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Abstract
In the Industrial Internet of Things (IIoT), a significant amount of perceived data is generated from massive IoT devices, which 
requires timely computing for value maximization. Multi-access edge computing (MEC), which deploys computing nodes 
close to the data source, is a promising computing paradigm for IIoT applications. However, due to the limited computa-
tion resource, it is challenging for edge nodes to provide a low delay to massive data. In addition, the wireless transmission 
environment varies with IoT devices over time. Some data even cannot be uploaded to the edge server due to the worse link 
quality. Reconfigurable intelligent surface (RIS), which deploys passive reflecting elements between end users and base sta-
tion to reflect wireless signals, is a new technique for changing the wireless transmission performance via reconfiguring the 
phase shift of RIS. It is beneficial to apply RIS in MEC for reducing transmission delay and achieving green edge computing. 
This paper considers a RIS-assisted device-edge collaborative MEC for industrial applications. We propose to minimize 
the energy consumption of IoT devices constrained to the delay requirements via jointly optimizing the offloading decisions 
between end and edge computing nodes, the phase shift of RIS, CPU resource allocation of edge server, and transmission 
power of IoT devices. A distributed and cooperative scheme, called RIS-assisted DAEM, which includes the DAECO and 
DCEM algorithms for CO and PORA subproblems, respectively, is proposed to solve the formulated problem. The simulation 
results have illustrated the efficiency of the proposal for energy consumption reduction constrained to the delay requirements.

Keywords  Edge computing · Computation offloading · Reconfigurable intelligent surface (RIS) · Device-edge collaboration

1  Introduction

In the industrial Internet of Things (IIoT), most productions/
machines generate much-perceived data, which requires 
high-performance computing and tolerates low delay to 

support typical IIoT applications, such as remote mainte-
nance, intelligent factories, smart logistics, and so on [1]. 
Cloud computing has witnessed success in high-performance 
computing for data analysis and mining. However, with the 
ever-increasing data generated from various IIoT applica-
tions, a massive amount of data bursts into the cloud center, 
which has seriously exhausted the bandwidth resource of the 
communication network from data source to cloud center 
[2]. In addition, the cloud computing paradigm exposes data 
to public networks and computing centers, leading to intol-
erable long network transmission delays and rising security 
and privacy issues, respectively.

In recent years, multi-access edge computing (MEC) 
has been considered a promising computing paradigm 
for applications demanding low delay and high security. 
In MEC, edge servers with cloud-like computing capa-
bility are deployed at the network edge close to the data 
source. In addition, Internet of Things (IoT) devices (e.g., 
machines with sensors and communication modules) are 
also endowed with some computing capability. Thus, data 
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could be processed locally at IoT devices or offloaded 
to an edge server for computing, which would reduce 
network transmission delay and improve data security 
and privacy.

However, since most productions/machines work as 
IoT devices in an IIoT environment, the competition for 
shared bandwidth and computing resources is still very 
intense in MEC. In addition, due to the dynamic nature of 
the wireless transmission environment, some data may be 
unable to be offloaded from the data source to the edge 
server for computing if the wireless link is blocked or 
worse. Furthermore, the battery energy of an IoT device 
is limited due to its small volume size. Therefore, it is 
desired to study how to efficiently utilize the computa-
tion resource of IoT devices and edge servers as well as 
the precious wireless resource to achieve green MEC for 
IIoT applications.

Recently, reconfigurable intelligent surface (RIS) has 
appeared as a new emerging wireless technology for 
energy efficiency and transmission performance improve-
ment [3, 4]. In RIS, several passive reflecting elements are 
deployed to establish extra links between wireless users 
and the base station (BS) [5]. The RIS elements could be 
reconfigured according to the surrounding environment, 
such that high beamforming gain between users and BS 
could be achieved [6]. In addition, the passive RIS ele-
ments just reflect the wireless signals; no extra transmis-
sion power is required for IoT devices. It is beneficial to 
apply RIS in edge computing for reducing transmission 
delay while improving energy efficiency. However, RIS is 
presently in its initiate stage, how to merge RIS into edge 
computing desires further study.

Motivated by the attractive characteristics of RIS, 
this paper studies a RIS-assisted device-edge collabora-
tive edge computing problem in an industrial environ-
ment, aiming at reducing the energy consumption of IoT 
devices constrained to the delay requirements of compu-
tation tasks from IIoT applications by jointly optimizing 
(a) the offloading decisions, e.g., local computing at IoT 
devices, or, offloading to the edge server via the RIS-
assisted wireless network for edge computing; (b) the 
phase shift in RIS for high beamforming gain; (c) the 
computation resource allocation for offloaded tasks at 
edge server; (d) the transmission power of IoT devices 
for task offloading.

The main contributions are summarized as follows.

•	 A joint computation offloading and resource alloca-
tion problem (called JCORA) for energy efficiency in 
a RIS-assisted device-edge collaborative edge com-
puting IIoT environment is formulated. In order to 

find out a low complex scheme for addressing such 
non-convex NP-hard problem, the problem is further 
decomposed into two concatenated subproblems, 
computation offloading (CO) and the joint RIS phase 
beamforming optimization and computation resource 
allocation (PORA).

•	 A distributed and cooperative scheme, called RIS-
assisted delay-aware energy minimization computa-
tion offloading (RIS-assisted DAEM), which consists 
of delay-aware energy consumption minimization 
off loading (DAECO) for the CO subproblem and 
delay-constrained transmission-energy-minimization 
resource optimization (DCEM) for the PORA subprob-
lem, is proposed to address the JCORA problem. By 
joining DAECO and DCEM in RIS-assisted DAEM, 
optimum offloading decisions, RIS phase shift, com-
putation resource allocation strategy, as well as trans-
mission power are found.

•	 The simulations have illustrated that, RIS-assisted 
DAEM can significantly improve the energy effi-
ciency constrained to the end-to-end delay require-
ments of computation tasks in comparison with 
benchmarked algorithms. In addition, RIS-assisted 
DAEM also outperforms benchmarked algorithms in 
delay guarantee capability.

The remainder of this paper is organized as follows. Section 2 
describes the related work. Section 3 presents the system, delay 
and energy consumption models. In Section 4, the problem 
is formulated and addressed in detail. We provide the perfor-
mance evaluation of the proposal through computer simula-
tions in Section 5, and conclude the paper in Section 6.

2 � Related work

Edge computing has attracted significant attentions in 
recent years [7, 8]. By deploying cloud-like computing 
nodes (e.g., edge server, end-device) in the network edge 
close to data source, edge computing could explicitly 
reduce network transmission delay of computation tasks. 
Since the computation resource of an edge node is limited 
in comparison with that of cloud computing, computation 
offloading problem such as where to process the tasks and 
how to upload the offloaded tasks arise with the appear-
ance of edge computing.

A number of edge computing algorithms have been pro-
posed for achieving different objectives.

Edge computing for energy efficiency.  Energy-aware 
edge computing has been studied for various types of net-
works with various methods. Zhou et al. has studied the 
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energy-efficient workload offloading problem in vehicular 
networks [9]. The authors have proposed a low-complex 
distributed solution based on consensus alternating direc-
tion method of multipliers to address the problem for 
energy saving. Zhang et al. studied the energy-efficient 
computation offloading for mobile edge computing in 5 G 
heterogeneous networks [10]. By jointly optimizing off-
loading and radio resource allocation, the minimal energy 
consumption under the latency constraints is achieved in 
[10]. Song et al. considered the energy-efficient computa-
tion offloading problem for terrestrial-satellite IoT [11]. 
They decomposed the computation offloading problem 
into two layered subproblems and solved separately. Then 
an energy-efficient computation offloading and resource 
allocation algorithm based on the solutions of the two sub-
problems are proposed. The joint optimization of compu-
tation offloading and resource allocation for energy effi-
ciency in a dynamic multiuser MEC system is considered 
in [12]. The problem is formulated as a mixed-integer 
nonlinear programming (MINLP) problem and solved via 
a value iteration-based reinforcement learning method. 
Wang et al. proposed a task offloading and resource allo-
cation mechanism, which considered the clock frequency 
configuration, transmission power allocation, channel rate 
scheduling and offloading strategy selection, to achieve 
energy-efficient offloading performance in MEC [13].

Edge computing for delay minimization. Since one of 
the most important goal of edge computing is to reduce 
the delay of computation tasks, many proposals have 
focused on the issues of delay minimization in edge com-
puting. Yi et al. studied a MEC framework with multiuser 
computation offloading and transmission scheduling for 
delay-sensitive applications [14]. By considering trade-
offs between local and edge computing, wireless features 
and non-cooperative game interactions among mobile 
users, a joint computation offloading and transmission 
scheduling as well as pricing rule problem for such MEC 
framework is formulated and solved in [14]. Kuang et al. 
studied the joint problem of cooperative computation task 
offloading and resource assignment in MEC [15]. The 
objective of minimizing the latency while guaranteeing 
the constraint of transmission power, energy consump-
tion and CPU cycle frequency is achieved by formulating 
the optimization problem as a nonconvex mixed-integer 
problem and solving via a joint iterative algorithm. The 
delay-aware and energy-efficient computation offload-
ing in a dynamic MEC with multiple edge servers has 
been studied in [16]. The authors proposed an end-to-end 
deep reinforcement learning (DRL) approach to address 
the computation offloading problem for maximizing the 

completed tasks before their respective deadlines and 
minimizing energy consumption. Shahryari et al. also 
proposed an energy-efficient and delay-guaranteed com-
putation offloading method for fog-based IoT networks 
[17]. Differently, Liu et al. studied the joint optimization 
of energy and delay for computation offloading in cloud-
let-assisted mobile cloud computing [18]. Chen et al. has 
studied the problem of joint computation offloading and 
unmanned aerial vehicle (UAV) deployment for average 
task response time minimization [19], where a two-layer 
joint optimization method, called PSO-GA-G, is proposed 
to address the problem.

RIS-assisted wireless communication. RIS, also termed 
as intelligent reflecting surface (IRS) [6, 20, 21], is a 
promising new solution to energy-efficiently improve 
the wireless transmission performance towards fifth-
generation (5 G) and sixth-generation (6 G) networks. In 
RIS, a number of low-cost reconfigurable passive elements 
is deployed. By smartly adjusting the phase shift of all 
passive elements in RIS, the reflected signals can change 
the wireless propagation environment. For example, by 
adjusting the reflecting beamforming coherently with the 
signals from other paths, the received signal power at 
the receiver would be enhanced. Since RIS has attractive 
advantages for wireless performance improvement, RIS-
assisted wireless communication has been widely studied 
recently. Wei et al. studied the channel estimation issue for 
RIS assisted wireless communications [5, 22]. Wu et al. 
studied the joint RIS phase shift optimization and wireless 
powered non-orthogonal multiple access (NOMA) 
resource allocation problem, the aim is to maximize the 
sum throughput of all wireless powered devices [23]. 
The impact of spatial channel correlation on the outage 
probability of IRS-assisted single-input single-output 
(SISO) communication systems has been studied in [24]. 
A downlink RIS-assisted multiple-input multiple-output 
(MIMO) wireless communication system that comprising 
three communication links of Rician channel, e.g., links 
from BS to RIS, RIS to user, and BS to user has been 
studied in [3], where an optimal transmit covariance 
matrix at BS and diagonal phase-shifting matrix at RIS 
have been explored to maximize the achievable ergodic 
rate with statistical channel state information at BS. 
Al-Hilo et al. designed a RIS-assisted UAV method for 
timely data collection in IoT networks [25]. Different from 
other studies that just focus on the reflection function of 
RIS, Zuo et al. proposed a joint design for simultaneously 
transmitting and reflecting (STAR) RIS assisted NOMA 
system to maximize the achievable sum rate [4]. Sankar 
et  al. considered a hybrid RIS comprising of active 
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and passive elements to aid an integrated sensing and 
communication system [26]. The authors jointly designed 
transmit beamformers and RIS coefficients to maximize 
the worst-case target illumination power while ensuring 
a desired signal-to-interference-plus-noise ratio for 
communication links and constraining the RIS noise power 
due to the active elements. An effective iterative algorithm 
for solving the problem of joint phase-shifts of the RIS and 
the resource allocation of the relays in RIS-assisted multi-
hop MEC network for network throughput optimization 
has been designed in [27]. The joint trajectory-task-cache 
optimization with phase-shift design has been considered 
by placing a RIS between UAV, which works as MEC 
server, and ground terminals (GTs), for performance 
improving on mobile computing [28]. Bai et al. has used 
a block coordinate descent (BCD) technique to solve the 
joint computation offloading and RIS phase shift design 
problem in RIS aided MEC for latency minimization 
[29]. The joint optimization of the CPU frequencies of 
the smart terminals (STs), the offloading schedule, the RIS 
phase shifts, and the receive beamformers of the BS for 
minimizing the energy consumption of the STs in RIS-
assisted MEC has been studied in [30].

Different from the existing works, this paper stud-
ies the RIS-assisted device-edge collaborative edge 
computing for industrial applications, where we jointly 
optimize the computation offloading and phase shift of 
RIS as well as computation resource allocation of edge 
servers for minimizing the energy consumption of IoT 
devices constrained to the delay requirements of indus-
trial tasks. Furthermore, since the offloading decisions, 
phase shift of RIS, computation resource allocation, and 
transmission power of IoT devices affect each other, we 
decompose the joint computation offloading and mul-
tiple resource allocation problem into two subproblems 
and solve with distinct algorithms. Then, a distributed 
and cooperative scheme, which iteratively combines the 

up-to-date solutions of the above two subproblems, is 
designed to obtain one-shot solution for achieving the 
goal of energy consumption minimization constrained to 
the delay requirements of industrial tasks. In addition, 
different from existing works that generally transform 
the RIS phase shift optimization problem into a con-
vex semidefinite program and then apply semidefinite 
relaxation (SDR) solver [31] to obtain the phase shift 
[6, 26, 32], which is off-line and time-consuming, we 
design a low-complex iterative algorithm to find out the 
suboptimal phase shift for multiple users.

3 � Model formulation

3.1 � System model

As illustrated in Fig.  1, this paper considers a RIS-
assisted MEC system in industrial environments. The 
system consists of a base station endowed with an edge 
server located at the center of the wireless network, a 
number of IoT devices (e.g., machines, industrial termi-
nals) randomly located in the network. The edge server 
can process multiple tasks in parallel via virtualization 
technologies [33], while each IoT device could only serve 
one task per time. There is a RIS deploying in a location 
between IoT devices and the base station for enhancing 
the communication efficiency.

The IoT devices generate industrial computation 
tasks. For each task, the corresponding IoT device has to 
decide where to process the task, e.g., local computing, 
or, offloading to the edge server for edge computing. 
If the decision is offloading, then, the task should be 
uploaded to the edge server via the RIS-assisted wire-
less network before its processing at the edge server; 
otherwise, the task will be executed locally. In addition, 
for the offloaded tasks, there are another two types of 

Fig. 1   Model of a RIS-assisted 
MEC system
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decisions are further needed to make. The first is the 
RIS phase beamforming optimization, which includes 
the phase shift of passive reflecting elements in RIS and 
the transmission power of the offloaded IoT devices, 
for energy-efficiently improving the task upload rate. 
The second type of decision is the computation resource 
allocation at edge server, which decides how to allo-
cate the computation resource among offloaded tasks 
for quality of service (QoS) provisioning.

Let M = {1, 2,… ,M} be the IoT device set in the sys-
tem. Assuming the passive reflecting elements equipped 
in the RIS is N. The channel coefficient from IoT device 
m ∈ M to RIS, from IoT device m directly to the BS, and 
from the RIS to the BS are represented by hI

m
∈ ℂ

N×1 , 
hD
m
∈ ℂ

1×1 and gH ∈ ℂ
1×N , respectively.

Let Sm represent the task size (in bits) generated from 
IoT device m ∈ M , the corresponding computation size is 
denoted as Wm (in CPU cycles).

Let I = (I1, I2,… , Im,… , IM) be the offloading deci-
sion vector, where Im = 1 if the task generated from IoT 
device m is offloaded to edge server, Im = 0 otherwise. Let 
M

O
⊂ M represent the IoT device set that offloads the 

tasks to edge server, and ML
⊂ M is the IoT device set 

that determines to local computing.
The summary of notations is listed in Table 1.

3.2 � RIS‑assisted edge computing model

When a task from IoT device m is offloaded to the edge 
server for computing, it will experience two types of 
delays, upload delay DO, Tx

m
 from data source to the edge 

server and the computation delay DO, CPU
m

 at the edge 
server. Thus, the edge computation delay of the task is 
expressed by

The upload delay is derived by

where Rm is the transmission rate from IoT device m to the 
edge server (we ignore the delay from the BS to the edge 
server), which is expressed by

where B is the bandwidth, pm is the transmission power, 
Λ = diag(ej�1 , ej�2 ,… , ej�n ,… , ej�N ) is the reflection coef-
ficient matrix, where �n ∈ [0, 2�] is the phase shift of 
the nth passive reflecting element in RIS, and �0 is the 
additive Gaussian noise power. Define � = (�1, �2,… , �N) 
as the phase shift of the passive reflecting elements in 
the RIS.

As seen in Eq. (3), with RIS, the signal-to-noise ration 
(SNR) of the upload transmission is changed to the complex 
superposition of the reflect-path (e.g., gHΛhI

m
 ) and direct-

path (e.g., hD
m

 ) signals. In this case, the phase shift (e.g, 
Λ ) has important impact on the superposition signal. For 
example, some range of phase shift could enhance the sig-
nal, while some others may suppress the direct-path signal 
at the receiver.

The computation delay at the edge server is derived by

where fO
m

 is the CPU rate of the edge server allocated to the 
task, which is constrained by

(1)DO
m
= DO, Tx

m
+ DO, CPU

m
.

(2)DO, Tx
m

=
Sm

Rm

,

(3)Rm = B log2

(
1 +

pm|gHΛhIm + hD
m
|2

�0

)
,

(4)DO,CPU
m

=
Wm

fO
m

,

(5)
∑

m∈M

Imf
O
m
≤ fO.

Table 1   Summary of notations

Symbols Definition

M The number of IoT devices
N Reflecting elements in the RIS
hI The channel coefficient from IoT devices to RIS
hD The channel coefficient from IoT devices to BS
gH The channel coefficient from RIS to BS
pm The transmission power of IoT device m
B The bandwidth of the wireless link
�0 The noise power of the wireless network
Im Offloading decision variable
fO The computing resource of the edge server
fO
m

The computing rate allocated to task m
f L
m

The computing resource of IoT device m
Λ The reflection coefficient matrix in the RIS
� The phase shift in the RIS
Sm The task size (in bits) of IoT device m
Wm Task size (in CPU cycles)
EO, Tx

m
The energy consumption for data upload

EL

m
The energy consumption for local computing

AH The conjugate transpose of matrix A
M The IoT device set
M

O The IoT device set for edge computing

M
L The IoT device set for local computing

N The set of passive reflecting elements in RIS
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In this paper, we mainly consider the energy consumption of 
IoT devices, due to its batter volume constraint and difficult 
to harvest energy. Therefore, the energy consumption for 
task offloading is defined as

Since the passive reflecting element in the RIS does not 
consume energy [34], the energy consumed for data upload 
is mainly determined by its transmission power and trans-
mission duration (equivalently, upload delay) [35]. Accord-
ingly, the energy consumption for data upload could be 
expressed by

3.3 � Local computing model

When a task from IoT device m is determined to local comput-
ing, it will only experience the data computation delay DL

m
 at 

local IoT device. That is,

Therefore, the energy consumption for local computing is 
just the energy consumed for data computing. That is,

where � is the energy factor at local IoT device.

3.4 � Problem formulation

The end-to-end delay of a task generated from IoT device m 
could be uniformly expressed as

Similarly, the energy consumption for processing the task 
from IoT device m could be uniformly expressed as

The total energy consumption of all tasks from all IoT 
devices is defined as

In this paper, we aim at minimizing the total energy con-
sumption constrained to tasks’ delay requirements by jointly 
optimizing the offloading decision I  , RIS phase beam-
forming Λ , transmission power � ≜ {pm ∶ ∀m ∈ M

O
} , and 

(6)EO
m
= EO, Tx

m
.

(7)EO, Tx
m

= pmD
O, Tx
m

.

(8)DL
m
=

Wm

f L
m

.

(9)EL
m
= �Wmf

L
m
= �DL

m
(f L
m
)
2,

(10)Dm = (1 − Im)D
L
m
+ ImD

O
m
.

(11)Em = (1 − Im)E
L
m
+ ImE

O
m
.

(12)E =

∑

m∈M

Em.

computation resource allocation � ≜ {fO
m
∶ ∀m ∈ M

O
} for 

offloaded tasks. We call the above problem as the JCORA 
problem, and formulate it as 

where Eq. (13b) is the end-to-end delay bound constraint, 
dTh
m

 is the maximum tolerable delay of the task from IoT 
device m, Eqs. (13c) and (13d) indicate that any task is 
either local computing or computation offloading to the edge 
server, (13e) is the beamforming constraint, Eq. (13f) is the 
transmission power constraint, Eq. (13g) is the computation 
resource constraint of the edge server.

3.5 � Problem decomposition

Since the JCORA problem described in Eq. (13a) involves 
the offloading decisions in multiple IoT devices, phase 
shift optimization in RIS, and computation resource allo-
cation in edge server, which is indeed a non-convex NP-
hard problem. In order to find out optimum solutions with 
low algorithm complexity, our approach in this paper is to 
decompose it into two concatenated subproblems, referred 
to as the CO subproblem in the involved IoT devices, and 
the PORA subproblem for the offloaded tasks. We use 
an iterative policy to update the offloading decision I  of 
the CO subproblem based on the up-to-date result of the 
PORA subproblem. The solution of the PORA subprob-
lem is all affected by the offloading decision of the CO 
subproblem in each iteration. The optimum one-shot solu-
tion of the JCORA problem is yielded when no decision 
update could further improve the performance of the CO 
and PORA subproblems. The detail of the decomposition 
process is described as the following.

Firstly, given the most update (Λ*, �∗, �∗) of the PORA 
subproblem, the current value of the energy consumption 

(13a)JCORA ∶ min
I,Λ,�,�

E

(13b)s.t. Dm ≤ dTh
m
,∀m ∈ M

(13c)Im ∈ {0, 1},∀m ∈ M

(13d)M
O
∪M

L
⊆ M

(13e)0 ≤ �n ≤ 2�,∀n ∈ N

(13f)pm ≤ pmax
m

(13g)
∑

m∈MO

fO
m
≤ fO .
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as well as end-to-end delay of the offloaded tasks is also 
determined. The IoT devices can also estimate the energy 
consumption as well as local computation delay of the 
local computing tasks. Thus, as to IoT devices, the JCORA 
problem is reduced to the CO subproblem as follows. 

where Eq. (14a) follows (13a) given Λ* , �∗ and �∗ ; (14c) is 
the most updated solution of the PORA subproblem.

Secondly, the objective of the PORA subproblem is 
further to optimize the transmission energy consumption 
constrained to the delay requirements of offloaded tasks 
with respect to the solution of CO subproblem. That is, 
the PORA subproblem is formulated as, 

In the next section, heuristic algorithms to solve both 
the CO and PORA subproblems are designed. The one-
shot solution to the original JCORA problem will be 
obtained by combining the computation offloading, com-
putation resource allocation, the RIS phase shift and trans-
mission power optimization together via the proposed 
RIS-assisted DAEM scheme.

4 �  Proposed RIS‑assisted DAEM scheme 
for JCORA

minimization offloading (DAECO) algorithm for solving 
the CO subproblem, 2) the delay-constrained transmis-
sion-energy-minimization resource optimization (DCEM) 
algorithm for solving the PORA subproblem. By iteratively 
updating the mutually affected decisions of DAECO and 
DCEM in limited rounds, the solution of the JCORA prob-
lem is yielded.

A heuristic RIS-assisted DAEM scheme to solve the 
JCORA problem is designed. As illustrated in Algorithm 
1, the DAEM scheme consists of a) the DAECO algorithm 

(14a)CO ∶ min E
I
∗

(14b)s.t. (13b) (13c), (13d)

(14c)Λ = Λ
∗, � = �∗, � = �∗ ,

(15a)PORA ∶min E
Λ∗,�∗,�∗

(15b)s.t. (13b), (13e), (13f), (13g)

(15c)I = I
∗ .

for solving the CO subproblem, 2) the DCEM algorithm for 
solving the PORA subproblem. By iteratively updating the 
mutually affected decisions of DAECO and DCEM in lim-
ited rounds, the solution of the JCORA problem is yielded.
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In special, as illustrated in Algorithm 1, at the begin-
ning, we assume that all IoT devices are willing to offload 
their tasks to the edge server for computing. Then, we 
initiate the DAECO algorithm (see Algorithm 2) to update 
the offloading decisions of some IoT devices consider-
ing the present system state as well as the end-to-end 
delay of tasks and energy consumption of IoT devices. 
Next, we initiate the DCEM algorithm (see Algorithm 
3) to optimize the phase shift of the RIS and computa-
tion resource allocation at edge server for reducing the 
delay-constrained energy consumption of offloaded tasks. 
After that, we again calculate the end-to-end delay and 
energy consumption of all tasks. We compare the energy 
consumption of the pre- and after- DAECO and DCEM 
policy-interchanging-update. If the policy update reduces 
the energy consumption, then we repeat the DAECO and 
DCEM policy-interchanging-update process; otherwise, 
or, the iteration reaches the repeat count, we stop the 
policy-interchanging update, and yield the solution of 
the JCORA problem by joining the up-to-date solutions 
given by DAECO for the CO subproblem and DCEM for 
the PORA subproblem.

4.1 � DAECO for CO

Given the computation resource allocation policy of the 
edge server for offloaded tasks and the phase shift beam-
forming of the RIS as well as the transmission power, 
the end-to-end delay and energy consumption of the off-
loading tasks are determined. For the tasks determined to 
local computing, since per IoT device handles one local 
task in parallel, the end-to-end delay as well as energy 
consumption is also estimable. However, since the off-
loading decision switching of one IoT device would 
affect the end-to-end delay and energy consumption per-
formance of other IoT devices due to the computation 
resource sharing at the edge server and phase shift beam-
forming optimization for all offloading tasks, it is better 
to iteratively update the offloading decisions of some IoT 
devices for reducing the energy consumption constrained 
to delay requirement. Based on the above observation, we 
design an iterative delay-aware energy consumption mini-
mization offloading algorithm as illustrated in Algorithm 
2 for solving the CO subproblem. 
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As illustrated in Algorithm 2, in order to guarantee the 
end-to-end delay of as more as possible offloaded tasks, in 
each round of iteration, we choose an offloaded IoT device 
m′ who would experience the longest end-to-end delay, 
which generally has the worst link quality among offloaded 
IoT devices, even under the assistance of RIS. Then, we 
estimate its local computation delay and corresponding 
energy consumption. If its offloading decision switching 
could reduce the energy consumption constrained to delay 
requirement or satisfying the end-to-end delay requirement 
of the task, then we update its offloading decision (see lines 
7 and 13 of Algorithm 2); otherwise, the offloading decision 
is reserved (see lines 9 and 16 of Algorithm 2). We repeat 
the offloading decision switching steps until all offloaded 
IoT devices have been ergodic. After the ergodic process, 
we return the up-to-date offloading decision I∗ as well as 
local and offloaded IoT device sets ML* and MO* back to 
Algorithm 1 for assisting in solving the PORA subproblem 
and yielding the one-shot solution.

4.2 � DCEM for PORA

Given the off loading decision I∗ , the number of 
offloaded IoT devices MO* is also determined, then the 
PORA subpproblem is equivalent to the joint phase 
shift beamforming optimization, transmission power 
reduction and computation resource allocation for these 
offloaded tasks/IoT devices. We design a DCEM algo-
rithm to solve it.

As illustrated in Algorithm 3, the DCEM algorithm con-
sists of three subprocesses, computation resource allcation, 
iterative beamforming optimization and transmission power 
reduction. 
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Computation resource allocation: The computation 
resource of the edge server for the competing offloaded 
tasks is allocated based on the weighted fair policy. That 
is, the allocated computation resource of an offloaded task 
is proportional to its computing amount. The motivation of 
using the weighted fair policy is that, it provies a workload 
based fairness to all competing tasks. In addition, it is easy 
to implement with low time-complexity.

Iterative beamforming optimization: As shown in Eqs. 
(6) and (7), in the offloading case, the transmission power 
of the IoT devices and the upload delay mainly affect 
the energy consumption of IoT devices. Furthermore, 
as shown in Eqs. (2) and (3), optimizing the RIS phase 
shift Λ , the SNR could be improved, thus reducing the 
upload delay, leading to the energy consumption reduc-
tion. Accordingly, given the computation delay DO, CPU

m
 

∀m ∈ M
O at edge server and the transmission power p∗

m
 

∀m ∈ M
O , the energy consumption minimization problem 

for offloaded tasks/IoT devices is equivalent to the SNR 
maximization by reconfiguring the RIS phase shift prob-
lem (called BeamOpt), which is formulated as 

where Eq. (20a) follows Eq. (3), (20c) follows Eq. 
(13e).

Since

(20a)

BeamOpt ∶max
Λ∗

Ψ =

∑

m∈MO

Ψms.t. Ψm = |gHΛhI
m
+ hD

m
|2

(20b)Λ = diag(ej�1 , ej�2 ,… , ej�N )

(20c)0 ≤ �n ≤ 2�, n ∈ N

(20d)pm = p∗
m
.

the equality holds if and only if the phase of gHΛhI
m
 equals 

to that of hD
m
 [6]. Let arg(hD

m
) ≜ �m,0 , then, for any offloading 

IoT device m, to maximize Ψm is equivalent to maximize 
|gHΛhI

m
|2 constrained to arg(gHΛhI

m
) = �m,0.

Let v = (ej�1 , ej�2 ,… , ej�N )H  , then we have gHΛhI
m
=

vHdiag(gH)hI
m

 . Accordingly, with Eq. (21), the problem 
described in Eq. (20) is equivalent to 

For m ∈ M
O , the optimum |vHdiag(gH)hI

m
|2 is yielded 

by v∗
m
= ej(�m,0−arg(diag(g

H
)hI

m
)) . That is, the nth phase shift of 

RIS considering the user-specific channel quality could 
be given by

where gH
n
 is the nth element of gH , hI

n,m
 is the effective chan-

nel of the nth element of the RIS to IoT device m.
Since the angle of incidence from distinct IoT devices 

to the RIS may be different, as described in Eq. (23), the 
optimum � for distinct IoT devices might be different. In 
this case, we use a sum-SNR-maximization beamform-
ing optimization algorithm as illustrated in Algorithm 4 to 
iteratively search an optimum v∗ among v∗

m
 obtaining via 

Eq. (23) for an optimum Eq. (22a). The detail is illustrated 
in Algorithm 4.

(21)|gHΛhI
m
+ hD

m
| ≤ |gHΛhI

m
| + |hD

m
|,

(22a)max
v

∑

m∈MO

|vHdiag(gH)hI
m
|2

(22b)s.t |vn| = 1,∀n = 1, 2,… ,N

(22c)arg(vHdiag(gH)hI
m
) = �m,0,∀m ∈ M

O.

(23)
�m,n = �m,0 − arg(gH

n
hI
n,m

)

= �m,0 − arg(gH
n
) − arg(hI

n,m
),
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Transmission power reduction: Given fO*
m

 , the computa-
tion delay of offloaded tasks is determined, thus, the toler-
able data upload delay constrained to end-to-end delay could 

be estimated. Furthermore, as shown in Eq. (7) and Eq. (3), 
given the maximum tolerable upload delay DO,Tx

m
 , the trans-

mission power could be optimized for reducing the energy 
consumption. Accordingly, we use the method described in 
transmission power reduction of Algorithm 3 to derive the 
optimum transmission power for reducing the transmission 
energy consumption.

5 � Performance evaluation

Simulation results are provided in this section to demon-
strate the effectiveness of the proposed RIS-assisted DAEM 
for energy efficiency constrained to delay requirements.

5.1 � Parameter setting

In simulations, the number of IoT devices and passive 
reflecting elements in RIS are set to M = 20 and N = 20 , 
respectively. The positions of the base station and RIS are set 
to (0, 0, 0)m and (20, 0, 0)m, respectively. The IoT devices 
are randomly distributed in a circular zone, where the mini-
mum and maximum horizontal (x-axis) distances from the 
base station are dmin = 50 m and dmax = 55 m respectively, 
the radius of the circular zone is set to r = (dmax − dmin)∕2 , 
while the vertical (z-axis) distance is set to dv = 3 m from the 
base station, as illustrated in Fig. 2. The large-scale fading 
model is given by L(d) = C0(d)

−a [32], where C0 = −30dB, 
� for IoT devices to BS, IoT devices to RIS, and RIS to BS, 
are set as 5, 2.8, 2 respectively.

The computation capabilities of the edge server and 
IoT device are set to fO = 20 GHz and f L

m
= 0.6GHz for 

m ∈ M , respectively. The task size is randomly distributed 
between 0.5Mb and 0.8Mb in bits, corresponding to 2.95G 
CPU cycles and 4.72G CPU cycles, respectively. The 
delay bound of a task is set to dTh

m
= 10 ms for m ∈ M . The 

other parameters are set as follows: �0 = 10−11 , � = 1.0 , 
� = 0.25 × 10−18.

Fig. 2   Simulation setup (top view)
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This paper evaluates the efficiency of the proposal with 
the following four benchmarked schemes.

•	 Local computing Greedy (LG): All tasks are computed 
at local source nodes [32].

•	 RIS-assisted Edge computing Greedy (RIS-assisted EG): 
All tasks are offloaded to the edge server via the RIS-
assisted wireless network for edge computing. In special, 
the offloading decisions are made according to the edge 
computing greedy policy [36]. The optimum phase shift 
of the RIS is solved via semi-definite relaxation (SDR) 
method as described in [6, 30], while the optimum trans-
mission power is determined with the delay-aware energy 
minimization transmission policy as shown in lines 9-10 
of Algorithm 3.

•	 Delay-Constrained Computation Offloading without RIS 
(DCCO): The offloading decisions are made according 
to the delay requirements of tasks. That is, an offload-
ing policy satisfying the delay bound of a task is chosen 
[36]. For the task determined to local computing, similar 
method as described in line 4 of Algorithm 1 is used to 
allocate CPU resource of local computing nodes to local 
computing tasks. For the tasks determined to edge com-
puting, delay-constrained energy minimization transmis-
sion policy (similar to Algorithm 3) is adopted.

•	 Energy-efficient Task Offloading Strategy (ETOS): 
ETOS is a hybrid method based on particle swarm 
optimization (PSO) and grey wolf optimizer (GWO) 
to solve the energy-efficient task offloading problem, 
which considers efficient resource allocation such as 
sub-carries, power, and bandwidth for offloading to 
guarantee minimum energy consumption along with 
satisfying delay requirements [37].

To evaluate the delay guarantee capability of the investigated 
schemes, we introduce a delay guarantee ratio defined as follows.

The higher of G, the higher delay guarantee capability of the 
investigated scheme.

5.2 � Adaptive to task size

First, we investigate the impact of the task size on the 
energy efficiency constrained to delay requirement. As 
shown in Fig. 3, the energy consumptions of all the inves-
tigated schemes increase with the increasing task size, 
which is accordance with our intuition. The DCCO, ETOS 
and RIS-assisted DAEM schemes outperform the LG and 
RIS-assisted EG schemes by given lower energy consump-
tion under various task sizes, which demonstrates that the 

(24)G =
The number of delay guaranteed tasks

Total tasks
× 100%.

device-edge collaborative computation offloading schemes, 
which consider the delay requirements and energy-effi-
ciency, outperform both of the device-single and the edge-
single computation offloading schemes.

RIS-assisted DAEM outperforms the other investigated 
schemes by always consuming the lowest energy and pro-
viding the highest delay guarantee ratio under various task 
sizes, as illustrated in Figs. 3 and 4. This is because, under 
RIS-assisted DAEM, the IoT device would adaptively select 
a computing node (e.g., local node or edge server) for energy 
reduction constrained to the delay requirement of the corre-
sponding task. In addition, energy efficiency resource alloca-
tion algorithms, such as delay-constrained CPU rate alloca-
tion and delay-aware transmission power determination, as 
well as phase shift beamforming optimization are collabo-
ratively used in RIS-assisted DAEM to further improve the 
energy efficiency.

Fig. 3   Energy consumption with respect to task size

Fig. 4   Delay guarantee ratio with respect to task size
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LG provides the worst performance by given the highest 
energy consumption (see Fig. 3). In addition, when the task 
size exceeds 0.7MB/task (equivalently, the CPU computing 
amount exceeds 4.13 G CPU cycles/task), the delay guar-
antee ratio given by LG decreases quickly. When the task 
size reaches 1.1 MB/task (equivalently, the CPU computing 
amount reaches 6.49 G CPU cycles/task), the delay guaran-
tee ratio given by LG reduces to zero, as illustrated in Fig. 4. 
This is because, without the computation assistance of edge 
server, the limited computation resource of an end device 
is difficult to support the low-delay and high performance 
computation tasks.

Notice that, when the average task size reaches 0.7MB/
task (equivalently, the CPU computing amount reaches 4.13 
G CPU cycles/task), the average workload of the system has 
been 2.6 times of the MEC system’s computing capacity. 
Therefore, it is unsurprising that, when the average task size 
exceeds 0.7MB/task, the delay guarantee ratio given by all 
the investigated schemes decrease with the increasing task 
size. However, RIS-assisted DAEM outperforms the other 
investigated schemes by providing the highest delay guaran-
tee ratio under various task sizes. For example, as illustrated 
in Fig. 4, when the task size reaches 1.5 MB/task, the aver-
age workload of the system has been 5.53 times of the MEC 
system’s computing capacity (severe heavy load state), the 
delay guarantee ratio given by RIS-assisted DAEM could 
still be greater than 40%, while those given by LG and RIS-
assisted EG has reached zero.

When the workload is slight (e.g., the task size is less than 
0.5 MB/task), RIS-assisted EG consumes similar energy 
with DCCO and ETOS. However, when the task size con-
tinually increases, the energy consumption of RIS-assisted 
EG increases quickly and exceeds that of DCCO and ETOS, 
as shown in Fig. 3. This is because, although the assistance 
of RIS could reduce the transmission energy consumption, 
however, under the full offloading scheme (e.g., RIS-assisted 
EG), the transmission energy consumption is still larger than 
those of the partial offloading schemes (e.g., DCCO, ETOS 
and RIS-assisted DAEM).

5.3 � Adaptive to user number

We further observe the performance by varying the num-
ber of IoT devices. We set the delay bound to dTh

m
= 6 ms 

for m ∈ M . Other parameters are the same as described in 
Section 5.1.

The energy consumption and delay guarantee ratio of the 
investigated schemes are shown in Figs. 5 and 6, respec-
tively. Since the number of tasks increases with the increas-
ing number of IoT devices, it is unsurprising that the energy 
consumption given by all the investigated schemes increases 
with the increasing number of IoT devices.

The effectiveness of RIS-assisted DAEM is again vali-
dated by given the lowest energy consumption (see Fig. 5) 
while providing the highest delay guarantee ratio (see Fig. 6) 
under various IoT device numbers. This is because, RIS-
assisted DAEM can dynamically switch between local com-
puting and edge server computing adaptive to the varying 
of IoT device numbers to reduce the energy consumption 
considering the tolerable delay of tasks.

LG again consumes the highest energy for processing 
similar tasks in comparison with other investigated schemes 
under various number of IoT devices, as illustrated in Fig. 5. 
However, the delay guarantee ratio given by LG is stable 
under various number of IoT devices, as shown in Fig. 6. 
This is because, the per user’s local processing task under 
LG does not change with the varying of IoT user numbers. 
Thus, it is unsurprising that the delay guarantee ratio given 
by LG would not change with the varying of IoT user num-
bers. The delay guarantee ratio given by RIS-assisted EG 

Fig. 5   Energy consumption with respect to IoT user number

Fig. 6   Delay guarantee ratio with respect to IoT user number
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decreases quickly with the increasing number of users, as 
illustrated in Fig. 6. The reason is that, with the increasing 
number of users, the offloading workload given by the full 
offloading scheme (e.g., EG and its variants) increases the 
fastest in comparison with partial offloading schemes (e.g., 
DCCO, ETOS and RIS-assisted DAEM). The delay guaran-
tee ratio given by DCCO is better than that by ETOS, since 
DCCO takes delay guarantee as its optimum object, while 
ETOS takes energy-efficiency as its optimum object. Thus, 
the energy consumption of ETOS is less than that of DCCO, 
as shown in Fig. 5.

5.4 � Adaptive to delay bound

Finally, we investigate the impact of delay bound on the 
performance. We can see in Fig. 7 that, the energy consump-
tion of RIS-assisted EG, DCCO and RIS-assisted DAEM 
decrease with the increasing delay bound. The reason is 
that, DCCO and RIS-assisted DAEM are delay-aware com-
putation offloading schemes, they can dynamically switch 
between local computing and edge server computing for 
delay guarantee. Furthermore, the allocated CPU rate as well 
as the transmission power could be reduced with the loos-
ing delay bound. Therefore, the energy consumption given 
by both DCCO and RIS-assisted DAEM decrease explicitly 
with the increasing delay bound. Under RIS-assisted EG, the 
allocated CPU rate and the transmission power could also 
be reduced with the loosing delay bound, thus the energy 
consumption of RIS-assisted EG also decreases with the 
increasing delay bound.

Since LG is delay-unaware scheme, the energy consump-
tion of LG does not change with the varying of delay bound, 
as shown in Fig. 7. Since under ETOS, the varying of delay 
bound in a small range (e.g., a low delay bound in a range of 
1ms to 10ms) has less impact on the offloading decisions in 

comparison with the energy consumption, the energy con-
sumption (equivalently, offloading decision) of ETOS does 
not change with the varying of delay bound. Indeed, as shown 
in Fig. 7, the varying of energy consumption given by ETOS 
is due to the varying of wireless transmission environment.

Compared to the workload (task request), the CPU 
resource of both IoT device and edge server is not sufficient 
for extremely low delay (e.g., < 8ms) provisioning in the 
simulation setting, furthermore, the distance between data 
source (IoT device) and base station is a little far ( > 50m ), 
it is unsurprising that all the investigated schemes could not 
bound the delays of all tasks when the delay bound is less 
than 8ms, as illustrated in Fig. 8. However, the delay-aware 
offloading schemes, such as DCCO and RIS-assisted DAEM, 
still outperforms the delay-unaware offloading schemes, such 
as LG, RIS-assisted EG and ETOS. Indeed, the increasing of 
delay guarantee ratio given by LG and ETOS is mostly due 
to the statistical property.

The effectiveness of RIS-assisted DAEM is again vali-
dated by that, the energy consumption given by RIS-assisted 
DAEM reduces faster and is lower than those of the other 
investigated schemes when dTh ≥ 3ms, in addition, the delay 
guarantee ratio given by RIS-assisted DAEM increases faster 
and is higher than those of the other investigated schemes, 
as illustrated in Figs. 7 and 8, respectively.

6 � Conclusion

This paper has proposed a RIS-assisted device-edge col-
laborative edge computing scheme, termed RIS-assisted 
DAEM, for addressing the problem of energy consumption 
minimization constrained to the delay requirements in IIoT 
environments. In the proposal, a RIS is deployed between 
IoT devices and edge server for improving the wireless Fig. 7   Energy consumption with respect to delay bound

Fig. 8   Delay guarantee ratio with respect to delay bound
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performance. To find out optimum offloading decisions, 
e.g., local computing or edge computing, a DAECO algo-
rithm is proposed to address the CO subproblem. To find out 
optimum phase shift of RIS, computation resource alloca-
tion strategy at edge server and transmission power at IoT 
devices, for offloading tasks, the DCEM algorithm is pro-
posed to solve the PORA subproblem. By joining the up-to-
date solutions of CO and PORA via iterative RIS-assisted 
DAEM, the goal of energy consumption minimization 
constrained to the delay requirements is yielded. Simula-
tion results show that the proposed scheme can significantly 
reduce the energy consumption of IoT devices constrained 
to the delay requirements. RIS-assisted DAEM also outper-
forms the benchmarked schemes in terms of delay guarantee.
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