
Vol.:(0123456789)1 3

https://doi.org/10.1007/s12083-022-01369-6

Intelligent edge content caching: A deep recurrent reinforcement 
learning method

Haitao Xu1 · Yuejun Sun1   · Jingnan Gao1 · Jianbo Guo2

Received: 27 November 2021 / Accepted: 10 August 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
With the rise of 5G network and the rapid growth of user equipment, there exists a gap between the stringent requirements 
of emerging applications and the actual functionality of the Internet. In particular, transmitting data over long network links 
imposes high costs, which can be addressed by the edge caching (EC) method. EC caches the content at the edge server 
to avoid the extraordinary cost of backhaul link communication. However, in existing EC efforts, it is common to assume 
either known content popularity or a two-phase caching that is predicted content popularity prior to the caching action, the 
former being less feasible and the latter increasing the cost of deployment to the real world. A caching strategy is proposed 
in this paper to cope with this problem that can be feasible end-to-end deployed and has a lower caching cost. Specifically, 
we first investigate the system cost, including network communication cost, cache over storage cost, and cache replacement 
cost. And we model the EC problem as a Markov Decision Process (MDP). Then, the Double Deep Recurrent Q Network 
(DDRQN) algorithm is studied to solve the EC-based MDP problem. Finally, compared with other intelligent caching strate-
gies, the proposed caching strategy can improve the system reward by up to 24% and the cache hit rate by up to 22% under 
certain conditions.

Keywords  Edge computing · Edge caching · Edge intelligence · Deep recurrent reinforcement learning

1  Introduction

With the vigorous development of 5G network technology, 
Internet access equipment and network traffic are growing 
rapidly. The number of devices connected to IP networks 
will be more than three times the global population in 2023, 
reaching 29.3 billion, which is more than 1.59 times that of 
2018 [1]. However, most connected devices have limited 
communication and storage resources and finite processing 
capabilities, which show the mismatch between the stringent 
requirements for emerging applications and the actual device 
capabilities [2]. One solution is cloud computing [3], which 
performs task calculation and content caching in remote 
cloud data centers. Nonetheless, transmitting large amounts 

of content over the Wide Area Network (WAN) may bring 
daunting cost and transmission delay [4].

The development of edge computing brings a new strategy 
for reducing network costs. Different from cloud computing, 
edge computing allows wireless devices to offload compu-
tation resources to edge servers [5], and provides comput-
ing and content caching services using edge servers that are 
closer to users. With properties closer-to-user, edge comput-
ing addresses congestion and high latency on the backhaul 
link and provides low latency and high-quality services [6]. 
When users request content, they will first retrieve the cached 
content of the edge server. Therefore, using a portion of the 
storage space on the edge server to cache content, especially 
popular content, will significantly reduce the network delay 
and congestion.

The edge caching (EC) method has attracted the great 
interest of many scholars. Xia et al. [7] proved that EC is 
an NP-complete problem and suggested Lyapunov opti-
mization to minimizing the system costs, including data 
caching cost, data migration cost, and Quality-of-Service 
(QoS) penalty. Based on Information-Centric Network-
ing (ICN), Nour et al. [8] proposed a distributed cache 

 *	 Yuejun Sun 
	 sunyuejun@hdu.edu.cn

	 Haitao Xu 
	 xuhaitao@hdu.edu.cn

1	 Hangzhou Dianzi University, Hangzhou, Zhejiang, China
2	 Hangzhou Hexing Electrical Co., Ltd, Hangzhou, China

/ Published online: 6 September 2022

Peer-to-Peer Networking and Applications (2022) 15:2619–2632

http://orcid.org/0000-0001-6951-8156
http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-022-01369-6&domain=pdf


1 3

placement scheme to push the popular content down to 
the next-hop network route, and the unpopular content up 
to the next-hop network route, bringing popular content 
closer to the user.

Many researchers have used Deep Learning to solve 
EC problems with considerable results. To challenge the 
heavily relies of proactive EC on the accuracy of content 
popularity prediction, a Bidirectional Deep Recurrent 
Neural Network (BRNN) scheme was proposed to predict 
the content requests and update edge cache in [9]. Simi-
larly, Wu et al. [10] designed a Deep Long Short-Term 
Memory (LSTM) Auto-Encoder algorithm to capture the 
temporal structures of content. Additionally, due to the 
importance of the user behavior in EC, Zeng et al. [11] 
considered a user-centric behavior based contextual zoom 
algorithm to quickly learn the changes in content popular-
ity and discussed a Modified single-layer nonlinear Con-
volutional Neural Networks (MCNN) method to mine the 
relationship between user groups. Take both user features 
and content features into account, Rathore et al. [12] used 
auto-encoder and Stacked Denoising Autoencoders respec-
tively to extract the features to estimate content popularity. 
Nevertheless, these approaches barely take into account 
the current state of the edge server (e.g., current cached 
content, energy cost), which lacks flexibility.

The combination of Reinforcement Learning and Deep 
Learning, called Deep Reinforcement Learning (DRL) 
[13], is suitable for dealing with complex non-convex 
optimization problems and has aroused new research 
interest in recent years. In this case, Zhong et al. [14] first 
present a DRL framework to solve the content caching 
problem. With the goal of Quality of Experience (QoE), 
He et al. [15] summarized the caching model and intro-
duced an adaptive learning rate DRL method to enhance 
QoE. Besides, Qiao et al. [16] modeled the cooperative 
caching problem as a double time-scale Markov decision 
process (DTS-MDP), and a Deep Deterministic Policy 
Gradient (DDPG)-based cooperative caching scheme 
was proposed to overcome with high-dimensional state 
space and continuous-valued action space. Moreover, in 
[17], Hou et al. exercised LSTM to predict the mobil-
ity of vehicles first, and then the result of LSTM was 
used as the input state of DRL to learn caching policy. 
Coincidentally, Li et al. [18] employed Gated Recurrent 
Unit (GRU) algorithm to predict the task popularity first, 
and used multi-agent DQN to solve the caching problem 
based on the predicted popularity.

In the above work, they consider the whole system state, 
however, content popularity is assumed to be either known 
as the last time slot content popularity as presented in [15, 
16], or estimated before choosing the caching actions as pro-
posed in [17, 18] rather than end-to-end policy. Since the 
content popularity is time-varying, the first assumption is 

less feasibility, and the second assumption is troublesome 
to deploy in the real world.

Thus, to address those issues, the end-to-end Double 
Deep Recurrent Q Network (DDRQN) algorithm is pro-
posed in this paper. In this case, the agent of the DDRQN 
algorithm observes multi-step states (historical and current 
states) and uses the GRU network [19] to capture the con-
tent popularity for the next period. Besides, the EC system 
costs, including network communication cost, cache over 
storage cost, and cache replacement cost are considered to 
find system-level optimization. Then, the EC problem is 
modeled as MDP. The DDRQN algorithm can intelligently 
make caching decisions in the dynamic EC environment to 
minimize the long-term system-level cost. In summary, the 
contributions of this paper are as follows:

1.	 We investigate the cost of the EC system, considering 
not only network communication cost but also cache 
over storage cost and cache replacement cost.

2.	 We propose an intelligent edge caching strategy, which 
can not only be feasible end-to-end deployed but also 
has a lower caching cost. And the DDRQN algorithm is 
designed to minimize system cost.

3.	 For the first time, we cope with EC problems using GRU 
based DRL algorithm. In particular, the use of GRU cell 
in DRL agent can improve the effectiveness of learning 
time-varying content popularity from the historical and 
current environments.

The paper is organized as follows. Section 3 summarizes 
related work. Section 3 introduces the EC system model 
including system architecture and system cost. Section 4 
proposes the solution of the DDRQN algorithm. Section 5 
presents the simulation results. Section 6 concludes the 
paper.

2 � Related work

In recent years, EC has attracted great interest from many 
researchers. In general, most researchers focus on improving 
key indicators such as hit rate, transmission delay, energy 
consumption, backhaul load, QoE, QoS, and system cost. 
And researchers often improve these key indicators by estab-
lishing different mathematical models and proposing differ-
ent novel algorithms.

Based on the heuristic algorithm, Liu et al. [20] modeled 
the EC problem as an integer programming from the ser-
vice provider’s perspective. And they proposed an extended 
Page-Hinckley-Test algorithm to reduce network delay and 
improve energy efficiency of mobile devices. Besides, Hu 
et al. [21] pointed out that proactive caching can effectively 
handle redundant traffic loads in future wireless networks. 

2620 Peer-to-Peer Networking and Applications (2022) 15:2619–2632



1 3

And they proposed to use game theory to deal with proactive 
caching in the network. Specifically, they discuss the two 
main types of caching in proactive caching, namely central-
ized wireless network caching and distributed wireless net-
work caching respectively. The centralized wireless network 
caching includes Small Cell Base Station (SBS) caching and 
Road Side Unit (RSU) caching, and the distributed wireless 
network caching includes Device-to-Device (D2D) caching 
and Vehicle-to-Vehicle (V2V) caching. Finally, they used 
different game theory algorithms for these different wireless 
proactive caching models. Moreover, Yu et al. [22] proposed 
a content caching strategy based on Mobility Prediction and 
Joint User Prefetching (MPJUP). The caching policy first 
predicts the user’s mobility and then prefetches data at the 
edge server in advance based on the user’s mobility and 
QoE. In addition, they also investigate the problem of col-
laborative prefetching of data between users and edge serv-
ers, which further reduces the backhaul load and improves 
the network quality. Heuristic-based caching strategy finds 
approximate solutions in a reasonable time through iteration, 
but do not guarantee optimal solutions. And the heuristic-
based caching strategy needs to formulate the rules of itera-
tion in advance. These conditions limit the application of 
heuristic algorithms to EC problem to a certain extent.

Based on the deep learning, Saputra et al. [23] proposed 
centralized EC algorithm and distributed EC algorithm. In the 
centralized EC algorithm, the cloud server collects informa-
tion from all edge servers and uses a neural network model 
to predict the demand for the entire network. In the distrib-
uted EC algorithm, each edge server trains the neural network 
individually and the cloud server only aggregates and updates 
the model parameters, which ensures privacy and reduces 
the network communication overhead. Combining Social 
Content-Centric Networking (SCCN) and edge computing, 
Liang et al. [24] used Multi-Head Attention based Encoder-
Decoder (MAPP) to predict content popularity. MAPP is able 
to fully consider multiple popularity-related properties. And 
the experiment results showed that MAPP can achieve bet-
ter cache hit rate in social data simulation experiments gen-
erated using sonetor [25]. Considering both user mobility 
and user interest, Tang and Kang [26] proposed a machine 
learning-based intelligent EC strategy. Specifically, they first 
used LSTM to predict user mobility, and then used Gradient 
Boosting Decision Tree (GBDT) to predict content popularity. 
Deep learning-based caching strategy tend to consider more 
about reducing model loss and improving model accuracy, and 
assume that higher prediction accuracy leads to better caching 
performance. However, these strategies separate model learn-
ing and cache replacement strategy, and pure model accuracy 
is not suitable for dynamic edge caching environment [27].

Based on the reinforcement learning, Wang et  al. 
[28] compared the Centralized Double Deep Q Network 

(C-DDQN) algorithm with the Federated Learning-based 
Double Deep Q Network (FL-DDQN) algorithm. Experi-
ments showed that C-DDQN tended to have better per-
formance, but FL-DDQN can reduce the communication 
consumption. By using multiple models, Zhang et  al. 
[29] first used a Grouped Linear Model (GLM) to pre-
dict content popularity and then used the predictions as 
the reinforcement learning state to learn caching strategy. 
Considering energy constraints, Tang et al. [30] applied 
Q-learning and Deep Q-network (DQN) to the user device 
and small base station (SBS) respectively due to differ-
ent status complexity. The difference between DQN and 
Q-learning is that instead of using Q-table to store state-
action value, DQN uses a neural network to approximate 
Q-value. However, training and inference of the neural 
network on small state-action value space consumes 
more computational resources than the Q-table. There-
fore, Q-learning is used on user devices that require more 
power saving, and DQN is used on SBS for better results. 
Based on the actor-critic algorithm [31] and multi-agent 
RL method, Zhao et al. [32] proposed a Neighboring-
Aware Edge Caching (NAEC) algorithm, which uses the 
attention mechanism to selectively learn information from 
neighboring agents. In general, reinforcement learning-
based caching strategy tightly combines model learning 
and cache strategy, and is more suitable for complex edge 
caching problem. However, most existing works tend to 
assume that content popularity is known or predicted by 
other models before making caching decisions. The for-
mer lacks robustness in the time-varying edge caching 
scenarios. The latter introduces multiple neural network 
models rather than end-to-end deployment, which intro-
duces additional complexity.

The  re la ted  re fe rences  a re  summar ized  in 
Table 1 [33]. And to further improve cache efficiency 
and reduce cache cost, in this paper, we propose an end-
to-end DRL-based caching strategy. The improvement 
of this paper is that we combine the recurrent neural 
network and deep reinforcement learning. The recurrent 
neural network can deal with the temporal characteristic 
of EC system state and the end-to-end caching strategy 
simplify the network model. Besides, we take the inter-
ests of both users and service providers into account, 
and the proposed caching strategy can minimize the 
whole EC cost.

3 � System model

In this section, the system architecture of edge content cach-
ing is introduced first. Then, the cost of the EC system is 
presented. The main notations are listed in Table 2.

2621Peer-to-Peer Networking and Applications (2022) 15:2619–2632



1 3

3.1 � System architecture

The EC scenario considered in this paper is shown in Fig. 1. 
There are mainly three different components in this scenario, 
which are remote cloud data center (DC) in the cloud layer, 
edge server (ES) in the edge layer, and user equipment (UE). 
UE can obtain content from a near-end ES. And an ES is 
a static network facility at the edge of the network, e.g., 
SBS, RSU. ES communicates with DC and obtains con-
tent from DC through the backhaul link. We assume that 
DC has unlimited computing power and storage resources 
to store all the content. The biggest difference between ES 
and traditional cloud DC is the limited compute and storage 
capacity. Therefore, it is impossible to cache a large amount 
of content on ES. Besides, the proximity to the UE allows 
the ES to respond quickly to user requests and improve QoS. 
This intensifies the competition of ES providers in QoS and 
cache costs.

UE requests the edge server through a wireless link. The 
edge server that directly communicates with users is called 
direct ES. If the requested content has been stored in the direct 
ES, the direct ES will return the cached content to UE directly. 
However, if it is not stored in the direct ES, the direct ES first 
checks whether its neighbor ESs caches the content, if it does, 
the neighbor ES first sends the content to the direct ES, and 
then the direct ES returns the content to UE. Otherwise, the 
direct ES will fetch content from DC, in which case the UE 
needs to endure the delay of a long backhaul link, resulting in 
QoS degradation. Assume that each ES has its neighbor ES 
sets and the distance between the ES and them is much smaller 
than the distance between the ES and DC. The different con-
tent acquisition methods are shown in Fig. 1. The yellow line 
represents the wireless link between UE and ES. Due to the 
feature that ES is close to the user, this requires only a small 
amount of time consumption. The green line indicates that 
data is transmitted between ESs through high-speed links, with 
medium time consumption. The blue line indicates that ES 
obtains content from DC, which has a high time consumption.

3.2 � System cost

We divide each time slot t of the ES into two different phases, 
rt and ct , as shown in Fig. 2. In these circumstances, rt is the 
phase of collecting UE request information and executing 
content delivery. Meanwhile, at this phase, ES saves the UE’s 
request information for later agent inferences. ES agent per-
forms inference in the ct phase to select the caching action. The 
trained DRL agent infers what should be cached in the next 
time slot t + 1 based on the state information observed in rt , 
and performs the cache replacement operation. The duration of 
rt varies with the number of requests. Besides, each rt receives 
the same number of requests Nr

 and has different lengths of 
time slot intervals.Ta

bl
e 

1  
S

um
m

ar
y 

of
 th

e 
re

la
te

d 
w

or
k

Re
fe

re
nc

e
U

til
iz

ed
 m

et
ho

d
C

or
e 

co
ns

id
er

ed
 m

et
ric

s
Pr

os
C

on
s

[2
0]

In
te

ge
r p

ro
gr

am
m

in
g

Th
e 

re
ve

nu
e 

of
 se

rv
ic

e 
pr

ov
id

er
Tr

ad
e-

off
 b

et
w

ee
n 

se
rv

ic
e 

pr
ov

id
er

 
an

d 
us

er
Po

or
 c

om
pa

ris
on

[2
1]

G
am

e 
th

eo
ry

Tr
affi

c 
lo

ad
D

ist
rib

ut
ed

 w
ire

le
ss

 n
et

w
or

k 
ca

ch
in

g
In

fle
xi

bi
lit

y
[2

2]
Pr

ed
ic

tio
n-

ba
se

d 
he

ur
ist

ic
 a

lg
or

ith
m

A
ve

ra
ge

 d
el

ay
 a

nd
 b

ac
kh

au
l l

oa
d

M
ob

ili
ty

 p
re

di
ct

io
n 

an
d 

co
lla

bo
ra

tiv
e 

da
ta

 p
re

fe
tc

hi
ng

Po
or

 c
om

pa
ris

on

[2
3]

D
ist

rib
ut

ed
 d

ee
p 

le
ar

ni
ng

Se
rv

ic
e 

de
la

y
D

ist
rib

ut
ed

 tr
ai

ni
ng

 a
nd

 c
ac

hi
ng

Po
or

 c
om

pa
ris

on
[2

4]
D

ee
p 

le
ar

ni
ng

C
ac

he
 h

it 
ra

te
Fu

lly
 c

on
si

de
r m

ul
tip

le
  

po
pu

la
rit

y-
re

la
te

d 
pr

op
er

tie
s

O
nl

y 
hi

t r
at

e

[2
6]

D
ee

p 
le

ar
ni

ng
C

ac
he

 h
it 

ra
te

Jo
in

t p
re

di
ct

io
n 

of
 u

se
r m

ob
ili

ty
 a

nd
 

co
nt

en
t p

op
ul

ar
ity

C
om

pl
ex

ity
 o

f t
w

o-
ph

as
e 

ca
ch

in
g

[2
8]

Fe
de

ra
te

d 
le

ar
ni

ng
-b

as
ed

 D
R

L
A

ve
ra

ge
 u

til
iz

ed
Fe

de
ra

te
d 

le
ar

ni
ng

Lo
w

 c
ac

hi
ng

 p
er

fo
rm

an
ce

[2
9]

G
LM

 p
re

di
ct

io
n 

an
d 

D
R

L
C

ac
he

 h
it 

ra
te

 a
nd

 re
pl

ac
em

en
t c

os
t

Jo
in

t m
ob

ili
ty

 p
re

di
ct

io
n 

an
d 

D
R

L
C

om
pl

ex
ity

 o
f t

w
o-

ph
as

e 
ca

ch
in

g
[3

0]
D

R
L

En
er

gy
 c

on
su

m
pt

io
n

En
er

gy
 c

on
su

m
pt

io
n

Lo
w

 c
ac

hi
ng

 p
er

fo
rm

an
ce

[3
2]

M
ul

ti-
ag

en
t D

R
L

C
ac

he
 h

it 
ra

te
 a

nd
 av

er
ag

e 
de

la
y

N
ei

gh
bo

rin
g-

A
w

ar
e 

C
ac

hi
ng

C
om

pl
ex

ity

2622 Peer-to-Peer Networking and Applications (2022) 15:2619–2632



1 3

On account of the compute and storage capacity limita-
tions of ES, ES can only cache limited contents within the 
storage capacity. Use r to represent the request of UE and t 
represents the time slot in which the request arrives at ES. 
Assume the content can be divided into independent parts like 
[34], and use d represents one content fragment, meanwhile 
the total potential content collection is represented by D. Given 
Dsi,t

= {d1, d2,… , dn} to represent the set of content cached 
by the ES si in time slot t, and N means the amount of content 

that an ES can cache. Consequently, the capacity limit of the 
edge server at time t can be obtained:

where dj,t represent the content dj cached in ES si and in time 
slot t  . There are three different cases when a UE requests 
content d from the ES si . First, if the content d requested by 

(1)
n∑
j=0

dj,t ≤ N

Table 2   System notations Variable Meaning

d The content fragment
t The time slot in which the request arrives at ES
D The total content collection
K The total content amounts
Nr The number of requests in rt

si The i th edge node
Si The set of neighbor ES of i
Dsi ,t

The content cached by ES si in the time slot t
N The amount of content that an ES can cache
chit The network communication cost between UE and direct ES
cedge The network communication cost between direct ES and neighbor ES
ccloud The network communication cost between direct ES and DC
cCOMM The total network communication cost
cRED The cache over storage cost
cREPL The cache replacement cost
DRED

si ,t
The content cached in time slot t but not requested

α The cache over storage cost factor
Drepl The set of content that needs to be replaced
ccloud
REPL

The replacement cost of retrieving data from
DC

λ A binary variable indicates whether content D is cached by neighbor ES set Si
c
Si
REPL

The replacement cost of retrieving data from neighbor ES set Si
C The total cost of the caching system

Fig. 1   EC scenario

2623Peer-to-Peer Networking and Applications (2022) 15:2619–2632



1 3

the UE hits the cache of the direct ES, the network commu-
nication cost is defined as chit . Second, though the content 
d requested by the UE does not hit the cache of the direct 
ES, the content is cached by its neighbor ESs Si , the content 
will be obtained from its neighbor ES and then return to the 
user. Hence, the network communication cost is defined as 
chit + cedge , where cedge is the cost for the direct ES to obtain 
content from the set of neighbor ES Si . Finally, if the content 
d requested by the UE neither hit the cache of the direct ES 
nor the cache of the neighbor ES set Si , the cache missed 
data needs to be obtained from DC. In this circumstance, 
the network communication cost is defined as chit + ccloud , 
where ccloud is the cost for the ES to obtain content from DC. 
Due to the characteristics of edge computing, it is easy to 
obtain, chit ≪ cedge ≪ ccloud . To sum up, the total network 
communication cost can be obtained:

In addition to the network communication cost, we also 
consider the over storage cost of invalid cached content 
stored at ES. ES agent executes inference to select cache 
contents Dsi,t+1

 of the next time slot t + 1 in ct , and performs 
the cache replacement operation. However, due to the limita-
tion of the storage capacity of ES, there will always be cache  
miss requests in time slot t + 1. At the same time, there may  
also be content that has been cached in the ES but has not 
been requested. Define the set of content that is cached in  
the ES but not requested by UE in time slot t  as,  
DRED

si,t
= {dRED

1
, dRED

2
,… , dRED

m
} , m < n. Therefore, the con-

tents of the set DRED
si,t

 are over-cached. If a content dj is cached  
in the ES during time slot t − 1 and t, and neither is 
requested, i.e.

Then this will result in over storage cost in time slot t (this 
can also occur if multiple identical contents are cached):

where α is the over storage cost factor, which indicates the 
degree of cost caused by each over storage content.

(2)CCOMM =

⎧
⎪⎨⎪⎩

chit, d ∈ Dsi,t

chit + cedge, d ∉ Dsi,t
and d ∈ DSi,t

chit + ccloud, d ∉ Dsi,t
and d ∉ DSi,t

(3)dj ∈ DRED
si,t

and dj ∈ DRED
si,t−1

(4)cRED =
∑

dj∈(3)
dj ∗ �

Besides, when ES performs the cache replacement opera-
tion in ct in the time slot t, it will cause a cache replace-
ment cost. If the content d ∈ Dsi,t+1

and d ∉ Dsi,t
 , then 

the ES needs to transfer new data d from DC or neighbor 
ES to itself in ct . Define the set of contents to be replaced 
as Drepl = {d

repl

1
, d

repl

2
,… , d

repl
n } . So, the cache replacement 

cost can be obtained:

If the content d to be replaced is cached in neighbor ES 
Si, then λ = 0, otherwise, λ = 1. And due to the characteristics 
of edge computing, it is assumed that the cost of obtaining 
data from neighbor ES is always smaller than that from DC, 
i.e., cSi

REPL
< ccloud

REPL
.

In our scenario, obtaining content from the EC system 
requires comprehensive consideration of network commu-
nication cost, over storage cost, and cache replacement cost. 
Therefore, the total system cost can be obtained by combin-
ing the previous discussion:

The goal of the EC system is to find an optimal caching 
strategy π that can minimize the total system cost C.

4 � Deep reinforcement learning strategy

In this section, we introduce the novel DDRQN algorithm 
for intelligent edge caching. At first, we introduce the GRU 
Layer in the DDRQN agent. Then, we model and formu-
late the EC problem as MDP. Finally, the DDRQN model 
is proposed to learn an optimal strategy by interacting with 
the environment to maximize the system reward, that is, to 
minimize the total system cost proposed in Sect. 3.

4.1 � GRU layer

For the first time, we use GRU based DDQN algorithm to 
solve the edge content caching problem. We add a GRU 
layer to the basic DQN agent to learn content popularity in 
EC scenarios. The GRU algorithm is widely used in time 
series forecasting, and it can accurately forecast by learn-
ing historical information. GRU is a type of RNN, which 

(5)cREPL =
∑

d∈Drepl �c
cloud
REPL

+ (1 − �)c
Si
REPL

(6)C = cCOMM + cRED + cREPL

Fig. 2   Time slot division

2624 Peer-to-Peer Networking and Applications (2022) 15:2619–2632



1 3

is proposed to solve problems such as long-term memory 
and vanishing gradient in backpropagation. The DDRQN 
model we proposed uses GRU in the input layer of the agent 
to replace the fully-connected layer.

Compared with the LSTM algorithm, GRU only requires 
fewer parameters, but it can get comparable results and is easier 
to be trained. A GRU cell only contains two gates: reset gate rt 
and update gate zt . The reset gate and the update gate decide 
how much previous information to be forgotten and how much 
past information to be passed to the future respectively. In time 
slot t, the GRU cell takes the current input vector xt and the hid-
den state vector ht−1 of the previous time slot t − 1 as input, then 
output the hidden state ht of the current time slot t:

where rt, zt, ht represent the reset gate, update gate, and hid-
den state separately; Wr and Wz are the weights of the cor-
responding unit; tanh is the hyperbolic tangent function and 
⊙ refers to element-wise multiplication.

In our EC scenario, content popularity is unknown. And 
because of the time-varying characteristic, content popular-
ity in different time slots may vary greatly. So, it is unrea-
sonable to use the content popularity known in the last time  
slot as the status. Therefore, the system state vector input  
in our GRU-based DQN agent is expanded from the one-
dimensional system state vector S observed in the current 
time slot to multiple system states � observed in a period T. 
That is, the status of the current time slot t is:

The historical state � is input to the GRU layer, and then 
the content that needs to be cached in the next time slot 
is obtained through the fully-connected layer, which is the 
action �t . The GRU layer can learn useful information in 
multiple historical states, especially the time-varying of con-
tent popularity, to get better results.

4.2 � DDRQN algorithm

4.2.1 � MDP

To solve the optimization problem proposed in Sect. 3.2, 
we first model the EC system as MDP. As represented in 

(7)rt = σ
(
Wr

[
ht−1, xt

])

(8)zt = σ
(
Wz

[
ht−1, xt

])

(9)�ht = tanh
(
W
[
rt ⊙ ht−1, xt

])

(10)ht =
(
1 − zt

)
⊙ ht−1 + zt ⊙

�ht

(11)�t =
[
St−T , St−T+1,… , St

]

Sects. 3.2 and 4.1, the state, action, and reward in MDP are 
described as follows:

State  As mentioned in Sect. 4.1, we define the system state 
�t of the current time slot t as a state matrix composed of the 
system state S of T time slots. Among them, T depends on the 
length of the input system state sequence, that is, how many 
time slots of the system state we need to use in inference. More 
specifically, the state of each time slot is S = [P,C], S ∈ � , 
where p is the request frequency of each content correspond-
ing to the request received in rt , i.e., the content popularity of 
tr , and C represents the current ES cached content set in rt . 
Therefore, the system state can be expressed as

The system state matrix composed of multiple time 
slots will first pass through the GRU Layer mentioned in 
Sect. 4.1. GRU will learn content popularity and content 
caching properties by the historical states, and then a fully 
connected layer will learn to choose a better caching action 
after GRU.
Action  Action is the caching content selected by ES accord-
ing to the current system state. Assuming that each content 
has the same size (divide the content into chunks of the same 
size). ES agent selects the appropriate amount of cache con-
tent for the next time slot according to the cache capacity of 
the ES. According to the system state, the ES agent makes its 
own choice of action. And based on the reward of environ-
mental feedback, the selected actions are constantly adjusted 
to minimize long-term costs.

Reward  System reward ℝt indicates the pros and cons of the 
action �t that the ES agent makes when facing the system 
state �t in time slot t. In Sect. 3.2, we discussed the system 
cost C in the EC system. The smaller the system cost, the 
better the cache effect. To represent the rewards and punish-
ments of the system better, we convert the loss of the com-
munication system into a reward when the cache hits instead 
of a penalty when the cache is missed, i.e.

Every time a request hits the cache of direct ES or neigh-
bor ES, the environment will give a positive reward, and 
Rhit ≫ Re . Besides, the system over storage cost and cache 

(12)�t =

⎡
⎢⎢⎢⎢⎢⎣

p1
t−T

⋯ pD
t−T

c1
t−T

⋯ cN
t−T

p1
t−T+1

⋯ pD
t−T+1

c1
t−T+1

⋯ cN
t−T+1

⋮ ⋯ ⋱ ⋯ ⋯ ⋮

p1
t−1

⋯ pD
t−1

c1
t−1

⋯ cN
t−1

p1
t

⋯ pD
t

c1
t

⋯ cN
t

⎤
⎥⎥⎥⎥⎥⎦

(13)RCOMM =

⎧
⎪⎨⎪⎩

Rhit, d ∈ Dsi,t

Re, d ∉ Dsi,t
, d ∈ DSi,t

Rc = 0, d ∉ Dsi,t
, d ∉ DSi,t

2625Peer-to-Peer Networking and Applications (2022) 15:2619–2632



1 3

replacement cost are the same as Sect. 3.2. In this way, the 
system reward can be obtained:

We use the DDRQN algorithm to learn the optimal 
strategy π . The interaction between the DDRQN agent 
and the environment can be regarded as MDP, as shown 
in Fig. 3. Specifically, each ES is a DRL agent, which 
interacts with the environment (e.g., content popularity, 
cache state, system state). In each time slot t, the ES agent 
observes the current system state and selects a caching 
action according to the EC system state. The environment 
will do the caching action and generate the next state and 
reward for the next time slot t + 1. Then, the agent adjusts 
its caching policy according to the reward. After the train-
ing process, the agent can make cache actions/decisions 
that maximize long-term rewards while observing the cur-
rent system state.

4.2.2 � DDRQN

In Sect. 4.2, we model the EC system as MDP. Given 
MDP, the DDRQN agent is shown in Fig. 3. Consider-
ing that content popularity plays an indispensable role in 
the EC scenario, the GRU layer replaces the first fully-
connected layer in basic DQN to learn the time-varying 
content popularity. At the same time the input state of the 
agent changes to the collection of historical states and 
observed state, as well as the output of the DDRQN agent 
is the probability of each caching action. The goal of the 

(14)R = RCOMM −
(
CRED + CREPL

)

DDRQN agent is to find an optimal strategy � . Based on 
this strategy, the agent can always find the maximum cache 
action for the expectation of discounted cumulative reward 
by observing the current state.

Assuming a random strategy � at the beginning of the 
system,

We can select an action �t according to the state of the 
current time slot �t . The reinforcement learning system 
judges the pros and cons of the strategy � according to the 
expectation of discounted cumulative reward (state-action 
value function), i.e.

where T = ∞ and γ ∈ [0, 1] is the discount rate. When � is 
close to 0, the agent is more concerned about short-term 
reward; While it is close to 1, long-term reward become 
more important. The state-action value function can be 
obtained by the Bellman equation [35]:

Then, the optimal state-action value function can be cal-
culated through value iteration:

In this case, the expectation of the discounted cumulative 
reward of each action can be calculated when observing the 

(15)π(a|s) = Pr
(
�t = a|�t = s

)

(16)Qπ(s, a) = E{

T−1∑
t=0

γtℝt+1 ∣ 𝕊t = s,𝔸t = a}

(17)Qπ(s, a) = E{r
(
s, a, s�

)
+ γE

[
Qπ

(
s�, a�

)]
}

(18)Q∗(s, a) = E{r
(
s, a, s�

)
+ γmax

a
�
Q∗

(
s�, a�

)
}

Fig. 3   Interaction between 
DDRQN agent and EC environ-
ment

2626 Peer-to-Peer Networking and Applications (2022) 15:2619–2632



1 3

current system state to choose the action with the highest 
state-action value.

Furthermore, we use the adaptive-ϵ-greedy algorithm 
in the final action selection, so that the ES agent can bal-
ance exploration and exploitation. The ES agent selects 
the optimal action with a higher probability 1 − ϵ, and ran-
domly selects an action with a lower probability ϵ. And at 
the beginning of training, the value of ϵ is larger, so the ES 
agent will focus more on exploration, mainly selecting cach-
ing actions randomly. The value of ϵ decreases by the degree 
of epsilon decay with the training of the ES agent until its 
value reaches the threshold of epsilon min. At this time, the 
trained ES agent mainly selects cache actions through neural 
network inference, but we still retain a certain probability of 
random exploration.

Since the state space is too large to store all the Q values 
with a Q-table, we use the neural network to approximate 
the Q value [13]. DQN algorithm uses target network and 
experience replay to solve the unstable and divergent prob-
lem in fitting the nonlinear function of the neural network. 
Moreover, the basic DQN has the problem of overestimat-
ing Q value, which may affect the learning of agents. So, 
the Double-Q-Learning mechanism is proposed to solve 
overestimating by decoupling the selection and calculation 
of target Q value [36]. Finally, as mentioned in Sect. 4.1, 
we have added a GRU Layer to the agent to better learn 
caching strategies from the state of multiple frames. The 
proposed DDRQN edge content caching algorithm is given 
in Algorithm 1 below.

5 � Result

In this section, sufficient simulation results are presented 
to demonstrate the performance of the proposed DDRQN 
caching strategy.

5.1 � Experimental setup

The simulation scenario is shown in Fig. 4. We have a total of 
3 edge servers and the total content amount K = 5000. We set 
up 3000 epochs to train reinforcement learning agents, each 
epoch has 100,000 requests, divided into 50 time slots. There-
fore, in rt phase of each time slot, the edge node receives a 

Fig. 4   DDRQN training result

2627Peer-to-Peer Networking and Applications (2022) 15:2619–2632



1 3

total of Nr = 2000 requests, and these requests follow the ZipF 
distribution. The ES needs to give the cached content DSi,t+1

 
of the size N in the t + 1 phase in the rc phase and performs the 
cache operation. We set the reward Rhit = 1 for request hitting 
the direct ES. The reward for not hitting the direct ES but hit-
ting the neighbor ES is Re = 0.1 . The reward for missing all 
caches is Rc = 0. And we define the over storage cost factor 
as α = 0.5 . As for cache replacement cost, we set the replace-
ment cost of the data obtained from DC is ccloud

REPL
= 0.3 , and 

the replacement cost of obtaining data from neighbor ES is 
c
Si
REPL

= 0.03.
The neural network structure of the DRL agent is shown in 

Fig. 3. We design a two-layer network DDRQN algorithm. The 
input layer is GRU Layer, the hidden size of the GRU Layer is 
set to 1024 and the time window is set to 24 by default. After 
the Relu activation function, a fully-connected layer outputs the 
result of the network, that is, the probability of each content being 
selected. Therefore, the input dimension of fully-connected layer 
is equal to 1024 and the output dimension is equal to the ES 
cache size N, which is set to 300 by default. Besides, the target 
network update frequent is set to 200, which means the param-
eters are copied to the fixed network after every 200 steps. We 
set the discount factor γ = 0.9 , the learning rate of the Adam 
optimizer is 0.01, and the loss function is Mean Square Error 
Loss (MSE). At the same time, we set the replay buffer size 
NM = 2000 , the initial value of ϵ to 0.9, the � discount rate to 
be 0.999, and the minimum value of � to 0.1, which means that 
the agent is more focused on exploration than exploitation in the 
early training phase.

5.2 � Experimental results

To illustrate the effectiveness and performance of our pro-
posed DDRQN edge content caching algorithm, we conduct 
experiments under different settings.

Firstly, we present the training proposal of the ES 
agents using the DDRQN algorithm under the condition 
of fixed ES cache size and fixed content ZipF distribution  
parameters. We define the content d follows the ZipF dis-
tribution, so the popularity of d can be expressed as: 
p(d) =

d−a

ζ(a)
 where ζ(a) =

∑∞

k=2
1∕ka . In this experiment, we  

set the ZipF parameter a = 1.2 and the ES cache size 
N = 300, respectively. We collect the popularity of each 
content and the content cached by ES in the rt phase as the  
system state. Note that all states are known historical data. 
Due to the huge differences between these data, we per-
form preprocessing operations on the system state, i.e., 
normalized the data to between [0,1]. We train three ESs 
(S1, S2, S3) at the same time. The three ESs can access each 
other, that is, they are neighbor ESs. If the requested con-
tent does not hit the direct ES, the direct ES can retrieve 
the content from its neighbor ESs. As we can see from 

Fig. 4, with the increase of training epoch, the cache hit 
rate of the direct ES agent and the system reward continue 
to increase and ultimately remain within a certain range, 
the MSE Loss continues to decline and eventually remains 
in a lower range near zero. With the growth of training 
time, under the parameter configuration of this experi-
ment, the DDRQN algorithm can finally obtain a conver-
gence strategy, and the direct cache hit rate of the three 
ESs finally converges to around 0.6. Eventually, system 
reward (representing the trade-off between the system’s 
cache hit rate reward and over storage, cache replacement 
cost) can reach a relatively high level of convergence at 
average 1062.43, which means that the DDRQN edge 
cache strategy is in terms of system loss and cache hit rate 
All have been promoted.

Secondly, we study the effect of different learning rate 
on DDRQN. The experimental results are shown in Fig. 5. 
The training performance of the neural network under dif-
ferent learning rate can be seen in the first several training 
epochs. As shown in Fig. 5, we represent the first 140 
epochs to show the training performance. It can be seen 
that the best training performance of the neural network is 
achieved when the learning rate is equal to 0.01.

Then, we analyze the performance of the DDRQN 
algorithm under different ZipF parameter a and fixed ES 
cache size N = 300. As shown in Fig. 6, we evaluate the 
reward, direct ES cache hit rate, neighbor ES cache hit 
rate, cache over storage cost rate, and cache replacement 
cost rate under different a. Note that, cache over storage 
cost rate, and cache replacement cost rate means their 
respective total cost divided by the amount of content N 
the ES can cache. And the following caching strategies 
are compared.

1.	 C-DDQN: Wang et al. proposed C-DDQN in [28], where 
C-DDQN train a centralized agent.

Fig. 5   The effect of different learning rate

2628 Peer-to-Peer Networking and Applications (2022) 15:2619–2632



1 3

2.	 DQN: DQN is similar to the Q-Learning algorithm pro-
posed in [37] and [38], but due to the large state-action 
space, DQN uses deep neural network to approximate 
Q-value rather than Q-table.

3.	 Random: Random select caching items.

All caching strategies are summarized in Table 3.
From Fig. 6 we can see the caching performance of 

different algorithms under different content popular-
ity. The larger ZipF parameter a means that the top few 

popular contents have a greater probability of being 
requested. Among them, Fig. 6a shows the changes in 
system rewards as the a increases. With the increase 
of a, the popular content stored by edge cache servers 
with the same caching capability has a higher chance 
of being requested. Therefore, learning-based algo-
rithms can obtain higher system reward, and during the 
entire experiment, the reward obtained by the proposed 
DDRQN algorithm are ahead of other algorithms. Fig-
ure 6b shows the variation of direct ES cache hit rate with 
a. When a = 1.8, the average cache hit rate of DDRQN 
reaches 0.91487, which means almost all requests can hit 
the cache. When a = 1.1, the proposed DDRQN caching 
strategy achieves a system reward of 877 and a direct 
edge server hit rate of 48.6%, while DQN only achieves 
a system reward of 707 and a cache hit rate of 39.8%, 
i.e., the DDRQN caching strategy increases the system 
reward by 24% and the cache hit rate by 22% compared 
to the DQN caching strategy.

Fig. 6   a reward b hit direct ES 
rate c hit neighbor ES rate d 
over storage cost rate e cache 
replacement cost rate

Table 3   The description of caching strategies

Method Describe

DDRQN The caching strategy proposed in this paper
C-DDQN Centralized-DDQN caching strategy proposed in [28]
DQN Caching strategy using DQN algorithm
Random Static caching strategy, random select caching items

2629Peer-to-Peer Networking and Applications (2022) 15:2619–2632



1 3

Due to the increase in the direct ES cache hit rate, only 
less content needs to be obtained from neighbor ESs or 
remote DC, so as shown in Fig. 6c, as the a increases, the 
cache hit rate of neighbor ESs is declining. And since more 
requests are concentrated on the top few popular contents, 
the request probability of other sub-popular content cached 
by the edge server decreases, leading to an incremental 
over storage cost as shown in Fig. 6d. Finally, as seen in 
Fig. 6e, the trained agent can always find popular content 
in the simulation data set, so the cache replacement cost is 
maintained at the same level and will not change with a. In 
general, the proposed DDRQN algorithm can get the high-
est cache hit rate and average system reward under different 
ZipF parameters a.

Finally, as shown in Fig. 7, we investigate the impact of 
the ES cache size N on the system performance where the 
ZipF parameter a = 1.2. We can see that the direct ES cache 
hit rate increases with the improvement of cache capability, 
and when the ES cache size N = 1000, the direct ES cache 
hit rate of the DDRQN algorithm reaches the highest value 
of 0.6585. However, the system reward did not increase 
with the raising of ES cache size. In our experiment, the 
highest average system reward ℝ = 1133.58 can be obtained 
when the ES cache size N = 50, and then the system reward 
decreases with the growth of cache size. The reason is that 
even if the improvement of the ES cache size can lead to an 
improvement in the direct ES hit rate, the over storage cost 
of the cache also increases. This shows that under certain 

content popularity, with the increase of ES cache size, ES 
caches a lot of unpopular content, which leads to an increase 
in the storage loss of the system. This is also in line with the 
limited capacity of edge computing, we only need to use an 
appropriate amount of space for EC.

6 � Conclusion and future work

In this paper, we first study the EC problem with the objec-
tive of minimizing system cost. Then the cost of the EC 
system including network communication cost, over storage 
cost, and cache replacement cost is investigated. Meanwhile, 
we model the EC problem as MDP. Finally, the performance 
of using the DDRQN algorithm in different EC scenarios is 
presented. And experimental results show the effectiveness 
of the proposed DDRQN algorithm. In the future work, we 
will study more complex edge caching problem under real 
scene and the computational complexity of EC algorithm.

Funding  This work is supported by National Science Foundation of 
China under Grant 61703127, Key R&D Program of Zhejiang Prov-
ince 2021C01114, and the Graduate Scientific Research Foundation of 
Hangzhou Dianzi University CXJJ2020087.

Declarations 

Conflict of interest  All authors in this work declared that they have no 
conflicts of interest.

Fig. 7   a reward b hit direct ES 
rate c hit neighbor ES rate

2630 Peer-to-Peer Networking and Applications (2022) 15:2619–2632



1 3

References

	 1.	 Cisco (2020) Cisco annual internet report (2018–2023) white 
paper. [Online]. Available: https://​www.​cisco.​com/c/​en/​us/​
solut​ions/​colla​teral/​execu​tive-​persp​ectiv​es/​annual-​inter​net-​
report/​white-​paper-​c11-​741490.​html

	 2.	 Pham Q-V, Fang F, Ha VN, Piran MJ, Le M, Le LB, Hwang W-J, 
Ding Z (2020) A survey of multi-access edge computing in 5g and 
beyond: Fundamentals, technology integration, and state-of-the-
art. IEEE Access 8:116974–117017

	 3.	 Velte T, Velte A, Elsenpeter R (2009) Cloud computing, a practi-
cal approach. McGraw-Hill, Inc.

	 4.	 Zhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J (2019) Edge intel-
ligence: Paving the last mile of artificial intelligence with edge 
computing. Proc IEEE 107(8):1738–1762

	 5.	 Xu Y, Gu B, Hu RQ, Li D, Zhang H (2021) Joint computation offload-
ing and radio resource allocation in mec-based wireless-powered 
backscatter communication networks. IEEE Trans Veh Technol 
70(6):6200–6205

	 6.	 Zhuang W, Ye Q, Lyu F, Cheng N, Ren J (2019) Sdn/nfv-empowered 
future iov with enhanced communication, computing, and caching. 
Proc IEEE 108(2):274–291

	 7.	 Xia X, Chen F, He Q, Grundy J, Abdelrazek M, Jin H (2020) 
Online collaborative data caching in edge computing. IEEE Trans 
Parallel Distrib Syst 32(2):281–294

	 8.	 Nour B, Khelifi H, Moungla H, Hussain R, Guizani N (2020) A 
distributed cache placement scheme for large-scale information-
centric networking. IEEE Network

	 9.	 Ale L, Zhang N, Wu H, Chen D, Han T (2019) Online proactive 
caching in mobile edge computing using bidirectional deep recur-
rent neural network. IEEE Internet Things J 6(3):5520–5530

	10.	 Wu Z, Lu Z, Zhang W, Wu J, Huang S, Hung PC (2018) A data-
driven approach of performance evaluation for cache server groups 
in content delivery network. J Parallel Distrib Comput 119:162–171

	11.	 Zeng Y, Xie J, Jiang H, Huang G, Yi S, Xiong N, Li J (2019) 
Smart caching based on user behavior for mobile edge computing. 
Inf Sci 503:444–468

	12.	 Rathore S, Ryu JH, Sharma PK, Park JH (2019) Deepcachnet: a 
proactive caching framework based on deep learning in cellular 
networks. IEEE Network 33(3):130–138

	13.	 Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare 
MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al 
(2015) Human-level control through deep reinforcement learning. 
Nature 518(7540):529–533

	14.	 Zhong C, Gursoy MC, Velipasalar S (2018) A deep reinforce-
ment learning-based framework for content caching. In: 2018 52nd 
Annual Conference on Information Sciences and Systems (CISS). 
IEEE, pp 1–6

	15.	 He X, Wang K, Xu W (2019) Qoe-driven content-centric cach-
ing with deep reinforcement learning in edge-enabled iot. IEEE 
Comput Intell Mag 14(4):12–20

	16.	 Qiao G, Leng S, Maharjan S, Zhang Y, Ansari N (2019) Deep rein-
forcement learning for cooperative content caching in vehicular edge 
computing and networks. IEEE Internet Things J 7(1):247–257

	17.	 Hou L, Lei L, Zheng K, Wang X (2018) A q-learning-based proac-
tive caching strategy for non-safety related services in vehicular 
networks. IEEE Internet Things J 6(3):4512–4520

	18.	 Li S, Li B, Zhao W (2020) Joint optimization of caching and 
computation in multi-server noma-mec system via reinforcement 
learning. IEEE Access 8:112762–112771

	19.	 Hausknecht M, Stone P (2015) Deep recurrent q-learning for par-
tially observable mdps. arXiv preprint: arXiv:​1507.​06527

	20.	 Liu Y, He Q, Zheng D, Xia X, Chen F, Zhang B (2020) Data cach-
ing optimization in the edge computing environment. IEEE Trans 
Serv Comput 1–8

	21.	 Hu Z, Zheng Z, Wang T, Song L, Li X (2016) Game theoretic 
approaches for wireless proactive caching. IEEE Commun Mag 
54(8):37–43

	22.	 Yu G, Wu J (2020) Content caching based on mobility predic-
tion and joint user prefetch in mobile edge networks. Peer-to-Peer 
Netw Appl 13(5):1839–1852

	23.	 Saputra YM, Hoang DT, Nguyen DN, Dutkiewicz E, Niyato D, 
Kim DI (2019) Distributed deep learning at the edge: a novel 
proactive and cooperative caching framework for mobile edge 
networks. IEEE Wireless Commun Lett 8(4):1220–1223

	24.	 Liang J, Zhu D, Liu H, Ping H, Li T, Zhang H, Geng L, Liu Y 
(2020) Multi-head attention based popularity prediction caching 
in social content-centric networking with mobile edge computing. 
IEEE Commun Lett 25(2):508–512

	25.	 Bernardini C, Silverston T, Festor O (2014) Sonetor: a social net-
work traffic generator. In: 2014 IEEE International Conference on 
Communications (ICC). IEEE, pp 3734–3739

	26.	 Tang B, Kang L (2021) Eicache: a learning-based intelligent caching 
strategy in mobile edge computing. Peer-to-Peer Netw Appl 1–16

	27.	 Zhu H, Cao Y, Wang W, Jiang T, Jin S (2018) Deep reinforcement 
learning for mobile edge caching: Review, new features, and open 
issues. IEEE Network 32(6):50–57

	28.	 Wang X, Han Y, Wang C, Zhao Q, Chen X, Chen M (2019) In-edge 
AI: Intelligentizing mobile edge computing, caching and commu-
nication by federated learning. IEEE Network 33(5):156–165

	29.	 Zhang N, Zheng K, Tao M (2018) Using grouped linear prediction 
and accelerated reinforcement learning for online content cach-
ing. In: 2018 IEEE International Conference on Communications 
Workshops (ICC Workshops). IEEE, pp 1–6

	30.	 Tang J, Tang H, Zhang X, Cumanan K, Chen G, Wong K-K, 
Chambers JA (2019) Energy minimization in d2d-assisted 
cache-enabled internet of things: a deep reinforcement learning 
approach. IEEE Trans Industr Inf 16(8):5412–5423

	31.	 Ye Z, Zhang D, Wu Z-G, Yan H (2021) A3c-based intelligent event-
triggering control of networked nonlinear unmanned marine vehi-
cles subject to hybrid attacks. IEEE Trans Intell Transport Syst

	32.	 Zhao Y, Li R, Wang C, Wang X, Leung VC (2021) Neighboring-
aware caching in heterogeneous edge networks by actor-attention-
critic learning. In: ICC 2021-IEEE International Conference on 
Communications. IEEE, pp 1–6

	33.	 Xu Y, Xie H, Li D, Hu RQ (2022) Energy-efficient beamforming 
for heterogeneous industrial iot networks with phase and distor-
tion noises. IEEE Trans Ind Inform

	34.	 Ghemawat S, Gobioff H, Leung S-T (2003) The google file sys-
tem. In: Proceedings of the Nineteenth ACM Symposium on Oper-
ating Systems Principles, pp 29–43

	35.	 Watkins CJ, Dayan P (1992) Q-learning. Mach Learn 
8(3–4):279–292

	36.	 Van Hasselt H, Guez A, Silver D (2015) Deep reinforcement 
learning with double q-learning. arXiv preprint: arXiv:​1509.​
06461

	37.	 Zhang D, Ye Z, Chen P, Wang Q-G (2020) Intelligent event-based 
output feedback control with q-learning for unmanned marine 
vehicle systems. Control Eng Pract 105:104616

	38.	 Zhang D, Ye Z, Feng G, Li H (2021) Intelligent event-based fuzzy 
dynamic positioning control of nonlinear unmanned marine vehi-
cles under dos attack. IEEE Trans Cybern

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author 
self-archiving of the accepted manuscript version of this article is solely 
governed by the terms of such publishing agreement and applicable law.

2631Peer-to-Peer Networking and Applications (2022) 15:2619–2632

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
http://arxiv.org/abs/1507.06527
http://arxiv.org/abs/1509.06461
http://arxiv.org/abs/1509.06461


1 3

Haitao Xu,  associate professor. His 
research interests are in the areas of 
intelligent transportation system, 
machine learning and data mining. 
As a member, he won the second 
prize of Zhejiang Science and 
Technology Award and the first 
prize of Zhejiang Higher scientific 
research achievement awards.

Yuejun Sun  is a postgraduate stu-
dent at the School of Software 
Engineering, Hangzhou Dianzi 
University. His research interests 
are edge computing and edge 
intelligence.

2632 Peer-to-Peer Networking and Applications (2022) 15:2619–2632


	Intelligent edge content caching: A deep recurrent reinforcement learning method
	Abstract
	1 Introduction
	2 Related work
	3 System model
	3.1 System architecture
	3.2 System cost

	4 Deep reinforcement learning strategy
	4.1 GRU layer
	4.2 DDRQN algorithm
	4.2.1 MDP
	4.2.2 DDRQN


	5 Result
	5.1 Experimental setup
	5.2 Experimental results

	6 Conclusion and future work
	References


