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Abstract
Mobile crowdsensing (MCS) has been an effective sensing paradigm by exploiting the pervasive sensor-rich mobile devices 
for sensor data collection. Online task assignment is an important issue for mobile crowdsensing since tasks typically arrive 
dynamically and need to be handled in an online manner. In this paper, we study online task assignment for maximizing the 
total profit of the MCS platform while satisfying the time window requirement of each task. We first describe the crowd-
sensing model and then study the online task assignment in the following two different scenarios: (1) user-offline-arriving 
scenario, where all users are fully available throughout the whole sensing period and their movements are fully planned by 
the platform; (2) user-online-arriving scenario, where users arrive and depart dynamically and each user has a specific par-
ticipatory time window for task executions. For the former scenario, we propose a benchmark algorithm and also an online 
heuristic algorithm. The benchmark algorithm tries to provide a best-case performance by assuming all future task arrival 
information is known in advance. The online algorithm adopts bipartite-matching-based strategy for task assignment and 
further performs minimal detour based data offloading for reducing the data upload cost, whenever possible. For the latter 
scenario, we propose an effective online algorithm, which adopts a maximum-profit-first strategy for task assignment and also 
minimal detour based data offloading for reduction of data upload cost whenever applicable. For all the proposed algorithms, 
we present their detailed design and deduce their time complexities. Extensive simulations are conducted and the results 
demonstrate that our proposed algorithms can largely increase the total profit of the platform as compared with existing work.

Keywords Mobile crowdsensing · Online task assignment · Data offloading

1 Introduction

With the pervasiveness of smart devices and rapid develop-
ment of new wireless communication techniques, Mobile 
crowdsensing (MCS) [1, 2] has been an effective sensing 
paradigm. In mobile crowdsensing, users can utilize their 
carried mobile devices to complete various sensing tasks. 
Compared with other Internet of Things (IoT) paradigms, 
mobile crowdsensing has good scalability, large spatial–tem-
poral coverage, and high sensing quality. Nowadays, mobile 
crowdsensing has been widely used in many scenarios such 
as monitoring urban traffic, detecting surrounding air qual-
ity, identifying noise pollution level, and indoor localization, 
etc. (see [3–8]).

Task assignment is a critical issue in mobile crowdsens-
ing. Recently, much work has been done for improving the 
task assignment performance [9–18]. The composition of a 
typical crowdsensing system is generally as follows: mobile 
users, task requesters, and service platform. The service 
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platform is responsible for organizing and managing the 
crowdsensing system. It receives tasks from task requesters 
and assigns the tasks to suitable mobile users. According 
to the sensing mode of users, mobile crowdsensing can be 
divided into the following two types [9]: 1) opportunistic 
sensing; 2) participatory sensing. For opportunistic sens-
ing, users follow their daily routes and perform tasks in an 
opportunistic manner and their routes are in general deter-
mined by the users’ habits and customs and will not change 
due to the locations of tasks. For participatory sensing, users 
are required to go directly to the locations of their under-
taken tasks for task executions. In this case, their routes are 
fully or partially planned by the service platform. According 
to the task arrival pattern, task assignment can be divided 
into offline task assignment and online task assignment, 
where the former assumes all the tasks arrive before the 
task assignment while the latter assumes tasks arrive at the 
platform dynamically and are handled in an online manner. 
In this paper, we focus on studying online task assignment in 
participatory sensing. The main challenge in this case is how 
to design efficient task assignment algorithms for maximiz-
ing the platform profit while considering the time sensitivity 
of tasks, distribution of users, and also uncertainty of the 
task arrivals and their distributions.

In the literature, some online task assignment algorithms 
(e.g., [19–22]) have been proposed to enable efficient par-
ticipatory sensing. These studies all assume that tasks have 
specific time window(s), and only users who can reach the 
location of a task within the task time window are eligi-
ble to complete the task. However, these algorithms did not 
consider the required task performing time in their designs. 
They mainly focused on simple sensing activities (such as 
photo taking) and assumed that each of the tasks can be 
completed immediately once a user reach the corresponding 
task location. In practice, the task performing time of many 
tasks (e.g., traffic flow monitoring, noise detection) are often 
non-negligible. These tasks last for a certain period of time 
and require continuous sensing data. Although some work 
(e.g., [23–25]]) took the task performing time into account, 
they focused on opportunistic crowdsensing and further did 
not consider how to reduce the task result upload cost (e.g., 
when cellular traffic is used) in their algorithm design. Thus, 
effective data offloading via complimentary WiFi based 
Internet accessing is very important to improve the profit of 
the service platform, which is also a research focus of our 
work in this paper.

In this paper, we study time window-based online 
task assignment in participatory sensing. The objective 
is to maximize the service platform’s profit. We divide 
the sensing period into multiple equal-length timeslots. 
At the beginning of each timeslot, task requesters submit 
task request(s) to the service platform. Each of the tasks 
has a specific location for data collection and further is 

associated with an executing time window, which repre-
sents the duration of the task. More specifically, a recruited 
user must continuously conduct data collection within the 
specified time window of target task at the corresponding 
task location. According to different ways of user arriv-
als, in this paper, we consider two user arrival scenarios/
patterns: user-offline-arriving scenario and user-online-
arriving scenario. The former means that all users arrive 
at the platform before the task assignment and are fully 
available all the time. The latter means that users arrive 
and leave dynamically and each of them is available for 
task execution just for a certain period of time. We intro-
duce the crowdsensing system under study and describe 
the above two scenarios in details according to the user 
arrival patterns. We formulate the optimization problem 
for either scenario and accordingly propose efficient algo-
rithms for both scenarios. Our main contributions in this 
paper are listed as follows:

• For the user-offline-arriving scenario, we first formu-
late the corresponding profit-maximization problem and 
then propose a benchmark algorithm and an online task 
assignment algorithm. The benchmark algorithm tries to 
provide a best-case performance by assuming all future 
task arrival information is known in advance. The online 
algorithm performs per-slot based bipartite-matching by 
using the Kuhn-Munkres algorithm for task assignment 
and adopts minimal detour based data offloading for 
maximally reducing the data upload cost, if such offload-
ing is beneficial. We present detailed designs for both 
algorithms and deduce their computational complexities.

• For the user-online-arriving scenario, we formulate the 
profit-maximization problem for this case and propose an 
online task assignment algorithm, which adopts a greedy 
maximum-profit-first strategy for task assignment and 
performs minimal detour based data offloading for effec-
tively reducing data upload cost, if possible. We present 
its detailed algorithm design and deduce its computa-
tional complexity.

• We conduct extensive simulations for performance evalu-
ation and the results validate the high efficiency of our 
proposed algorithms.

In our earlier work [10], we focused on studying the user-
offline-arriving scenario and proposed effective online task 
assignment algorithms. Compared with [10], the following 
new contributions are made in this paper: 1) For the user-
offline-arriving scenario, we present a benchmark algorithm, 
which is to provide a best-case performance for comparison 
purpose; 2) For the user-online-arriving scenario, which was 
not investigated in [10], we here formulate the optimization 
problem under study for this case and accordingly propose 
an effective online task assignment algorithm. 

1070



Peer-to-Peer Networking and Applications (2023) 16:1069–1087 

1 3

The rest of this paper is organized as follows. In Sec-
tion 2, we give a brief review of related work. In Section 3, 
we introduce the system model. In Sections 4 and 5, we for-
mulate the problems for different scenarios and accordingly 
propose effective polynomial algorithms. In Section 6, we 
perform extensive simulations for performance evaluation. 
Finally, in Section 7, we conclude this paper.

2  Related work

Much work has been done for achieving high task assign-
ment performance in mobile crowdsensing. According to 
whether the tasks are time sensitive, existing task assign-
ment algorithms can be divided into two categories: time 
insensitive task assignment and time sensitive task assign-
ment. In the following, we will introduce typical work falling 
into either category.

2.1  Time insensitive task assignment

For time insensitive task assignment, tasks do not have spe-
cific start time and end time, and can be executed at any 
time. According to the sensing mode used, existing work in 
this area can be further categorized into participatory time 
insensitive task assignment algorithms and opportunistic 
time insensitive task assignment algorithms.

Some typical work for participatory time insensitive task 
assignment is as follows. In [11], the authors studied how to 
maximize the total profit subject to budget constraint. They 
first proved the NP-hardness of this problem and then pro-
posed an approximation algorithm, which decomposes the 
original problem into several sub-problems. In [26], the 
authors tried to minimize the incentive payout while ensuring 
the task quality. They accordingly designed an approximate 
algorithm based on greedy strategy for task assignment. Ref. 
[27] studied a platform-centric task assignment problem and 
proposed a genetic algorithm. Ref. [28] studied participatory 
sensing in two different scenarios according to the difference 
in number of tasks and number of users. The first scenario is 
when number of tasks are more than that of users. For this 
scenario, the paper studied how to minimize the total traveling 
distance of users and also maximize the total number of com-
pleted tasks. Then two optimal algorithms are designed for 
this scenario. The second scenario is that there are more users 
than tasks. The design goal for this scenario is to minimize 
the payment to users and also minimize the recruited users’ 
traveling distance. For this scenario, two heuristic algorithms 
were proposed.

Some typical work for opportunistic time insensitive 
task assignment is as follows. In [29], Peng et al. studied 
AP-assisted online task assignment while minimizing the 
average finishing time and largest finishing time of all tasks, 

respectively. They first derived the expected finishing time of 
a task by considering the opportunistic exchanging of tasks/
results via APs, then they proposed two online algorithms 
which utilize the communication ability of APs to mini-
mize the average makespan and largest makespan of tasks, 
respectively. Ref [30]. was aimed at maximizing task quality 
based utility subject to incentive constraint. The authors first 
proved the NP-hardness of the utility maximization problem 
and then proposed an approximate algorithm by leverag-
ing the submodular property of the objective function they 
adopted.

2.2  Time sensitive task assignment

Much work for time sensitive task assignment assumes 
that each task is associated with a specific time window 
and needs to be executed during its specified time win-
dow. Among the existing work in this aspect, some did not 
consider the task execution time and some other did. For 
the former, users passing by the sensing location of a task 
within the corresponding time window can perform the task 
in negligible time. For the latter, users need to execute the 
task continuously within the corresponding time window at 
given location.

Some existing work without considering task execution 
time is as follows. In [20], the authors studied the maxi-
mization of total task qualities subject to individual user 
travel distance constraints. They proposed four online heu-
ristic algorithms for this case. In [22], the authors focused 
on maximizing the platform’s profit. For this problem, they 
proposed one offline algorithm and three online algorithms.

Existing work considering the task execution time is as 
follows. Ref [23]. was aimed to minimizing the social cost 
of task performing in opportunistic sensing while ensur-
ing the completion of tasks. The authors formulated this 
problem and considered two different scenarios based on 
whether users have multiple time windows for task perform-
ing. They proposed corresponding user selection algorithms 
for different scenarios. In [24], Xu et al. aimed to minimiz-
ing the payment for recruiting users. They modeled the 
recruitment scenario as a reverse auction process. Then an 
incentive mechanism was proposed for rewarding selected 
users. In [25], Sun et al. studied the maximization of data 
benefit while ensuring that the task period can be covered by 
recruited users. Then they designed an optimal user selection 
algorithm for this problem. One big issue in the above work 
is that they did not consider how to minimize the upload cost 
of task result. When the data amount of task result is large, 
such lack of consideration on upload cost can largely affect 
the profit of the platform. In this paper, we shall consider use 
of data offloading, whenever possible, to reduce the upload 
cost as much as possible.
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3  System model

This section first introduces the crowdsensing system under 
study, and then describes various models in the crowdsens-
ing system in details.

3.1  System overview

Figure 1 gives an overview of the mobile crowdsensing sys-
tem under study, which is composed of the following major 
components: users, APs, task requesters, and service plat-
form. The MCS system works in an online fashion. Time 
is divided into q equal-length timeslots, denoted as L = {l1, 
l2, …, lq}. Tasks arrive at the platform at the beginning of 
timeslots. The tasks are time window-specified, location-
dependent, and are published by the requesters on the plat-
form. To ensure the timely completion of the tasks, the 
platform needs to recruit certain mobile users. Since each 
task has strong data integrity requirement, a recruited user 
needs to continuously execute the task at designated task 
location. In order to have more qualified user candidates 
for task executions, each task requester should submit task 
requests to the platform T timeslots (T ≥ 1) before their 
desired data collections start. For example, if a task actually 
starts from timeslot l, then the corresponding task request 
should be submitted to the platform at timeslot l – T. Here, 
T is in general a small integer. Upon receipt of such a task, 
the platform is supposed to immediately assign the task to an 
available user, if possible. A user with assigned task(s) needs 
to sequentially visit the task location(s) during their respec-
tive time period(s) to accomplish the corresponding task(s), 
respectively. After a task is accomplished, the task result 
needs to be uploaded to the platform in a certain period of 
time. Here, we assume that a user must submit the result of 
a task within K timeslots once completing a task. After sub-
mitting the task results, a user can get certain incentive from 

the platform. Finally, the requester can get the task result 
from the platform and should give corresponding reward to 
the platform. The amount of reward provided for the execu-
tion of a task is determined by the task requester according 
to the value of the task and is known at the platform. In this 
way, the platform is able to earn profit by recruiting users 
for task completions. It needs to be pointed out that if the 
execution of a task will cause negative profit at the platform, 
the platform will reject such task without recruiting any user 
for its completion. This design choice is reasonable because 
a platform is supposed to be unwilling to take unprofitable 
tasks. Table 1 lists major notations used hereafter.

According to the ways users arrive at the platform, in 
this paper, task assignment is studied in the following two 
scenarios.

User-Offline-Arriving scenario: All users are assumed to 
have arrived at the platform before the task assignment 
and each of them will be available all the time for task 
executions. In the whole sensing period, the movements 
of all the users are fully planned by the service platform 
for task accomplishment.
User-Online-Arriving scenario: Users arrive at the plat-
form dynamically. Specifically, each user is associated 
with the following information: a start location, a pre-
determined destination, a constant moving speed, and the 
deadline for the user to reach his destination. A user can 
take detour to accomplish certain task(s) provided that he 
can still reach his destination before the given deadline.

3.2  System models

In this subsection, we introduce the following four models 
in the crowdsensing system: user model, task model, data 
upload model, and incentive model.

Fig. 1  Overview of the mobile 
crowdsensing system
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User model Denote the set of users in the system by U = {u1, 
u2, …, um}. All the users have registered at the platform. We 
assume each user carries a smart device and all the devices 
are equal and eligible for accomplishing any task published 
by the platform. The location of a user can be obtained via 
equipping a GPS receiver at the user side and such informa-
tion needs to be periodically reported to the platform once a 
user logins to the system. Denote the moving speed of user 
ui ∈ U as vi. It is assumed that any user can execute at most 
one task at a time. If a user is chosen to undertake a task, he 
must move to the corresponding task location for the task 
execution before the task starts. For the user-online-arriving 
scenario, the following additional information is needed: 
Each user needs to indicate his target destination and also 
a deadline for him to reach the destination. Each user must 
report all the travel related information to the platform upon 
his arrival.

Task model Denote the set of all tasks as J. Since there are 
totally q timeslots, we have J = {J1, J2,…, Jq}, where Jl ∈ J 
(1 ≤ l ≤ q) represents the set of tasks arrived in timeslot l. 
Let nl represent the number of task arrivals in timeslot l, we 
have Jl = { j1

l
 , j2

l
 , …, jnl

l
 }. A task jk

l
 ∈ Jl can be represented 

by a tuple { lock
l
 , sk

l
 , ek

l
 , rk

l
 }, where lock

l
 is the location of the 

task, sk
l
 is the start timeslot of the task, ek

l
 is the end timeslot 

of the task, rk
l
 is the reward of the task that the platform 

can receive from the task requester.The task execution time 

window associated with jk
l
 is [ sk

l
 , ek

l
 ]. Obviously, we have 

sk
l
= l + T  and ek

l
 ≥ sk

l
 . To ensure the data integrity of a task, 

a user who performs the task must collect sensing data con-
tinuously in the required time window at the corresponding 
task location. We assume the time window length is always 
an integer number of timeslots. Therefore, the execution of 
a task jk

l
 should start at the beginning of sk

l
 and terminate at 

the end of ek
l
 . We assume each task only needs to be executed 

once and it can be accomplished by any user. Once the task 
is completed, the task result must be uploaded to the plat-
form within K timeslots.

Data upload model After a task is completed, the user 
should upload the sensing result of the task. In the system, 
two ways for data uploading can be used: 1) cellular net-
works, 2) WiFi based access points (AP) (with preference 
if applicable). The former will cause certain fee while the 
latter is complimentary. The whole sensing area is assumed 
to be fully covered by cellular services. Thus a user can 
always upload his collected sensing data via cellular traf-
fic at any time, but with a certain uploading cost. For WiFi 
based APs, they are randomly distributed in the map and 
their service coverage is limited. A user can only upload task 
results through an AP when he is in or passes by the cover-
age of the AP. Due to the high-speed properties of 4G/5G/
WiFi, similar to [31], we in this paper assume the data rate 
for result uploading is very high and thus the corresponding 
data uploading time is negligible compared with the travel 
time of users among different task locations. The choice of 
data uploading mode depends on the following aspects: the 
deadline for data uploading, the location of the completed 
task, and the coverages of the deployed APs.

Incentive model In general, the total incentive that a user 
can obtain for performing a task is affected by the cost 
caused in the user’s execution of the task. In order to effec-
tively attract users to perform tasks, we assume that each 
user can get certain bonus once he completes a task. There-
fore, the incentive defined here includes travel cost, upload 
cost, and bonus. Accordingly, the incentive provided to user 
ui for his accomplishment of a task jk

l
 is calculated as below:

where cost_distk
li
 is the travel cost for task accomplishment, 

uploadk
l
 is the uploading cost for the result of task jk

l
 , and 

bk
l
 is the bonus that the platform gives a user for his accom-

plishment of the task. We in this paper adopt linear functions 
for the computation of incentive. In fact, how the incentive 
for task execution is computed can be adjusted according 
to specific application scenarios, which does not affect the 
usability of our task assignment algorithm. More details 
about the incentive computation are as follows.

(1)Incentivek
li
= cost_distk

li
+ uploadk

l
+ bk

l
,

Table 1  Notations used

Notations Definitions

ui, U A user ui and the set of all users
jk
l
, Jl, J The kth task arrived in timeslot l, the set of tasks arriv-

ing in timeslot l, and the set of all tasks

lock
l
, s

k

l
, ek

l
Location, start timeslot and end timeslot of task jk

l

ai, fi Arriving timeslot and leaving timeslot of user ui

vi Moving speed of user ui

rk
l

Reward of task jk
l

bk
l

Bonus for a user to finish task jk
l

tk
l

Time window length of task jk
l

m Total number of users
n Average number of task arrivals in a timeslot
w Total number of APs
nl Number of task arrivals in timeslot l
q Total number of timeslots
Kd Unit distance cost for traveling
Dt Data amount of unit time
C Unit upload cost, i.e., cost for use of unit cellular traffic
Kt Unit task bonus, i.e., bonus for execution of unit task
K Maximum upload deadline for task result uploading
xk
li

Binary decision variable between user ui and task jk
l

xl Task assignment result of timeslot l
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The travel cost is assumed to be proportional to the travel 
distance, which can be computed as follows:

where dk
li
 is the travel distance for user ui to reach task jk

l
 , and 

Kd is the travel cost per unit distance.
Before defining the upload cost and bonus, we first define 

the time window length of a task. For a task  jk
l
∈ Jl, its time 

window length is calculated as below:

In practice, it is plausible to treat the time window length 
of a task as its task workload.

The upload cost of task result is thus proportional to the 
task’s time window length when cellular traffic is used or 
zero when WiFi based Internet accessing is used. Accord-
ingly, the upload cost uploadk

l
 for task jk

l
 is computed as 

below:

where Dt is the amount of data collected in unit time, and 
C is the price for uploading unit data amount by using cel-
lular traffic.

The bonus that a user can obtain for performing a task is 
also proportional to time window length of the task, which 
is calculated as below:

where Kt represents the bonus for performing a task with 
unit time duration.

The profit that the platform can earn for the execution 
of task jk

l
 thus equals the corresponding reward rk

l
 minus 

the incentive provided to its executing user ui, which is as 
follows:

4  User‑offline‑arriving task assignment: 
problem and algorithms

In this section, we study the task assignments in the user-
offline-arriving scenario such that all the users are fully 
available throughout the whole sensing period and all their 
trajectories are purely planned for task accomplishments as 
necessary.

We first formulate the profit maximization problem for 
this scenario and demonstrate the NP-hardness of this prob-
lem. To address this issue, we design a benchmark algorithm 

(2)cost_distk
li
= dk

li
∗ Kd,

(3)tk
l
= ek

l
− sk

l
+ 1.

(4)uploadk
l
=

{

tk
l
∗ Dt ∗ C Cellular Network

0 AP
,

(5)bk
l
= tk

l
∗ Kt,

(6)profitk
li
= rk

l
− Incentivek

li
.

and an online algorithm. The benchmark algorithm assumes 
that all future task arrival information is known in advance 
and thus provides a theoretical best case performance. The 
online algorithm assumes dynamic task arrivals. It adopts 
per-slot-based bipartite graph matching algorithm for task 
assignment and reduces the upload cost via data offload-
ing (referred to as BMA-RUA). A common feature of these 
two algorithms is that both of them iteratively optimize the 
task assignment in each individual timeslot, starting from 
the first timeslot, by using bipartite graph matching. The 
key difference between them is as follows. The benchmark 
algorithm adopts earliest end timeslot first strategy in the 
task assignment due to its assumption of full availability of 
all future task information. In contrast, the online algorithm 
works in a task-arrival-triggered manner and adopts earliest 
start timeslot first strategy in the task assignment due to its 
assumption of dynamic task arrivals.

4.1  Problem formulation

Denote the task assignment result between user ui and task 
jk
l
 as xk

li
 . If task jk

l
 is assigned to user ui, we have xk

li
 = 1, 

otherwise, xk
li
 = 0. Then the profit maximization problem for 

the user-offline-arriving scenario is formulated as follows:

Constraint (8) ensures that a task can be assigned to at 
most one user. Constraint (9) ensures that a user can perform 
at most one task in any timeslot. Constraint (10) guarantees a 
user can only complete those tasks, whose sensing locations 
can be reached by the user within T timeslots. In (7)-(11), 
since xk

li
 is a binary decision variable, the task assignment 

problem in user-offline-arriving scenario is a 0–1 integer 
linear programming problem, which is known to be NP-hard.

Obviously, seeking the global optimal solution using 
exhaustive search is very time consuming. Next, we study 
how to achieve optimal task assignment for each individual 
timeslot and accordingly design two heuristic algorithms.

(7)max

q
∑

l=1

m
∑

i=1

nl
∑

k=1

profitk
li
∗ xk

li
,

(8)s.t.
∑m

i=1
xk
li
≤ 1,∀l ∈ L, jk

l
∈ Jl.

(9)
nl
∑

k=1

xk
li
≤ 1,∀l ∈ L, ui ∈ U.

(10)
dk
li

vi
∗ xk

li
≤ T ,∀ui ∈ U, l ∈ L, jk

l
∈ Jl

(11)xk
li
∈ {0, 1},∀ui ∈ U, l ∈ L, jk

l
∈ Jl.
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4.2  Benchmark algorithm

In this subsection, we present a benchmark algorithm, which 
assumes that all the future task information is known in advance. 
That is, all the user- and task-related information are known in 
advance. Use of brute-force or branch-and-bound search for the 
optimal solution could be extremely time-consuming. Instead of 
pursuing such global optimal solution, we here seek for optimal 
task assignment for each individual timeslot.

The main idea behind the benchmark algorithm is as fol-
lows. It first ranks all the tasks in an increasing order of end 
timeslots. For the task assignment, it adopts an earliest end 
timeslot first strategy, i.e., the tasks with earliest end timeslot 
are assigned first. Such a greedy strategy can leave more 
time for users to perform tasks in the future. For each times-
lot, it makes optimal matching between the users and the 
tasks ending in the timeslot. To achieve the per-slot optimal 
matching, the task assignment problem is transformed into 
a bipartite graph matching problem by constructing a bipar-
tite graph. For a timeslot, tasks ending in the timeslot and 
all the users can be regarded as the vertices of the bipartite 
graph. For each user-task pair, it is connected by an edge, 
whose weight is the profit that the platform can earn from 
the corresponding user-task pair, which can be calculated by 
using (6). Specifically, for a task x, if a user ui cannot reach a 
task x’s location in time (i.e., reaching there before the start 
timeslot of x, by starting the movement immediately if the 
user is not currently undertaking any task or after the user 
finishes his last undertaken task), or his accomplishment 
of the task does not bring positive profit for the platform, 

the weight of the corresponding edge between them will be 
set to 0.1 Then, the Kuhn-Munkres algorithm [32] is used 
to achieve per-slot optimal bipartite graph matching. Obvi-
ously, such per-slot optimization cannot yield the global 
optimal solution of the whole sensing period.

Algorithm 1 gives the detailed procedure of the benchmark 
algorithm. The variable profit records the total profit that the 
platform earns. Line 1 initializes necessary variables. Line 2 
sorts all tasks according to their end timeslots. Lines 3–10 per-
form task assignment. Specifically, lines 5 and 6 construct the 
bipartite graph and perform the corresponding matching. Lines 
7–10 update all variables. Note that the variable l in line 1 means 
task ending timeslot while the variable l* in lines 8–10 mean the 
arrival timeslot of a task ending at timeslot l.

The time complexity of the benchmark algorithm is 
deduced as follows. Assuming that the average number of 
tasks ends at a timeslot is n, the average number of total task 
arrivals will be qn, where q is the total number of timeslots. 
So line 2 takes O(qn) time when counting sorting is used.2 
Since the bipartite graph matching in line 6 takes O((m + n)3) 
time, lines 4–10 take O((m + n)3) time in total. Thus lines 
3–10 take O(q(m + n)3) time. Therefore, we have the bench-
mark algorithm has a total time complexity of O(q(m + n)3).

4.3  BMA‑RUA algorithm

The BMA-RUA algorithm is an online task assignment algo-
rithm, where tasks arrive dynamically. Different from the 
benchmark algorithm, it adopts earliest start timeslot first 
strategy. For each timeslot, BMA-RUA includes two main 
steps: task assignment and data offloading.

Step 1: Task assignment. It works in a task-arrival-triggered 
manner and adopts earliest start timeslot first strategy in the 
task assignment due to the dynamic task arrival property. It 
makes task assignment decisions for all tasks arrived at the 
beginning of each timeslot. At the beginning of a timeslot, 
since the information of all users and the tasks already arrived 
at this time are both known, the task assignment problem 
can be addressed by using bipartite graph matching similar 
to Algorithm 1. According to the matching result, the plat-
form can get the maximum profit of each individual timeslot. 
Accordingly, per-slot based optimal assignment is achieved 
in such an online manner.

 

Algorithm 1.  Benchmark Algorithm

1 Note that the weights of edges in a bipartite graph are all calculated 
this way in later algorithms proposed in this paper, whenever appli-
cable.
2 In this paper, we focus on scenarios where the duration of a timeslot 
is quite long such that the mean number of task arrivals in a timeslot 
is much larger than one. In this case, the total number of timeslots will 
be much smaller than the (mean) total number of tasks (i.e., q <  < qn). 
Thus, the applicability condition for using counting sorting holds.

1075



Peer-to-Peer Networking and Applications (2023) 16:1069–1087 

1 3

Step 2: Data offloading. At the end of a timeslot, upon com-
pletion of a task (if any), the task result should be submit-
ted to the platform within a certain period of time. Due to 
the limited coverage of the APs, submitting the task results 
directly to the platform via the cellular network will bring 
more upload cost. In order to increase the profit of the ser-
vice platform, full use of the AP coverages is encouraged to 
reduce the upload cost. For this purpose, we largely utilize the 
service availability of the APs for data offloading.

In BMA-RUA, minimal detour based task results offload-
ing is adopted to maximally reduce the upload cost. Here, 
minimal detour means with minimal extra travel distance is 
pursued for WiFi based data offloading if such offloading is 
beneficial. When multiple such choices exist, we choose the 
one leading to the minimal extra travel distance. Accord-
ingly, upon the accomplishment of a task, there are the fol-
lowing two cases for a user to perform data offloading.

1) If the user has been assigned a new task

In this case, the user can choose to submit most recently col-
lected task results through an AP on his way to the new task 
location, if possible. To find such an AP, we need to seek a 
shortest route connecting the user, a point in the AP’s service 
range, and the target task. For visiting the AP, we actually need 
to seek a point on the perimeter of the AP’s circular service 
range, which results in the shortest travel distance while meet-
ing the following eligibility conditions: 1) the user can reach 
the chosen point in K timeslots, and further 2) he can reach the 
next task location before the task starts. The point leading to the 
shortest distance can be calculated by using geometric methods. 
Specifically, suppose the user is currently at location A and plans 
to go to next task location B, while trying to detour to a point on 
the service range of an AP located at O, the problem is to find 
such a node X, while leading to the shortest distance A–X-B. 
There are two cases:

Case 1: If the segment AB penetrates the AP’s service 
range, then the first intersection point is X (see Fig. 2a);
Case 2: We need to find a point X such that the half-line 
OX equally divides ∠AXB (see Fig. 2b). Finding such a 
location X in this case can be transformed to the solving 
a quartic equation with one unknown quantity.3 For more 

details regarding how to determine the coordinate of X, 
please see the Appendix.

When multiple such APs exist, we need to find the AP 
and corresponding point, which lead to the shortest distance 
among all the choices while meeting the above eligibility 
conditions. In this way, on the way moving to the next task 
location, the task result can be uploaded via the chosen AP.

2) If the user is not currently assigned any new task

In this case, he can move to a closest AP’s service range 
for data offloading if he can reach there within K timeslots 
(see Fig. 2c). Upon reaching there, he can upload his held 
task results through the AP.

Note that one additional precondition for the above data 
offloading to be applicable is that it is cost effective, i.e., it 
can bring positive profit to the platform.

Algorithm 2 shows the procedure of BMA-RUA. task_listi 
represents the set of tasks which have been completed by 
user ui but the task results have not been submitted yet. 
upload∗

i
 represents the cellular-based upload cost (i.e., sup-

pose cellular traffic is used) of all those offloadable tasks 
in task_listi , which can be offloaded before their upload 
deadlines. costextra represents the extra travel cost caused by 
data offloading, if any. Note that the values of upload∗

i
 and 

costextra can change with the routes taken for data offloading.
Algorithm 2 works as follows. Line 1 initializes necessary 

variables. Lines 2–21 are for per-slot based task assignment 
(see lines 3–5), data offloading (see lines 6–19), and upload-
ing via cellular traffic (see lines 20–21). The first is executed 
at the beginning of a slot while the latter two are executed 
at the end of a slot. In lines 6–19, task accomplishment trig-
gered data offloading (if applicable) is used. Specifically, 
if the just-accomplished task location is covered by an AP, 
immediate offloading is performed (see line 19), otherwise 

Fig. 2  Illustration of various cases for reducing upload cost via data 
offloading. Point O is where an AP is located

3 This problem is also known as the pilgrimage to castrum problem, 
which can be briefly described as follows. There was a vendor, who 
worked at a bazaar. Each day he went to the bazaar from his home. 
But before reaching the bazaar, he always went first to a circular cas-
trum to worship the statue of Apollo, which could be done at any 
boundary point of the castrum. The problem is thus to find a worship 
point which minimizes the total travel distance from his home to the 
worship point and then all way to the bazaar.
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we need to seek an offloading route in the form of “user-
AP-NextTaskLocation” (see lines 8–13) or in the form of 
“user–AP” (see lines 15–17). It should be noted that only 
feasible offloading routes are considered, i.e., timely reach-
ing target AP and also next task location (if applicable), and 
cost effectiveness (i.e., positive profit to the platform). When 
multiple such choices exist, the shortest one will be chosen. 
Lines 20–21 check whether each piece of task result in hand 
has reached its upload deadline. If so, the user must upload 
the task results via cellular network immediately.

The time complexity of BMA-RUA is as below. Lines 
3–5 for bipartite graph matching takes O((m + n)3) time, 
where n is the average number of task arrivals in a timeslot4. 
Lines 8–13 take O(w) time and also lines 15–17 take O(w) 
time. Here, we assume finding a “user-AP-NextTaskLoca-
tion” route takes constant time. Line 19 takes O(1) time. 
Then the “for” loop between line 6 and line 19 takes O(mw) 
time. Lines 20–21 take O(m) time. Therefore, lines 3–21 
take O((m + n)3) time. Since there are q timeslots totally, 
the overall time complexity of BMA-RUA is O(q(m + n)3).

5  User‑online‑arriving task assignment: 
problem and algorithm

This section studies the user-online-arriving task assign-
ment problem where users arrive and depart dynamically. 
We first formulate the profit maximization problem for this 
scenario, and then design an online heuristic algorithm. The 
designed algorithm is a greedy maximum profit first algo-
rithm, which iteratively selects the user-task pair leading to 
the maximum profit among all user-task pairs until no such 
choice exists. This algorithm also adopts the data offloading 
strategy for reducing upload cost. We refer to this algorithm 
as MPF-RUA.

5.1  Problem formulation

In the user-online-arriving scenario, users arrive and leave 
dynamically. Figure  3 gives an example illustrating the 
dynamic user arrivals and departures in the user-online-arriv-
ing scenario.

Each user ui ∈ U has an arrival time, a start location, a 
predetermined destination, a constant moving speed, and a 
deadline for the user to reach the destination. On the way a 
user moves to his destination, he is allowed to take detour 
to complete one or more tasks provided that the user can 
reach his destination before pre-determined deadline. A 
user ui is associated with a time window [ai, fi], where ai 

 

Algorithm 2  BMA-RUA 
4 It should be noted that, in the deduction of the complexity of the 
benchmark algorithm in the preceding subsection, we used n to rep-
resent the average number of tasks ending in a timeslot. Here, we 
use n to represent the average number of tasks arriving in a timeslot. 
The reason we can use n to represent both variables is because, in the 
long term, we have the average number of tasks arriving in a timeslot 
equals the average number of tasks ending in a timeslot. The reason 
is as follows. Since the value of T does not affect the conclusion, we 
here simply choose T = 0. Without loss of generality, the duration of 
a task is assumed to be uniformly chosen from {1, 2, …, k} times-
lots and the number of tasks arrived in a slot is n, then the number of 
tasks ending in a slot is due to the contribution of its preceding k – 1 
timeslots and also the current timeslot, each contributing an average 
number of (1/k)n tasks. Obviously, the expected total number of tasks 
ending in a slot is also n.
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is the timeslot when he arrives at the platform, and fi is the 
last timeslot when he must have reached the destination. 
To ease the description, we assume the user must reach 
the destination before the end of timeslot fi. The length of 
the time window restricts length of the detour that a user 
can take. Let Ei,last represent the end timeslot of the last 
task that user ui undertakes. Let Ti,dest represent the time 
required for user ui to travel from his last undertaken task 
location to his destination. When a user is not assigned 
any task, we treat his start location as his last task loca-
tion. We use auxiliary variable �li to indicate whether user 
ui performs task or not in timeslot l. We have  �li = 0 if ui 
performs a task in timeslot l, otherwise �li = 1. Then the 
task assignment problem in user-online-arriving scenario 
is formulated as follows.

(12)max

q
∑

l=1

m
∑

i=1

nl
∑

k=1

profitk
li
∗ xk

li

(13)s.t.
(

ai − sk
l

)

∗ xk
li
≤ 0,∀ui ∈ U, l ∈ L, jk

l
∈ Jl

(14)
(

fi − ek
l

)

∗ xk
li
≥ 0,∀ui ∈ U, l ∈ L, jk

l
∈ Jl

(15)ai +

Ei,last
∑

l=ai

[

�li +

nl
∑

k=1

xk
li
∗ tk

l

]

+ Ti,dest ≤ fi,∀ui ∈ U

(16)
m
∑

i=1

xk
li
≤ 1,∀l ∈ L, jk

l
∈ Jl

(17)
nl
∑

k=1

xk
li
≤ 1,∀l ∈ L, ui ∈ U

(18)
dk
li

vi
∗ xk

li
≤ T ,∀ui ∈ U, l ∈ L, jk

l
∈ Jl

(19)xk
li
∈ {0, 1},∀ui ∈ U, l ∈ L, jk

l
∈ Jl

Constraint (13) guarantees that each user can only com-
plete tasks which start after the user arrives at the platform. 
Constraint (14) guarantees that each user can only complete 
tasks which terminate before the user leaves the platform. 
Constraint (15) guarantees that each user can reach his des-
tination in time after completing the assigned task(s). Con-
straints (16), (17), (18), and (19) correspond to constraints 
(8), (9), (10), and (11), respectively.

(20)�li ∈ {0, 1},∀ui ∈ U, l ∈ L

J1

u1 u2 u3 u4

time1 2 3 4

u1

5

u2

J2 J3

user arriving

J5J4

user leavingtask arriving

Fig. 3  An example illustrating the user online arriving scenario

Algorithm 3  MPF-RUA 
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The task assignment problem in user-online-arriving sce-
nario is also a 0–1 integer linear programming problem. 
Because users arrive and depart dynamically, the user-online-
arriving task assignment problem is even more complicated 
compared with the user-offline-arriving scenario. To address 
this problem, we again seek optimal task assignment for each 
individual timeslot and accordingly design an online algorithm.

5.2  MPF‑RUA algorithm

In this subsection, we design an online task assignment algo-
rithm. This algorithm adopts greedy maximum-profit-first 
strategy for task assignment and reducing upload cost via 
detour based data offloading, if possible. To pursue maxi-
mum platform profit, MPF-RUA always assigns users with 
tasks which can bring the highest profit. Specifically, upon 
the arrival of a user at the platform, MPF-RUA will assign 
the user with a task which leads to the maximum profit; 
Upon task arrivals at the beginning of a slot, MPF-RUA 
will assign them to users, which bring the maximum profit, 
if possible. Before the assignment between a user and a task, 
the following task-undertaking eligibility conditions will be 
checked:

1) Whether the user can complete the task on time,
2) Whether the user can still reach his destination after fin-

ishing the task before given deadline, and
3) Whether the task assignment brings positive profit for 

the platform.

If any of the above conditions is violated, the task cannot 
be assigned to the user.

In MPF-RUA, the following events can be observed.

Task arrival event. We assume task arrivals occur at the 
beginning of timeslots. Since each task is required to be 
submitted to the platform T timeslots before its actual 
start, for any timeslot l, the platform will have all the 
information of those task(s) supposed to start at the 
beginning of the l + T timeslot.
User arrival event. User arrival can happen at any time 
in a timeslot. Upon the arrival of a user, he is eligible 
for undertaking a task immediately provided that all 
the task-undertaking eligibility conditions are met. The 
newly arriving user be recruited to undertake tasks that 
have arrived at the platform in previous timeslots but 
have not yet started.
User leaving event. After a user is scheduled to move all 
way to his destination, the user is considered as having 
left the system and will be removed from the user set 
for task assignment. In such movement, a detour route 
in the form of “user-AP-destination” for data offloading, 
if he still has task result to upload.

Data offloading event. After a user finishes a task, the 
user can utilize APs (if applicable) for data offloading. 
This event is similar with corresponding data offloading 
strategy in BMA-RUA. The user can take a detour for 
data offloading in the form of “user-AP-NextTaskLoca-
tion” or in the form of “user-AP”.

Algorithm 3 gives the procedure of the MPF-RUA 
algorithm. Line 1 initializes necessary variables. Lines 
2–29 describe the online task assignment process. Lines 
3–14 describe how to handle task arrivals at the begin-
ning of a slot. Line 7 selects a feasible user-task pair 
that leads to the maximum profit provided that all the 
task-undertaking eligibility conditions are met. Then 
lines 8–11 update corresponding variables. Lines 16–21 
describe how to handle user arrival events. The tasks 
waiting for assignment at this moment include all those 
tasks that have arrived in the previous T timeslots but 
not assigned yet. Lines 23–25 describe how to handle 
user departure. A user with no enough spare time for 
task execution means it’s time for him to move all way 
to his destination. Line 27 describes how to handle data 
offloading event. Finally, Lines 28–29 check whether 
each task result reaches its upload deadline. If so, the 
task result must be uploaded to the platform via cellular 
network immediately.

The time complexity of MPF-RUA is deduced as fol-
lows. Assume the user arrival rate is λ users/slot, and the 
average duration that a user stays in the system is D, we 
have the expected number of users in the system will be 
m = λD. The size of set UJl will be O(mn), where n is the 
average number of task arrivals in a slot. Suppose binary 
priority queue is used, Line 7 takes O(log(mn)) time, and 
line 9 takes O((m + n)log(mn)) time for the queue man-
agement. Then lines 7–13 take O((m + n)log(mn)) time. 
Since the “while” loop in lines 6–13 can be iterated at 
most O(min{m, n}) time, lines 6–13 thus take O(min{m, 
n}(m + n)log(mn)) time. Accordingly, lines 3–14 take 
O(min{m, n}(m + n)log(mn)) time. Lines 16–21 take 
O(nT) time and lines 23–25 take O(1) time. Line 27 takes 
O(mw) time and lines 28–29 take O(m) time. Therefore, 
the overall complexity of MPF-RUA will be O(qmin{m,n}
(m + n)log(mn)).

6  Performance evaluation

In this section, extensive simulations are conducted for 
evaluating the performance of our proposed algorithms. 
The simulator was developed using PYTHON and all 
the simulations were carried out on a desktop computer 
with Microsoft Windows 10, 8 GB memory, Intel Core 
i7-10700F CPU, and 2.90 GHz clock-speed.
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6.1  Simulation settings

The sensing area used in the simulations is a 60 × 60 square 
region. The travel distance is measured by Euclidean distance. 
The total number q of timeslots is set to 30. The length of a 
task’s time window ranges from 1 to 4 timeslots. The reward for 
the accomplishment of a task as provided by requesters ranges 
from 3 to 10. The traveling speed of a user is randomly and uni-
formly chosen from 10–20/timeslot. The default number of APs 
is 6, each having a uniform coverage radius of 1. The default 
maximum upload deadline and default interval between task 
start and arrival are both set to 1 timeslot. The unit time upload 
cost (per timeslot) and the bonus for a user to complete a unit 
task are all set to 1. The unit travel distance cost is set to 0.2. 
The task arrivals at the platform follow normal distribution with 
mean value μ and standard variance σ. The standard variance 
σ is set to 1 and the value of μ changes with user arrival sce-
nario, which is set to 8 for the offline case and 5 for the online 
case. The tasks and APs are spatially uniformly distributed in 
the sensing map. The above simulation settings are similar to 
those used in [21, 22]. For each parameter setting, 20 independ-
ent experiments were conducted and the average results were 
reported. Table 2 shows the default parameter settings used in 
the simulations.

The user setting for different scenario is shown as 
follows:

1) User-offline-arriving scenario. There are totally 20 
mobile users. The initial locations of users are ran-
domly and uniformly chosen in the simulation map at 
the beginning.

2) User-online-arriving scenario. Arrivals of users follow Pois-
son distribution with a default user arrival rate 4 users/slot. 
The start locations and destinations of users are randomly 
and uniformly chosen from the sensing map. The total time 
that a user can stay in the system (i.e., starting from the 
timeslot when he arrives at the system to the timeslot he 
must reach his destination before pre-determined deadline) 
ranges from 4 to 12 timeslots.

For each scenario, we simulated different algorithms 
and verified multiple performance measures.

6.2  Simulation results for user‑offline‑arriving 
scenario

For the offline scenario, we simulated the following four 
algorithms.

• Benchmark algorithm (Bench), proposed in this paper.
• BMA-RUA, proposed in this paper.
• BMA: In this algorithm, the platform performs BMA-

RUA for task assignment but without implementing the 

detour based data offloading in BMA-RUA. This algo-
rithm was proposed in [22].

• DSF-offline (Distance-Shortest-First-offline): In this 
algorithm, the platform always selects the user-task pair, 
which leads to the shortest distance, one task for each 
time. This process continues until no available pair exists.

Table 2  Default parameter settings

Parameters Values

Number of users (for offline scenario) 20
User moving speed 10–20/timeslot
Total number of timeslots q 30
Number of APs 6
AP coverage radius 1
Task time window length 1–4 timeslots
Unit travel cost Kd 0.2
Unit upload cost C 1
Unit task bonus Kt 1
Data amount Dt generated per unit time 1
Task reward 3–10
Maximum upload deadline K 1 timeslot
Interval between task start and arrival T 1 timeslot
Task arrival distribution N(8, 1) for offline scenario; 

N(5, 1) for online 
scenario

Total profit Task completion ratio(a) (b)

Fig. 4  Impact of number of users

Total profit                  Task completion ratio(a) (b)

Fig. 5  Impact of task arrival rate
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Figure 4 compares the performance by different algo-
rithms versus number of users. In Fig. 4a, we can see that the 
total profits by all algorithms increase as the number of users 
increases. This is because more users can perform more 
tasks and further reduce the travel costs for task executions. 
The rank from the best to the worst is as follows: BMA-
RUA, Bench, BMA, and DSF-offline. The curve by BMA is 
close to that by Bench. BMA-RUA performs the best among 
all the algorithms due to the introduction of detour based 
data offloading. In Fig. 4b, the task completion ratios of 
all algorithms increase as the number of users increases. 
This is because the increase of number of users can lead to 
completion of more tasks. Also, also it can be seen that the 
bipartite graph based methods (i.e., BMA-RUA, Bench, and 
BMA) can achieve higher task completion ratio compared 
with greedy method (i.e., DSF-offline).

Figure 5 compares the performance by different algo-
rithms versus task arrival rate. In Fig. 5a, it is seen that 
the total profits by all the algorithms increase with the task 
arrival rate increasing. Again, the rank from the best to the 
worst is the same to that in Fig. 4. It can also be seen that 

when the task arrival rate is low, the profits by all the algo-
rithms (except BMA-RUA) are quite close. This is because 
lower task arrival rate leads to less competition among the 
task assignments and thus similar results by the algorithms. 
Also, we can again see that BMA-RUA performs the best 
among all the simulated algorithms. In Fig. 5b, the task com-
pletion ratios of all algorithms decrease as the task arrival 
rate increases. This is because the number of users is limited 
and thus the increase of number of tasks causes reduction of 
the task completion rate.

Figure 6 compares the performance by different algo-
rithms versus number of APs. In Fig. 6a, the same rank of 
algorithms is observed. Also, it is seen that the profit growth 
rate by BMA-RUA is higher than that by other algorithms. 
This is because more APs lead to significantly increased 
offloading opportunities due to the use of detours based data 
offloading in BMA-RUA. In Fig. 6b, the task completion 
ratios of all algorithms are basically the same as the number 
of APs varies. This is because the increase of number of APs 
has little effect on the task completion rate.

Figure 7 shows the impact of T on total profit of BMA-
RUA. In this experiment, T ranges from 1 to 7 timeslots. The 
total profit by BMA-RUA first increases and then gradually 
stabilizes as T is beyond certain threshold. This is because 
when T is small, increased T allows more flexibility on task 
assignment. However, when T is beyond certain threshold, 
the performance will not increase any further. The reason is 
as follows. Based on our setting of μ = 8 and task load ran-
domly chosen in the range [1, 3] timeslots, we have the aver-
age number of tasks in the system will be 8 × (1 + 3)/2 = 16 
while there are in total 20 fully available users in the sys-
tems. Thus, further increasing of T will not lead to further 
increase of performance.

Figure 8 shows the impact of maximum upload dead-
line on total profit by BMA-RUA. It is seen that, with the 
increase of maximum upload deadline, the total profit by 
BMA-RUA also increases. This is because users will have 
more available time for data offloading via longer detours 
with maximum deadline increasing.

Fig. 6  Impact of number of APs

Task completion ratio(a) (b)

Fig. 7  Total profit by BMA-RUA with varying T 
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Figure 9 shows the runtime by different algorithms with 
varying combination of number of users and task arrival 
rate. In this figure, the rank from the longest to the shortest 
in terms of runtime is as follows: BMA-RUA, Bench, BMA, 
and DSF-offline. BMA-RUA, Bench, and BMA have faster 
growth rates, while DSF-offline has a slower growth rate. 
This is because the bipartite graph matching-based strategy 
adopted by the first three algorithms takes more time than 
the greedy strategy adopted by DSF-offline.

6.3  Simulation results for user‑online‑arriving 
scenario

For the scenario, we compare the following algorithms:

• MPF-RUA, proposed in this paper.

• MPF: In this algorithm, the platform performs MPF-RUA 
for task assignment but without implementing the detour 
based data offloading in MPF-RUA. In this way, we can 
observe the benefit brought by the detour based data off-
loading in MPF-RUA.

• DSF-online (Distance-Shortest-First-online): In this 
algorithm, each time the user-task pair leading to the 
shortest distance is always chosen. This process contin-
ues until no such pair exist.

• BMA: In this algorithm, task assignments were carried 
out at the beginning of each timeslot upon task arrivals 
(by using bipartite-graph-matching algorithm) but no 
task assignment is done in the middle of timeslots upon 
user arrivals. Moreover, no data offloading is performed 
in this algorithm.

• BMT: This algorithm works similarly to MPF for task 
assignment but uses optimal per-slot bipartite-graph 
matching algorithm for the task assignment at the begin-
ning of each slot rather than using the maximum-profit-
first strategy like in MPF.

Figure 10 compares the performance by different algo-
rithms versus user arrival rate. In Fig. 10a, we can see that 
the total profits by all the algorithms increase with the user 
arrival rate. However, the profit increase rate starts drop-
ping after the user arrival rate is beyond 3 user arrivals per 
slot. This is because in this case some already arrived users 
will not be assigned any task due to the assumption of fixed 
task arrival rate. It is also seen that the rank from the best 
to the worst is as follows: MPF-RUA, BMT, MPF, BMA, 
DSF-online. The curve by MPF is very close to that by BMT 
while much better than that by BMA. The former means the 
performance of the maximum-profit-first strategy in MPF is 
very close to that of optimal per-slot matching algorithm and 
the latter means the user-arrival-triggered task assignment is 
quite efficient. Moreover, the allowance of detour-based data 
offloading in MPF-RUA achieves significantly increased 
profit as compared with other algorithms. In Fig. 10b, it can 
be seen that the completion ratio of all algorithms increase 
as the number of users increase. This is because more users 
can lead to more tasks be finished.

Figure 11 compares the performance by different algo-
rithms versus task arrival rate. In Fig. 11a, we can see that 
the total profits by all the algorithms increase as the task 
arrival rate increases. This is because more task arrivals can 
lead to high profits for those tasks assigned to users. It is 
also seen when the task arrival rate is low, the total prof-
its by all the algorithms except MPF-RUA are quite close. 
This is because each task in this case can be assigned to the 
most profitable user no matter which algorithm is used. In 
Fig. 11b, the completion ratios of all algorithms decease as 
the task arrival rate increases. The reason is similar to that 
for Fig. 5b.

Fig. 8  Total profit by BMA-RUA with varying maximum upload 
deadline

Fig. 9  Runtime by different algorithms with varying number of users 
and task arrival rate

1082



Peer-to-Peer Networking and Applications (2023) 16:1069–1087 

1 3

Figure 12 compares the performance by different algo-
rithms versus number of APs. In Fig. 12a, the rank from the 
best to the worst in terms of total profit is as follows: MPF-
RUA, BMT, MPF, BMA, and DSF-online. Also, it is seen 
that MPF-RUA has a stable profit growth rate as the number 
of APs increases. This is because that more APs can bring 
more detour-based data offloading opportunities. In Fig. 12b, 
the task completion ratios of all algorithms are basically the 
same as the number of APs varies. The reason is also similar 
to that for Fig. 6b.

Figure 13 shows the effect of T on total profit by MPF-
RUA. In this figure, it is seen that the total profit by MPF-
RUA first increases and then gradually stabilizes as T keeps 
increasing, which is similar to that by BMA-RUA (see 
Fig. 7). This is because the number of users in this test is 
limited, which restricts the upper bound of the total profit 
that can be obtained.

Figure 14 shows the effect of maximum upload deadline 
on the total profit by MPF-RUA. In this figure, we can see 
that, with the increase of maximum upload deadline, the 

Fig. 10  Impact of user arrival 
rate

Task completion ratio (a) (b)

Fig. 11  Impact of task arrival 
rate

Task completion ratio (a) (b)

Fig. 12  Impact of number of 
APs

Total profit                              (b) Task completion ratio (a)
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performance of MPF-RUA also increases, which is similar 
to that of BMA-RUA (see Fig. 8).

Figure 15 shows the runtime by different algorithms with 
varying combination of user arrival rate and task arrival rate. In 
this figure, the rank from the longest to the shortest in terms of 
runtime is as follows: BMT, BMA, MPF-RUA, MPF, and DSF-
online. Since both BMT and BMA adopt the bipartite graph 
matching-based strategy for task assignment, they take more 
runtime than the other three algorithms for task assignment.

7  Conclusion and future work

In this paper, we studied time sensitive task assignment in par-
ticipatory sensing. We assume that tasks arrive dynamically 
and each task is associated with a specific time window for 

task execution. We formulated the profit maximization prob-
lems for user-offline-arriving-scenario and user-online-arriving 
scenario. For the user-offline-arriving scenario, we designed a 
benchmark algorithm and an online algorithm, which adopts 
bipartite-matching-based strategy for task assignment and fur-
ther performs minimal detour based data offloading for reducing 
the data upload cost, whenever possible. For the user-online-
arriving scenario, we designed an online algorithm, which 
adopts a maximum-profit-first strategy for task assignment and 
also minimal detour based data offloading for reduction of data 
upload cost whenever applicable. For each of the algorithms, 
detailed design was presented and computation complexity was 
deduced. Extensive simulations were conducted and the simula-
tion results verified the effectiveness of our proposed algorithms.

There are some research directions for future study in the 
direction of time-window based task assignment for mobile 
crowdsensing. First, design of effective incentive mechanisms 
can effectively improve the task assignment performance 
while respecting the rationality of various participants. In this 
aspect, it is interesting to design effective auction mechanism 
or pricing strategy to incentivize the involvement of various 
participants in the system while maintaining high task assign-
ment performance. Second, the willingness of users for task 
executions is also an important factor affecting the task assign-
ment performance, which deserves further study.

Appendix

Here, we describe how to find the point X leading to the 
minimal length of path A–X-B to resolve the pilgrimage 
to castrum problem.

A Cartesian coordinate system is first constructed (see 
Fig. 16). Given the user’s initial location (denoted by A), the 

Fig. 13  Total profit by MPF-RUA with varying T 

Fig. 14  Total profit by MPF-RUA with varying maximum upload 
deadline

Fig. 15  Runtime by different algorithms with varying user arrival rate 
and task arrival rate
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user’s target location (denoted by B), and the circular castrum, 
which is centered at O and has a radius r, the problem is to 
find the point X leading to the minimal length of path A–X-B. 
Denote the coordinate of A as (xA, 0), the coordinate of B as 
(xB, yB). Denote ∠AOX as θ, ∠AOB as α. Then we have the 
coordinate of point X as (r⋅cosθ, r⋅sinθ).

By using geometric methods, we can find the point X 
which leads to the minimal distance of path A–X-B satisfies 
∠AXM = ∠BXN. Then we have tan∠AXM = tan∠BXN. So 
we have:

Since  cos (α-θ )  = cosα ⋅ cosθ  +  s inα ⋅ s inθ  and 
sin(α-θ) = sinα⋅cosθ—cosα⋅sinθ, we have:

Denote tan �

2
= x , then we have:

Combine Eqs. (22), (23) and (24) together, we have:

(21)
xAcos� − r

xAsin�
=

√

x2
B
+ y2

B
cos(� − �) − r

√

x2
B
+ y2

B
sin(� − �)

.

(22)
xAcos� − r

xAsin�
=

xBcos� + yBsin� − r

yBcos� − xBsin�

(23)sin� =
2x

1 + x2

(24)cos� =
1 − x2

1 + x2

(25)

(

xA + r
)

yBx
4 +

[

4xAxB + 2r(xA + xB)
]

x3 − 6xAyBx
2

+
[

2r
(

xA + xB
)

− 4xAxB
]

x +
(

xA − r
)

yB = 0

Equation (25) is a quartic equation with unknown quan-
tity x. By using some math tools (such as Matlab), the equa-
tion can be easily solved. Then we can get the value of θ 
(i.e., ∠AOX). Therefore, the coordinate of point X can be 
obtained.
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