
Peer-to-Peer Networking and Applications (2023) 16:1069–1087

/ Published online: 2 March 2023

Vol.:(0123456789)1 3

https://doi.org/10.1007/s12083-023-01454-4

Time window‑based online task assignment in mobile crowdsensing:
Problems and algorithms

Shuo Peng1 · Kun Liu1 · Shiji Wang2 · Yangxia Xiang3 · Baoxian Zhang1 · Cheng Li4

Received: 4 November 2022 / Accepted: 21 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Mobile crowdsensing (MCS) has been an effective sensing paradigm by exploiting the pervasive sensor-rich mobile devices
for sensor data collection. Online task assignment is an important issue for mobile crowdsensing since tasks typically arrive
dynamically and need to be handled in an online manner. In this paper, we study online task assignment for maximizing the
total profit of the MCS platform while satisfying the time window requirement of each task. We first describe the crowd-
sensing model and then study the online task assignment in the following two different scenarios: (1) user-offline-arriving
scenario, where all users are fully available throughout the whole sensing period and their movements are fully planned by
the platform; (2) user-online-arriving scenario, where users arrive and depart dynamically and each user has a specific par-
ticipatory time window for task executions. For the former scenario, we propose a benchmark algorithm and also an online
heuristic algorithm. The benchmark algorithm tries to provide a best-case performance by assuming all future task arrival
information is known in advance. The online algorithm adopts bipartite-matching-based strategy for task assignment and
further performs minimal detour based data offloading for reducing the data upload cost, whenever possible. For the latter
scenario, we propose an effective online algorithm, which adopts a maximum-profit-first strategy for task assignment and also
minimal detour based data offloading for reduction of data upload cost whenever applicable. For all the proposed algorithms,
we present their detailed design and deduce their time complexities. Extensive simulations are conducted and the results
demonstrate that our proposed algorithms can largely increase the total profit of the platform as compared with existing work.

Keywords Mobile crowdsensing · Online task assignment · Data offloading

1 Introduction

With the pervasiveness of smart devices and rapid develop-
ment of new wireless communication techniques, Mobile
crowdsensing (MCS) [1, 2] has been an effective sensing
paradigm. In mobile crowdsensing, users can utilize their
carried mobile devices to complete various sensing tasks.
Compared with other Internet of Things (IoT) paradigms,
mobile crowdsensing has good scalability, large spatial–tem-
poral coverage, and high sensing quality. Nowadays, mobile
crowdsensing has been widely used in many scenarios such
as monitoring urban traffic, detecting surrounding air qual-
ity, identifying noise pollution level, and indoor localization,
etc. (see [3–8]).

Task assignment is a critical issue in mobile crowdsens-
ing. Recently, much work has been done for improving the
task assignment performance [9–18]. The composition of a
typical crowdsensing system is generally as follows: mobile
users, task requesters, and service platform. The service

 * Baoxian Zhang
 bxzhang@ucas.ac.cn

 Shuo Peng
 pengshuo17@mails.ucas.ac.cn

 Kun Liu
 liukun181@mails.ucas.edu.cn

 Shiji Wang
 wsj978418128@163.com

 Yangxia Xiang
 18701539583@163.com

 Cheng Li
 licheng@mun.ca

1 Research Center of Ubiquitous Sensor Networks, University
of Chinese Academy of Sciences, Beijing 100049, China

2 Beijing Aerospace Measurement and Control Technology
Co., Ltd., Beijing 100041, China

3 Information and Communication Department, Army
Academy of Armored Forces, Beijing 100072, China

4 Faculty of Engineering and Applied Science, Memorial
University, St. John’s, NL A1B 3X5, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-023-01454-4&domain=pdf

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

platform is responsible for organizing and managing the
crowdsensing system. It receives tasks from task requesters
and assigns the tasks to suitable mobile users. According
to the sensing mode of users, mobile crowdsensing can be
divided into the following two types [9]: 1) opportunistic
sensing; 2) participatory sensing. For opportunistic sens-
ing, users follow their daily routes and perform tasks in an
opportunistic manner and their routes are in general deter-
mined by the users’ habits and customs and will not change
due to the locations of tasks. For participatory sensing, users
are required to go directly to the locations of their under-
taken tasks for task executions. In this case, their routes are
fully or partially planned by the service platform. According
to the task arrival pattern, task assignment can be divided
into offline task assignment and online task assignment,
where the former assumes all the tasks arrive before the
task assignment while the latter assumes tasks arrive at the
platform dynamically and are handled in an online manner.
In this paper, we focus on studying online task assignment in
participatory sensing. The main challenge in this case is how
to design efficient task assignment algorithms for maximiz-
ing the platform profit while considering the time sensitivity
of tasks, distribution of users, and also uncertainty of the
task arrivals and their distributions.

In the literature, some online task assignment algorithms
(e.g., [19–22]) have been proposed to enable efficient par-
ticipatory sensing. These studies all assume that tasks have
specific time window(s), and only users who can reach the
location of a task within the task time window are eligi-
ble to complete the task. However, these algorithms did not
consider the required task performing time in their designs.
They mainly focused on simple sensing activities (such as
photo taking) and assumed that each of the tasks can be
completed immediately once a user reach the corresponding
task location. In practice, the task performing time of many
tasks (e.g., traffic flow monitoring, noise detection) are often
non-negligible. These tasks last for a certain period of time
and require continuous sensing data. Although some work
(e.g., [23–25]]) took the task performing time into account,
they focused on opportunistic crowdsensing and further did
not consider how to reduce the task result upload cost (e.g.,
when cellular traffic is used) in their algorithm design. Thus,
effective data offloading via complimentary WiFi based
Internet accessing is very important to improve the profit of
the service platform, which is also a research focus of our
work in this paper.

In this paper, we study time window-based online
task assignment in participatory sensing. The objective
is to maximize the service platform’s profit. We divide
the sensing period into multiple equal-length timeslots.
At the beginning of each timeslot, task requesters submit
task request(s) to the service platform. Each of the tasks
has a specific location for data collection and further is

associated with an executing time window, which repre-
sents the duration of the task. More specifically, a recruited
user must continuously conduct data collection within the
specified time window of target task at the corresponding
task location. According to different ways of user arriv-
als, in this paper, we consider two user arrival scenarios/
patterns: user-offline-arriving scenario and user-online-
arriving scenario. The former means that all users arrive
at the platform before the task assignment and are fully
available all the time. The latter means that users arrive
and leave dynamically and each of them is available for
task execution just for a certain period of time. We intro-
duce the crowdsensing system under study and describe
the above two scenarios in details according to the user
arrival patterns. We formulate the optimization problem
for either scenario and accordingly propose efficient algo-
rithms for both scenarios. Our main contributions in this
paper are listed as follows:

• For the user-offline-arriving scenario, we first formu-
late the corresponding profit-maximization problem and
then propose a benchmark algorithm and an online task
assignment algorithm. The benchmark algorithm tries to
provide a best-case performance by assuming all future
task arrival information is known in advance. The online
algorithm performs per-slot based bipartite-matching by
using the Kuhn-Munkres algorithm for task assignment
and adopts minimal detour based data offloading for
maximally reducing the data upload cost, if such offload-
ing is beneficial. We present detailed designs for both
algorithms and deduce their computational complexities.

• For the user-online-arriving scenario, we formulate the
profit-maximization problem for this case and propose an
online task assignment algorithm, which adopts a greedy
maximum-profit-first strategy for task assignment and
performs minimal detour based data offloading for effec-
tively reducing data upload cost, if possible. We present
its detailed algorithm design and deduce its computa-
tional complexity.

• We conduct extensive simulations for performance evalu-
ation and the results validate the high efficiency of our
proposed algorithms.

In our earlier work [10], we focused on studying the user-
offline-arriving scenario and proposed effective online task
assignment algorithms. Compared with [10], the following
new contributions are made in this paper: 1) For the user-
offline-arriving scenario, we present a benchmark algorithm,
which is to provide a best-case performance for comparison
purpose; 2) For the user-online-arriving scenario, which was
not investigated in [10], we here formulate the optimization
problem under study for this case and accordingly propose
an effective online task assignment algorithm.

1070

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

The rest of this paper is organized as follows. In Sec-
tion 2, we give a brief review of related work. In Section 3,
we introduce the system model. In Sections 4 and 5, we for-
mulate the problems for different scenarios and accordingly
propose effective polynomial algorithms. In Section 6, we
perform extensive simulations for performance evaluation.
Finally, in Section 7, we conclude this paper.

2 Related work

Much work has been done for achieving high task assign-
ment performance in mobile crowdsensing. According to
whether the tasks are time sensitive, existing task assign-
ment algorithms can be divided into two categories: time
insensitive task assignment and time sensitive task assign-
ment. In the following, we will introduce typical work falling
into either category.

2.1 Time insensitive task assignment

For time insensitive task assignment, tasks do not have spe-
cific start time and end time, and can be executed at any
time. According to the sensing mode used, existing work in
this area can be further categorized into participatory time
insensitive task assignment algorithms and opportunistic
time insensitive task assignment algorithms.

Some typical work for participatory time insensitive task
assignment is as follows. In [11], the authors studied how to
maximize the total profit subject to budget constraint. They
first proved the NP-hardness of this problem and then pro-
posed an approximation algorithm, which decomposes the
original problem into several sub-problems. In [26], the
authors tried to minimize the incentive payout while ensuring
the task quality. They accordingly designed an approximate
algorithm based on greedy strategy for task assignment. Ref.
[27] studied a platform-centric task assignment problem and
proposed a genetic algorithm. Ref. [28] studied participatory
sensing in two different scenarios according to the difference
in number of tasks and number of users. The first scenario is
when number of tasks are more than that of users. For this
scenario, the paper studied how to minimize the total traveling
distance of users and also maximize the total number of com-
pleted tasks. Then two optimal algorithms are designed for
this scenario. The second scenario is that there are more users
than tasks. The design goal for this scenario is to minimize
the payment to users and also minimize the recruited users’
traveling distance. For this scenario, two heuristic algorithms
were proposed.

Some typical work for opportunistic time insensitive
task assignment is as follows. In [29], Peng et al. studied
AP-assisted online task assignment while minimizing the
average finishing time and largest finishing time of all tasks,

respectively. They first derived the expected finishing time of
a task by considering the opportunistic exchanging of tasks/
results via APs, then they proposed two online algorithms
which utilize the communication ability of APs to mini-
mize the average makespan and largest makespan of tasks,
respectively. Ref [30]. was aimed at maximizing task quality
based utility subject to incentive constraint. The authors first
proved the NP-hardness of the utility maximization problem
and then proposed an approximate algorithm by leverag-
ing the submodular property of the objective function they
adopted.

2.2 Time sensitive task assignment

Much work for time sensitive task assignment assumes
that each task is associated with a specific time window
and needs to be executed during its specified time win-
dow. Among the existing work in this aspect, some did not
consider the task execution time and some other did. For
the former, users passing by the sensing location of a task
within the corresponding time window can perform the task
in negligible time. For the latter, users need to execute the
task continuously within the corresponding time window at
given location.

Some existing work without considering task execution
time is as follows. In [20], the authors studied the maxi-
mization of total task qualities subject to individual user
travel distance constraints. They proposed four online heu-
ristic algorithms for this case. In [22], the authors focused
on maximizing the platform’s profit. For this problem, they
proposed one offline algorithm and three online algorithms.

Existing work considering the task execution time is as
follows. Ref [23]. was aimed to minimizing the social cost
of task performing in opportunistic sensing while ensur-
ing the completion of tasks. The authors formulated this
problem and considered two different scenarios based on
whether users have multiple time windows for task perform-
ing. They proposed corresponding user selection algorithms
for different scenarios. In [24], Xu et al. aimed to minimiz-
ing the payment for recruiting users. They modeled the
recruitment scenario as a reverse auction process. Then an
incentive mechanism was proposed for rewarding selected
users. In [25], Sun et al. studied the maximization of data
benefit while ensuring that the task period can be covered by
recruited users. Then they designed an optimal user selection
algorithm for this problem. One big issue in the above work
is that they did not consider how to minimize the upload cost
of task result. When the data amount of task result is large,
such lack of consideration on upload cost can largely affect
the profit of the platform. In this paper, we shall consider use
of data offloading, whenever possible, to reduce the upload
cost as much as possible.

1071

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

3 System model

This section first introduces the crowdsensing system under
study, and then describes various models in the crowdsens-
ing system in details.

3.1 System overview

Figure 1 gives an overview of the mobile crowdsensing sys-
tem under study, which is composed of the following major
components: users, APs, task requesters, and service plat-
form. The MCS system works in an online fashion. Time
is divided into q equal-length timeslots, denoted as L = {l1,
l2, …, lq}. Tasks arrive at the platform at the beginning of
timeslots. The tasks are time window-specified, location-
dependent, and are published by the requesters on the plat-
form. To ensure the timely completion of the tasks, the
platform needs to recruit certain mobile users. Since each
task has strong data integrity requirement, a recruited user
needs to continuously execute the task at designated task
location. In order to have more qualified user candidates
for task executions, each task requester should submit task
requests to the platform T timeslots (T ≥ 1) before their
desired data collections start. For example, if a task actually
starts from timeslot l, then the corresponding task request
should be submitted to the platform at timeslot l – T. Here,
T is in general a small integer. Upon receipt of such a task,
the platform is supposed to immediately assign the task to an
available user, if possible. A user with assigned task(s) needs
to sequentially visit the task location(s) during their respec-
tive time period(s) to accomplish the corresponding task(s),
respectively. After a task is accomplished, the task result
needs to be uploaded to the platform in a certain period of
time. Here, we assume that a user must submit the result of
a task within K timeslots once completing a task. After sub-
mitting the task results, a user can get certain incentive from

the platform. Finally, the requester can get the task result
from the platform and should give corresponding reward to
the platform. The amount of reward provided for the execu-
tion of a task is determined by the task requester according
to the value of the task and is known at the platform. In this
way, the platform is able to earn profit by recruiting users
for task completions. It needs to be pointed out that if the
execution of a task will cause negative profit at the platform,
the platform will reject such task without recruiting any user
for its completion. This design choice is reasonable because
a platform is supposed to be unwilling to take unprofitable
tasks. Table 1 lists major notations used hereafter.

According to the ways users arrive at the platform, in
this paper, task assignment is studied in the following two
scenarios.

User-Offline-Arriving scenario: All users are assumed to
have arrived at the platform before the task assignment
and each of them will be available all the time for task
executions. In the whole sensing period, the movements
of all the users are fully planned by the service platform
for task accomplishment.
User-Online-Arriving scenario: Users arrive at the plat-
form dynamically. Specifically, each user is associated
with the following information: a start location, a pre-
determined destination, a constant moving speed, and the
deadline for the user to reach his destination. A user can
take detour to accomplish certain task(s) provided that he
can still reach his destination before the given deadline.

3.2 System models

In this subsection, we introduce the following four models
in the crowdsensing system: user model, task model, data
upload model, and incentive model.

Fig. 1 Overview of the mobile
crowdsensing system

1072

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

User model Denote the set of users in the system by U = {u1,
u2, …, um}. All the users have registered at the platform. We
assume each user carries a smart device and all the devices
are equal and eligible for accomplishing any task published
by the platform. The location of a user can be obtained via
equipping a GPS receiver at the user side and such informa-
tion needs to be periodically reported to the platform once a
user logins to the system. Denote the moving speed of user
ui ∈ U as vi. It is assumed that any user can execute at most
one task at a time. If a user is chosen to undertake a task, he
must move to the corresponding task location for the task
execution before the task starts. For the user-online-arriving
scenario, the following additional information is needed:
Each user needs to indicate his target destination and also
a deadline for him to reach the destination. Each user must
report all the travel related information to the platform upon
his arrival.

Task model Denote the set of all tasks as J. Since there are
totally q timeslots, we have J = {J1, J2,…, Jq}, where Jl ∈ J
(1 ≤ l ≤ q) represents the set of tasks arrived in timeslot l.
Let nl represent the number of task arrivals in timeslot l, we
have Jl = { j1

l
 , j2

l
 , …, jnl

l
 }. A task jk

l
 ∈ Jl can be represented

by a tuple { lock
l
 , sk

l
 , ek

l
 , rk

l
 }, where lock

l
 is the location of the

task, sk
l
 is the start timeslot of the task, ek

l
 is the end timeslot

of the task, rk
l
 is the reward of the task that the platform

can receive from the task requester.The task execution time

window associated with jk
l
 is [sk

l
 , ek

l
]. Obviously, we have

sk
l
= l + T and ek

l
 ≥ sk

l
 . To ensure the data integrity of a task,

a user who performs the task must collect sensing data con-
tinuously in the required time window at the corresponding
task location. We assume the time window length is always
an integer number of timeslots. Therefore, the execution of
a task jk

l
 should start at the beginning of sk

l
 and terminate at

the end of ek
l
 . We assume each task only needs to be executed

once and it can be accomplished by any user. Once the task
is completed, the task result must be uploaded to the plat-
form within K timeslots.

Data upload model After a task is completed, the user
should upload the sensing result of the task. In the system,
two ways for data uploading can be used: 1) cellular net-
works, 2) WiFi based access points (AP) (with preference
if applicable). The former will cause certain fee while the
latter is complimentary. The whole sensing area is assumed
to be fully covered by cellular services. Thus a user can
always upload his collected sensing data via cellular traf-
fic at any time, but with a certain uploading cost. For WiFi
based APs, they are randomly distributed in the map and
their service coverage is limited. A user can only upload task
results through an AP when he is in or passes by the cover-
age of the AP. Due to the high-speed properties of 4G/5G/
WiFi, similar to [31], we in this paper assume the data rate
for result uploading is very high and thus the corresponding
data uploading time is negligible compared with the travel
time of users among different task locations. The choice of
data uploading mode depends on the following aspects: the
deadline for data uploading, the location of the completed
task, and the coverages of the deployed APs.

Incentive model In general, the total incentive that a user
can obtain for performing a task is affected by the cost
caused in the user’s execution of the task. In order to effec-
tively attract users to perform tasks, we assume that each
user can get certain bonus once he completes a task. There-
fore, the incentive defined here includes travel cost, upload
cost, and bonus. Accordingly, the incentive provided to user
ui for his accomplishment of a task jk

l
 is calculated as below:

where cost_distk
li
 is the travel cost for task accomplishment,

uploadk
l
 is the uploading cost for the result of task jk

l
 , and

bk
l
 is the bonus that the platform gives a user for his accom-

plishment of the task. We in this paper adopt linear functions
for the computation of incentive. In fact, how the incentive
for task execution is computed can be adjusted according
to specific application scenarios, which does not affect the
usability of our task assignment algorithm. More details
about the incentive computation are as follows.

(1)Incentivek
li
= cost_distk

li
+ uploadk

l
+ bk

l
,

Table 1 Notations used

Notations Definitions

ui, U A user ui and the set of all users
jk
l
, Jl, J The kth task arrived in timeslot l, the set of tasks arriv-

ing in timeslot l, and the set of all tasks

lock
l
, s

k

l
, ek

l
Location, start timeslot and end timeslot of task jk

l

ai, fi Arriving timeslot and leaving timeslot of user ui

vi Moving speed of user ui

rk
l

Reward of task jk
l

bk
l

Bonus for a user to finish task jk
l

tk
l

Time window length of task jk
l

m Total number of users
n Average number of task arrivals in a timeslot
w Total number of APs
nl Number of task arrivals in timeslot l
q Total number of timeslots
Kd Unit distance cost for traveling
Dt Data amount of unit time
C Unit upload cost, i.e., cost for use of unit cellular traffic
Kt Unit task bonus, i.e., bonus for execution of unit task
K Maximum upload deadline for task result uploading
xk
li

Binary decision variable between user ui and task jk
l

xl Task assignment result of timeslot l

1073

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

The travel cost is assumed to be proportional to the travel
distance, which can be computed as follows:

where dk
li
 is the travel distance for user ui to reach task jk

l
 , and

Kd is the travel cost per unit distance.
Before defining the upload cost and bonus, we first define

the time window length of a task. For a task jk
l
∈ Jl, its time

window length is calculated as below:

In practice, it is plausible to treat the time window length
of a task as its task workload.

The upload cost of task result is thus proportional to the
task’s time window length when cellular traffic is used or
zero when WiFi based Internet accessing is used. Accord-
ingly, the upload cost uploadk

l
 for task jk

l
 is computed as

below:

where Dt is the amount of data collected in unit time, and
C is the price for uploading unit data amount by using cel-
lular traffic.

The bonus that a user can obtain for performing a task is
also proportional to time window length of the task, which
is calculated as below:

where Kt represents the bonus for performing a task with
unit time duration.

The profit that the platform can earn for the execution
of task jk

l
 thus equals the corresponding reward rk

l
 minus

the incentive provided to its executing user ui, which is as
follows:

4 User‑offline‑arriving task assignment:
problem and algorithms

In this section, we study the task assignments in the user-
offline-arriving scenario such that all the users are fully
available throughout the whole sensing period and all their
trajectories are purely planned for task accomplishments as
necessary.

We first formulate the profit maximization problem for
this scenario and demonstrate the NP-hardness of this prob-
lem. To address this issue, we design a benchmark algorithm

(2)cost_distk
li
= dk

li
∗ Kd,

(3)tk
l
= ek

l
− sk

l
+ 1.

(4)uploadk
l
=

{

tk
l
∗ Dt ∗ C Cellular Network

0 AP
,

(5)bk
l
= tk

l
∗ Kt,

(6)profitk
li
= rk

l
− Incentivek

li
.

and an online algorithm. The benchmark algorithm assumes
that all future task arrival information is known in advance
and thus provides a theoretical best case performance. The
online algorithm assumes dynamic task arrivals. It adopts
per-slot-based bipartite graph matching algorithm for task
assignment and reduces the upload cost via data offload-
ing (referred to as BMA-RUA). A common feature of these
two algorithms is that both of them iteratively optimize the
task assignment in each individual timeslot, starting from
the first timeslot, by using bipartite graph matching. The
key difference between them is as follows. The benchmark
algorithm adopts earliest end timeslot first strategy in the
task assignment due to its assumption of full availability of
all future task information. In contrast, the online algorithm
works in a task-arrival-triggered manner and adopts earliest
start timeslot first strategy in the task assignment due to its
assumption of dynamic task arrivals.

4.1 Problem formulation

Denote the task assignment result between user ui and task
jk
l
 as xk

li
 . If task jk

l
 is assigned to user ui, we have xk

li
 = 1,

otherwise, xk
li
 = 0. Then the profit maximization problem for

the user-offline-arriving scenario is formulated as follows:

Constraint (8) ensures that a task can be assigned to at
most one user. Constraint (9) ensures that a user can perform
at most one task in any timeslot. Constraint (10) guarantees a
user can only complete those tasks, whose sensing locations
can be reached by the user within T timeslots. In (7)-(11),
since xk

li
 is a binary decision variable, the task assignment

problem in user-offline-arriving scenario is a 0–1 integer
linear programming problem, which is known to be NP-hard.

Obviously, seeking the global optimal solution using
exhaustive search is very time consuming. Next, we study
how to achieve optimal task assignment for each individual
timeslot and accordingly design two heuristic algorithms.

(7)max

q
∑

l=1

m
∑

i=1

nl
∑

k=1

profitk
li
∗ xk

li
,

(8)s.t.
∑m

i=1
xk
li
≤ 1,∀l ∈ L, jk

l
∈ Jl.

(9)
nl
∑

k=1

xk
li
≤ 1,∀l ∈ L, ui ∈ U.

(10)
dk
li

vi
∗ xk

li
≤ T ,∀ui ∈ U, l ∈ L, jk

l
∈ Jl

(11)xk
li
∈ {0, 1},∀ui ∈ U, l ∈ L, jk

l
∈ Jl.

1074

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

4.2 Benchmark algorithm

In this subsection, we present a benchmark algorithm, which
assumes that all the future task information is known in advance.
That is, all the user- and task-related information are known in
advance. Use of brute-force or branch-and-bound search for the
optimal solution could be extremely time-consuming. Instead of
pursuing such global optimal solution, we here seek for optimal
task assignment for each individual timeslot.

The main idea behind the benchmark algorithm is as fol-
lows. It first ranks all the tasks in an increasing order of end
timeslots. For the task assignment, it adopts an earliest end
timeslot first strategy, i.e., the tasks with earliest end timeslot
are assigned first. Such a greedy strategy can leave more
time for users to perform tasks in the future. For each times-
lot, it makes optimal matching between the users and the
tasks ending in the timeslot. To achieve the per-slot optimal
matching, the task assignment problem is transformed into
a bipartite graph matching problem by constructing a bipar-
tite graph. For a timeslot, tasks ending in the timeslot and
all the users can be regarded as the vertices of the bipartite
graph. For each user-task pair, it is connected by an edge,
whose weight is the profit that the platform can earn from
the corresponding user-task pair, which can be calculated by
using (6). Specifically, for a task x, if a user ui cannot reach a
task x’s location in time (i.e., reaching there before the start
timeslot of x, by starting the movement immediately if the
user is not currently undertaking any task or after the user
finishes his last undertaken task), or his accomplishment
of the task does not bring positive profit for the platform,

the weight of the corresponding edge between them will be
set to 0.1 Then, the Kuhn-Munkres algorithm [32] is used
to achieve per-slot optimal bipartite graph matching. Obvi-
ously, such per-slot optimization cannot yield the global
optimal solution of the whole sensing period.

Algorithm 1 gives the detailed procedure of the benchmark
algorithm. The variable profit records the total profit that the
platform earns. Line 1 initializes necessary variables. Line 2
sorts all tasks according to their end timeslots. Lines 3–10 per-
form task assignment. Specifically, lines 5 and 6 construct the
bipartite graph and perform the corresponding matching. Lines
7–10 update all variables. Note that the variable l in line 1 means
task ending timeslot while the variable l* in lines 8–10 mean the
arrival timeslot of a task ending at timeslot l.

The time complexity of the benchmark algorithm is
deduced as follows. Assuming that the average number of
tasks ends at a timeslot is n, the average number of total task
arrivals will be qn, where q is the total number of timeslots.
So line 2 takes O(qn) time when counting sorting is used.2
Since the bipartite graph matching in line 6 takes O((m + n)3)
time, lines 4–10 take O((m + n)3) time in total. Thus lines
3–10 take O(q(m + n)3) time. Therefore, we have the bench-
mark algorithm has a total time complexity of O(q(m + n)3).

4.3 BMA‑RUA algorithm

The BMA-RUA algorithm is an online task assignment algo-
rithm, where tasks arrive dynamically. Different from the
benchmark algorithm, it adopts earliest start timeslot first
strategy. For each timeslot, BMA-RUA includes two main
steps: task assignment and data offloading.

Step 1: Task assignment. It works in a task-arrival-triggered
manner and adopts earliest start timeslot first strategy in the
task assignment due to the dynamic task arrival property. It
makes task assignment decisions for all tasks arrived at the
beginning of each timeslot. At the beginning of a timeslot,
since the information of all users and the tasks already arrived
at this time are both known, the task assignment problem
can be addressed by using bipartite graph matching similar
to Algorithm 1. According to the matching result, the plat-
form can get the maximum profit of each individual timeslot.
Accordingly, per-slot based optimal assignment is achieved
in such an online manner.

Algorithm 1. Benchmark Algorithm

1 Note that the weights of edges in a bipartite graph are all calculated
this way in later algorithms proposed in this paper, whenever appli-
cable.
2 In this paper, we focus on scenarios where the duration of a timeslot
is quite long such that the mean number of task arrivals in a timeslot
is much larger than one. In this case, the total number of timeslots will
be much smaller than the (mean) total number of tasks (i.e., q < < qn).
Thus, the applicability condition for using counting sorting holds.

1075

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

Step 2: Data offloading. At the end of a timeslot, upon com-
pletion of a task (if any), the task result should be submit-
ted to the platform within a certain period of time. Due to
the limited coverage of the APs, submitting the task results
directly to the platform via the cellular network will bring
more upload cost. In order to increase the profit of the ser-
vice platform, full use of the AP coverages is encouraged to
reduce the upload cost. For this purpose, we largely utilize the
service availability of the APs for data offloading.

In BMA-RUA, minimal detour based task results offload-
ing is adopted to maximally reduce the upload cost. Here,
minimal detour means with minimal extra travel distance is
pursued for WiFi based data offloading if such offloading is
beneficial. When multiple such choices exist, we choose the
one leading to the minimal extra travel distance. Accord-
ingly, upon the accomplishment of a task, there are the fol-
lowing two cases for a user to perform data offloading.

1) If the user has been assigned a new task

In this case, the user can choose to submit most recently col-
lected task results through an AP on his way to the new task
location, if possible. To find such an AP, we need to seek a
shortest route connecting the user, a point in the AP’s service
range, and the target task. For visiting the AP, we actually need
to seek a point on the perimeter of the AP’s circular service
range, which results in the shortest travel distance while meet-
ing the following eligibility conditions: 1) the user can reach
the chosen point in K timeslots, and further 2) he can reach the
next task location before the task starts. The point leading to the
shortest distance can be calculated by using geometric methods.
Specifically, suppose the user is currently at location A and plans
to go to next task location B, while trying to detour to a point on
the service range of an AP located at O, the problem is to find
such a node X, while leading to the shortest distance A–X-B.
There are two cases:

Case 1: If the segment AB penetrates the AP’s service
range, then the first intersection point is X (see Fig. 2a);
Case 2: We need to find a point X such that the half-line
OX equally divides ∠AXB (see Fig. 2b). Finding such a
location X in this case can be transformed to the solving
a quartic equation with one unknown quantity.3 For more

details regarding how to determine the coordinate of X,
please see the Appendix.

When multiple such APs exist, we need to find the AP
and corresponding point, which lead to the shortest distance
among all the choices while meeting the above eligibility
conditions. In this way, on the way moving to the next task
location, the task result can be uploaded via the chosen AP.

2) If the user is not currently assigned any new task

In this case, he can move to a closest AP’s service range
for data offloading if he can reach there within K timeslots
(see Fig. 2c). Upon reaching there, he can upload his held
task results through the AP.

Note that one additional precondition for the above data
offloading to be applicable is that it is cost effective, i.e., it
can bring positive profit to the platform.

Algorithm 2 shows the procedure of BMA-RUA. task_listi
represents the set of tasks which have been completed by
user ui but the task results have not been submitted yet.
upload∗

i
 represents the cellular-based upload cost (i.e., sup-

pose cellular traffic is used) of all those offloadable tasks
in task_listi , which can be offloaded before their upload
deadlines. costextra represents the extra travel cost caused by
data offloading, if any. Note that the values of upload∗

i
 and

costextra can change with the routes taken for data offloading.
Algorithm 2 works as follows. Line 1 initializes necessary

variables. Lines 2–21 are for per-slot based task assignment
(see lines 3–5), data offloading (see lines 6–19), and upload-
ing via cellular traffic (see lines 20–21). The first is executed
at the beginning of a slot while the latter two are executed
at the end of a slot. In lines 6–19, task accomplishment trig-
gered data offloading (if applicable) is used. Specifically,
if the just-accomplished task location is covered by an AP,
immediate offloading is performed (see line 19), otherwise

Fig. 2 Illustration of various cases for reducing upload cost via data
offloading. Point O is where an AP is located

3 This problem is also known as the pilgrimage to castrum problem,
which can be briefly described as follows. There was a vendor, who
worked at a bazaar. Each day he went to the bazaar from his home.
But before reaching the bazaar, he always went first to a circular cas-
trum to worship the statue of Apollo, which could be done at any
boundary point of the castrum. The problem is thus to find a worship
point which minimizes the total travel distance from his home to the
worship point and then all way to the bazaar.

1076

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

we need to seek an offloading route in the form of “user-
AP-NextTaskLocation” (see lines 8–13) or in the form of
“user–AP” (see lines 15–17). It should be noted that only
feasible offloading routes are considered, i.e., timely reach-
ing target AP and also next task location (if applicable), and
cost effectiveness (i.e., positive profit to the platform). When
multiple such choices exist, the shortest one will be chosen.
Lines 20–21 check whether each piece of task result in hand
has reached its upload deadline. If so, the user must upload
the task results via cellular network immediately.

The time complexity of BMA-RUA is as below. Lines
3–5 for bipartite graph matching takes O((m + n)3) time,
where n is the average number of task arrivals in a timeslot4.
Lines 8–13 take O(w) time and also lines 15–17 take O(w)
time. Here, we assume finding a “user-AP-NextTaskLoca-
tion” route takes constant time. Line 19 takes O(1) time.
Then the “for” loop between line 6 and line 19 takes O(mw)
time. Lines 20–21 take O(m) time. Therefore, lines 3–21
take O((m + n)3) time. Since there are q timeslots totally,
the overall time complexity of BMA-RUA is O(q(m + n)3).

5 User‑online‑arriving task assignment:
problem and algorithm

This section studies the user-online-arriving task assign-
ment problem where users arrive and depart dynamically.
We first formulate the profit maximization problem for this
scenario, and then design an online heuristic algorithm. The
designed algorithm is a greedy maximum profit first algo-
rithm, which iteratively selects the user-task pair leading to
the maximum profit among all user-task pairs until no such
choice exists. This algorithm also adopts the data offloading
strategy for reducing upload cost. We refer to this algorithm
as MPF-RUA.

5.1 Problem formulation

In the user-online-arriving scenario, users arrive and leave
dynamically. Figure 3 gives an example illustrating the
dynamic user arrivals and departures in the user-online-arriv-
ing scenario.

Each user ui ∈ U has an arrival time, a start location, a
predetermined destination, a constant moving speed, and a
deadline for the user to reach the destination. On the way a
user moves to his destination, he is allowed to take detour
to complete one or more tasks provided that the user can
reach his destination before pre-determined deadline. A
user ui is associated with a time window [ai, fi], where ai

Algorithm 2 BMA-RUA
4 It should be noted that, in the deduction of the complexity of the
benchmark algorithm in the preceding subsection, we used n to rep-
resent the average number of tasks ending in a timeslot. Here, we
use n to represent the average number of tasks arriving in a timeslot.
The reason we can use n to represent both variables is because, in the
long term, we have the average number of tasks arriving in a timeslot
equals the average number of tasks ending in a timeslot. The reason
is as follows. Since the value of T does not affect the conclusion, we
here simply choose T = 0. Without loss of generality, the duration of
a task is assumed to be uniformly chosen from {1, 2, …, k} times-
lots and the number of tasks arrived in a slot is n, then the number of
tasks ending in a slot is due to the contribution of its preceding k – 1
timeslots and also the current timeslot, each contributing an average
number of (1/k)n tasks. Obviously, the expected total number of tasks
ending in a slot is also n.

1077

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

is the timeslot when he arrives at the platform, and fi is the
last timeslot when he must have reached the destination.
To ease the description, we assume the user must reach
the destination before the end of timeslot fi. The length of
the time window restricts length of the detour that a user
can take. Let Ei,last represent the end timeslot of the last
task that user ui undertakes. Let Ti,dest represent the time
required for user ui to travel from his last undertaken task
location to his destination. When a user is not assigned
any task, we treat his start location as his last task loca-
tion. We use auxiliary variable �li to indicate whether user
ui performs task or not in timeslot l. We have �li = 0 if ui
performs a task in timeslot l, otherwise �li = 1. Then the
task assignment problem in user-online-arriving scenario
is formulated as follows.

(12)max

q
∑

l=1

m
∑

i=1

nl
∑

k=1

profitk
li
∗ xk

li

(13)s.t.
(

ai − sk
l

)

∗ xk
li
≤ 0,∀ui ∈ U, l ∈ L, jk

l
∈ Jl

(14)
(

fi − ek
l

)

∗ xk
li
≥ 0,∀ui ∈ U, l ∈ L, jk

l
∈ Jl

(15)ai +

Ei,last
∑

l=ai

[

�li +

nl
∑

k=1

xk
li
∗ tk

l

]

+ Ti,dest ≤ fi,∀ui ∈ U

(16)
m
∑

i=1

xk
li
≤ 1,∀l ∈ L, jk

l
∈ Jl

(17)
nl
∑

k=1

xk
li
≤ 1,∀l ∈ L, ui ∈ U

(18)
dk
li

vi
∗ xk

li
≤ T ,∀ui ∈ U, l ∈ L, jk

l
∈ Jl

(19)xk
li
∈ {0, 1},∀ui ∈ U, l ∈ L, jk

l
∈ Jl

Constraint (13) guarantees that each user can only com-
plete tasks which start after the user arrives at the platform.
Constraint (14) guarantees that each user can only complete
tasks which terminate before the user leaves the platform.
Constraint (15) guarantees that each user can reach his des-
tination in time after completing the assigned task(s). Con-
straints (16), (17), (18), and (19) correspond to constraints
(8), (9), (10), and (11), respectively.

(20)�li ∈ {0, 1},∀ui ∈ U, l ∈ L

J1

u1 u2 u3 u4

time1 2 3 4

u1

5

u2

J2 J3

user arriving

J5J4

user leavingtask arriving

Fig. 3 An example illustrating the user online arriving scenario

Algorithm 3 MPF-RUA

1078

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

The task assignment problem in user-online-arriving sce-
nario is also a 0–1 integer linear programming problem.
Because users arrive and depart dynamically, the user-online-
arriving task assignment problem is even more complicated
compared with the user-offline-arriving scenario. To address
this problem, we again seek optimal task assignment for each
individual timeslot and accordingly design an online algorithm.

5.2 MPF‑RUA algorithm

In this subsection, we design an online task assignment algo-
rithm. This algorithm adopts greedy maximum-profit-first
strategy for task assignment and reducing upload cost via
detour based data offloading, if possible. To pursue maxi-
mum platform profit, MPF-RUA always assigns users with
tasks which can bring the highest profit. Specifically, upon
the arrival of a user at the platform, MPF-RUA will assign
the user with a task which leads to the maximum profit;
Upon task arrivals at the beginning of a slot, MPF-RUA
will assign them to users, which bring the maximum profit,
if possible. Before the assignment between a user and a task,
the following task-undertaking eligibility conditions will be
checked:

1) Whether the user can complete the task on time,
2) Whether the user can still reach his destination after fin-

ishing the task before given deadline, and
3) Whether the task assignment brings positive profit for

the platform.

If any of the above conditions is violated, the task cannot
be assigned to the user.

In MPF-RUA, the following events can be observed.

Task arrival event. We assume task arrivals occur at the
beginning of timeslots. Since each task is required to be
submitted to the platform T timeslots before its actual
start, for any timeslot l, the platform will have all the
information of those task(s) supposed to start at the
beginning of the l + T timeslot.
User arrival event. User arrival can happen at any time
in a timeslot. Upon the arrival of a user, he is eligible
for undertaking a task immediately provided that all
the task-undertaking eligibility conditions are met. The
newly arriving user be recruited to undertake tasks that
have arrived at the platform in previous timeslots but
have not yet started.
User leaving event. After a user is scheduled to move all
way to his destination, the user is considered as having
left the system and will be removed from the user set
for task assignment. In such movement, a detour route
in the form of “user-AP-destination” for data offloading,
if he still has task result to upload.

Data offloading event. After a user finishes a task, the
user can utilize APs (if applicable) for data offloading.
This event is similar with corresponding data offloading
strategy in BMA-RUA. The user can take a detour for
data offloading in the form of “user-AP-NextTaskLoca-
tion” or in the form of “user-AP”.

Algorithm 3 gives the procedure of the MPF-RUA
algorithm. Line 1 initializes necessary variables. Lines
2–29 describe the online task assignment process. Lines
3–14 describe how to handle task arrivals at the begin-
ning of a slot. Line 7 selects a feasible user-task pair
that leads to the maximum profit provided that all the
task-undertaking eligibility conditions are met. Then
lines 8–11 update corresponding variables. Lines 16–21
describe how to handle user arrival events. The tasks
waiting for assignment at this moment include all those
tasks that have arrived in the previous T timeslots but
not assigned yet. Lines 23–25 describe how to handle
user departure. A user with no enough spare time for
task execution means it’s time for him to move all way
to his destination. Line 27 describes how to handle data
offloading event. Finally, Lines 28–29 check whether
each task result reaches its upload deadline. If so, the
task result must be uploaded to the platform via cellular
network immediately.

The time complexity of MPF-RUA is deduced as fol-
lows. Assume the user arrival rate is λ users/slot, and the
average duration that a user stays in the system is D, we
have the expected number of users in the system will be
m = λD. The size of set UJl will be O(mn), where n is the
average number of task arrivals in a slot. Suppose binary
priority queue is used, Line 7 takes O(log(mn)) time, and
line 9 takes O((m + n)log(mn)) time for the queue man-
agement. Then lines 7–13 take O((m + n)log(mn)) time.
Since the “while” loop in lines 6–13 can be iterated at
most O(min{m, n}) time, lines 6–13 thus take O(min{m,
n}(m + n)log(mn)) time. Accordingly, lines 3–14 take
O(min{m, n}(m + n)log(mn)) time. Lines 16–21 take
O(nT) time and lines 23–25 take O(1) time. Line 27 takes
O(mw) time and lines 28–29 take O(m) time. Therefore,
the overall complexity of MPF-RUA will be O(qmin{m,n}
(m + n)log(mn)).

6 Performance evaluation

In this section, extensive simulations are conducted for
evaluating the performance of our proposed algorithms.
The simulator was developed using PYTHON and all
the simulations were carried out on a desktop computer
with Microsoft Windows 10, 8 GB memory, Intel Core
i7-10700F CPU, and 2.90 GHz clock-speed.

1079

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

6.1 Simulation settings

The sensing area used in the simulations is a 60 × 60 square
region. The travel distance is measured by Euclidean distance.
The total number q of timeslots is set to 30. The length of a
task’s time window ranges from 1 to 4 timeslots. The reward for
the accomplishment of a task as provided by requesters ranges
from 3 to 10. The traveling speed of a user is randomly and uni-
formly chosen from 10–20/timeslot. The default number of APs
is 6, each having a uniform coverage radius of 1. The default
maximum upload deadline and default interval between task
start and arrival are both set to 1 timeslot. The unit time upload
cost (per timeslot) and the bonus for a user to complete a unit
task are all set to 1. The unit travel distance cost is set to 0.2.
The task arrivals at the platform follow normal distribution with
mean value μ and standard variance σ. The standard variance
σ is set to 1 and the value of μ changes with user arrival sce-
nario, which is set to 8 for the offline case and 5 for the online
case. The tasks and APs are spatially uniformly distributed in
the sensing map. The above simulation settings are similar to
those used in [21, 22]. For each parameter setting, 20 independ-
ent experiments were conducted and the average results were
reported. Table 2 shows the default parameter settings used in
the simulations.

The user setting for different scenario is shown as
follows:

1) User-offline-arriving scenario. There are totally 20
mobile users. The initial locations of users are ran-
domly and uniformly chosen in the simulation map at
the beginning.

2) User-online-arriving scenario. Arrivals of users follow Pois-
son distribution with a default user arrival rate 4 users/slot.
The start locations and destinations of users are randomly
and uniformly chosen from the sensing map. The total time
that a user can stay in the system (i.e., starting from the
timeslot when he arrives at the system to the timeslot he
must reach his destination before pre-determined deadline)
ranges from 4 to 12 timeslots.

For each scenario, we simulated different algorithms
and verified multiple performance measures.

6.2 Simulation results for user‑offline‑arriving
scenario

For the offline scenario, we simulated the following four
algorithms.

• Benchmark algorithm (Bench), proposed in this paper.
• BMA-RUA, proposed in this paper.
• BMA: In this algorithm, the platform performs BMA-

RUA for task assignment but without implementing the

detour based data offloading in BMA-RUA. This algo-
rithm was proposed in [22].

• DSF-offline (Distance-Shortest-First-offline): In this
algorithm, the platform always selects the user-task pair,
which leads to the shortest distance, one task for each
time. This process continues until no available pair exists.

Table 2 Default parameter settings

Parameters Values

Number of users (for offline scenario) 20
User moving speed 10–20/timeslot
Total number of timeslots q 30
Number of APs 6
AP coverage radius 1
Task time window length 1–4 timeslots
Unit travel cost Kd 0.2
Unit upload cost C 1
Unit task bonus Kt 1
Data amount Dt generated per unit time 1
Task reward 3–10
Maximum upload deadline K 1 timeslot
Interval between task start and arrival T 1 timeslot
Task arrival distribution N(8, 1) for offline scenario;

N(5, 1) for online
scenario

Total profit Task completion ratio(a) (b)

Fig. 4 Impact of number of users

Total profit Task completion ratio(a) (b)

Fig. 5 Impact of task arrival rate

1080

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

Figure 4 compares the performance by different algo-
rithms versus number of users. In Fig. 4a, we can see that the
total profits by all algorithms increase as the number of users
increases. This is because more users can perform more
tasks and further reduce the travel costs for task executions.
The rank from the best to the worst is as follows: BMA-
RUA, Bench, BMA, and DSF-offline. The curve by BMA is
close to that by Bench. BMA-RUA performs the best among
all the algorithms due to the introduction of detour based
data offloading. In Fig. 4b, the task completion ratios of
all algorithms increase as the number of users increases.
This is because the increase of number of users can lead to
completion of more tasks. Also, also it can be seen that the
bipartite graph based methods (i.e., BMA-RUA, Bench, and
BMA) can achieve higher task completion ratio compared
with greedy method (i.e., DSF-offline).

Figure 5 compares the performance by different algo-
rithms versus task arrival rate. In Fig. 5a, it is seen that
the total profits by all the algorithms increase with the task
arrival rate increasing. Again, the rank from the best to the
worst is the same to that in Fig. 4. It can also be seen that

when the task arrival rate is low, the profits by all the algo-
rithms (except BMA-RUA) are quite close. This is because
lower task arrival rate leads to less competition among the
task assignments and thus similar results by the algorithms.
Also, we can again see that BMA-RUA performs the best
among all the simulated algorithms. In Fig. 5b, the task com-
pletion ratios of all algorithms decrease as the task arrival
rate increases. This is because the number of users is limited
and thus the increase of number of tasks causes reduction of
the task completion rate.

Figure 6 compares the performance by different algo-
rithms versus number of APs. In Fig. 6a, the same rank of
algorithms is observed. Also, it is seen that the profit growth
rate by BMA-RUA is higher than that by other algorithms.
This is because more APs lead to significantly increased
offloading opportunities due to the use of detours based data
offloading in BMA-RUA. In Fig. 6b, the task completion
ratios of all algorithms are basically the same as the number
of APs varies. This is because the increase of number of APs
has little effect on the task completion rate.

Figure 7 shows the impact of T on total profit of BMA-
RUA. In this experiment, T ranges from 1 to 7 timeslots. The
total profit by BMA-RUA first increases and then gradually
stabilizes as T is beyond certain threshold. This is because
when T is small, increased T allows more flexibility on task
assignment. However, when T is beyond certain threshold,
the performance will not increase any further. The reason is
as follows. Based on our setting of μ = 8 and task load ran-
domly chosen in the range [1, 3] timeslots, we have the aver-
age number of tasks in the system will be 8 × (1 + 3)/2 = 16
while there are in total 20 fully available users in the sys-
tems. Thus, further increasing of T will not lead to further
increase of performance.

Figure 8 shows the impact of maximum upload dead-
line on total profit by BMA-RUA. It is seen that, with the
increase of maximum upload deadline, the total profit by
BMA-RUA also increases. This is because users will have
more available time for data offloading via longer detours
with maximum deadline increasing.

Fig. 6 Impact of number of APs

Task completion ratio(a) (b)

Fig. 7 Total profit by BMA-RUA with varying T

1081

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

Figure 9 shows the runtime by different algorithms with
varying combination of number of users and task arrival
rate. In this figure, the rank from the longest to the shortest
in terms of runtime is as follows: BMA-RUA, Bench, BMA,
and DSF-offline. BMA-RUA, Bench, and BMA have faster
growth rates, while DSF-offline has a slower growth rate.
This is because the bipartite graph matching-based strategy
adopted by the first three algorithms takes more time than
the greedy strategy adopted by DSF-offline.

6.3 Simulation results for user‑online‑arriving
scenario

For the scenario, we compare the following algorithms:

• MPF-RUA, proposed in this paper.

• MPF: In this algorithm, the platform performs MPF-RUA
for task assignment but without implementing the detour
based data offloading in MPF-RUA. In this way, we can
observe the benefit brought by the detour based data off-
loading in MPF-RUA.

• DSF-online (Distance-Shortest-First-online): In this
algorithm, each time the user-task pair leading to the
shortest distance is always chosen. This process contin-
ues until no such pair exist.

• BMA: In this algorithm, task assignments were carried
out at the beginning of each timeslot upon task arrivals
(by using bipartite-graph-matching algorithm) but no
task assignment is done in the middle of timeslots upon
user arrivals. Moreover, no data offloading is performed
in this algorithm.

• BMT: This algorithm works similarly to MPF for task
assignment but uses optimal per-slot bipartite-graph
matching algorithm for the task assignment at the begin-
ning of each slot rather than using the maximum-profit-
first strategy like in MPF.

Figure 10 compares the performance by different algo-
rithms versus user arrival rate. In Fig. 10a, we can see that
the total profits by all the algorithms increase with the user
arrival rate. However, the profit increase rate starts drop-
ping after the user arrival rate is beyond 3 user arrivals per
slot. This is because in this case some already arrived users
will not be assigned any task due to the assumption of fixed
task arrival rate. It is also seen that the rank from the best
to the worst is as follows: MPF-RUA, BMT, MPF, BMA,
DSF-online. The curve by MPF is very close to that by BMT
while much better than that by BMA. The former means the
performance of the maximum-profit-first strategy in MPF is
very close to that of optimal per-slot matching algorithm and
the latter means the user-arrival-triggered task assignment is
quite efficient. Moreover, the allowance of detour-based data
offloading in MPF-RUA achieves significantly increased
profit as compared with other algorithms. In Fig. 10b, it can
be seen that the completion ratio of all algorithms increase
as the number of users increase. This is because more users
can lead to more tasks be finished.

Figure 11 compares the performance by different algo-
rithms versus task arrival rate. In Fig. 11a, we can see that
the total profits by all the algorithms increase as the task
arrival rate increases. This is because more task arrivals can
lead to high profits for those tasks assigned to users. It is
also seen when the task arrival rate is low, the total prof-
its by all the algorithms except MPF-RUA are quite close.
This is because each task in this case can be assigned to the
most profitable user no matter which algorithm is used. In
Fig. 11b, the completion ratios of all algorithms decease as
the task arrival rate increases. The reason is similar to that
for Fig. 5b.

Fig. 8 Total profit by BMA-RUA with varying maximum upload
deadline

Fig. 9 Runtime by different algorithms with varying number of users
and task arrival rate

1082

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

Figure 12 compares the performance by different algo-
rithms versus number of APs. In Fig. 12a, the rank from the
best to the worst in terms of total profit is as follows: MPF-
RUA, BMT, MPF, BMA, and DSF-online. Also, it is seen
that MPF-RUA has a stable profit growth rate as the number
of APs increases. This is because that more APs can bring
more detour-based data offloading opportunities. In Fig. 12b,
the task completion ratios of all algorithms are basically the
same as the number of APs varies. The reason is also similar
to that for Fig. 6b.

Figure 13 shows the effect of T on total profit by MPF-
RUA. In this figure, it is seen that the total profit by MPF-
RUA first increases and then gradually stabilizes as T keeps
increasing, which is similar to that by BMA-RUA (see
Fig. 7). This is because the number of users in this test is
limited, which restricts the upper bound of the total profit
that can be obtained.

Figure 14 shows the effect of maximum upload deadline
on the total profit by MPF-RUA. In this figure, we can see
that, with the increase of maximum upload deadline, the

Fig. 10 Impact of user arrival
rate

Task completion ratio (a) (b)

Fig. 11 Impact of task arrival
rate

Task completion ratio (a) (b)

Fig. 12 Impact of number of
APs

Total profit (b) Task completion ratio (a)

1083

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

performance of MPF-RUA also increases, which is similar
to that of BMA-RUA (see Fig. 8).

Figure 15 shows the runtime by different algorithms with
varying combination of user arrival rate and task arrival rate. In
this figure, the rank from the longest to the shortest in terms of
runtime is as follows: BMT, BMA, MPF-RUA, MPF, and DSF-
online. Since both BMT and BMA adopt the bipartite graph
matching-based strategy for task assignment, they take more
runtime than the other three algorithms for task assignment.

7 Conclusion and future work

In this paper, we studied time sensitive task assignment in par-
ticipatory sensing. We assume that tasks arrive dynamically
and each task is associated with a specific time window for

task execution. We formulated the profit maximization prob-
lems for user-offline-arriving-scenario and user-online-arriving
scenario. For the user-offline-arriving scenario, we designed a
benchmark algorithm and an online algorithm, which adopts
bipartite-matching-based strategy for task assignment and fur-
ther performs minimal detour based data offloading for reducing
the data upload cost, whenever possible. For the user-online-
arriving scenario, we designed an online algorithm, which
adopts a maximum-profit-first strategy for task assignment and
also minimal detour based data offloading for reduction of data
upload cost whenever applicable. For each of the algorithms,
detailed design was presented and computation complexity was
deduced. Extensive simulations were conducted and the simula-
tion results verified the effectiveness of our proposed algorithms.

There are some research directions for future study in the
direction of time-window based task assignment for mobile
crowdsensing. First, design of effective incentive mechanisms
can effectively improve the task assignment performance
while respecting the rationality of various participants. In this
aspect, it is interesting to design effective auction mechanism
or pricing strategy to incentivize the involvement of various
participants in the system while maintaining high task assign-
ment performance. Second, the willingness of users for task
executions is also an important factor affecting the task assign-
ment performance, which deserves further study.

Appendix

Here, we describe how to find the point X leading to the
minimal length of path A–X-B to resolve the pilgrimage
to castrum problem.

A Cartesian coordinate system is first constructed (see
Fig. 16). Given the user’s initial location (denoted by A), the

Fig. 13 Total profit by MPF-RUA with varying T

Fig. 14 Total profit by MPF-RUA with varying maximum upload
deadline

Fig. 15 Runtime by different algorithms with varying user arrival rate
and task arrival rate

1084

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

user’s target location (denoted by B), and the circular castrum,
which is centered at O and has a radius r, the problem is to
find the point X leading to the minimal length of path A–X-B.
Denote the coordinate of A as (xA, 0), the coordinate of B as
(xB, yB). Denote ∠AOX as θ, ∠AOB as α. Then we have the
coordinate of point X as (r⋅cosθ, r⋅sinθ).

By using geometric methods, we can find the point X
which leads to the minimal distance of path A–X-B satisfies
∠AXM = ∠BXN. Then we have tan∠AXM = tan∠BXN. So
we have:

Since cos (α-θ) = cosα ⋅ cosθ + s inα ⋅ s inθ and
sin(α-θ) = sinα⋅cosθ—cosα⋅sinθ, we have:

Denote tan �

2
= x , then we have:

Combine Eqs. (22), (23) and (24) together, we have:

(21)
xAcos� − r

xAsin�
=

√

x2
B
+ y2

B
cos(� − �) − r

√

x2
B
+ y2

B
sin(� − �)

.

(22)
xAcos� − r

xAsin�
=

xBcos� + yBsin� − r

yBcos� − xBsin�

(23)sin� =
2x

1 + x2

(24)cos� =
1 − x2

1 + x2

(25)

(

xA + r
)

yBx
4 +

[

4xAxB + 2r(xA + xB)
]

x3 − 6xAyBx
2

+
[

2r
(

xA + xB
)

− 4xAxB
]

x +
(

xA − r
)

yB = 0

Equation (25) is a quartic equation with unknown quan-
tity x. By using some math tools (such as Matlab), the equa-
tion can be easily solved. Then we can get the value of θ
(i.e., ∠AOX). Therefore, the coordinate of point X can be
obtained.

Author contribution Shuo Peng formulated the problems, designed the
algorithms, did the simulation coding and debugging job, and prepared
the original draft. Kun Liu involved part of the algorithms design and
complexity deduction. Shiji Wang involved the writing, review, edit-
ing, and project administration. Yangxia Xiang involved the simulation
software development and validation. Baoxian Zhang supervised this
work, involved the writing, review, editing, and also funding acquisi-
tion. Cheng Li involved the writing, review, editing, and also funding
acquisition.

Funding This work was supported in part by the NSF of China under
Grant No. 61872331, the Natural Sciences and Engineering Research
Council (NSERC) of Canada (Discovery Grant RGPIN-2018–03792),
and the InnovateNL SensorTECH Grant 5404–2061-101.

Data availability Non Applicable.

Code availability Available from the authors upon request.

Declarations

Competing interests The authors declare no competing interests.

Ethics approval This work does not involve any work related to ethics.

Consent to publish All authors consent to publication.

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Guo B, Wang Z, Yu Z, Wang Y, Yen NY, Huang R, Zhou X (2015)
Mobile crowd sensing and computing: The review of an emerging
human-powered sensing paradigm. ACM Comput Surv 48(1):1–31

 2. Liu Y, Kong L, Chen G (2019) Data-Oriented Mobile : A Compre-
hensive Survey. IEEE Commun Surv Tutorials 21(3):2849–2885
(third quarter)

 3. S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher (2015)
SmartRoad: Smartphone-Based Crowd Sensing for Traffic Regu-
lator Detection and Identification. ACM TOSN 11(4):1–27

 4. Dutta J, Gazi F, Roy S, Chowdhury C (2016) AirSense: Opportun-
istic crowd-sensing based air quality monitoring system for smart
city, in Proc. IEEE Sensors 2016, pp. 1–3

 5. Zheng Y, Liu F, Hsieh H (2013) U-Air: When urban air quality
inference meets big data, in Proc. 19th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, pp. 1436–1444

 6. Aram S, Troiano A, Pasero E (2012) Environment sensing using
smartphone, in Proc. IEEE Sensors Applications Symposium, pp.
1–4

 7. Yang Z, Shangguan L, Gu W, Zhou Z, Wu C, Liu Y (2014) Sher-
lock: Micro-Environment Sensing for Smartphones. IEEE Trans
Parallel Distrib Syst 25(12):3295–3305

Fig. 16 Illustration for finding point X leading to minimal length of
path A–X-B. In this figure, AM⊥OX and BN⊥OX

1085

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

 8. Wu C, Yang Z, Liu Y (2015) Smartphones based crowdsourcing
for indoor localization. IEEE Trans Mob Comput 14(2):444–457

 9. Gong W, Zhang B, Li C (2018) Task Assignment in Mobile
Crowdsensing: Present and Future Directions. IEEE Network
32(4):100–107

 10. Peng S, Zhang B, Yan Y, Li C (2021) Time Window-based Online
Task Assignment for Mobile Crowdsensing, in Proc. of IEEE ICC
2021, pp. 1–6

 11. He S, Shin D, Zhang J, Chen J (2014) Toward optimal allocation
of location dependent tasks in crowdsensing, in Proc. of IEEE
INFOCOM 2014, pp. 745–753

 12. Wang X, Jia R, Tian X, Gan X (2018) Dynamic task assignment
in crowdsensing with location awareness and location diversity,
in Proc. IEEE INFOCOM 2018, pp. 2420–2428

 13. Li H, Li T, Wang W, Wang Y (2019) Dynamic Participant Selec-
tion for Large-Scale Mobile Crowd Sensing. IEEE Trans Mob
Comput 18(12):2842–2855

 14. Wang J, Wang F, Wang Y, Wang L, Qiu Z, Zhang D, Guo B, Lv
Q (2020) HyTasker: Hybrid Task Allocation in Mobile Crowd
Sensing. IEEE Trans Mob Comput 19(3):598–611

 15. Liu Y, Guo B, Chen C, Du H, Yu Z, Zhang D, Ma H (2019) FooD-
Net: Toward an Optimized Food Delivery Network Based on Spa-
tial Crowdsourcing. IEEE Trans Mob Comput 18(6):1288–1301

 16. Yang Y, Liu W, Wang E, Wu J (2019) A Prediction-Based User
Selection Framework for Heterogeneous Mobile CrowdSensing.
IEEE Trans Mob Comput 18(11):2460–2473

 17. Yucel F, Yuksel M, Bulut E (2021) Coverage-aware Stable Task
Assignment in Opportunistic Mobile Crowdsensing. IEEE Trans
Veh Technol 70(4):3831–3845

 18. Wang L, Yu Z, Han Q, Guo B, Xiong H (2018) Multi-Objective
Optimization Based Allocation of Heterogeneous Spatial Crowd-
sourcing Tasks. IEEE Trans Mob Comput 17(7):1637–1650

 19. Kang Y, Miao X, Liu K, Chen L, Liu Y (2015) Quality-aware
online task assignment in mobile crowdsourcing, in Proceedings
of IEEE MASS 2015, pp. 127–135

 20. Gong W, Zhang B, Li C (2019) Location-Based Online Task
Assignment and Path Planning for Mobile Crowdsensing. IEEE
Trans Veh Technol 68(2):1772–1783

 21. Li X, Zhang X (2021) Multi-Task Allocation Under Time Con-
straints in Mobile Crowdsensing. IEEE Trans Mob Comput
20(4):1494–1510

 22. Tao X, Song W (2021) Profit-Oriented Task Allocation for Mobile
Crowdsensing with Worker Dynamics: Cooperative Offline Solu-
tion and Predictive Online Solution. IEEE Trans Mob Comput
20(8):2637–2653

 23. Xu J, Xiang J, Yang D (2015) Incentive Mechanisms for Time
Window Dependent Tasks in Mobile Crowdsensing. IEEE Trans
Wireless Commun 14(11):6353–6364

 24 Xu J, Fu J, Yang D, Xu L, Wang L, Li T (2017) FIMI: A Con-
stant Frugal Incentive Mechanism for Time Window Coverage in
Mobile Crowdsensing. J Comput Sci Technol 32(5):919–935

 25. Sun X, Yang X, Wang C, Wang J (2020) A Novel User Selection
Strategy with Incentive Mechanism Based on Time Window in
Mobile Crowdsensing. Discret Dyn Nat Soc. Article ID 2815073,
13. https:// doi. org/ 10. 1155/ 2020/ 28150 73

 26. Hu T, Xiao M, Hu C, Gao G, Wang B (2017) A QoS-sensitive task
assignment algorithm for mobile crowdsensing. Pervasive Mobile
Comput 41:333–342

 27. Tao X, Song W (2019) Location-Dependent Task Allocation
for Mobile Crowdsensing With Clustering Effect. IEEE Internet
Things J 6(1):1029–1045

 28. Liu Y, Guo B, Wang Y, Wu W, Yu Z, Zhang D (2016) TaskMe:
multi-task allocation in mobile crowd sensing, in Proc. of ACM
UbiComp 2016, pp. 403–414

 29. Peng S, Gong W, Zhang B, Zhao Y, Li C (2020) AP-Assisted
Online Task Assignment for Mobile Crowdsensing. Mob Netw
Appl 25(5):1694–1707

 30. Zhang M, Yang P, Tian C, Tang S, Gao X, Wang B, Xiao F
(2016) Quality-Aware Sensing Coverage in Budget-Constrained
Mobile Crowdsensing Networks. IEEE Trans Veh Technol
65(9):7698–7707

 31 Wang E, Yang Y, Wu J, Liu W, Wang X (2018) An Efficient Pre-
diction-Based User Recruitment for Mobile Crowdsensing. IEEE
Trans Mobile Comput 17(1):16–28

 32. Munkres J (1957) Algorithms for the assignment and transporta-
tion problems. Soc Indust Appl Math 5(1):32–38

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Shuo Peng received the B. Eng.
degree from Civil Aviation Uni-
versity of China, Tianjin, China,
in 2017. He is currently working
towards the Ph. D. degree in com-
puter science at the University
ofChinese Academy of Sciences,
Beijing, China. His research inter-
ests include mobile crowdsensing
and Internet of Things. Mailing
address: Research Center of Ubiq-
uitous Sensor Networks, Univer-
sity of the Chinese Academy of
Sciences, 19A Yuquan Road, Bei-
jing 100049, China. Email: peng-
shuo17@mails.ucas.ac.cn.

Kun Liu received the B. Eng.
degree from Henan University,
Kaifeng, China, in 2018. He is cur-
rently pursuing the Ph. D. degree in
computer science at the University
of Chinese Academy of Sciences,
Beijing, China. His research inter-
ests include mobile crowdsensing
and Internet of Things. Mailing
address: Research Center of Ubiq-
uitous Sensor Networks, University
of the Chinese Academy of Sci-
ences, 19A Yuquan Road, Beijing
100049, China. Email: liukun181@
mails.ucas.edu.cn.

1086

https://doi.org/10.1155/2020/2815073

Peer-to-Peer Networking and Applications (2023) 16:1069–1087

1 3

Shiji Wang received the Ph.D.
degrees from Harbin Institute of
Technology (HIT), Harbin, China,
in 2006. Since 2007, he has worked
in Beijing Aerospace Measurement
and Control Technology Co., Ltd.,
mainly engaged in the research of
high-end electronic measurement
instrument technology. Now he is a
researcher and chief engineer of
Beijing Aerospace TT & C Tech-
nology Co., Ltd. His research inter-
ests include basic measurement
instruments, communication test
instruments, RF/microwave test
instruments, broadband communi-

cation and advanced bus technology. He has 62 individual authorized
patents, and published more than 50 papers. He led the team to apply
for more than 50 industrialization and pre research projects related to
electronic measuring instruments, such as major instrument projects of
the Ministry of science and technology, with a total scientific research
fund of over 200 million yuan. He developed many high-end electronic
measuring instruments such as 20GSa/s oscilloscope, GHz vector signal
generator and analyzer, and many technologies have reached the inter-
national advanced level. He won the national key new product certifi-
cate, international invention Silver Award, space Fund Award, space
defense award, space outstanding contribution award, national defense
science and technology progress award, etc. In 2016, he was selected
into Beijing Science and technology new star talent plan and academic
leader of the group for many years. Mailing Address: Beijing Aerospace
Measurement and Control Technology Co.,Ltd. 100041. Email:
wsj978418128@163.com.

Yangxia Xiang obtained the M.
Eng. Degree in computer science
from Army Engineering University
of PLA, China, in 2004. Sheis cur-
rently working with Information and
Communication Department, Army
Academy of Armored Forces, Bei-
jing, China. Mailing Address: No.21
Dujiakan Street,Fengtai District,
Beijing 100072, China. Email:
18701539583@163.com.

Baoxian Zhang received his
B.Sc., M.Sc., and Ph.D. degrees
in Electrical Engineering from
Northern Jiaotong University
(now Beijing Jiaotong Univer-
sity), China, in 1994, 1997, and
2000, respectively. He is cur-
rently a Full Professor with the
Research Center of Ubiquitous
Sensor Networks at the Univer-
sity of Chinese Academy of Sci-
ences, Beijing, China. He is an
Associate Editor of IEEE Sys-
tems Journal. He has served as a

co-chair for various technical symposia of several international confer-
ences, including IEEE GLOBECOM, ICC,, and VTC. He has published
over 200 refereed technical papers in archival journals and conference
proceedings. His research interests cover network protocol and algo-
rithm design, wireless networks, Internet of Things, and edge comput-
ing. Mailing address: Research Center of Ubiquitous Sensor
Networks,University of the Chinese Academy of Sciences, 19A Yuquan
Road, Beijing 100049, China. Email: bxzhang@ucas.ac.cn.

Cheng Li received the B.Eng. and
M. Eng. degrees from Harbin
Institute of Technology, Harbin,
P. R. China, in 1992 and 1995,
respectively, and the Ph.D.
degree in Electrical and Com-
puter Engineering from Memo-
rial University, St. John’s, Can-
ada, in 2004. He is currently a
Full Professor at the Faculty of
Engineering and Applied Science
of Memorial University, St.
John’s, Canada. His research
interests include mobile ad hoc
and wireless sensor networks,
wireless communications and

mobile computing, switching and routing, and broadband communica-
tion networks. He is an associate editor of the IEEE Transactions on
Communications, IEEE Internet-of-Things Journal, IEEE Network
Magazine, and IEEE Systems Journal. Mailing address: Faculty of
Engineering and Applied Science, Memorial University of Newfound-
land St. John’s, NL A1B 3X5, Canada. Email: licheng@mun.ca.

1087

	Time window-based online task assignment in mobile crowdsensing: Problems and algorithms
	Abstract
	1 Introduction
	2 Related work
	2.1 Time insensitive task assignment
	2.2 Time sensitive task assignment

	3 System model
	3.1 System overview
	3.2 System models

	4 User-offline-arriving task assignment: problem and algorithms
	4.1 Problem formulation
	4.2 Benchmark algorithm
	4.3 BMA-RUA algorithm

	5 User-online-arriving task assignment: problem and algorithm
	5.1 Problem formulation
	5.2 MPF-RUA algorithm

	6 Performance evaluation
	6.1 Simulation settings
	6.2 Simulation results for user-offline-arriving scenario
	6.3 Simulation results for user-online-arriving scenario

	7 Conclusion and future work
	References

