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Abstract
Wireless sensor networks (WSNs) have been widely used in environmental monitoring due to their low cost advantages. 
In WSNs monitoring, the location information is significant, because data collected by sensor nodes is valuable only if the 
locations of nodes are known. DV-Hop algorithm is a popular localization algorithm in WSNs monitoring. However, DV-
hop has low localization accuracy due to its imperfect hop count, hop distance and location calculation mechanism. There-
fore, in order to improve its localization accuracy, we improve the three stages of DV-hop respectively: Firstly, the anchor 
node broadcasts in three types of communication radius to reduce hop count error. Secondly, we utilize local average hop 
distance to reduce the hop distance calculation error. Finally, we use the heuristic algorithm MOA to calculate node posi-
tions. Meanwhile, we utilize the good point set, t-distribution and Levy flight to improve the global optimization ability of 
MOA. In simulation experiments, we use Matlab2018a to verify algorithm performance. The simulation results show that 
the proposed algorithm outperforms the comparison algorithm in different communication radius, number of anchor nodes, 
and total number of nodes. It performs optimally in both localization efficiency and accuracy, and has better robustness.

Keywords  Wireless sensor network · DV-Hop · Three communication radius · Local average hop distance · Mayfly 
optimization algorithm·

1  Introduction

Wireless Sensor Networks (WSNs) are intelligent private 
networks composed of hundreds or thousands of low-
power,multi-functional, and cost-effective sensor nodes 
deployed in a monitoring region. These nodes utilize self-
organizing wireless communication manner to collabora-
tively perform specific functions through multi-hop rout-
ing. They collect and transmit multiple types of data to the 
observer in real-time [1, 2]. Owing to these advantages, 
WSNs have found a wide range of applications in industries 
such as environmental monitoring, military operations, traf-
fic management, object tracking, and safety production [3, 

4]. In WSNs, it is essential for sensor nodes to have accurate 
location information. This is because the data collected by 
the sensor nodes is valuable only if the locations of nodes 
are known. As a result, localization has become a significant 
research area in WSNs [5].

Wireless sensor networks consist of two types of sensor 
nodes: anchor nodes and unknown nodes. Anchor nodes are 
equipped with a Global Positioning System (GPS) module 
and can determine their own location information. However, 
only a small percentage of sensor nodes have GPS due to 
its high cost. The remaining nodes, referred to as unknown 
nodes, rely on anchor nodes and localization algorithms to 
determine their locations. Over the past two decades, various 
localization techniques have been developed to accurately 
determine the locations of unknown nodes. These techniques 
can be broadly categorized into two types: range-based algo-
rithms and range-free algorithms [6, 7].

Range-based localization techniques utilize measure-
ments such as Received Signal Strength Indicator (RSSI) 
[8], Time of Arrival (ToA) [9], Time Difference of Arrival 
(TDoA) [10], and Angle of Arrival (AoA) [11] to deter-
mine the location of nodes based on the distances or angles 
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between them. However, implementing these techniques 
requires additional hardware facilities, which leads to a sig-
nificant increase in overall costs. On the other hand, range-
free localization algorithms do not rely on distance or angle 
measurements but instead utilize the connectivity between 
nodes. Some common range-free localization algorithms 
include Distance Vector-Hop (DV-Hop) [12], Approximate 
Point in Triangle (APIT) [13], Centroid [14], Amorphous 
[15], etc. These range-free algorithms do not require extra 
hardware and consume less energy. However, it is important 
to note that they generally exhibit lower accuracy compared 
to range-based techniques [16].

In WSNs, accurately localizing sensor nodes is a signifi-
cant challenge. Therefore, we conducted a study to enhance 
the DV-Hop algorithm for WSN localization. Our primary 
objective is to reduce localization errors by modifying the 
original DV-Hop algorithm’s calculation model for hop 
count and local hop distance. Moreover, we integrated the 
improved Mayfly Optimization Algorithm (MOA) into the 
third stage of DV-Hop to optimize the localization process 
and improve its accuracy. The main contributions of our 
work can be summarized as follows:

1.	 The anchor nodes broadcast with three different com-
munication radii to improve the calculation of minimum 
hop count value between nodes.

2.	 The error weight of anchor nodes within a two-hop 
range of the unknown node is incorporated to improve 
the average hop distance of unknown nodes.

3.	 We use anchor nodes within two hops of unknown nodes 
along with the improved MOA to estimate unknown 
node coordinates.

4.	 We conducted simulation experiments to demonstrate 
the advantages of our proposed algorithm in terms of 
convergence rate and localization accuracy compared 
to DV-Hop, GADV-Hop [25], PSODV-Hop [26], and 
SSADV-Hop [27].

The remaining sections of this work are structured as fol-
lows: In Section 2, we provide a thorough literature review 
and introduce the DV-Hop algorithm and Mayfly Optimiza-
tion Algorithm. In Section 3, we outline the enhancements 
made to the DV-Hop algorithm and the MOA, and we pre-
sent our novel DV-Hop algorithm. In Section 4, we present 
the results of a simulation experiment and provide a detailed 
analysis of the algorithm’s performance. Finally, we con-
clude our work in Section 5, summarizing the findings and 
discussing the implications of our research.

2 � Related works

2.1 � Literature review

DV-Hop is a popular range-free localization algorithm used 
in WSNs for estimating node locations based on network 
connectivity. However, one of its main limitations is its 
relatively low accuracy in localization. To overcome this 
challenge, researchers have developed enhanced versions of 
DV-Hop that integrate various techniques aimed at improv-
ing its performance.

For example, In [17], the authors proposed a modifica-
tion to the DV-Hop algorithm, where the unknown nodes’ 
average hop size was replaced with the mean of its neighbor 
anchors’ average hop size. This modification has the poten-
tial to enhance accuracy. In [18], Kumar and Lobiyal intro-
duced a new DV-Hop algorithm that included an improve-
ment term in the calculation of anchor nodes’ hop size. They 
further utilized unconstrained optimization techniques to 
minimize localization error. Literature [19] suggested an 
advanced DV-Hop localization algorithm aimed at reduc-
ing the inherent error in estimating the distance between 
anchor nodes and unknown nodes. Hu and Li [20] proposed 
a modified DV-Hop algorithm that improved the average 
hop distance of unknown nodes by considering the weighted 
average hop distances of anchor nodes. Moreover, research-
ers have explored recursive variants of DV-Hop to enhance 
efficiency. Messous et al. [21] utilized RSSI-based distance 
calculation between anchor nodes and their one-hop neigh-
boring sensor nodes to improve DV-Hop. Once a sensor 
node is located, it acts as an anchor to locate other unknown 
nodes. Similarly, Xiao et al. [22] developed a weighted DV-
Hop method based on RSSI, employing unconstrained opti-
mization for position calculation of unknown nodes. Kaur 
et al. [23] presented an enhanced approach that combines the 
weighted centroid and DV-Hop algorithm, resulting in an 
improved weighted centroid DV-Hop localization approach. 
Messous et al. [24] proposed a novel improved recursive DV-
Hop algorithm, leveraging recursive position computation 
and optimized average hop distance to enhance the DV-Hop 
algorithm. These algorithms have demonstrated advance-
ments over the original DV-Hop. However, the problem of 
large errors in localization still persists.

Recently, researchers have attempted to improve the 
localization accuracy of the DV-Hop algorithm by incor-
porating heuristic algorithms to overcome its limitations. 
In [25], Ouyang et al. introduced an upgraded DV-Hop 
algorithm based on an adaptive genetic algorithm (GA) to 
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calculate the coordinates of unknown nodes. However, it did 
not result in any significant improvements in the average 
hop size and hop count. Chen and Zhang [26] revised the 
average hop distance and integrated particle swarm optimi-
zation (PSO) to optimize the location determined by the 2D 
hyperbolic algorithm. Lei et al. [27] proposed an improved 
Sparrow Search Algorithm (SSA) DV-Hop algorithm that 
used a double communication radius mechanism to modify 
the minimum hop count and utilized SSA for node position 
estimation. Cui et al. [28] introduced a new approach that 
combined an oriented cuckoo search algorithm with DV-Hop 
to reduce localization error. Similarly, Li et al. [29] pre-
sented an enhanced cat swarm optimization (CSO) algorithm 
that was integrated into DV-Hop to minimize the localiza-
tion error of unknown nodes. Building on these efforts, Chen 
et al. [30] proposed a chicken swarm optimization-based 
approach to reduce localization error. Additionally, Shi et al. 
[31] suggested an improved hybrid algorithm that combined 
PSO and simulated annealing (SA) to reduce localization 
error in DV-Hop. However, it is important to note that heu-
ristic algorithms have limitations, such as slow convergence 
rates and susceptibility to local optima, which can lead to 
inaccurate localization results. To address these challenges 
and further improve the accuracy of DV-Hop localization, 
a novel algorithm called IMOADV-Hop was proposed by 
combining the strengths of the improved DV-Hop and the 
MOA. Simulation results have shown that IMOADV-Hop 
outperforms the original DV-Hop and other improved DV-
Hop algorithms in terms of localization accuracy, conver-
gence rate, and energy efficiency.

2.2 � DV‑Hop algorithm

The DV-Hop localization algorithm comprises three phases:

Phase 1:  Anchor nodes initiate a distributed process to 
acquire the minimum hop count. Each anchor node broad-
casts a packet consisting of its coordinates, ID, and hop 
count (initially set to 0). Unknown nodes within the com-
munication radius of the anchor nodes receive the packet 
and record the information. They then transmit the packet 
to their neighboring nodes while increasing the hop count 
by one. If multiple hop count information is received from 
the same anchor node, only the minimum hop count infor-
mation is retained. This process continues iteratively until 
all unknown nodes receive and processe the packets from 
all anchor nodes. Ultimately, all unknown nodes obtain the 
minimum hop count to each anchor node.

Phase 2:  Calculate the distance between the unknown node 
and all anchor nodes.

Firstly,each anchor node’s average hop distance is calcu-
lated by Eq. (1).

where hij represents the minimum hop count between anchor 
node i and j. The coordinates of anchor node i and j are 
denoted by (xi,yi) and (xj,yj) respectively. Additionally, Hop-
sizei refers to the average hop distance of anchor node i.

Once an anchor node computes its own average hop dis-
tance, it shares this information with the rest of the network 
via broadcasting. After that, an unknown node u adopts 
the first received average hop distance as its own, and then 
proceeds to calulate its distance to each anchor node using 
Eq. (2). This equation is derived from the minimum hop 
count information recorded in phase 1.

Phase 3:  In this Phase, the coordinates of the unknown 
node are determined by estimating the distance between the 
unknown node and each anchor node, based on the informa-
tion obtained in phases 1 and 2. If the network consists of 
at least three anchor nodes (m ≥ 3) anchor nodes, the dis-
tance from the unknown node to each anchor node is repre-
sented as d1, d2, …, dm, respectively. The coordinates of the 
unknown node can be calculated using Eq. (3).

The coordinates of each anchor node are represented as 
(x1,y1), (x2,y2), …, (xm,ym), where (x1,y1) corresponds to 
anchor node 1, (x2,y2) corresponds to anchor node 2, and 
so on. The coordinates (x, y) denote the coordinates of the 
unknown node.

2.3 � Mayfly optimization algorithm

The Mayfly Optimization Algorithm is inspired by the social 
behavior of mayflies [32]. It uses the state updates and mat-
ing behavior observed in mayflies to find the optimal solu-
tion within the given solution space. The algorithm follows 
the following main steps.
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2.3.1 � Regeneration of male mayflies

Male mayflies display movement patterns that resemble to 
particles in PSO. Their new locations are determined by 
their current positions and velocities. The position of the 
i-th mayfly in the t-th iteration is represented as Xt

i
 , and its 

position update formula is given by:

where, Vi is the velocity of mayfly, and the updating formula 
of speed is:

where g is the inertia weight coefficient; a1 and a2 are attrac-
tion coefficients; P and G are the historical and global opti-
mal locations, respectively; β is the visibility coefficient that 
controls the visibility range of mayfly; rp and rg represent 
the Euclidean distance between the current mayfly’s position 
and P, G, respectively; d is dance coefficient, with d = d0δ 
t, where d0 is the initial value of mating; t is the number of 
iterations; r and δ are random numbers in the range (0,1).

2.3.2 � Regeneration of female mayflies

In the MOA, each female mayfly is paired with a male mate 
in a sequential manner. The position of the i-th female may-
fly in the t-th iteration is represented by Yt

i
 . The position 

update formula for the female mayflies can be expressed 
as follows:

The speed of the female mayfly is updated by:

where g represents the inertia weight coefficient; a2 is the 
attraction coefficient; β is the visibility coefficient; rm is the 
distance between male and female mayflies; fl is the random 
walk coefficient; r is a random number in the interval of 
(0,1).

2.3.3 � Mayfly mating

In the MOA, female mayflies choose their male mates based 
on their quality during the mating phase. The selection pro-
cess is done sequentially, starting with the best female may-
fly being paired with the best male mayfly followed by the 
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second-best female being paired with the second-best male, 
and so on. This sequential pairing continues until all female 
mayflies have successfully paired up with male mayflies.

The male and female mayflies’ offspring are labeled as off1 
and off2, respectively. L is a random number in the range of 
[-1,1], and the terms male and female represent the mayflies.

2.3.4 � Fitness function

When estimating the position of unknown nodes using 
MOA, the fitness function of each mayfly individual is 
crucial. The fitness function is defined as follows:

where (x,y) represents the estimated coordinate of the 
unknown node, while (xk,yk) represents the coordinate of 
an anchor node, and dk stands for the estimated distance 
between the unknown node and the k-th anchor node. The 
fitness function is considered optimal when it reaches its 
minimum value, indicating that the estimated coordinates 
of the unknown node are closest to the actual coordinates.

3 � Proposed IMOADV‑Hop algorithm

3.1 � Minimum hop count optimization

The DV-Hop algorithm is a popular method for locali-
zation in WSNs. However, it has a limitation related to 
the calculation of hop counts. When an unknown node 
is located within the communication radius of an anchor 
node, the hop count between them is recorded as one. This 
can result in significant errors in localization, particularly 
when multiple unknown nodes use the same minimum hop 
count to estimate their distance from the anchor node. To 
address this shortcoming, a new approach is proposed in 
this paper, which aims to enhance the accuracy of the min-
imum hop count in the DV-Hop algorithm. The proposed 
method utilizes additional topology information to refine 
the hop count calculation process. By incorporating this 
extra information, the algorithm can achieve a more pre-
cise estimation of the node’s distance to the anchor node.

Figure 1 illustrates the improved minimum hop count 
model proposed in this paper for localization in WSNs. To 
achieve a more precise minimum hop count, the proposed 
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approach utilizes a multi-hop broadcasting scheme. The 
anchor node (Node A) is surrounded by several unknown 
nodes (Nodes B, C, D, and E) located within the commu-
nication radius R of the anchor node. The process begins 
with the anchor node A initiating the broadcasting with a 
radius of R/3. At this stage, only node B is within range to 
receive the broadcast. Node B records the hop count as 1/3.

In the second broadcast, anchor node A increases the 
radius to 2R/3. Both nodes B and C receive the broadcast. 
However, node B discards the second broadcast and con-
tinues to forward the minimum hop count value of 1/3 to 
its neighboring nodes. In contrast, node C records the hop 
count as 2/3 and forwards it to its neighbors.

In another round of broadcasting, anchor node A 
increases the radius to R. Nodes B and C discard the broad-
cast information, while node D receives it and records the 
hop count as 1. It then continues to forward the broadcast 
information. Finally, node E receives information from 
nodes B, C, and D, and it selects the smallest hop count 
value, which is 1/3 from node B. It then adds 1 to it, result-
ing in a minimum hop count of 4/3 to the anchor node.

By employing this approach, each unknown node 
selects the smallest hop count value to the anchor node, 
effectively reducing the localization error that can arise 
when multiple unknown nodes utilize the same minimum 
hop count value.

3.2 � Average hop distance optimization

In WSNs, it is important to accurately calculate the distance 
between unknown nodes and anchor nodes. To achieve this, it’s 

crucial to consider the local topological relationships within the 
network. In this paper, we propose a new method that builds 
upon the concept of local average hop distance (LAHD) [20]. 
Our approach takes into account the node distribution surround-
ing the unknown node and assigns weights for the LAHD val-
ues of anchor nodes within a two-hop range. This allows us to 
estimate the node’s distance to the anchor node more accurately. 
The process of LAHD optimization is outlined as follows:

Firstly, all the anchor nodes’ LAHD within two hops of 
unknown node is:

where i is the any anchor node within two hops from the 
unknown node; LAHDi is the local average hop distance of 
anchor node i, j is any anchor node within two hops from 
anchor node i; hij is the hop count between i and j.

The actual distance dij between anchor node i and j is:

The estimated distance dij between anchor node i and 
j is:

Then, the mean distance error ei of anchor node i is:

The smaller ei is, the better the anchor node can accu-
rately represent the distribution of nodes close to the 
unknown node. To increase the influence of the anchor 
node in this situation, it is necessary to assign it a higher 
weight. The weight can be normalized as:

where wi is the LAHD’s weight of the anchor node i, then 
the formula for calculating the LAHD of unknown node u 
is as follows:

Therefore, the calculated distance from unknown node 
u to anchor node i is:
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Fig. 1   Minimum hop count calculation model
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where dui represents the estimated distance between 
unknown node u and anchor node i, and hui represents the 
optimized minimum hop count between unknown node u 
and anchor node i.

After obtaining the coordinates and distances to mul-
tiple anchor nodes within a two-hop range, the unknown 
node u can use the improved MOA method outlined in 
Section 3.3 for position estimation.

3.3 � Improved mayfly optimization algorithm

3.3.1 � Good point set

The original MOA is often criticized for its slow conver-
gence rate. This can be attributed to its random population 
initialization strategy. This strategy may lead to poor diver-
sity, quality, and uniform traversal of the solution space. To 
overcome this limitation, we propose incorporating a good 
point set [33] with excellent ergodicity as an initialization 
method for the mayfly population in the MOA.

Assuming that VD is a D-dimensional unit cube, r belongs 
to VD, and Pn(k) fulfills the following condition:

If the criteria showed in Eq. (19) is met by the deviation 
of Pn(k), it can be referred to as a good point set.

where C(r,ε)n−1+ε is a constant that only depends on r and 
ε; n denotes the number of point in the set, and r is defined 
as r = {2cos(2πk/p)},where p is the smallest prime number 
that satisfies (p-3)/2 ≥ n. After that, we can map the points 
in the good point set to the search space.

where, ubj and lbj represent the upper and lower bounds of 
the j-th dimension of the search space.

In our study, we conducted a performance comparison 
between two population initialization methods, the good 
point set method and the random method, within a two-
dimensional search space ranging from 0 to 50. Figure 2 
presents a visual representation of the results of this compar-
ison, highlighting the differences between the two methods. 
The results clearly show that the initial population gener-
ated by the good point set method displays a more uniform 
distribution across the search space compared to the random 
method. This indicates a higher level of diversity in the ini-
tial population.
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3.3.2 � Adaptive Levy flight

In the MOA velocity update, the coefficient of inertial 
weight (g) is usually reduced linearly with time, while 
the attraction coefficients (a1 and a2) remain constant. 
However, this linear approach may not be effective in bal-
ancing local and global search, which can lead to slow 
convergence of the algorithm. To improve the convergence 
rate of the algorithm, we propose an adaptive strategy that 
involves dynamically adjusting the inertia weight coef-
ficient using a nonlinear approach.

where gmax and gmin are the maximum and minimum inertia 
weight coefficients respectively; fi is the fitness value of 
mayfly i; fmin and favg are the minimum and average fitness 
value, respectively. The impact of fitness on the behavior of 
mayflies can be observed from the Eq. (12), which indicates 
that the weight of the mayfly is maximal when its fitness is 
greater than the average fitness. This increases its activity 
and enables it to explore the search space more effectively. 
On the other hand, when the fitness value of a mayfly is 
below the average, the weight of its speed is reduced. This 
prompts the mayfly to prioritize movement towards more 
advantageous positions in the search space.

In the proposed solution, a dynamic attraction coeffi-
cient is incorporated along with the dynamic adjustment of 
the inertia weight coefficient to achieve a balance between 
local and global search capabilities in the algorithm.

where t represents the current iteration number, and tmax 
represents the maximum iteration number. It is noteworthy 
that the adaptive attraction coefficient dynamically changes 
as the iteration number increases. This dynamic adjustment 
allows the algorithm to exhibit strong local search ability 
during the early stages of optimization while transitioning 
to a strong global search ability in the later stages.

In the algorithm, the local optimization ability is pri-
marily determined by the position update of the mayflies, 
while the global optimization ability is mainly influenced 
by the mating behavior of mayflies. The velocity update 
formula used by the mayflies indicates that the algorithm 
inherently has a strong local search ability but a relatively 
weaker global search ability. To overcome this limitation 
and enhance the algorithm’ global optimization ability, the 
Levy flight strategy is employed.
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Fig. 2   Comparison of initial 
population method
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Levy flight [34] is a type of stochastic search mech-
anism that takes inspiration from the flight patterns of 
certain animals, including birds and insects. It involves 
introducing random and long-range movements into the 
search process, which helps the algorithm explore the 
search space more extensively and potentially discover 
better global solutions. The length of each step in Levy 
flight is determined by formula (23).

where μ ~ N(0,σ2); υ ~ N(0,σ2).

where Γ is the gamma function, Γ(n) = (n-1)!, and β takes 
1.5.

The velocity update based on adaptive weight coefficients 
and Levy flight is:

where g is the inertia weight in formula (21); a1 and a2 are 
the attraction coefficients in formula (22); S is the Levy 
flight step size in formula (23); and r is a random number 
in (0,1).

3.3.3 � Adaptive t‑distribution variation

The use of an adaptive t-distribution mutation operator in 
the MOA algorithm is aimed at improving its ability to 
escape from local optima and enhance overall optimization 
performance [35]. This operator introduces perturbations 
and mutations to the current best solution, preventing the 
algorithm from getting stuck in local optima.

The t-distribution, also known as the student distribution, 
is a probability distribution that depends on the degrees of 
freedom, represented as n. The probability density function 
(PDF) of the t-distribution can be written as follows:

To improve the algorithm’s ability to avoid getting stuck 
in local optima, the t-distribution mutation operator can be 
utilized to mutate the current optimal individual. The follow-
ing method can be used to apply this operator:
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(27)Xnew = Xbest + Xbest ⋅ t(iter)

where iter represents the current number of iterations, and 
t(iter) is a random number generated from the t-distribu-
tion with iter degrees of freedom. At the beginning of the 
algorithm, the t-distribution behaves like the Cauchy dis-
tribution, which is known for its strong disturbance capa-
bility. However, as the number of iterations increases, the 
t-distribution gradually approaches a Gaussian distribution, 
which results in a weaker disturbance capability. This adap-
tive adjustment of the algorithm’s local optimization ability 
allows it to effectively escape from local optima.

3.4 � IMOADV‑Hop algorithm process

Step1: After the nodes deployment in the monitoring area, 
the anchor node periodically broadcasts its ID and coordi-
nates within the communication radius.

Step2: The unknown node within a two-hop range 
receives and stores the broadcasted information from the 
anchor nodes, including their IDs and coordinates. The 

Fig. 3   The algorithm flow of IMOA



Peer-to-Peer Networking and Applications	

unknown node then uses an enhanced mechanism involv-
ing hop count and average hop distance to calculate the 
distance to each anchor node.

Step3: The unknown node employs the improved MOA 
to determine its own coordinates.

The algorithm flow is shown in Fig. 3.

4 � Simulation results and analysis

To assess the effectiveness of the proposed algorithm, we 
compared it to four other algorithms: DV-Hop, GADV-Hop, 
PSODV-Hop, and SSADV-Hop. The evaluation was carried 
out using the MATLAB2018a simulation platform. The 
simulation environment is a square of 100m × 100m area.
The performance of the algorithm is measured using the 
normalized average positioning error in Eq. (28).

where n is the total number of unknown nodes, R is the com-
munication radius, (x,y) is the real coordinates of unknown 
nodes, ( ̂x , ŷ)is the coordinates of unknown nodes calculated 
by the algorithm.

4.1 � Convergence simulation

To assess the performance of the improved Mayfly Optimi-
zation Algorithm (IMOA), we utilize Eq. (10) as the objec-
tive function for comparative analysis. Figure 4 presents 

(28)E =
1

nR

n�
1

√
(x − x̂)2 + (y − ŷ)2

the relationship between iteration time and the average fit-
ness of IMFO, PSO, GA, and SSA. The results demonstrate 
that IMFO achieves convergence to 1.95 in approximately 
5.5 s, while GA converges to 2.75 in approximately 8 s, 
PSO converges to 2.09 in approximately 9 s, and SSA con-
verges to 1.95 in approximately 10.5 s. These findings sug-
gest that IMFO exhibits higher convergence accuracy and 
rate, positioning it as a promising approach for enhancing 
localization accuracy.

4.2 � Unknown node localization error

In this simulation, the total number of nodes present is 120. 
These nodes are randomly distributed across the simulation 
area, which includes 30 anchor nodes. The communication 
radius is set to 30 m. The distribution of nodes is shown in 
Fig. 5. The localization results obtained from the five algo-
rithms are presented in Fig. 6.

In the figures, the anchor nodes are depicted with red 
stars, the real positions of the unknown nodes are indi-
cated with black circles, and the estimated positions of the 
unknown nodes are represented with blue circles. The esti-
mated positions of the unknown nodes are connected to their 
real positions with blue lines.

Based on the presented figures, it can be concluded 
that the IMOADV-Hop algorithm has significantly lower 
localization errors compared to SSADV-Hop, PSODV-Hop, 
GADV-Hop, and DV-Hop. Specifically, in Fig. 6 (f), the 
box width of IMOADV-Hop is narrower than the four com-
parison algorithms, indicating that the localization results 
obtained from IMOADV-Hop are more stable.

Fig. 4   Iteration curve of four algorithms
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4.3 � The effect of local hop and minimum 
communication radius

In this simulation, a total of 120 nodes are randomly distrib-
uted in the simulation area, which include 30 anchor nodes. 
The communication radius is set to 30m. As shown in Fig. 7, 
it can be noticed that the error rate of the five algorithms 
stops decreasing when the number of local hops exceeds 2. 
This implies that increasing the number of local hops may 
not always lead to a reduction in error. Similarly, in Fig. 8, 
it is evident that when the minimum communication radius 
is smaller than R/3, the localization error reaches a plateau 
and hardly changes further. Based on these observations, we 
conclude that the optimal number of local hops for this study 
is 2, and the minimum communication radius is set to R/3.

4.4 � The effect of the anchor nodes number

In this section of the simulation, a total of 120 nodes are 
randomly deployed within the simulation area, with a com-
munication radius of 30m. The number of anchor nodes is 
gradually increased from 20 to 50. The localization errors 
of the five algorithms are presented in Fig. 9.

As shown in Fig. 9, the localization errors of all five algo-
rithms decrease as the number of anchor nodes increase. 
This improvement is due to the increased availability of 
favorable location information provided by a greater number 
of anchor nodes. Furthermore, the IMOADV-Hop algorithm 
consistently outperforms the other four algorithms across 
different numbers of anchor nodes. The normalized average 

localization error of the IMOADV-Hop algorithm is 0.087, 
which represents a reduction of 12.1%, 35.5%, 34.1%, and 
47.3% compared to SSADV-Hop, PSODV-Hop, GADV-
Hop, and DV-Hop, respectively.

4.5 � The effect of communication radius

In this simulation, a total of 120 nodes are randomly 
deployed within the simulation area, out of which 30 anchor 
nodes were included. The communication radius is gradually 
increased from 20 to 50m. Figure 10 illustrates the compari-
son of localization errors of five algorithms under different 
communication radii. As shown in Fig. 10, all five algo-
rithms showed a significant decrease in localization error as 
the communication radius increased. This improvement can 

Fig. 6   Localization error comparison◂

Fig. 7   The effect of the local hop

Fig. 8   The effect of minimum communication radius

Fig. 9   The number of anchor nodes
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be attributed to the increased network connectivity resulting 
from the larger communication radius, which in turn pro-
vides more anchor node information for localization. Conse-
quently, the localization error decreases. For different com-
munication radii, the IMOADV-Hop algorithm displayed the 
lowest normalized average localization error of 0.088. This 
represents a reduction of 23.4%, 40.5%, 40.9%, and 45.3% 
compared to SSADV-Hop, PSODV-Hop, GADV-Hop, and 
DV-Hop, respectively.

4.6 � The effect of total nodes number

In this part of the simulation, the node communication 
radius is set to 30m and the proportion of anchor nodes is 
30%. The total number of nodes increases gradually from 

100 to 200. The localization errors of the five algorithms 
are presented in Fig. 11.As shown in the Figure, the local-
ization errors of all five algorithms decrease as the total 
number of nodes increases. Moreover, the IMOADV-Hop 
algorithm consistently achieves a lower normalized average 
localization error than the other four algorithms. The nor-
malized average localization errors for the five algorithms 
are 0.078, 0.113, 0.128, 0.139, and 0.172, respectively. Com-
pared to the four comparison algorithms, the IMOADV-Hop 
algorithm reduces the average localization error by 39.1%, 
30.9%, 43.9%, and 54.7%, respectively.

5 � Conclusion

In this study, a novel DV-Hop localization algorithm called 
IMOADV-Hop is proposed to improve the localization accu-
racy of DV-Hop. The algorithm introduces several improve-
ments to overcome the limitations of the original DV-Hop. 
Firstly, the IMOADV-Hop algorithm utilizes three different 
communication radii for anchor nodes to broadcast information. 
This approach aims to obtain a more accurate minimum hop 
count, which is critical for distance estimation in DV-Hop. By 
using multiple communication radii, the algorithm can enhance 
the precision of distance calculations. Secondly, the algorithm 
optimizes the weights of anchor nodes within a two-hop range 
of the unknown node. This optimization process aims to 
improve the average hop distance calculation, which is another 
crucial aspect of DV-Hop. By refining the weights, the algo-
rithm aims to achieve more accurate localization results. Lastly, 
the IMOADV-Hop algorithm incorporates improvements to 
the MOA used for estimating the positions of unknown nodes. 
These enhancements include utilizing a good point set, Levy 
flight, and t-distribution. These enhancements aim to improve 
the accuracy and performance of the position estimation pro-
cess. Simulation results demonstrate that the IMOADV-Hop 
algorithm outperforms the SSADV-Hop, PSODV-Hop, GADV-
Hop, and DV-Hop algorithms in terms of localization accuracy. 
The proposed algorithm achieves higher precision and accuracy 
in estimating the positions of unknown nodes compared to the 
other algorithms. Although the proposed algorithm has high 
accuracy in simulation experiments, it has not been validated 
in actual environments. It is still debatable whether the param-
eters used in simulation have the same localization accuracy 
when applied to real environments. Therefore, how to choose 
appropriate parameters in practical environments is a interesting 
point for upcoming studies.
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