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Abstract
The new computing paradigm, fog computing, enables advanced services, such as navigation, self-driving cars, and aug-
mented reality, by integrating with vehicular networks to provide smart transportation solutions. This emerges fog-empowered 
vehicular ad-hoc networks (FEVANETs), which enable smart vehicles to communicate with fog nodes (FNs) using association 
policy, such as signal strength and/or favorite contents. However, a deluge arrival of vehicles to the network can cause a load 
imbalance among FNs. This impacts the severe reduction in the network service capability and resource utilization efficiency. 
To address this problem, we propose an algorithm, dynamic resource management (DRM), for assigning the resources of 
FNs to smart vehicles by migrating services among FNs. The problem is formulated as integer linear programming (ILP) and 
determines its NP-hardness by reducing it from Seminar Assignment Problem. A polynomial-time algorithm is presented 
by formulating the problem as a graph in which vertices represent the FNs and edges represent the vehicles present in the 
overlapped region of the pairs of FNs. The proposed algorithm considers the set of vehicles that are in overlapped cover-
age regions of FNs and communicates with those corresponding FNs. Then it migrates the resource blocks (RBs) of the 
set of vehicles between pairs of FNs to minimize the allocated RBs. The DRM is simulated extensively, and the simulation 
outcomes show that the DRM enhances service capability, serviceability, availability, throughput, and resource utilization 
efficiency compared to the four existing algorithms.

Keywords Resource scheduling · Service migration · Fog computing · Fog-empowered vehicular ad-hoc networks · Service 
capability · Serviceability · Availability · Throughput · Resource utilization

1 Introduction

In recent years, the advancement in the computing paradigm 
and Internet of things (IoT) has inspired the industrial and 
research communities to encapsulate these technologies 
into conventional networks, such as mobile ad-hoc networks 
(MANETs), vehicular ad-hoc networks (VANETs), and fly-
ing ad-hoc networks (FANETs) [1, 2]. This advancement  

leads to ubiquitous applications/services with the help of 
cloud infrastructure through the Internet. However, sensitive 
applications, such as real-time, time-critical, and delay-sensitive 
(e.g., smart transportation, navigation, and augmented reality 
assistant) demand low latency, high bandwidth, and low con-
gestion [3–7]. The end-to-end delay is significant between the 
end-user and the cloud server, which affects the applications. As 
a result, these services need to be available close to the end-user 
in order to meet the demand. This lead the researchers to intro-
duce a new computing paradigm, called fog computing (FC) [3, 
8, 9]. FC is a hierarchical distributed architecture, which acts 
as a middle layer between the end-user and the cloud server. It 
extends the cloud services to the edge and closer proximity to 
the end-user [10]. As a result, it fulfills the demand of the sen-
sitive applications, and it complements the cloud [4]. The FC 
infrastructure consists of a set of devices, namely routers, gate-
ways, switches, and other electronic devices, called fog nodes 
(FNs). These devices are capable of computing, storing, and 
transmitting/receiving data with other devices and the cloud.
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The evolution of the IoT paradigm and vehicular net-
works enables smart vehicles to establish a connection with 
FNs or any devices to improve traffic efficiency [3]. The 
delay-sensitive and real-time applications can be provided 
in cognitive vehicular networks for ensuring safety, and 
remarkable convenience in transportation [11, 12]. How-
ever, these applications pose significant challenges to exist-
ing VANETs regarding high latency, bandwidth consump-
tion, and storage capacity. The fog-empowered vehicular 
ad-hoc networks (FEVANETs) can address these challenges 
by integrating fog computing into VANETs [9, 13, 14]. 
The architecture of FEVANETs is shown in Fig. 1, which 
comprises roadside units (RSUs) and high power nodes 
(HPNs). The RSUs/HPNs are roadside infrastructure and 
are considered FNs. They are equipped with computation, 
storage, wide-area coverage, and communicating data with 
the cloud and other FNs. More specifically, the HPNs pro-
vide high computation, storage, and coverage area capaci-
ties, hence called powerful FNs. The HPNs are supervised 
by a central unit, which acts as an interface between the 
HPNs and the cloud servers through the Internet. Due to 
the limited resource constraints of FNs, efficient resource 
management is a crucial criterion for improving the service 

capability of FEVANETs [15]. Alternatively, the efficient 
resource utilization to maximize service capability, which 
indicates the network availability for serving vehicles to 
satisfy their desired requirements, is the primary challenge 
in FEVANETs [16]. The smart vehicles can establish a 
connection with FNs in FEVANETs using device associa-
tion techniques, such as signal-aware, content-aware, and 
capacity-aware techniques. The signal-aware technique 
establishes a connection between FNs and vehicles depend-
ing on good signal-to-interference-plus-noise ratio (SINR) 
quality [17]. The content-aware technique establishes a con-
nection between FNs and vehicles based on user favorite 
contents [18] and the capacity-aware technique establishes 
a connection using resource availability of FNs [19].

As the vehicles connecting to the vehicular network 
increase, these device association techniques lead to a 
load imbalance among FNs, which impacts the severe 
reduction in the network service capability and resource 
utilization efficiency [20]. To resolve this problem, we 
propose dynamic resource management (DRM) algorithm 
for efficient resource allocation among FNs and migrat-
ing services between pairs of FNs to improve their ser-
vice capability and resource utilization efficiency. The 

Fig. 1  Architecture of 
FEVANETs
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set of smart vehicles reaching FEVANET can establish 
a connection with single FN or more than two FNs. In 
this work, we consider the set of vehicles in overlapped 
coverage regions of two or more FNs and served by those 
FNs. The resource blocks (RBs) of a set of vehicles in the 
overlapped coverage region are used for service migration 
between pairs of FNs to minimize occupied RBs and max-
imize the service capability of FEVANETs. A resource 
block is the smallest time-frequency unit in an orthogo-
nal frequency division multiple access (OFDMA) system. 
A smart vehicle must be assigned with RBs before data 
transmission [21]. We simulate the proposed algorithm by 
taking 10 to 50 FNs and 300 to 2100 vehicles at an arrival 
rate of 10 vehicles/s. We compare the simulation results 
with dynamic resource orchestration (DRO) [22], signal-
aware (SA) [17], DRO + SA and the basic algorithm, 
called random order (RO), in terms of service capabil-
ity, serviceability, availability, throughput, and resource 
utilization efficiency. Note that the RO algorithm selects 
FNs arbitrarily and randomly migrates the RBs of vehi-
cles. The set of smart vehicles that request services from 
FNs is termed vehicles in the rest of the content of this 
paper. In summary, the key contributions of this work are 
as follows. 

1. We consider allocating RBs to newly arrived vehicles 
by migrating RBs between pairs of FNs without affect-
ing their services. The RBs of vehicles are migrated to 
minimize overall allocated RBs.

2. The optimal RBs migration problem in FEVANETs is 
formulated into integer linear programming (ILP) by 
considering the variables that impact FNs’ resource 
constraints and the network’s service capability.

3. We propose a polynomial-time DRM algorithm for opti-
mal migration of RBs between pairs of FNs to minimize 
occupied RBs among FNs and maximize the service 
capability and resource utilization efficiency of the net-
work by migrating RBs of a set of vehicles.

4. We present extensive simulations to show that the DRM 
algorithm can achieve better performance than the four 
existing algorithms in terms of service capability, ser-
viceability, availability, throughput, and resource utiliza-
tion efficiency of the network.

The remainder of this paper is structured as follows. Sec-
tion 2 of this paper describes the related work of the dis-
cussed problem. The problem statement is presented in 
Section 3. The DRM algorithm and the optimization of 
the problem are explained in Section 4. Section 5 presents 
the simulation outcomes of the DRM algorithm and its 
performance over other algorithms. The conclusion of 
this paper is presented in Section 6.

2  Related work

The comparative study of computing techniques to dissemi-
nate, store and compute data for delay-sensitive applications 
in order to meet their requirements is given in [23]. How-
ever, the existing algorithms for resource scheduling can 
be classified based on their objectives, such as the service 
capability, throughput, spectral efficiency, and serviceabil-
ity. The existing algorithms for resource scheduling can be 
classified based on their objectives, such as the service capa-
bility, throughput, spectral efficiency, and serviceability.

2.1  Quality of Service (QoS)

He et al. [24] have proposed a resource scheduling scheme 
in vehicular networks to facilitate video streaming using 
the semi-Markov decision process (SMDP). They have pro-
vided a better QoS for the user by increasing the bandwidth 
usage of the entire network. However, it fails to manage fair 
resource scheduling among FNs.The device association 
techniques such as signal-aware [17], content-aware[18], 
and capacity-aware[19] for various traditional networks pro-
vide better serviceability and network utilization efficiency. 
However, they fail to manage resource scheduling among 
FNs, leading to an unfair load among FNs, reducing network 
service capability and resource utilization efficiency. Sev-
eral researchers have worked on load instability problems 
in networks to achieve optimal resource allocation in recent 
years [25–27]. More specifically, load instability problems 
happen when a large number of vehicles arrive in the net-
work at the same time. Qafzezi et al. [28] have proposed 
fuzzy-based systems for resource management for making a 
decision on processing applications on the fog layer or cloud 
layer in software-defined networking supported VANETs. 
Their network resource management improves the QoS of 
the network.

2.2  Throughput

A joint downlink user association technique proposed by 
Liu et al. [17] in two-tier heterogeneous networks uses 
the resource partitioning and graph coloring approach 
to mitigate the co-tier interference among the nodes. 
This approach achieves better user throughput but can-
not improve the serviceability of the network and may 
cause load imbalance among nodes which affects services 
of newly arrived vehicles. Vu et al. [22] have proposed a 
DRO scheme for fog-enabled connected vehicle networks 
(FCVNs) that manages resource allocation by migrating 
services between pairs of FNs. This scheme uses a solution 
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returned by the maximum weight matching problem to find 
optimal pairs of FNs. The service migration using DRO is 
carried out to achieve better service capability, service-
ability, resource utilization efficiency, and throughput. 
The DRO scheme reduces service capability and service-
ability as there is an increase in the number of vehicles 
arriving at the network. However, when it is augmented 
with the SA algorithm, it improves the service capability 
and serviceability of the network. Vu et al. [29] have pro-
posed a downlink sum-rate optimization (DSRO) scheme 
in F-RANs provides the resource allocation among RRHs 
using the Hungarian method. It upgrades the network’s 
performance in terms of serviceability and throughput, 
but they do not consider the service capability and avail-
ability. Ge et al. [30] have proposed a joint user association 
and user scheduling for load balancing by addressing a 
network-wide utility maximization problem in the hetero-
geneous networks over the downlink. They approximate 
the nonconvex throughput obtained with user scheduling 
to a concave function, and a distributed convex optimiza-
tion approach is used to implement user association and 
user scheduling.

2.3  Spectral efficiency

The data rate optimization can be obtained by the meth-
ods mentioned in the above literature. However, these 
methods cannot provide resource efficiency due to the 
non-exact solution. Several research studies have been 
conducted on spectral efficiency for the evaluation of the 
network. These studies have used optimization techniques 
[31] and game theoretical models [32] to improve the 
spectral efficiency [33].

2.4  Serviceability

Dao et  al. [34] have presented an ARB scheme using 
hungarian method for maximizing network serviceabil-
ity in fog radio access networks (F-RANs). The network 
serviceability is obtained by migrating services between 
remote radio heads (RRHs). However, they do not consider 
the performance metrics like resource utilization, which 
decreases the network performance.

In the above literature, the existing algorithms maxi-
mize the performance metrics, such as service capability, 
serviceability, availability, and throughput, while satisfy-
ing the vehicle requirements in the FNs coverage area. 
However, this work differs from the existing works in the 
following aspects (Table 1). 

1. The existing algorithms migrate the RBs of vehicles 
between pairs of FNs without considering the load on 
FN. On the contrary, the proposed algorithm migrates 
the RBs of vehicles between pairs of FNs, such that the 
load on FN is minimum.

2. The proposed algorithm can allocate RBs for newly arrived 
vehicles by reducing the allocated RBs of already arrived 
vehicles without affecting their services in comparison to 
the existing algorithms. Moreover, the proposed algorithm 
considers five different performance metrics.

3  Problem statement

Consider a FEVANETs in a city area A in which F  num-
ber of FNs are deployed. Each FN Fi , 1 ≤ i ≤ F  , has a 
communication range R and it can overlap with the 

Table 1  A comparative analysis

Work Performance metrics Fog 
environment

Analysis Vehicles in 
overlapped 
coverage region

He et al. [24] Throughput, bandwidth utilization × There is a reduction in the serviceability of the 
network.

×

Liu et al. [17] Throughput × They have not considered the service 
capability, serviceability and availability.

×

Dao et al. [34] Serviceability, availability and throughput × They have not considered the service 
capability.

×

Vu et al. [22] Service capability, serviceability, 
availability and throughput

√

There is a reduction in the service capability 
and serviceability as vehicles connecting to 
the network increase.

√

Proposed 
algorithm 
(DRM)

Service capability, serviceability, 
availability and throughput

√

We enhance the service capability, 
serviceability, availability, throughput and 
resource utilization efficiency as vehicles 
connecting to the network increase.

√
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communication range of neighboring FN Fj , 1 ≤ j ≤ F  , i 
≠ j. A FN Fi provides services to the set of vehicles Pt(i) 
reaching its communication range at timeslot t. Note that 
the Poisson distribution is used for the arrival rate (depar-
ture rate) of vehicles to (from) the network with mean 
value � (or � ). Table 2 summarizes the different notations 
and their definitions used in this paper.

Let rbk
i
 be the total number of RBs required for kth vehi-

cle with data rate dk from the ith FN, when kth vehicle is 
present in the coverage area of ith FN. It can be obtained 
as follows [22, 35].

where B denotes the bandwidth that is used by one RB in 
a period of 1 ms, which is equivalent to 180 KHz [36], rbk

i
 

∈ ℕ , and Sk
i
 is the signal strength between the ith FN and kth 

vehicle on the data channel [37].
Let Pin

t
(i) be a set of vehicles arriving to ith FN at times-

lot t and Pout
t
(i) be a set of vehicles departing from ith FN 

at timeslot t, after successful completion of their tasks. In 
this situation, the mean departure rate of the vehicles from 
the network ( � ) is obtained as follows [22].

At timeslot t, the number of vehicles served by FNs is 
denoted by Pt(i) and can be defined as follows [22].

(1)rbk
i
=

⌈

1

B × log2(1 + Sk
i
)
× dk

⌉

(2)� = �

�

F
�

i=0

‖P
out
t
(i)‖

�

In a particular scenario, the number of vehicles getting 
service is limited due to resource constraints. In this circum-
stance, the remaining RBs, Art(i) of ith FN, after assigning 
the RBs to vehicles in Pt(i) , can be obtained as follows [22].

where Ct(i) and Qi are the occupied RBs and capacity of the 
ith FN at time instant t, respectively. The service capability 
of ith FN at timeslot t is given as follows [22].

In the similar fashion, the network service capability at 
timeslot t can be determined as follows [22].

The deluge of vehicles arriving at the network can connect 
to preferred FNs based on the signal strength and favorite con-
tents. The number of vehicles connecting to these FNs increase 
rapidly over time. It can exhaust the capacity of FNs and become 
impotent to provide the services because of limited resource 
constraints. As a result, the new incoming vehicles connect to 
the FNs that own inadequate resources. In order to provide better 
services, the services of the vehicles are migrated between pairs 

(3)Pt(i) = Pt−1(i) ∪ P
in
t
(i) ⧵ Pout

t
(i)

(4)Art(i) = Qi − Ct(i) = Qi −

‖Pt(i)‖
�

k=0

rbk
i

(5)Sct(i) = Art(i) ×
1

Qi

(6)Sct =

F
�

i=0

Art(i) ×
1

∑F

i=0
Qi

Table 2  Notations and their 
descriptions

Notation Description

F Number of FNs
� (or �) Mean arrival (or departure) rate of vehicles
Qi Capacity of ith FN in terms of RB units
ℝ Number of overlapped coverage regions in FE-VANETs
ℕ A set of natural numbers
� Expected value
Pt(i) A set of vehicles served by ith FN at timeslot t
Ct(i) Currently occupied RBs of ith FN at timeslot t
Art(i) Available RBs of ith FN at timeslot t
Sct(i) Current service capability of ith FN at timeslot t
Sct Service capability of the network at timeslot t
P
in
t
(i) A set of vehicles reaching to the ith FN at timeslot t

P
out
t
(i) A set of vehicles leaving from the ith FN at timeslot t

Pt(ij) A set of vehicles in overlapped coverage area between pairs of FNs i and j at timeslot t
p∗
t
(ij) An optimal set of vehicles for migrating RBs between pairs of FNs i and j at timeslot t

P
∗

t
(i) An optimal set of vehicles served by ith FN after resource blocks migration at timeslot t

rbk
i

Number of RBs allocated by ith FN to kth vehicle
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of FNs without increasing the number of RBs and balancing the 
load among the FNs. Alternatively, FNs are required to assign a 
large number of RBs to satisfy these vehicles’ required latency 
and data rate. Otherwise, it leads to a shrink in the network ser-
vice capability and resource utilization efficiency.

In this paper, we consider allocating RBs to newly arrived 
vehicles among the FNs without increasing the number of 
RBs, such that the following objectives are fulfilled. 

1. Network service capability is maximized.
2. Network serviceability is maximized.
3. Network availability is maximized.
4. Network throughput is maximized.
5. Resource utilization efficiency is maximized.

4  Dynamic resource management algorithm

The proposed algorithm, DRM, is a resource management 
algorithm for maximizing service capability in FEVANETs. 
The objective of this algorithm is to maximize the service 
capability, serviceability, availability, throughput, and 
resource utilization efficiency of the networks without 
increasing the number of RBs of the FNs. The basic idea of 
the proposed algorithm is as follows. Firstly, DRM identi-
fies the vehicles in the overlapped region of the pairs of FNs 
and determines the number of RBs allocated to those vehi-
cles from the FNs. Then DRM migrates the RBs of vehicles 
between the pairs of FNs in order to reduce the occupied RBs 
on the FNs. It is noteworthy to mention that the reduction of 
RBs leads to an increase in service capability, serviceability, 
availability, throughput, and resource utilization efficiency of 
the networks. The detailed description is discussed as follows.

At timeslot t, assume that the number of vehicles ‖Pt(i)‖ 
connecting to preferred FNs increases, for which the 
resources of the FNs are tends to exhaust. Next, consider 
the vehicles present in a coverage area of two or more FNs 
and served by those FNs. Let Pt(ij) be a set of vehicles in an 
overlapped coverage area of ith FN and jth FN at timeslot t. 
The set of vehicles, Pt(ij) , between pairs of FNs i and j, 1 ≤ 
i, j ≤ F  , i ≠ j can be obtained as follows.

The Pt(ij) represents vehicles for which RBs can be migrated 
between pairs of FNs. Let ℝ be the number of overlapped cover-
age areas in FEVANETs. The vehicles’ RB migration between 
pairs of FNs takes place only if there exists a minimum of one 
vehicle in the overlapped coverage area (i, j) ∈ ℝ and is served 
by those pairs of FNs. Mathematically, Pt(ij) ≠ ∅.

Let p∗
t
(ij) be an optimal set of vehicles whose RBs can 

migrate from ith FN to jth FN and its converse p∗
t
(ji) be an 

optimal set of vehicles whose RBs can migrate from jth FN to 

(7)Pt(ij) = Pt(i) ∩ Pt(j)

ith FN. Let P∗

t
(i) and P∗

t
(j) be an optimal set of vehicles served 

by ith and jth FNs after optimal migration of RBs is performed. 
They can be derived as follows.

The optimal RB migration among FNs in resource-con-
strained FEVANETs can be formulated as an ILP problem, 
which is discussed in Section 4.1.

4.1  ILP formulation for optimal RB migration

We define a boolean variable xk
ij
 to denote a vehicle k ∈ Pt(ij) 

chosen for migrating RBs between ith and jth FNs, ∀(i, j) ∈ ℝ.

To maximize the network resource utilization efficiency, 
the vehicles in the overlapped coverage area (i, j), ∀ (i, j) ∈ ℝ , 
are considered for optimal migration of RBs between pairs 
of FNs i and j, such that the overall occupied RBs by these 
vehicles is minimized. The optimal service migration among 
pairs of FNs i and j can be formulated as follows.

subjected to

where rk
ij
 and �ij are given by

(8)P
∗

t
(i) = (Pt(i) ⧵ p

∗

t
(ij)) ∪ p∗

t
(ji)

(9)P
∗

t
(j) = (Pt(j) ⧵ p

∗

t
(ji)) ∪ p∗

t
(ij)

xk
ij
=

⎧

⎪

⎨

⎪

⎩

1, If kth vehicle is chosen for migrating RBs

between pairs of FNs i and j

0, Otherwise

(10)min
∑

∀(i,j)∈ℝ

(

∑

∀k∈Pt(ij)

xk
ij
rk
ij

)

(11)
∑

∀k∈Pt(ij)

xk
ij
rk
ij
≤ �ij,∀(i, j) ∈ ℝ

(12)
�

(i,j)∈ℝ

xk
ij
≤ ‖Pt(ij)‖,∀k ∈ Pt(ij), 1 ≤ i, j ≤ F, i ≠ j

(13)
∑

(i,j)∈ℝ

xk
ij
≤ 1,∀(i, j) ∈ ℝ

(14)xk
ij
∈ {0, 1},∀k ∈ Pt(ij),∀(i, j) ∈ ℝ

rk
ij
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

rbk
i
, if RBs of vehicle k are migrated from jth

FN to ith FN

rbk
j
, if RBs of vehicle k are migrated from ith

FN to jth FN
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and

The constraint (given in Eq. 11) guarantees that the 
RBs occupied by the vehicles, when optimal migration is 
administered, do not surpass the capacity of the destina-
tion FN. The constraint (shown in Eq. 12) ensures that 
the at most ‖Pt(ij)‖ vehicles in a region (i, j) ∈ ℝ can be 
chosen for migrating services between ith and jth FNs. The 
constraints in Eqs. (13) and (14) ensure a vehicle from all 
overlapped coverage regions is chosen only once for RB 
migration. By solving objective function (Eq. 10), we get 
the optimal set p∗

t
(ij) , and p∗

t
(ji) of vehicles (from Eqs. 8 

and 9) for the optimal service migration between the pairs 
of FNs i and j.

Theorem 1 The ILP optimization problem is NP-hard.

Proof We use a well-known NP-hard problem, called seminar 
assignment problem (SAP), which is a special case of general 
assignment problem (GAP) [38] and reduce it to our ILP opti-
mization problem in order to prove this theorem. Consider an 
instance of SAP having a number of n students and m seminar 
halls. Each seminar hall r ∈ m has a capacity of Br ∈ ℕ . The 
assignment of student s ∈ n to a seminar hall r has a profit prs . 
The aim is to assign a subset of students to seminar halls, such 
that the number of students in each seminar hall r should be 
at most Br , and the total profit is maximized.

The instance of SAP is reduced to an instance of our 
ILP problem by mapping (one-to-one) the seminar halls to 
FNs, the students to the set of vehicles, and rth seminar hall 
capacity Br to ith FN capacity (given as Qi ). However, the 
profit of assigning sth student to rth seminar hall is negated 
in the mapping of the allocated RBs of ith FN to kth vehicle, 

(15)�ij =

�

Qi = Art(i) +
∑

∀k∈Pt(ij)
(rbk

i
)

Qj = Art(j) +
∑

∀k∈Pt(ij)
(rbk

j
)

k ∈ Pt(ij) . Here, we assume that there exists a set of vehi-
cles to do RB migration. This reduction can be carried out 
in polynomial time. Therefore, the instance of SAP has an 
assignment if and only if the instance of ILP problem has 
an assignment. This establishes the NP-hardness of the ILP 
optimization problem.

Theorem 2 ILP optimization problem can be optimally 
solved in polynomial time when F  is fixed.

Proof From Theorem 1, it is clear that the ILP optimization 
problem is NP-hard. Now consider a graph model, G(V, E), 
representing the FEVANETs with F  FNs (Fig. 2a), in which 
set of vertices V represents the FNs and E is the set of edges 
in G. There exists an edge between ith FN and jth FN if and 
only if there exists one or more vehicle(s) in the overlapped 
coverage region and connected to those FNs as shown in 
Fig. 2b. As we know, this graph model can be solved in poly-
nomial time when V is fixed [38]. Therefore, the ILP prob-
lem can also be solved in polynomial time when F  is fixed.

4.2  Algorithm description

Algorithm 1 presents the proposed algorithm, DRM, for 
the optimal RB migration in FEVANETs. The graph model 
G(V, E) and F  are given as input to Algorithm 1 and gener-
ates an optimal set of vehicles Pt for RBs migration. Upon 
the arrival of vehicles in the overlapped coverage area (i, j), 
∀ (i, j) ∈ ℝ at timeslot t, it finds union of all vehicles Pt , 
which is present in the overlapped coverage area of each 
neighbor of ith FN, say, jth FN, 1 ≤ i, j ≤ F  , i ≠ j. Also, it 
finds the set of the occupied capacity of each neighboring 
FN, C (Step 5 to Step 10). The vehicles present in the set Pt 
are served by both ith and jth FNs. For optimal RB migration, 
it invokes the MigraterBs (Procedure 1) with Pt and C for 
FN i in Step 11 of Algorithm 1. 

Fig. 2  An example for RB 
migration using the proposed 
algorithm
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For a given set of vehicles Pt and the set of occupied 
capacities C, the MigraterBs in Procedure 1 finds the 
vehicle kmin with minimum RBs and the corresponding f th 
FN, such that the load on f th FN is minimum in Step 2. 
Procedure 1 invokes FindMinVehicle, given in Procedure 
2, to find the vehicle kmin and the corresponding f th FN 
by taking Pt and C as input. In Procedure 1, the RBs of 
vehicle kmin are migrated from ith FN to f th FN only if the 

remaining RBs of f th FN satisfy the desired requirements 
of vehicle kmin and the vehicle kmin not served by FN f in 
Steps 3 and 4. Then it updates the occupied capacity and 
remaining RBs of ith and f th FNs in Step 5. Otherwise, it 
skips the vehicle kmin from the process of RB migration in 
Step 6. The vehicle kmin is removed from the set Pt in Step 
9. This process is repeated from Step 1 to Step 9 until the 
set Pt becomes empty.
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4.3  An illustration

Figure 2 shows as an example of FEVANET for optimal 
RB migration between FNs using the proposed algorithm, 
DRM, to reduce the occupied RBs in the group of FNs. 
This figure illustrates a scenario of FEVANET with four 
FNs and ten vehicles. The vehicles that FNs currently serve 
are indicated by solid orange lines, whereas dashed orange 
lines indicate the vehicles whose services can be migrated 
to FNs. The number of RBs required from FNs to satisfy 
desired requirements of vehicles is represented by numbers 
beside the orange lines. Fig. 2b is a graph representation of 
FEVANET, corresponding to Fig. 2a in which vertices repre-
sent FNs and an edge between vertices exists if vehicles are 
located in an overlapped coverage area of two FNs.

Firstly, the set of vehicles is connected to each FN 
given by FN1 = {V1,V2,V4,V7} , FN2 = {V3,V4,V5,V8} , 
FN3 = {V3,V6,V9} and FN4 = {V1,V2,V5,V6,V10} . The 
union of vehicles in overlapped coverage region of two 
or more FNs is given by {V1,V2,V3,V4,V5,V6} . The cur-
rent occupied RBs of each FN for vehicles in the over-
lapped coverage region are shown in Fig. 3a (i.e., before 
RB migration). The set of vehicles connected to each FN 
is given as input to Algorithm 1 for optimal RB migration 
among FNs.

When FN1 is chosen (i.e., iteration i = 1 of Algorithm 1), 
the set of all vehicles, which are in the overlapped coverage 
area of FN1 and its neighbor FNs, is determined. They are 

Pt = {V1,V2,V4} . Here, the neighboring FN is FNj = FN2 
and Pt(ij) = Pt = {V4} . Similarly, when FNj = FN4 , Pt(ij) = 
{ V1 , V2 } and Pt = { V1 , V2 , V4 }. The migration algorithm 
MigraterBs defined in Procedure 1 is invoked with the set 
Pt and C that consists of a set of vehicles for RB migration 
and occupied capacities of neighboring FNs, respectively. 
The vehicle kmin = V2 ∈ Pt and corresponding FNj = FN4 are 
chosen for RB migration from FN1 , since vehicle V2 is 
required minimum RBs (i.e., rbkmin

j
 = 209) from FN4 using 

FindMinVehicle. After successful migration, the occupied 
RBs of FN4 are updated to 209, and vehicle V2 is removed 
from Pt . Subsequently, vehicles V4 and V1 are chosen from 
Pt for RB migration. Note that these vehicles are selected 
based on the minimum number of RBs. After the completion 
of iteration i = 1, the occupied RBs of each FN are shown 
in Fig. 3b. In the next iteration (i.e., iteration i = 2 of Algo-
rithm 1), the union of all vehicles in overlapped coverage 
region of FN2 and its neighbor FNs is Pt = {V3,V5}.

After the iteration i = 2, the occupied RBs of FNs 
FN1 , FN2 , FN3 , and FN4 are 292, 223, 288, and 409, 
respectively. In the iteration i = 3, the FN3 is chosen and 
Pt = {V6} is obtained. For migrating RBs of vehicle V6 , 
the load on FN3 and FN4 is 662 (i.e., 288 + 374) and 
532 (i.e., 409 + 123), respectively. Since FN4 contains 
minimum load, the RBs are migrated from FN3 to FN4 . 
The overall occupied RBs are 2417 before RB migra-
tion and RBs are reduced to 1335 after the migration. 
Therefore, the percentage of reduction is 44.76% (i.e., 
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(2417−1335)

2417
 ). Note that this reduction greatly improves the 

service capability, serviceability, availability, throughput, 
and resource utilization efficiency of the network. On the 
other hand, the percentage of reduction is 21.64% in the 
DRO [22], 43.67% in the SA [17] and 16.75% in the RO. 
This clearly shows the superior performance of DRM over 
the existing algorithms.

Theorem 3 The number of vehicles in the overlapped cover-
age region of two or more FNs for RB migration from ith FN 
to each neighboring FNj (1 ≤ j ≤ F  , i ≠ j ) is at most ‖Pt‖.

Proof The jth FN allocates the required RBs, rbk
j
 , when 

migrating service of a vehicle k from ith FN if and only if the 
jth FN has sufficient available RBs (i.e., Art(j) ≥ rbk

j
 ). There-

fore, the total number of vehicles in the overlapped coverage 
region for RB migration from ith FN to all the neighboring 
FNs is at most ‖Pt‖ . Note that the set Pt is the union of the 
set of vehicles in the overlapped coverage region of each jth 
FN (1 ≤ j ≤ F  , i ≠ j ), which is neighbor to ith FN (i.e., Pt = 
Pt ∪ Pt(ij)).

Theorem 4 The proposed algorithm DRM migrates the RBs 
of vehicle kmin ∈ Pt with minimum load rbkmin

f
 to f th FN, such 

that the load on f th FN is minimum.

Proof Consider the FEVANET example with F  = 4 as 
shown in Fig. 2a. When FindMinVehicle is invoked in 
Procedure 1 with Pt = { V3 , V5 } for FN2 (i.e., in iteration i 

=2), suppose vehicle V3 is selected. Then the load on FN2 
and FN3 is 551 (i.e., 223 + 328) and 228 (i.e., 0 + 228), 
respectively. When the vehicle V5 is selected, the load on 
FN2 and FN4 is 501 (i.e., 223 + 278) and 409 (i.e., 209 
+ 200), respectively. The proposed algorithm DRM using 
FindMinVehicle selects vehicle V3 and the corresponding 
FN3 instead of vehicle V5 with RBs 200. Since the load on 
FN3 is minimum, the RBs of vehicle V3 are migrated from 
FN2 to FN3 . Therefore, it is proved that the proposed algo-
rithm migrates the vehicle’s RBs to the corresponding FN, 
such that the load on FN is minimum.

4.4  Complexity analysis

The proposed algorithm DRM is presented in Algorithm 1, 
which invokes MigraterBs (Procedure 1) with the occupied 
capacities and a set of vehicles in the overlapped coverage 
area (i, j), ∀ (i, j) ∈ ℝ of pairs of FNs as input. In Procedure 1, 
Step 2 (i.e., Procedure 2) takes O(‖Pt‖) time in worst case as 
it iterates for O(‖Pt‖) times. Steps 3-9 take constant time. The 
while loop iterates for O(‖Pt‖) times. Therefore, the overall 
running time of Procedure 1 is O(‖Pt‖

2) in the worst case.
In the Algorithm 1, for a given FNi , Step 5 finds a set 

of vehicles in the overlapped coverage regions of each 
neighbor, say FNj , of ith FN, 1 ≤ i,  j ≤ F  , i ≠ j . It takes 
O(F) time in the worst case. The outer for loop in Algo-
rithm 1 takes O(F) time. Therefore, the worst case time 
complexity of Algorithm 1 is given as O(F(F + ‖Pt‖

2)) ≈ 
O(F2 + F(‖Pt‖

2)).

Fig. 3  An optimal RB migra-
tion using DRM scheme for 
FEVANET given in Fig. 2a. a 
Occupied RBs of FNs before 
migration. b Occupied RBs of 
FNs after migration using DRM

(a)
(b)
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5  Performance evaluation

The performance of the proposed algorithm is evaluated 
in terms of service capability, serviceability, availability, 
throughput, and resource utilization efficiency. The simu-
lated results were compared with existing service migration 
algorithms, such as DRO [22], SA [17], DRO + SA and RO, 
in which FNs and vehicles are selected randomly.

5.1  Simulation setup

The simulations were carried out by creating a virtual 
environment using Python (version 3.8) on PyCharm inte-
grated development environment (IDE) 2020.1.3. This IDE 
was running on an Intel(R) Xeon(R) Gold 622R CPU @ 

2.90GHz 2.89 GHz processor, 64-bit operating system 
and 64.0 GB installed RAM. The simulation environment, 
including network traffic details, was set up based on the 
setup given in [17, 22]. We evaluate the execution of the 
proposed algorithm DRM in a network model with [10 ∼ 
50] FNs deployed in a region size of [1000 × 1000] square 
meters as shown in Fig. 4. This road map shows an area of 
a city in which the deployment of FNs ranges from 10 to 
50. These FNs are deployed in such a way that their cover-
age area overlaps with one or more FNs. We consider the 
mobility patterns of vehicles that arrived and/or departed 
to/from the network. They follow the Poisson distribution 
in each time slot. However, the mean arrival rate ( � ) and 
mean departure rates ( � ) are 10 vehicles/s and 5 vehicles/s, 
respectively. It is noteworthy to mention that the velocity of 
vehicles is not explicitly shown as it is modelled in the form 
of � and � . When FNs cannot allocate required RBs, vehicles 
are served with minimum data rates ranging from 0.5 to 2.0 
Mbps. As the mean arrival rate exceeds the mean depar-
ture rate, the number of vehicles available at the network 
increases in each time slot. The simulation results show the 
impact of the increase in the number of vehicles on the ser-
vice capability, serviceability, availability and throughput 

Fig. 4  A road map of [1000 × 1000] square meters

Table 3  Parameters and their 
values for simulations

Parameter Value

F [10 ∼ 50]
Vehicle density Mean arrival rates ( �) 10 vehicles/s

Mean departure rates ( �) 5 vehicles/s
Number of vehicles with respect to one simulation 2100
Network area 1000m × 1000m
Radio communication range in single-hop communications 100m
Bandwidth of FNs {10, 15, 20} MHz
Coverage radius of a FN 100m
Cumulative number of service connections 2100
Required data rate [0.5 ∼ 2] Mbps
Timeslot duration 1 s
Confidence interval or simulation duration 210 s

Fig. 5  Pictorial comparison of network service capability for DRM, 
DRO, SA, DRO+SA and RO algorithms
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of the network. The average results were obtained by con-
ducting the Monte-Carlo simulations up to one hundred 
five times (i.e., 15 times for each result) with 210 timeslots 
using queuing model. We use IEEE 802.11p as our media 
access control (MAC) protocol to enable wireless access in 
FEVANETs. The Nakagami model is used to model the data/
signal propagation. This model is considered as the most 
realistic model. The different parameters considered for the 
simulations with their values are given in Table 3.

5.2  Service capability

Service capability is the ratio between the remaining 
resources and the total number of resources in a network 
[22]. Fig. 5 shows the network service capability by the pro-
posed algorithm, DRM, and other existing migration algo-
rithms, such as DRO, SA, and RO. It is observed that the 
FNs possess sufficient RBs to satisfy requests of the vehicles 
during initial timeslots. Hence, all the algorithms produce 
better service capability in the initial duration. However, 
as the deluge arrival of vehicles to the network increases, 
the network service capability reduces due to the reduction 
in the available RBs of FNs. The DRO algorithm uses the 

solution of maximum weight matching, which is the set of 
edges without common vertices and reduces the RBs of 
those vehicles in the set of edges returned by the matching 
solution. Therefore, there is a severe reduction in the service 
capability using the DRO algorithm.

The SA and RO algorithms enhance the service capabil-
ity of the network as the number of vehicles arriving at the 
network increases. The SA algorithm improves the service 
capability using the graph colouring solution up to 97.80% 
and 24.03% when compared to DRO and RO, respectively. 
However, the proposed algorithm outperforms the service 
capability when compared to SA, RO and DRO+SA com-
bined. The proposed algorithm enhances the service capabil-
ity by 21.78%, 51.05% and 19.65% when compared to SA, 
RO and DRO+SA, respectively. The rationality behind this 
is that it is greedy to select a vehicle with minimum RBs.

5.3  Serviceability

The network serviceability is the percentage of vehicles get-
ting served with desired requirements in a network [34]. The 
serviceability of the network by the proposed algorithm and 
other migration algorithms is shown in Fig. 6. The simula-
tion results show that all the algorithms behave similarly 

Fig. 6  Pictorial comparison of network serviceability for DRM, 
DRO, SA, DRO+SA and RO algorithms

Fig. 7  Pictorial comparison of network availability for DRM, DRO, 
SA, DRO+SA and RO algorithms

Fig. 8  Pictorial comparison of RBs reduction for DRM, DRO, SA, 
DRO+SA and RO algorithms

Fig. 9  Pictorial comparison of throughput for DRM, DRO, SA, DRO+SA 
and RO algorithms
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during the initial timeslot, as FNs contain enough RBs. 
However, the serviceability of the network reduces as the 
deluge arrival of vehicles at the network causes the FNs to 
be impotent in providing services to arrived vehicles. There-
fore, there is a reduction in the serviceability of the network. 
The SA and the DRO augmented by SA (i.e., DRO+SA) 
behave similarly as vehicles arriving at the network increase. 
The SA and RO algorithm improves the serviceability of 
the network. The SA algorithm improves the serviceabil-
ity by 52.42% and 13.03% when compared to DRO and 
RO algorithms, respectively. However, the proposed algo-
rithm is greedy in selecting vehicles with minimum RBs 
for migrating RBs between pairs of FNs. Furthermore, it 
maximizes the RBs reduction of vehicles in the overlapped 
coverage regions to accommodate newly arrived vehicles 
with their desired data rates. Therefore, the proposed algo-
rithm enhances the serviceability by 15.55%, as the vehicles 
connecting to the network increase when compared to the 
SA algorithm.

5.4  Availability

Availability is the percentage of vehicles getting served with 
minimum requirements in a network [34]. Fig. 7 presents the 
availability of the network satisfying incoming vehicles with 
a minimum data rate of 0.5 Mbps. As incoming vehicles con-
necting to the network increase, the capacity of FNs tends 
to exhaust in servicing vehicles. As a result, the network 
availability reduces gradually. The DRO algorithm enhances 
the availability better than the other algorithm. However, as 
vehicles arriving at the network increase at timeslot 150, 
the availability reduces. Fig. 8 shows the percentage of RBs 
reduction using the proposed algorithm and existing algo-
rithms. The proposed algorithm maximizes the RBs reduc-
tion of vehicles up to 02.00% on average. Therefore, it is able 

to accommodate the vehicles with minimum data rates when 
they are not allocated with required data rates. Moreover, the 
proposed algorithm improves the availability of the network 
as vehicles connecting to the network increase by 08.94%, 
17.41%, and 32.57% when compared to DRO, SA and RO, 
respectively.

5.5  Throughput

Network throughput is obtained using the vehicle’s achiev-
able rates at different timeslots and from different FNs. 
Using the Shannon formula, the achievable rate of vehicle 
k from FN i ∈ F  , at timeslot t, is Tt(ik) = B log2(1 + Sk

i
) , 

where B is the available bandwidth at ith FN. If �t(ik) is an 
allocated time fraction to vehicle k, then the throughput of 
vehicle k from FN i is �t(ik) = �t(ik) × Tt(ik) . The network 
throughput is obtained from 

∑

∀k∈‖Pt(i)‖
log

�
∑

t

∑

i∈F �t(ik)
�

 
[17]. The network’s throughput is directly proportional to 
the time fraction allocated to the vehicles getting services. 
As a result, the throughput increases as the number of vehi-
cles getting services increases. The network’s throughput 
for the proposed and existing algorithms is shown in Fig. 9, 
in which the throughput increases gradually as the vehicles 
getting services from the network increase. Furthermore, the 
proposed algorithm can accommodate newly arrived vehi-
cles at FNs by reducing allocated RBs of vehicles that have 
already arrived without affecting their services. As a result, 
the proposed algorithm improves the network throughput up 
to 57.31%, 20.74%, and 39.13%, compared to DRO, SA, and 
RO algorithms, respectively.

5.6  Resource utilization efficiency

Resource utilization efficiency is the percentage of occupied 
RBs in a network. Fig. 10 shows the distribution of the aver-
age percentage of RBs used in the network obtained from the 
proposed and existing algorithms. The height of the box rep-
resents the distribution of the percentage of occupied RBs 
of FNs. The blue diamond symbol denotes the average per-
centage of RBs utilization of the entire network, and the red 
line inside the box denotes the median. When the arrival of 
vehicles at the network increases, it leads the FNs to be over-
loaded with their capacity. As a result, FNs become impotent 
to provide services to the new arriving vehicles. Thus, the 
existing algorithms, DRO, SA, and RO, provide 90.05%, 
81.00%, and 83.38% of average RBs utilization, respectively. 
The DRO augmented by SA provide 82.12% of RBs utiliza-
tion. On the contrary, the proposed algorithm minimizes the 
allocated RBs of vehicles that have arrived early in order to 
allocate RBs to newly arrived vehicles. Thus, the proposed 
algorithm provides 78.46% of average resource utilization 
by reducing allocated RBs of vehicles in overlapped cov-
erage regions. Furthermore, the allocated RBs of vehicles 

Fig. 10  Pictorial comparison of network resource utilization effi-
ciency for DRM, DRO, SA, DRO+SA and RO algorithms
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are reduced by migrating RBs between pairs of FNs. The 
percentage of RBs reduction as vehicles connecting to the 
network increases for the proposed and existing algorithms 
is shown in Fig. 8. The reduced RBs of vehicles from FNs 
are reused to provide services to the newly arrived vehicles. 
The simulation results show that the proposed algorithm 
improves RB utilization efficiency by reducing allocated 
RBs by 12.87%, 03.13%, and 05.90% as compared to DRO, 
SA, and RO algorithms, respectively. Therefore, the pro-
posed algorithm improves resource utilization efficiency by 
allocating released RBs to newly arrived vehicles.

6  Conclusion and future work

In this paper, we propose a DRM algorithm to manage RBs 
allocation in FEVANETs by considering vehicles in over-
lapped coverage regions of two or more FNs, and migrating 
RBs of a set of vehicles among pairs of FNs. The objec-
tive of the proposed algorithm is to improve the network 
service capability, serviceability, availability, throughput, 
and resource utilization efficiency by minimizing allocated 
RBs. The proposed algorithm maximizes the service capa-
bility of the network by minimizing the occupied RBs of 
vehicles that have already arrived. This reduction in allo-
cated RBs is achieved by migrating allocated RBs of a set of 
vehicles among FNs and it is addressed by formulating ILP. 
The simulation outcomes show that the proposed algorithm 
reduces occupied RBs among FNs by migrating RBs of the 
set of vehicles and achieves better service capability, ser-
viceability, availability, throughput and resource utilization 
efficiency when compared to other migration algorithms, 
such as DRO, SA and RO. As a future extension of this 
work, it can be extended to minimize energy consumption 
by FNs while providing services to vehicles by considering 
dynamic network conditions. Moreover, the proposed algo-
rithm can be simulated using the traffic simulator, called 
simulation of urban mobility and the network simulator, 
called network simulator version 2, in order to make it more 
realistic. Alternatively, these simulators will provide real 
mobility traces to measure the performance of the proposed 
algorithm meticulously.
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