to one if the virtual link lqii ′ is placed on the
physical link e j j ′; otherwise, it is set to zero.

w
j j ′
i i ′,q =

⎧⎪⎨
⎪⎩
1 if virtual link lqii ′ of SFC

is placed on physical link e j j ′
0 Otherwise

(2)

pi,i ′q,q′ is the binary decision variable that defines the pro-
cessing order of two VNFs scheduled on the same PM. It is

Table 2 Summary of Notations

Notations Description

i VNF

j Physical machine

e j j ′ Physical edge connecting

PMs j and j ′
q SFC request

ccpuj Processing capacity of PM

Be j j ′ Bandwidth capacity of physical edge

λe j j ′ Allowed latency of physical

edge e j j ′
ventr y ,vexi t source and destinations of SFC

Bq Bandwidth demand of SFC q

Dq Data size to be processed by SFC q

λq Arrival rate of SFC requests in network

dcpui Processing capacity demand of SFC

bq,li i ′ Bandwidth demand of SFC

v speed of light

Hj number of VNFs co located

Ubw
i i ′ link utilization

λ j cumulative traffic load of the PM

x j
i,q 1 if VNF i of SFC q mapped

is onto PM j

w
j j ′
i i ′,q 1 if virtual link lqii ′

is placed on physical link e j j ′
pi,i ′q,q′ 1 if VNF i of SFC q gets processed

before the VNF i ′ of SFC q′

set to one if the VNF i of SFC q is processed before the VNF
i ′ of SFC q′ on PM j .

pi,i ′q,q′ =

⎧⎪⎨
⎪⎩
1 if VNF i of SFC q gets processed

before the VNF i ′ of SFC q′
0 Otherwise

(3)

4 Problem formulation

The objective is to minimize the end-to-end delay of SFCs
while satisfying placement, capacity, scheduling, flow, and
domain constraints.

4.1 Objective function

For each SFC request, we evaluate the end-to-end delay
TEnd by taking the following delays into consideration: trans-
mission delay Tt , queueing delay Tq , propagation delay of
physical links Tprop, virtualization delay Tvir t , and process-
ing delay Tproc.

TEnd = Tt + Tqueue + Tprop + Tvir t + Tproc (4)

4.1.1 Transmission delay

Data packets belonging to an SFC experience transmission
delays as they transit through a link connecting two VNFs
located on different physical machines. The transmission
delay (Tt ) of an SFC request is the sum of transmitting data
on all edges. The transmission delay of SFC q on virtual link
lii ′ can be formulated as below [36]:

Tt =
∑
l
q
ii ′∈L

Dq

bq,li i ′ ∀l ∈ L (5)

Where Dq is the number of data bits to be transmitted
from the source to destination of SFC q. bq,li i ′ represents the
bandwidth demand of the virtual link lqii ′.

where Dei is the inherent propagation delay of the physical
edge ei .

4.1.2 Propagation delay

The propagation delay is directly proportional to the length
of the physical link and is independent of the traffic load [14].

Tprop = dist( j, j ′)
v

(6)

where dist( j, j ′) is the length of the physical edge connect-
ing physical machines j and j ′, and v is the propagation
speed or speed of light.
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4.1.3 Virtualization delay

The virtualization overhead of a physical machine is a func-
tion of co-located VNFs H and the cumulative traffic load
λ [55]. The virtualization delay of a physical machine is as
follows:

f (H , λ) = 0.338 ∗ H ∗ λ12.15 + 0.51 ∗ λ; λ =
V∑
i=1

λi (7)

However, the above expression is nonlinear, which can be
piecewise linearized as follows:

Hj =
∑
q∈S

∑
i∈Vq

x j
i,q , ∀ j ∈ P (8)

λ j =
∑
q∈S

∑
i∈Vq

x j
i,q · λq,i , ∀ j ∈ P (9)

Where Hj is the number of VNFs co-located on the physi-
calmachine j .λ j is the cumulative traffic load of the physical
machine j . The final equation for calculating the virtualiza-
tion delay is transformed as below:

Tvir t =
∑
j∈P

0.338 ∗ Hj ∗ λ12.15j + 0.51 ∗ λ j (10)

4.1.4 Processing delay

The utilization of a physical machine is the ratio between
processing demand and available processing capacity of the
physical machine. It is defined as below:

U cpu
j =

∑
q∈S

∑
i∈Vq x

j
i,q · dcpui

ccpuj

(11)

For an SFC request q, the arrival rate and processing
delay of a VNF follow a Poisson and exponential distribu-
tion, respectively. Hence, we can adopt the M/M/1 queueing
model for each VNF. Therefore, the processing delay [36] of
a VNF node i of the SFC request is evaluated as below:

T i
proc = 1

ccpuj

(
1 −U cpu

j

) (12)

The processing delay Tproc of a service function chain is the
sum of processing delays of all VNFs.

Tproc =
∑
i∈Vq

T i
proc (13)

4.1.5 Queueing delay

As theSFC transfers traffic across various physicalmachines,
it experiences queueing delay which is determined by the
utilization of each link. Link utilization can be formulated as
the ratio between total traffic demand and link capacity [15].

U bw
i i ′ =

∑
q∈S

∑
lqii ′∈L w

j j ′
i i ′,q · dq,li i ′

Be j j ′
(14)

The queueing delay of the service function chain at the
VNF i is formulated as below :

Tqueue = 1

Be j j ′
(
1 −U bw

i i ′
) (15)

4.2 Constraints

To successfully schedule and deploy an SFC in a physical
network, the following constraints need to be satisfied.

4.2.1 Capacity constraints

It is essential that the resource requirements of SFCs
deployed on the physical network do not exceed the resources
available on the physicalmachines and links. This is captured
using node capacity and link capacity constraints:

∑
i∈Vq

x j
i,q · dcpui ≤ ccpuj , ∀ j ∈ P (16)

∑
lqii ′∈L

∑
q∈S

Bq × w
j j ′
i i ′,q ≤ Be j j ′ ∀( j, j ′) ∈ E

(17)

Equation 16 ensures that the required processing capac-
ity of the VNFs deployed on the physical machine does not
exceed the total available processing capacity of the PM.
Equation 17 ensures that the total bandwidth requirements
of virtual links of SFC requests do not exceed the available
bandwidth limit of the physical links.

4.2.2 Flow constraint

For all the physical machines except for the source and des-
tination nodes, the incoming flow has to be equal to the
outgoing flow. It is captured using the following constraint:

∑
e j j ′∈E

w
j j ′
i i ′,q −

∑
e j ′ j∈E

w
j ′ j
i i ′,q = x j

i,q − (x j
i ′,q)

∀ j ∈ P, lqii ′ ∈ L, q ∈ S

(18)
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4.2.3 VNF placement constraints

x j
i,q ≤ 1, ∀i ∈ Vq , q ∈ S (19)

Equation 19 guarantees that each VNF is scheduled on at
most one physical machine.

4.2.4 SFC scheduling constraints

If two VNFs i and i ′ are requested by different SFCs q and q ′
and both i and i ′ are mapped onto the same physical machine
j , i.e., x j

i,q = 1 and x j
i ′,q′ = 1, then the PM j should not

process those two SFC requests at the same time. This is
captured using the VNF scheduling constraint in Eq. 20:

1 ≥ pi,i ′q,q′ + pi ′,iq′,q ≥ x j
i,q + x j

i ′,q′ − 1∀q, q′ ∈ S; i, i ′ ∈ Vq

(20)

The SFC scheduling problem to minimize the end to end
delay is formulated as below:

min TEnd (21)

s.t Eq. (16) − Eq. (20)

4.2.5 Domain constraints

x j
i,q ∈ {0, 1}∀i ∈ Vq , q ∈ S (22)

w
j j ′
i i ,,q ∈ {0, 1}∀i ∈ Vq , q ∈ S (23)

pi,i ′q,q′ ∈ {0, 1}∀i ∈ Vq , q ∈ S (24)

Equations 22, 23 and 24 ensure that the decision variables

x j
i,q , w

j j ′
i i ,,q and pi,i ′q,q′ take values either zero or one.

Note that the M/M/1 queueing model is used to formulate
the processing delay, which makes the problem non-linear.
Minimum dominating set problem can be reduced to the SFC
scheduling problem in polynomial time. Hence, the SFC
scheduling problem is NP hard [56]. In the next section, a
heuristic based on the earliest finish time is proposed to solve
the SFC scheduling problem.

5 Proposed algorithm

This section first describes the high-level overview of the
proposed scheduling approach. We then present step by step
description of the proposed algorithms.

The proposed SFC Scheduling using the earliest finish
time (SEFT) aims to optimize the mapping and scheduling

of SFCs onto physical machines in a NFV-enabled network.
By leveraging the earliest finish time of physical machines,
the algorithm seeks to minimize end-to-end delay while effi-
ciently allocating resources and reducing thewaiting time for
data transmission and processing. The algorithm consists of
two main phases: VNF ranking and physical machine selec-
tion. In theVNF ranking phase, the algorithmcomputes ranks
for eachVNFbasedon their average processing timeonphys-
ical machines and the average communication delay between
the physical machines. These ranks are then used to deter-
mine the order in which the VNFs will be scheduled onto
physical machines. In the physical machine selection phase,
VNFs are sequentially mapped onto physical machines in
a way that minimizes the earliest finish time (EFT). This
involves calculating the EFT of each VNF on each physi-
cal machine and selecting the machine with the minimum
EFT for each VNF. After scheduling a VNF onto a physical
machine, the resource capacity of that physical machine is
updated to reflect the allocated VNF.

The proposed SFC scheduling approach based on earli-
est finish time is presented in Algorithm 1. This approach
is designed to operate efficiently by considering the avail-
able physical resources and the specific requirements of the
SFC request. It begins by receiving two primary inputs: a
set of physical machines denoted as P , and an SFC request
q. It produces a scheduling solution for the given SFC as
output. In the VNF ranking phase (Steps 1-4), each VNF
within the SFC is evaluated to determine its rank or pri-
ority in the chain. This evaluation involves computing the
"upward rank" for each VNF that essentially prioritizes the
VNFs based on factors such as processing time and com-
munication delays. Subsequently, in Step 4, the VNFs are
sorted in descending order of their computed ranks, estab-
lishing a hierarchy that guides the scheduling process. The
Physical Machine Selection phase (Steps 5-12) focuses on
assigning VNFs to available physical machines in a man-
ner that minimizes processing delays. Beginning with the
highest-ranked VNF, the algorithm systematically evaluates
the EFT value on each physical machine and selects the one
with the minimum EFT value for assignment. This iterative
process continues until all VNFs are successfully scheduled
onto physical machines. Specifically, the first VNF with the
highest rank is selected in step 6. In steps 7-9, EFT ofVNF on
each PM is calculated using the algorithm 3. The VNF with
the maximum upward rank is placed onto the PM with the
minimum EFT value in step 10. After scheduling the VNF
onto the PM, the resource capacity of the physical machine
is updated in step 11. Steps 5-12 are repeated until all VNFs
are scheduled. Throughout the execution of the algorithm,
the resource capacity of each physical machine is dynami-
cally updated to ensure efficient utilization. This ensures that
the scheduling solution adapts to the changing workload and
resource availability within the network.
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The algorithm for computing the upward rank of a VNF is
presented in Algorithm 2. By recursively traversing the SFC
starting from the exit VNF, it computes the upward rank that
reflects the importance of eachVNF in the chain. The upward
rank is based on various factors such as the data size of the
VNF, processing time, communication startup time, and data
transfer rate between physical machines.

Algorithm 1 SEFT.
Input: SFC q

PM set P
Output: Scheduling solution of SFC q
1: for each VNF i ∈ Vq do 
 VNF Ranking phase
2: find upward rank ranku(i) using Algorithm 2
3: end for
4: Sort VNFs in the descending order of Ranku
5: while all VNFs are not placed do 
 PM Selection phase
6: Pick first VNF from the sorted list of Ranku
7: for each PM j ∈ P do
8: Find EFT (i, j) using Algorithm 3
9: end for
10: place VNF i on physical machine j with minimum EFT (i, j)
11: update resource capacity of each PM j when VNF i is scheduled

and deployed
12: end while
13: return Scheduling solution of SFC q.

Algorithm 2 takes the data size of VNF to be processed,
VNF processing time matrix W , average communication
startup time S, and average data transfer rate R as input.W is
amatrix of sizeV×P wherein the (i, j)th entry, i.e.,wi, j rep-
resents the estimated execution time to finish processing of
VNF i on PM j . R is amatrix of size P×P that comprises the
data transfer rates between PMs. The communication startup
costs of PMs are stored in P dimensional vector S. The algo-
rithm returns an upward rank of VNF ranku(i) as output. If
the VNF is an exit VNF Vexit , then the rank of the VNF is
set to the average processing time of the VNF.

ranku (vexit ) = wexit . (25)

wexi t =
∑P

j=1 wexi t, j

|P| . (26)

where wexit represents the average processing time of exit
VNF. It is defined as the ratio between the sum of execution
time of exit VNF on each physical machine and the number
of physical machines. The upward rank of VNFs other than
exit VNF is recursively defined in Eq. 27. It is the sum of the
length of the critical path from the VNF to the exit VNF and
the average processing time of VNF.

ranku (i) = wi + max
k∈succ(i){ci,k + ranku (k)} (27)

where succ(i) is the set of successors of VNF i , and ci,k
represents the average communication time to transfer the
data between the PMs onto which those VNFs i and k are
mapped.

The average communication time of a link (i, k) is defined
as below:

ci,k = S + Datai
R

(28)

The detailed step-by-step explanation of Algorithm 2 pro-
vides insights into how the upward rank of each VNF is
computed. In steps 2-5, the algorithm begins by computing
the total processing time for each VNF on every available
physical machine. Subsequently, in step 6, the average pro-
cessing time of wi of each VNF i is calculated based on the
processing times. In step 7, the average communication time
ci,k of VNF i is calculated using the average communication
start-up time S, data to be processed Datai , and average
data transfer rate between PMs R. For the exit VNF Vexit
as outlined in steps 8-10, its rank is simply set to its aver-
age processing time. This straightforward approach ensures
that the exit VNF’s rank is solely determined by its process-
ing duration, given its lack of dependencies on successors.
For VNFs other than the exit VNF, steps 11-20 detail the
process of calculating their upward ranks. This involves con-
sidering each successor k of the VNF i and computing the
total delay, which is the sum of the average communication
time ci,k and the upward rank of the successor k as shown
in step 13. In steps 14-16, the successor with maximum total
delay is determined. This total delay is the summation of the
average communication time ci,k and the upward rank of the
successor k denoted as ranku(k).

The upward rank of VNF ranku(i) is computed in step 17.
The algorithm for computing the EFT of VNF i on PM j is
presented in Algorithm 3. It takes as input PM j , SFC q,
data size of VNF Datai , VNF processing time matrix W ,
communication startup time vector S, and data transfer rate
matrix R. It produces as output earliest finish time value
EFT (i, j) of VNF i on PM j . EFT (i, j) is the sum of
earliest start time ofVNF i on the PM j and execution time of
VNF i on the PM j . Let EST (i, j) be the earliest execution
start time of VNF i on the physical machine j . If the VNF i
is an entry VNF ventr y , then the EST (i, j) is set to zero.

EST
(
ventry , j

) = 0 (29)

The EST value EST (i, j) for VNFs other than entryVNF
is presented in Eq. 30.

EST (i, j) = max

{
avail[ j], max

m∈pred(i)
(
AFT (m) + cm,i

)}
,

(30)
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Algorithm 2 Finding Upward Rank of VNF.
Input: VNF i

VNF data size: Datai
VNF processing times matrix: W
Average Communication startup time: S
Average data transfer rate: R

Output:Upward rank of VNF: ranku(i)
1: function upward- rank(i)
2: total _wi j = 0
3: for each PM j ∈ P do
4: total_wi j += wi j
5: end for
6: wi = total _wi j /|P|
7: ci,k = S + Datai /R
8: if i== vexi t then
9: ranku(i)= wi
10: else
11: max-total-delay = 0
12: for each k ∈ successor(i) do
13: total-delay = ci,k + UPWARD-RANK(k)
14: if max-total-delay < total-delay then
15: max-total-delay = total-delay
16: end if
17: ranku(i) = wi + max-total-delay
18: end for
19: end if
20: end function
21: return ranku(i)

where pred (i) is the set of immediate predecessors of VNF
i , avail[ j] is the available time of PM. The available time is
the time when a PM finishes processing the VNFs mapped
onto it and is ready to process a new VNF. The inner max
block in Eq. 30 is ready-time. It is the time when all the
data required by the VNF i reaches PM j . The ready-time
of VNF i is calculated as the sum of the predecessor’s actual
finish time AFT (m) and communication time cm,i between
the predecessor m and VNF i respectively. Finally, the outer
max block of Eq. 30 returns the time when PM j is ready to
process the VNF i , and all the data needed by the VNF i is
available at PM j . cm,i is the communication time to transmit
data between two VNFsm and i when they are scheduled on
PMs j ′ and j respectively. It is defined as below:

cm,i = S j ′ + Datai
R j ′, j

(31)

where the first term S j ′, is the communication startup time
of PM j ′ and the second term is the ratio between data size
Datai to be transmitted between the VNFs m and i and data
transfer rate R j ′, j between the PMs j ′ and j respectively.

EFT of VNF i on PM j is calculated as the sum of VNF
processing time wi, j on PM j and EST EST (i, j). It is
defined as follows:

EFT (i, j) = wi, j + EST (i, j) (32)

Algorithm 3 Finding EFT value of VNF on PM.
Input: PM j , VNF: i , SFC: q

VNF Data Size: Datai
VNF Processing Time Matrix: W
Communication Startup Time Matrix: S
Data Transfer Rate Matrix: R

Output: EFT value of VNF i on PM j : EFT (i, j)
1: function EFT- Value(i,j)
2: for each VNF i ∈ Vq do
3: if i==ventr y then
4: EST (i, j) = 0
5: else
6: max-ready-time = 0
7: for each m ∈ predecessors(i) do
8: cm,i = S j ′ + Datai /R j ′, j
9: ready-time = AFT(m) + cm,i
10: if max-ready-time < ready-time then
11: max-ready-time = ready-time
12: end if
13: end for
14: EST (i, j) = max(max-ready-time + wi, j )
15: end if
16: EFTi, j = EST-VALUE(i,j) + wi, j
17: end for
18: end function
19: return EFT (i, j)

The detailed step by step explanation of Algorithm 3 is
as follows. Steps 2-14 of the algorithm calculate the EST of
VNF. If the VNF is not an entry VNF, then the EST value for
the VNF is calculated in steps 5-15.

The communication time cm,i between VNF i and each
predecessor m is determined in step 8. The ready-time of
VNF i is calculated in step 9. In steps 10-12, the maximum
ready time of the predecessor is determined. Step 14 com-
putes the EST value of VNF i on PM j as the maximum of
max-ready-time and processing time of VNF wi, j . The EFT
value of the VNF i on PM j is computed in step 16. Finally,
the EFT value of the VNF is returned in step 19.

5.1 Time complexity

Steps 1 - 3 of theAlgorithm1 invokeAlgorithm2 forO(|Vq |)
times where |Vq | is the number of VNFs. Steps 3 - 5 of the
Algorithm 2 take |P| time, where |P| is the number of phys-
ical machines. Steps 6-9 take constant time, and the loop in
steps 12 - 18 takes at most |Vq | times. Therefore, the overall
running time of algorithm 2 is |P| + |Vq | = O(|P|). Step
4 of Algorithm 1 takes O(|Vq | log |Vq |) time. Steps 7 - 9 of
Algorithm 1 invoke Algorithm 3 for |P| times. Steps 7 - 13
of Algorithm 3 take O(|Vq |) time. The overall time com-
plexity of Algorithm 3 is O(|Vq |)2. Hence, steps 5 - 12 of
Algorithm 1 take O(Vq ∗ |P| ∗ (|Vq |)2) time. Therefore, the
total time complexity of proposed SEFT is O(|Vq | ∗ |P|)+
O(|Vq | log |Vq |)+ O(Vq ∗ |P| ∗ (|Vq |)2) ≈ O(|P||Vq |)3.
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6 Results and analysis

In this section, we describe the networks used for simulation,
existing approaches used for comparison with the proposed
work, and performance comparison of the proposed algo-
rithm with existing approaches from the literature.

6.1 Simulation setting

We considered two networks from internet topology [57]
to evaluate the performance of the proposed and baseline
approaches. The networks include:AT&TNetwork(28 nodes
and 45 links) and Iris Network (51 nodes and 64 links). The
latitude and longitude of each node, alongwith the bandwidth
of links, are extracted from the graphml file corresponding to
the input networks. The delay of each link is calculated using
bandwidth and distance, i.e., delay = distance/bandwidth.
The available processing capacity of the Physical Machine
(PM) is considered as the target resource in resource man-
agement and allocation. The processing capacity generally
refers to the CPU resources, which play a crucial role in
determining the performance and efficiency of the PM [58].
The bandwidth of the physical links is generated in the range
of 1 KBps to 10 KBps. Each SFC randomly selects a pair
of nodes as its source and destination nodes. The size of the
SFC or the number of VNFs in the SFC is uniformly gener-
ated in the range [5, 10] The processing capacity needed by
each VNF is generated from 1 KB to 50 KB. The bandwidth
demanded by the virtual links between the VNFs is gener-
ated within the range of 1 KBps to 50 KBps. Specifically,
to implement the proposed SFC scheduling model, we used
Python version 3.10 running on an Intel(R) Xeon(R) Gold
6226R CPU @ 2.90GHz with 64 GB of memory. The simu-
lation parameters used for the performance evaluation of the
proposed study are represented in Table 3.

The proposed SEFT algorithm is compared with three
existing algorithms: i) Greedy Best Availability algorithm
(GBA) ii) Greedy Least Loaded algorithm (GLL) iii) Sta-
ble Matching algorithm (MA) and iv) Cost-Efficient VNF
Placement and Scheduling (CE-VPS). These algorithms are
briefly described below:

1. Greedy Best Availability algorithm: This approach
solves the SFC mapping and scheduling problem by
choosing physical machines with the highest remaining
processing capacity. The above process continues until
all VNFs of SFC are mapped and scheduled.

2. Greedy Least Loaded algorithm: In this approach,
the SFC mapping and scheduling problem is solved by
choosing the physical machines with the minimum num-
ber ofVNFsplacedon them.The aboveprocess continues
until all VNFs of SFC requests are mapped and sched-
uled.

3. Stable Matching Algorithm:
We also compare our proposed approach with amatching
theory based VNF scheduling model [59]. This approach
computes preference lists for each physical machine as
well as for each VNF. Then, each VNF picks the first
physical machine from its preference list. If PM has
enough resources, the VNF is placed on PM. Otherwise,
the VNF rejects the PM and removes that PM from its
preference list. Then, the PMalso rejects and removes the
VNF along with all lower-priority VNFs from its pref-
erence list. This matching procedure is repeated until
all the VNFs of SFC are mapped onto the ideal physi-
cal machines. Finally, the VNF mapping and scheduling
solution is returned.

4. Cost-efficient VNF scheduling approach: We also
compare our proposed model with cost-efficient VNF
scheduling (CE-VPS) [60]. In this approach, physical
machines in the network are grouped into a finite number
of zones. The zone that can host the maximum num-
ber of VNF instances is defined as the optimal zone.
First, the optimal zone is determined using the matrix-
based method to place the VNFs of the given SFCs.
For each VNF, the qualified PMs i.e., those PMs can
satisfy the resource capacity demand of the given VNF
within the specified deadline, are defined as candidate
PMs. After determining the candidate PMs, the VNFs
are scheduled on the candidate PMs from the optimal
zone. If the PMs in the optimal zone do not have enough
resource capacity or are unable to process the VNFs by
the defined deadline,VNFs are scheduled on randomPMs
from other zones. If no VNF instance is available with
enough resource capacity to host a VNF, a new VNF
instance is installed on a PM.

6.2 Simulation results

This subsection summarizes the performance comparison of
the proposed SEFT algorithm with the existing GBA, GLL,
MA, and CE-VPS algorithms in terms of average end-to-end
delay, SLA violation ratio, resource utilization, and accep-
tance ratio. Further, the impact of formulating the end to end
delay on SLA violations ratio is presented.

6.2.1 End to end delay with variation of data size

Figure 1 represents the 95% confidence interval for the aver-
age end-to-end delay with the variation of data size on AT&T
network. The figure compares the performance of the pro-
posed approach on AT&T network to GBA, GLL, MA, and
CE-VPS approaches in terms of average end to end delay
of the SFC request.The number of SFC requests is set to 50
and size of data to be processed is varied from 20 KB to
100 KB. Fig. 1a illustrates that the proposed SEFT approach
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Table 3 Simulation parameters Parameter Range

Available processing capacity of PM [400, 600, 800, 1000] KBps

Available processing capacity of physical link [1, 10] KBps

Required processing capacity of VNF [1, 50] KBps

Required bandwidth of virtual link [1, 50] KBps

SFC length [4, 8]

SFC Deadline 60 sec

Fig. 1 Variation of average end
to end delay with data size (a)
AT&T Network. (b) Iris
Network

123



Peer-to-Peer Networking and Applications

has the minimum average end-to-end delay. The average
delay of the proposed approach ranges from 58 to 83 seconds
for 20 KB to 100 KB data size, respectively. The proposed
approach achieves at least 26.31%, 51.04%, 14.97% and
63.05% lower average end to end delay over the GBA, GLL,
MA and CE-VPS approaches, respectively. Because the pro-
posed approach prefers physical machines with minimum
finish times while considering the delay required to trans-
fer the data among those physical machines. Further, it can
also be observed that the average end-to-end delay increases
with the data size for every approach. It can be observed
from Fig. 1b the average end-to-end delay of the proposed
approach on the IRIS network when compared with existing
approaches. The results are plotted with a confidence level

of 95%. The average end-to-end delay of the GBA and MA
approaches is close to the SEFT approach when the data size
is 20 KB. However, the proposed approach results in at least
50.59%, 12.75%and 69.85% lower average end-to-end delay
over the GLL, MA and CE-VPS approaches, respectively.

6.2.2 End to end delay with variation of number of SFC
requests

Figure 2 describes the performance of the proposed SEFT
approach and existing approaches in terms of average end-
to-end delay while varying the number of SFC requests on
AT&T and IRIS networks. The size of the data to be pro-
cessed is set to 100 KB, and the number of SFC requests

Fig. 2 Variation of average end
to end delay with number of
SFCs. (a) AT&T Network. (b)
Iris Network

123



Peer-to-Peer Networking and Applications

is varied from 10 to 50. It can be observed from Fig. 2a
that the proposed approach results in lowest average end-to-
end delay when compared to GBA, GLL, MA and CE-VPS
approaches. Specifically, the average end to end delay of
our proposed approach is at least 36.27%, 61.52%, 34.60%,
and 78.28% lower than the GBA, GLL, MA, and CE-VPS
approaches, respectively. Figure 2b shows average end-to-
end delay obtained by SEFT approach compared with GBA,
GLL, MA, and CE-VPS approaches while varying the num-
ber of SFC requests on the IRIS network. Since this work
is primarily aimed on optimizing the end-to-end delay, the
average end-to-end delay of our proposed approach is at least
38.64%, 67.18%, 51.92%, and 86.99% lower than GBA,
GLL, MA, and CE-VPS approaches, respectively. As the
existing works not formulated the end to end delay while
including the delays such as transmission delay, processing
delay, propagation delay, queuing delay, and virtualization
delay, resulted in increased average end to end delays.

6.2.3 Impact of formulating end-to-end delay on SLA
violations ratio

We consider an end-to-end delay requirement of 60 seconds
for every SFC request. Hence, a SLA violation occurs when
an SFC request takes more than 60 seconds to process. SLA
violation ratio is defined as the fraction of SFC requests that
violates the end to end delay requirement. The impact of for-
mulating end to end delay while considering virtualization
and edge queuing delays on SLA violations ratio while vary-
ing the data size on the AT & T network is presented in the
Fig. 3. The proposed SEFT approach while considering vir-
tualization and edge queuing in end to end delay formulation
achieves 38.83% lower SLA violations ratio when compared
to the SEFT approach which does not consider the virtual-
ization delay and edge queuing delay in end to end delay
formulation. This is due to the inclusion of virtualization
and edge queuing delays, which allows for more accurate
modeling of real-world network conditions, leading to bet-
ter optimization and management of resources to meet SLA
requirements.

Figure 4 illustrates the impact of formulating end to end
delay while considering virtualization delay and process-
ing delay on SLA violations ratio while varying the data
size on the AT & T network. The proposed SEFT approach
with virtualization delay and processing delay in end to end
delay formulation achieves 44.62% lower SLA violations
ratio when compared to the SEFT approach which does not
consider the virtualization delay and processing delay in end
to end delay formulation.

Figure 5 illustrates the impact of formulating end to end
delay while considering transmission delay, edge queueing
delay,propagation delay on SLA violations ratio while vary-
ing the data size on the AT& T network. We can observe that

the proposed SEFT approach with transmission delay, edge
queuing delay and propagation delay in end to end delay
formulation results in 56.72% lower SLA violations ratio
compared to the SEFT approach that does not consider the
aforementioned delays.

6.2.4 Variation of SLA violation ratio with data size

Figure 6 evaluates the efficiency of proposed algorithm com-
pared with the baseline approaches in terms of SLA violation
ratio. The total number of SFC requests is fixed to 50 and
the data size to be processed is varied from 20 KB to 100
KB. Figure 2a illustrates the SLA violation ratio of pro-
posed approach and existing approaches on AT&T network.
It can be observed from Fig. 2a that the SEFT approach
has the lowest SLA violation ratio for all data sizes. The
SLA violation ratio of the existing approaches are increasing
with the data size. As the proposed approach formulated the
end to end delay while considering the transmission delay,
processing delay, propagation delay, queuing delay, and vir-
tualization delay, it resulted in the lowest SLA violations
compared to the existing approaches. Specifically, our pro-
posed approach achieves at least 32.21%, 39.63%, 12.72%
and 38.30% of reduction in the SLA violation ratio when
compared to the GBA, GLL, MA and CE-VPS approaches,
respectively. The GLL approach prioritizes the least-loaded
physical machines without focusing on any communication
delays between themachineswhile schedulingVNFs. There-
fore, the GLL approach results in a higher end-to-end delay
as well as SLA violation ratio. Figure 2b shows the SLA
violation ratio of the proposed SEFT approach and existing
approaches on iris network. We can observe that the SLA
violation ratio of our proposed approach is at least 39.08%,
5.67%, 42.04% lower than GLL, MA, CE-VPS approaches,
respectively.

6.2.5 SLA violation ratio with variation of number of SFCs

Figure 7 describes the performance of proposed and existing
approaches in terms of SLA violation ratio while varying the
number of SFC requests on AT&T and IRIS networks. The
size of data to be processed is set to 100 KB and the num-
ber of SFCs is varied from 10 to 50. Figure 7a shows the
performance of the proposed SEFT approach and existing
GBA, GLL, MA and CE-VPS approaches in terms of SLA
violation ratio for the AT&T network. GBA approach selects
the physical machines with the most remaining resources for
the deployment of VNFs. It causes more delay as the delay
required to transfer the data among the physical machines
is not focused. Subsequently, the GBA approach results in
a higher SLA violation ratio. In GLL, MA and CE-VPS
approaches, the delay required to transfer data among the
physical machines is also not given much importance. Thus,
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Fig. 3 Impact of Virtualization
and Edge queuing delay on SLA
Violations ratio while varying
data size

Fig. 4 Impact of Virtualization
and Processing delay on SLA
Violations ratio while varying
data size

Fig. 5 Impact of transmission,
edge queuing, and propagation
delay on SLA Violations ratio
while varying data size
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Fig. 6 Variation of SLA
violation ratio with data size. (a)
AT&T Network. (b) Iris
Network

they also result in a higher end-to-end delay and SLA vio-
lation ratio. On the contrary, the proposed approach prefers
physical machines with the minimum earliest finish time by
considering both the processing delay and the delay required
to transfer the data among the physical machines. Hence,
it results in the minimum end-to-end delay and SLA viola-
tion ratio. The proposed approach achieves at least 32.93%,
38.26%, 30%, and 37.39% reductions in SLA violation
ratio when compared to the GBA, GLL, MA, and CE-VPS
approaches, respectively. Figure 7b illustrates the perfor-
mance of proposed and existing approaches in terms of SLA

violation ratio for the iris network. The proposed approach
effectively incorporated various delays such as transmission
delay, processing delay, propagation delay, queuing delay,
and virtualization delay in order to calculate the end-to-end
latency. Hence, The proposed approach results in a mini-
mum SLA violation ratio while the number of SFCs varies,
whereas existing approaches result in a higher SLA violation
ratio with the number of SFC requests. The SLA violation
ratio of our proposed approach is at least 43.83%, 37.70%,
and 42.67% lower compared to the GLL, MA, and CE-VPS
approaches, respectively.
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Fig. 7 Variation of SLA
violation ratio with number of
SFCs. (a) AT&T Network. (b)
Iris Network

6.2.6 Resource utilization with variation of data size

Resource utilization is the percentage of resources utilized
in a network. To evaluate the performance of the proposed
approach in terms of resource utilization, the available pro-
cessing capacity of thePMis considered as the target resource
[61]. The available processing capacity of the PM is chosen
from the range [400, 600, 800, 1000] KBps. Figure 8a rep-
resents the performance of our proposed approach and the
existing approaches in terms of resource utilization with the
variation of data size on AT&T network. The results are plot-
ted with a confidence level of 95%.

This work is not focused on enhancing resource utiliza-
tion; consequently, it does not achieve the optimal resource
utilization when compared to existing algorithms. But, it
achieves a significantly satisfactory percentage of resource
utilization. The resource utilization of our proposed approach
is 29.04%more than CE-VPS approach. GBA, GLL andMA
approaches are showing better resource utilization than our
proposed approach. Figure 8b represents the performance
of our proposed approach and the existing approaches in
terms of resource utilization with the variation of data size
on iris network. The proposed approach shows 36.67% and
8.31% more resource utilization than CE-VPS and GBA
approaches, respectively.
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Fig. 8 Variation of Resource
utilization with data size. (a)
AT&T Network. (b) Iris
Network

6.2.7 Resource utilization with variation of number of SFC
requests

Figure 9a illustrates the resource utilization of our proposed
approach and the existing approaches for the AT&T network
while varying the number of SFCs. The number of SFCs is
chosen from the range [10, 20, 30, 40, 50]. From thefigure,we
can observe that our proposed approach results in 37.79%and
72.68%more resource utilization than the GBA and CE-VPS
approaches, respectively. Next, the performance of all the
presented approaches in terms of resource utilization while
varying the number of SFCs is represented in Fig. 9b. It shows
that the resource utilization of all the approaches increases

with the increase in the number of SFCs. The proposed
approach also performs better in terms of resource utiliza-
tion, though this work is not aimed at improving resource
utilization.

By optimizing resource utilization, the proposed approach
addresses one of the significant factors that can contribute to
power savings. More efficient resource utilization can lead to
less idle time andmore balanced load distribution, which can
potentially reduce unnecessary power usage [62]. However,
minimizing power consumption is influenced by multiple
factors, including the type of hardware resources, the size
and nature of workloads, and external environmental condi-
tions such as temperature. While our approach focuses on
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Fig. 9 Variation of Resource
utilization with Number of
SFCs. (a) AT&T Network. (b)
Iris Network

optimizing resource utilization, this alone may not be suf-
ficient to guarantee reduced power consumption under all
circumstances.

6.2.8 SFC acceptance ratio

SFC acceptance ratio is the ratio between the number of
SFC requests accepted and the total number of SFC requests
arrived in a network. Figure 10a represents the performance
of proposed SEFT approach and existing approaches in terms
of SFC acceptance ratio while varying the data size on the
AT & T network. Figure 10b represent the comparison of
the proposed approach to the existing approaches in terms

of SFC acceptance ratio while varying the number of SFCs.
This study is not primarily focused on improving the accep-
tance ratio, but it is able to show better acceptance ratio when
compared to the existing approaches.

6.2.9 Running time

The running time of the proposed approach is compared with
the existing approaches as shown in Fig. 11 on theAT&Tnet-
work. The figure represents the performance of the proposed
approach in terms of running time while varying the num-
ber of SFC requests. The running time of all the scheduling
approaches increase along with increase in the number of
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Fig. 10 For AT&T network. (a)
Variation of acceptance ratio
with data size. (b) Variation of
acceptance ratio with Number of
SFCs

SFC requests, as shown in Fig. 11. Our analysis indicates
that the proposed approach takes 480 seconds to schedule
50 SFC requests. In comparison, the GBA, GLL, CE-VPS,
and MA approaches take 380, 390, 540, and 600 seconds,
respectively to schedule the same number of SFC requests.
This comparison helps to understand the running time of our
proposed approach relative to established methods.

7 Conclusion

In this paper, we formulated the end-to-end delay-aware SFC
mapping and scheduling problem as an integer non-linear

programmingproblem (INLP),while considering placement,
capacity, flow, and scheduling constraints. We proposed an
algorithm that selects VNFs from a given SFC and sched-
ules them on physical machines with minimum finish times.
The performance of the proposed approach is compared
with GBA, GLL, MA and CE-VPS approaches in terms
of end-to-end delay, SLA violation ratio, resource utiliza-
tion, and acceptance ratio. Simulation results proved that
the proposed approach (SEFT) achieved at least a 26.31%,
51.04%, 14.97%, and 63.05% lower average end-to-end
delay with variation of data size when compared to the
GBA, GLL, MA and CE-VPS approaches, respectively. The
proposed SEFT approach also achieved at least a 38.64%,
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Fig. 11 Comparison of running time with variation of number of SFCs
on AT&T Network

67.18%, 51.92%, and 86.99% reduction in average end-
to-end delay with variation of number of SFCs over the
GBA, GLL, and MA approaches, respectively. Further, our
proposed approach resulted in at least a 32.21%, 39.63%,
12.72% and 38.30% lower SLA violation ratios with varia-
tion in data size when compared to the GBA, GLL, MA and
CE-VPS approaches, respectively. Significant performance
improvement is observed in terms of SLA violation ratio
with variation in the number of SFCs, resource utilization,
and acceptance ratio.
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