
Vol:.(1234567890)

Peer-to-Peer Networking and Applications (2022) 15:2326–2346
https://doi.org/10.1007/s12083-022-01349-w

1 3

A Mixed‑integer programming model using particle swarm
optimization algorithm for resource discovery in the cloudiot

Parisa Goudarzi1 · Amir Masoud Rahmani1,2  · Mohammad Mosleh1

Received: 14 December 2021 / Accepted: 22 June 2022 / Published online: 15 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Cloud computing and the Internet of Things (IoT) are new platforms in the information and communication technology
revolution. Selecting Cloud of Things (CloudIoT) in applications with fixed and mobile resources can provide many oppor-
tunities in different technologies, such as healthcare and transportation. Discovering fixed and mobile resources are one of
the main concerns of the CloudIoT paradigm that requires a proper discovery mechanism. This paper proposes a mathemati-
cal optimization model to minimize response time, cost, and bandwidth of CloudIoT platforms by considering fixed and
mobile resources in resource discovery. Moreover, a heuristic Single Resource Discovery algorithm is presented based on
a Mathematical optimization model (SRDM). Furthermore, a heuristic Multi Resource Discovery algorithm is introduced
based on a Mathematical optimization model (MRDM). In addition, this paper employs Particle Swarm Optimization (PSO)
and Multi-Objective Particle Swarm Optimization (MOPSO) to solve the optimization problem. Finally, according to the
simulation results, the proposed MOPSO-based algorithm significantly reduces the latency and improves the success ratio
and availability compared to other algorithms.

Keywords  CloudIoT · Resource discovery · Mobility · PSO algorithm · Goal programming · Linear programming

1  Introduction

The development of practical solutions has created new
Cloud of Things (CloudIoT) patterns in real environments.
This model uses cloud computing operating systems with
infinite storing and processing capabilities to introduce a
new and promising solution for Internet of Things (IoT)
systems. These systems consist of devices with limited
resources, which are not powerful enough to process and
store complex tasks on data-generating devices. Therefore,
the combination of cloud computing and IoT provides a

framework for users to use the offered services by different
providers in each location [1–3]. A trading market provides
computing resources for a set of computing resource buyers
with a group of computational resource sellers. CloudIoT
can be used in various fields, such as smart healthcare sys-
tems/hospitals and smart transportation systems [4–6].

The decentralized processing of data in IoT devices with
cloud technology has led to a new computing method to
reduce communication overhead and data transfer time,
which, in turn, has led to a promising trend in fog com-
puting. In fog computing, services, data, computing power,
and decision-making are distributed, so unbearable delays
and long response times can be prevented. Furthermore, fog
computing prevents unpredictable connections to the cloud
by blindly sending IoT data for processing and storing in the
cloud and resending it to the users. Integrating cloud, fog,
and IoT resources into a single architecture has created a
reliable platform called IFCIoT. Some of the benefits of this
platform for future IoT applications are better performance,
faster response time, scalability, and higher accuracy [7, 8].

Fog computing faces challenges such as node mobil-
ity and keeping resources permanently available. The sta-
tus of fog nodes changes considerably because of various

 *	 Amir Masoud Rahmani
	 rahmania@yuntech.edu.tw

	 Parisa Goudarzi
	 goudarzi_p@yahoo.com

	 Mohammad Mosleh
	 mosleh@iaud.ac.ir

1	 Department of Computer Engineering, Dezful Branch,
Islamic Azad University, Dezful, Iran

2	 Future Technology Research Center, National Yunlin
University of Science and Technology, 123 University Road,
Section 3, Douliou, Yunlin 64002, Taiwan

http://orcid.org/0000-0001-8641-6119
http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-022-01349-w&domain=pdf

2327Peer-to-Peer Networking and Applications (2022) 15:2326–2346	

1 3

parameters, such as broken wireless access links and battery
life limitations. For this reason, resource management in fog
computing must be able to manage mobility [9]. Another
important issue is different owners' ownership of fog nodes
[10]. Additionally, a sudden increase in workload reduces
resources for the fog, and this causes unbearable additional
delays in the execution of the tasks [11]. Applications or
data may require a high processing speed. In addition, the
lack of bandwidth to process information and the expensive
bandwidth needed for sending information to a data center
or cloud is the issues that fog computing needs to manage
[12, 13].

The efficient use of resources to minimize response time,
cost, and energy consumption is an important optimization
problem in cloud computing and IoT environments. The
mobile devices that are connected to edge servers have a
common communication network. Guo et al. [14] presented
a high-resistance offloading algorithm in the cloud comput-
ing environment, which minimized the average response
time for offloading strategy and determining the common
bandwidth. Abdel-Basset et al. [15] proposed a bandwidth-
based Virtual Machine (VM) allocation algorithm using the
whale optimization algorithm and an algorithm for merging
VMs. The latter algorithm was based on energy improve-
ment and cost-awareness by using genetic algorithms to
minimize the number of active physical servers. Finally, an
algorithm for dynamic and safe loading was introduced by
Alli and Alam [16] to reduce the latency and energy con-
sumption in the fog computing environment using machine
learning methods. Their proposed algorithm used the Par-
ticle Swarm Optimization (PSO) algorithm to select the
optimal node for dynamic loading at the IoT level and the
Reinforcement Learning (RL) to choose the appropriate
cloud at the fog level.

This study aims to discover IoT and cloud resources
with three objectives. Due to many requests in the cloudIoT
environment, using three dimensions is very important. The
first dimension deals with responding to requests that must
be handled within a reasonable response time. The second
dimension considers the reasonable cost of using resources.
The third dimension necessitates the rational distribution of
bandwidth among requests. We use Mixed-Integer Linear
Programming (MILP) for the three dimensions and consider
the proposed method in single-objective and multi-objective
modes.

The use of evolutionary algorithms, such as PSO, to pre-
sent, Single Resource Discovery algorithm based on a Math-
ematical optimization model (SRDM) is discussed as follows.
The PSO algorithm has fewer parameters, easier implemen-
tation, and higher flexibility than other evolutionary algo-
rithms, so we use PSO to implement the SRDM algorithm. In
addition, we use Multi-Objective PSO (MOPSO) to present
Multi Resource Discovery algorithm based on a Mathematical

optimization model (MRDM). The main reason for using the
MOPSO algorithm instead of other multi-objective algorithms
is that MOPSO uses the actual values of the variables as mem-
bers of the population and reduces the computational burden.
The most important innovations of this study are as follows:

•	 Combining PSO and MILP to present a new mathemati-
cal model to optimize response time, cost, and bandwidth
so that a PSO-based meta-heuristic algorithm is intro-
duced for resource discovery

•	 Providing a multi-objective approach to the proposed
method using the MOPSO algorithm, which uses the
actual values of variables as the members of the popula-
tion and reduces the computational burden

We simulate the proposed algorithm using the IFogSim
simulator. Then, the SRDM algorithm and MRDM algo-
rithm are compared with the algorithms presented in [29,
30, 35], and [36].

The remaining of this paper includes the following sec-
tions. Section 2 reviews the related works. The proposed
method is analyzed in Sect. 3. In Sect. 4, the results are
discussed, and simulations are examined. The conclusion is
presented in the last section.

2 � Related work

The related work section is divided into 1) PSO algorithm,
2) MOPSO algorithm, and 3) resource discovery and alloca-
tion algorithms.

2.1 � PSO Algorithm

PSO is one of the most important evolutionary optimization
methods to solve complex optimization problems. The main
part of the PSO is the particles' initialization. In PSO, the
system is initialized with many random solutions. The solu-
tions are called particles with an assigned random velocity
and position. Each particle calculates the value of an objec-
tive function according to its position in a multi-dimensional
space. Moreover, each particle adjusts its velocity and posi-
tion according to each generation's best position and the best
global population [17]. The velocity and position of particles
can be obtained using Eqs. (1) and (2).

In these relationships, vp(k + 1) and vp(k) denote the cur-
rent and previous velocities of particle p ; xp(k + 1) and xp(k)

(1)
vp(k + 1) = w × vp(k) + c1 × rand1 ×

(

pbest − xp(k)
)

+ c2 × rand2 ×
(

gbest − xp(k)
)

(2)xp(k + 1) = xp(k) + vp(k + 1)

2328	 Peer-to-Peer Networking and Applications (2022) 15:2326–2346

1 3

are the current and previous positions of particle p . The
two acceleration coefficients c1 and c2 and the two random
numbers rand1 and rand2 (which are between 0 and 1) are
used to calculate the velocity. The best position of particle
p and the best particle position in the population are rep-
resented by pbest and gbest , respectively; w represents the
inertia weight; the other two variables, N − pop and Maxiter ,
denote the population size and the maximum number of
iterations [18].

2.2 � MOPSO Algorithm

The MOPSO algorithm is a generalization of the PSO algo-
rithm used to solve multi-objective problems. In MOPSO, a
concept called archive or repository, also known as the hall
of fame, has been added to the PSO algorithm. Before mov-
ing, particles select a member of the repository as a leader.
This leader must be a member of the repository and domi-
nant. The members of the repository represent the Pareto
front and contain dominant particles. Therefore, instead of
gbest , one of the repository members is selected. There is
no repository in PSO because there is only one objective in
it, and there is a particle that is the best.

Particles have two parts: position and velocity. Particles
are updated via velocity vectors differently from the genetic
algorithm. There are two leaders: choosing the global best
solution ( gbest ) and the personal best memory ( pbest ) [19].
The velocity and position of particle i are updated as follows:

where i = 1, 2,… ,N is the population size, k is the parti-
cle iteration index, and w is the inertia weight with a linear
decrease from 0.9 to 0.4 as the particles are updated. Thus,
local search c1 and c2 are two acceleration coefficients; r1
and r2 are two uniformly distributed random numbers in the
range [0, 1] . Moreover, xib is the best position for the ith par-
ticle, and xgb is the best position in the whole swarm [20].

2.3 � Resource discovery and allocation algorithms

The main purpose of this study is to provide a meta-heuris-
tic algorithm for resource discovery by reducing response
time, cost and bandwidth. For this reason, it was necessary
to examine further the meta-heuristic algorithms for discov-
ering and allocating resources in the related work section.
Consequently, the meta-heuristic algorithm was investigated
by reducing several objectives and presenting various mathe-
matical models for resource discovery. In addition, to present

(3)
vi,k+1 = w × vi,k + c1 × r1 ×

(

xib − xi,k
)

+ c2 × r2 × (xgb − xi,k)

(4)xi,k+1 = xi,k + vi,k+1

the algorithm, we studied some papers that used different
mathematical theories.

Resource management is an essential element in fog com-
puting environments. Fog computing provides short response
times through a virtual intermediate layer to procure latency-
sensitive real-time programs in an IoT infrastructure. Fur-
thermore, it enables data calculation, storage, and network
services between data centers of the cloud and end-users.
Therefore, resource management is an essential element in
fog computing environments. Gill et al. [21] presented a
PSO-based resource management approach to optimize net-
work bandwidth, response time, synchronized delays, and
energy consumption simultaneously. This approach was
suggested for managing fog computing resources in smart
homes. The results showed that this approach reduces band-
width, latency, and energy consumption.

Bharti et al. [22] presented a method for discovering
resources called the Iterative K-Means Clustering Algo-
rithm (IKM-CA), which grouped the textual information
of clusters for efficient search using similarity coefficients
of a vector space model. By using metadata to identify an
object, this method makes it possible to calculate and access
resources. The IKM-CA consists of three stages of cluster
formation, repetitive K-means clustering, and discovering
matching conditions. In general, this algorithm replicates
the formation of clusters repetitively to search for resources
using the matching criteria. These criteria emphasize the
relationship between the two points considering the thresh-
old value.

Resource discovery is a complex and challenging problem
requiring an effective algorithm for optimal performance.
Ezugwu and Adewumi [23] introduced an optimization
algorithm called Soft-Set SymbIoTic Organism's Search
(SSSOS) to simulate selecting resources for effective plan-
ning in a cloud computing environment. This algorithm
searches and selects the best resources using the techniques
available in both symbIoTic organisms search optimiza-
tion and soft set attribute reduction theory. The SSSOS
algorithm provides users with high-quality services using
tracking, matching, and easy selection of information con-
figuration. The algorithm consists of three steps: 1) reduc-
ing resource-dependent properties using a software feature
reduction algorithm, 2) searching and matching the candi-
date resources from the first stage output, and 3) selecting
the best source from the first and second stages.

Scheduling user tasks in VMs and data centers is a chal-
lenging issue due to many users. Accordingly, Panwar et al.
[24] introduced a hybrid algorithm to solve task schedul-
ing problems using the PSO algorithm with a Technique of
Order Preference by Similarity to Ideal Solution (TOPSIS).
The proposed algorithm uses TOPSIS to calculate the opti-
mized Fitness Value (FV). Then, the FV evaluated for each
task is introduced to PSO to be optimized further. The main

2329Peer-to-Peer Networking and Applications (2022) 15:2326–2346	

1 3

purpose of this algorithm is to connect the user task collec-
tion set to the distributed resources set for achieving some
goals, such as minimizing transfer time, minimizing Makes-
pan execution time, and maximizing resource utilization in
the cloud computing environment.

The integration of Wireless Sensor Networks (WSNs)
and IoT makes the cluster-head selection very complicated
because it is necessary to consider the features of both IoT
and WSN networks. To overcome fundamental limitations,
such as low accuracy and slow convergence, Reddy and
Babu [25] presented an algorithm called the Self-Adaptive
Whale Optimization Algorithm (SAWOA) to achieve cluster
head selection WSN-IoT networks. This algorithm consid-
ers the distance, energy, and delay of sensor nodes in WSN,
temperature, and IoT devices load. The performance of
SAWOA was compared with other cluster-head algorithms,
and the results showed that SAWOA performs better than
different algorithms.

Alzubi et al. [26] introduced a Location-assisted Delay-
less Service Discovery (LDSD) for processing IoT user
requests. Depending on the location of the resources, LDSD
classifies resources based on service delivery delay, avail-
ability for rapid resource mapping, and service respon-
siveness. However, on-time response in IoT is challenging
because of access to heterogeneous self-adaptable resources.
Therefore, replication and location errors were considered
during resource discovery and mapping in this research. The
primary goal of this algorithm is to improve resource access
and minimize resource access costs.

A method of discovering and allocating resources was
introduced by Kalaiselvi and Selvi [27]. Resource dis-
covery and allocation algorithm are the two main parts of
the proposed solution. First, the tasks are executed by the
resource discovery approach. Then, the Multiple Kernel
Fuzzy C-Means (MKFCM) clustering algorithm delivers
the available resources. The Cloud provider selects the most
cost-effective VM from the resources available to run the
tasks. If the desired resource is unavailable, the provider
will request it from the owner. Reducing the total cost over
a period is the main objective of this approach.

Skarlat et al. [28] implemented a fog frame framework
with the necessary communication mechanisms to run
services in fog environments. Additionally, two heuristic
algorithms were considered to place the service in fog (the
first fit algorithm and the genetic algorithm). Considering
the capacities of the available resources, the first fit algo-
rithm discovers the right resource to deploy the service.
Genetic algorithm chromosomes are defined using a vec-
tor in this algorithm. If the desired service can be applied
to each device, it is expressed as one. Otherwise, it is
expressed as zero. As a result, the genetic algorithm per-
forms better than other algorithms for distributed requests
and services.

An Elimination-Selection (E-S) algorithm was suggested
by Nunes et al. [29] for searching and discovering resources
in IoT environments. Their algorithm used the TOPSIS algo-
rithm and quick sorting. However, quick sorting approaches
have much complexity in time and storage, making them
difficult to run. Consequently, these authors tried to take
advantage of both approaches in their proposed approach;
namely, they benefited from the speed of TOPSIS and the
ability to select the best option by the sorting methods. One
of the contrasting points of the E-S algorithm compared to
the algorithm proposed in the present study is that the E-S
algorithm is designed for IoT environments. Still, it does not
address mobility, resource availability, and time constraints
of tasks.

Md et al. [30] proposed a new approach for cloud services
with ease of resource identification, dissemination, and dis-
covery based on dynamic Quality of Service (QoS) features
through the web Graphical User Interface (GUI) interface
backed by a set of validation tests. The proposed approach
consisted of three algorithms. First, they presented an effi-
cient algorithm based on the QoS criterion given by cloud
consumers using the decision tree classification algorithm
to identify cloud services. Second, they introduced an algo-
rithm for registering cloud service resources to enable Cloud
Service Providers (CSPs) to register their services with their
QoS features. Finally, they proposed an algorithm to find the
appropriate cloud service and its features by Cloud Consum-
ers (CCs).

One of the best-structured programs to run in a feder-
ated cloud is a Bag-Of-Tasks (BOT) application since it uses
independent tasks. Additionally, the program's total cost can
be affected by the policies of running programs in the feder-
ated cloud. Consequently, a mathematical planning model
was proposed by Abadi et al. [31] to allocate resources in a
federated hybrid cloud. The proposed model is binary lin-
ear programming that includes time constraints of tasks and
resource limitations in federated clouds. The main purpose
of this algorithm is to minimize the total cost of programs.

Kalantary et al. [32] used the hidden Markov chain
learning method to address the challenges of searching and
selecting resources for the combined IoT and fog computing.
This method reduces latency and increases scalability. These
authors implemented the proposed solution using Cloudsim
simulator and compared the results with decision algorithms
such as TOPSIS. They showed the superiority of their pro-
posed method over other methods in terms of latency and
scalability.

Bharti and Jindal [33] provided a framework for discover-
ing optimal clustering-based resources in IoT, called Opti-
mal Clustering-based Discovery Framework on IoT (OCDF-
IoT). The proposed architecture can automatically discover
resources and related services using an ontology, form/dis-
play knowledge about resources, and list resources based

2330	 Peer-to-Peer Networking and Applications (2022) 15:2326–2346

1 3

on maximum similarity and optimal selection of resources
among candidates. The results from the real environment
indicate that this architecture minimizes CPU power for
query processing and increases CPU performance with less
load on the server.

Xu et al. [34] examined confidential performance predic-
tions for mobile IoT health care networks. The proposed
solution is an improved Convolutional Neural Network
(CNN) model that combines four convolution layers and a
four-prong primary block. The four-prong primary block
reduces CNN width by extracting parameters, extracting
different sizes of health care data, and adapting to nonlin-
ear health care data. According to the comparisons made,
this algorithm performs 20% better than other methods in
forecasting.

Human Resource Management (HRM) in federal cloud
edge computing and selecting the optimal hardware and soft-
ware resources to respond to the requests based on QoS fac-
tors in IoT environments are major challenges. As a result,
Liu et al. [35] introduced an optimization model for the
HRM problem in cloud edge computing using the WOA.
The results showed that this model reduces response time
and allocation costs and increases the number of allocated
human resources in two different scenarios compared to
other meta-heuristic algorithms.

Murturi and Dustdar [36] proposed a decentralized
resource discovery mechanism with the ability to detect
resources automatically in edge networks. The presented
solution exchanges resource information in each domain
with other domains by repeating resource descriptions peer-
to-peer. In addition, this mechanism was proposed as a flat
model that can better address the complexities of resource
discovery and allow the organization of edge devices in
clusters. These authors evaluated the prototype in a testbed
consisting of low-power-based edge devices to validate the
approach's feasibility.

The mentioned studies focus on reducing bandwidth,
response time, mobility, and time constraints of tasks in
cloud or IoT environments. However, at the same time, they
do not consider resource discovery to cope with these chal-
lenges in cloud-based IoT. In this study, we try to address
this shortcoming.

3 � Proposed method

The proposed method is divided into three sub-sections, i.e.,
the proposed mathematical model, the proposed architecture,
and a proposed algorithm. First, the proposed mathematical
model is analyzed thoroughly. Then, the proposed architec-
ture and its components are introduced in full detail. Finally,
a proposed algorithm is presented for resource discovery.

3.1 � Mathematical model

In this section, a MILP model is presented to pursue three
goals of minimizing the response time, cost, and band-
width to discover resources in CloudIoT platforms. Table 1
shows the symbols used in the mathematical model. We
assume that the domains of fog nodes are independent.
Therefore, there are several resources in each domain
which process the received requests from IoT resources.
Furthermore, some requests will be sent to the cloud with-
out processing in the fog domains (Table 2). The main
assumptions of the proposed model are as follows:

•	 The number of fog node domains is already specified.
•	 The cost of using each resource is determined in

advance.
•	 Each task is assigned only to one resource.

The following is the proposed mathematical model.
Parameters z1, z2, z3, are the optimization models of

response time, cost, and bandwidth, which are presented
in Eqs. (5), (6) and (7), respectively. In the present system,
we define the time between sending a request and respond-
ing to the request as the response time, the duration of
using resources as the cost, and the amount of transfer of
requests by a network (wireless) connection or an interface
the bandwidth. The total time of using the resources by
tasks is considered the total cost. The goal is to maximize
the fog bandwidth and minimize the system's cloud band-
width. The main goal of the introduced system is to reduce
response time, cost, and bandwidth for all requests.

A series of constraints presented in Eqs. (8) to (15) pro-
duces a possible domain. Equation (8) ensures that the sum
of the time constraints of requests will be greater than or
equal to the response time of the requests. Equation (9)
states that the total number of requests is greater than or
equal to the number of performed requests as the number of
requests is unknown. Equation (10) states that the sum of the
bandwidth of all domains fog nodes is larger than or equal
to the sum of the bandwidth allocated to the requests in each
domain. Equation (11) checks that the cloud bandwidth is
greater than or equal to the sum of the bandwidth allocated
to the requests to be performed in the cloud. Equation (12)
ensures that each request is allocated to a maximum of one
bandwidth from the Rth node of the fog due to the mobility
of some resources. In addition, each request is allocated
through a maximum of one fog node to the cloud bandwidth,
and this is expressed by Eq. (13). The last two equations,
(14) and (15), specify the decision variablesVf

rki
,Vc

ji
 , Hf

ri
 and

Hc
i
 with the values that can only be zero or one.
Decision-making problems and the management of

conflicting criteria are the solutions to the MILP model.

2331Peer-to-Peer Networking and Applications (2022) 15:2326–2346	

1 3

The main challenge of solving multi-objective problems
is determining the solution that simultaneously optimizes
all objective functions. Given the contradiction between
objective functions, it is usually challenging to find such
a solution; therefore, the efficient multi-objective method
is a method that balances functions well. One of the best
ways to solve multi-objective problems is to turn them
into single-objective problems, which Goal Programming

(GP) is a good way to do. Still, the main limitation of
GP is that it can only achieve levels of aspiration with
numerical values. We use the Multi-Choice GP (MCGP)
method [37]. The main advantage of the MCGP method is
that it can be employed as a measurement tool for helping
decision-makers make the best policies or use the most
appropriate policies under their goals with the highest
level of benefit.

Table 1   Symbol definition for the MILP model

Symbols Description

Indices
i Indicate of request (i = 1, 2,… , n)

j Indicate of cloud resource (j = 1, 2,… ,m)

k Indicate of fog resource (k = 1, 2,… , g)

r Indicate the fog domain (r = 1, 2,… , q)

l Indicate of IoT resource (l = 1, 2,… ,w)

Parameters
Sc
i

Number of cloud resource
Sf
k

Number of fog resource
Af

r
Number of fog domain

Sl
i

Number of IoT resources
N Indicate the number of requests
Time

f

rki
Time to execute request i on resource k of domain r of fog

Time
c

ji
Time to execute request i on resource j of cloud

Time
If

rki
Transfer time from IoT resource to fog

Time
fc

rji
Transfer time from node r fog to cloud

Time
waitf

rki
Waiting time request i on resource k of domain r of fog

Time
waitc

ji
Waiting time request i on resource j of cloud

Cf
rki

Execution price request i on resource k of domain r of fog
Cc

ji
Execution price request i on resource j of cloud

CIf
rki

Transfer price from IoT resource to fog
Cfc

ji
Transfer price from fog to cloud

Mf
ri

A measure of request i from domain r of fog
Mc

i
A measure of request i from the cloud

Deadlinei Deadline of request i
Bandwidth

c

i
The bandwidth size for request i of cloud bandwidth

Bandwidth
f

ri
The bandwidth size for request i of node r fog bandwidth

Bandwidth
c Cloud bandwidth

Bandwidth
f

r
Fog bandwidth of node r

Variables

Vf
rki

=

{

1, if request i excute on resource k of domain r fog

0, otherwise

Vc

ji
=

{

1, if request i excute on resource j of cloud

0, otherwise

Hf
ji
=

{

1, if fog bandwidth of node r allocates to request i

0, otherwise

Hc

i
=

{

1, if cloud bandwidth allocates to request i

0, otherwise

2332	 Peer-to-Peer Networking and Applications (2022) 15:2326–2346

1 3

Moreover, these features improve the practical applica-
tion of MCGP for solving decision/management problems
in the real world. The MCGP solution with a utility function
is used to formulate resource discovery in CloudIoT to mini-
mize response time, cost, and bandwidth in Table 3. Conse-
quently, a multi-objective MCGP with the utility function
approach is used to solve the problem. The fitness function
determines the problem by considering three objectives
(response time, cost, and bandwidth). Simultaneous focus
on these three objectives leads to a reasonable solution, so
we used Eqs. (16)–(23) to define the fitness function in the
proposed algorithm. These equations transform the multi-
objective problem into a single-objective one.

In these relationships,U1,min , U1,min are the kth level of
the goal of yk is a continuous variable. d+

k
 , d−

k
 are positive

and negative deviations of fx(k) . �−k is the normal devia-
tion ofyk , wk

d
 is the weight of(d+

k
, d−

k
) , wk is the weight of

f −
k
. In Eq. (16), �d

1

(

d+
1
+ d−

1

)

 represents the response time,
�d
2

(

d+
2
+ d−

2

)

 represents the cost, and �d
3

(

d+
3
+ d−

3
+ e+

1
+ e−

1

)

represents the bandwidth. Due to the known bandwidth of
fog and cloud, it is needed to define e+

1
+ e−

1
 in Eq. (16).

Equations (16) to (23) express the limits, and the reason-
able solution of the fitness function is determined consid-
ering the results of these equations. The total value of � is
equal to 1. For obtaining equal values, 1 is divided by 3,
so the value of each � is equal to 0.33.

3.2 � The proposed architecture

The proposed three-layer architecture is shown in Fig. 1.
In this architecture, the layers are examined separately. In
addition, it shows the components needed to implement
the proposed algorithm. Our primary purpose in present-
ing this section is to offer an overview of the proposed
system and the components required to implement the pro-
posed algorithm in the IaaS service model. Each layer is
described in the following.

•	 User devices/IoT, such as smartphones and tablets, are
the lowest layer. Requests of these devices are sent to the
top layer to run.

Table 2   The MILP model

Min z1 =
∑n

i=1

∑g

k=1

∑q

r=1
Time

If

rki
+
∑n

i=1

∑g

k=1

∑q

r=1
Time

f

rki
× V

f

rki

+
∑n

i=1

∑g

k=1

∑q

r=1
Time

waitf

rki
+
∑n

i=1

∑m

j=1
Timewaitc

ji
+
∑n

i=1
Mc

i

÷ Bandwidthc
i
+
∑n

i=1

∑m

j=1
Timec

ji
× Vc

ji

(5)

Min z2 =
∑n

i=1

∑g

k=1

∑q

r=1
C
If

rki
+
∑n

i=1

∑g

k=1

∑q

r=1
C
f

rki
× V

f

rki
× (

∑n

i=1

∑q

r=1
M

f

ri

÷ Bandwidth
f

ri
) +

∑n

i=1

∑m

j=1
C
fc

ji
+
∑n

i=1

∑m

j=1
Cc
ji
× Vc

ji
× (

∑n

i=1
(Mc

i

÷ Bandwidthc
i
))

(6)

Min z3 = (1 ÷
∑n

i=1

∑q

r=1
H

f

ri
× (

∑n

i=1

∑q

r=1
M

f

ri
÷
∑n

i=1

∑g

k=1

∑q

r=1
Time

If

rki
)

+
∑n

i=1
Hc

i
× (

∑n

i=1
Mc

i
÷
∑n

i=1

∑m

j=1

∑q

r=1
Time

fc

rji
))

(7)

∑g

k=1

∑q

r=1
Time

f

rki
× V

f

rki
+
∑m

j=1
Timec

ji
× Vc

ji
≤ Deadlinei

for i ∈ {1, 2,… , n} (8)
∑g

k=1

∑q

r=1
V
f

rki
+
∑m

j=1
Vc
ji
≤ N for i ∈ {1, 2,… , n} (9)

∑n

i=1
H

f

ri
× Bandwidth

f

ri
≤ Bandwidthf

r
for r ∈ (1, 2,… , q} (10)

Hc
i
× Bandwidthc

i
≤ Bandwidthc for i ∈ {1, 2,… , n} (11)

∑q

r=1
H

f

ri
≤ 1 for i ∈ {1, 2,… , n} (12)

Hc
i
≤ 1 for i ∈ {1, 2,… , n} (13)

V
f

rki
,Vc

ji
∈ {0, 1} for i ∈ {1, 2,… , n}, k ∈ {1, 2,… , g},

r ∈ {1, 2,… , q},

j ∈ {1, 2,… ,m}

(14)

H
f

ri
,Hc

i
∈ {0, 1} for i ∈ {1, 2,… , n},

r ∈ {1, 2,… , q}

(15)

Table 3   MCGP model

Min�d
1

(

d
+

1
+ d

−
1

)

+ �d
2

(

d
+

2
+ d

−
2

)

+

�d
3

(

d
+

3
+ d

−
3
+ e

+

1
+ e

−
1

)

+ �d
1
�−
1
+ �−

2
�−
2
,

(16)

�i ≤
Ui,max−y1

U1,max−U1,min

fori = 1, 2 (17)

fi + d−
1
− d+

1
= y1, fori = 1, 2 (18)

f3 − e+
1
+ e−

1
= y3, (19)

�i + �−
1
= 1, fori = 1, 2 (20)

Ui,min ≤ y1 ≤ Ui,max, fori = 1, 2 (21)
Bandwidth fog ≤ y3 ≤ Bandwidth cloud, (22)
Systems constraints(3 − 13), (23)

2333Peer-to-Peer Networking and Applications (2022) 15:2326–2346	

1 3

•	 Several independent domains based on geographical
areas with limited network connection make the middle
layer fog computing [38]. A fog controller is specified for
each domain. Fog nodes, which include smart devices,
such as edge routers and switches, are capable of comput-
ing, data storing, and networking. Lightweight contain-
ers such as LXC [39], and Docker [40] are promising
approaches to performing tasks in fog nodes of devices
with limited resources. As a result, each fog node in the
bed container uses lightweight containers to manage its
containers locally [41].

•	 Long requests and storage are completed in the top layer
(cloud computing layer).

The requests are sent by the lower layer devices and pro-
cessed in the middle layer to be placed in a specific template
format. The template format includes the optimization crite-
ria (such as cost and response time) and a set of constraints
(such as deadlines for each task execution time and required
storage space). Requests are divided into two groups. The
first group can be executed in the fog nodes, while the sec-
ond group should be sent to the top layer. The controller
in each node creates a suitable resource discovery strategy
to execute user requests. In addition, the controller selects
the best resource for requests based on the end-users, fog
node locations, and resources in the nodes. Requests for the

transfer to another fog domain will be sent to the node con-
tainer of that domain. Immigration is done by the container
platforms embedded in each fog node.

The cloud controller must optimize resources based
on user requirements by placing requests in a queue. The
resource controller uses an optimization model to mini-
mize response time, cost, and bandwidth. The output of
the resource controller is delivered in the form of a plan
to identify the best resource for the resource management
component. The resource management component contains
fog and cloud resources.

Resource discovery can be implemented by a software
platform, such as OpenStack [42], OpenNebula [43], and
Eucalyptus [44]. The discovery component uses the PSO/
MOPSO algorithm to discover the most suitable resource,
considering response time, cost, and bandwidth criteria.

Resources in the fog nodes send their information to the
registry via messages. New resource information can be
used in the next step of decision-making. Moreover, una-
vailable resource information will be sent to the registry
via the corresponding nodes to update information about
the resources. The registry needs to be periodically updated
with information from different providers and resources to
define a lifetime. Resources and providers that are out of
reach do not participate in the decision-making process in
the next step.

Fig. 1   Proposed architecture

2334	 Peer-to-Peer Networking and Applications (2022) 15:2326–2346

1 3

3.3 � The proposed algorithm

Our goal was to use the meta-heuristic algorithm in a new
dimension. The combination of cloud technology and IoT is
a new technology, so we used a meta-heuristic algorithm to
discover resources in cloudIoT. There are several methods to
solve resource discovery problems in cloudIoT, one of which
is meta-heuristic algorithms. Meta-heuristic algorithms are
approximate optimization algorithms with solutions that can
exit local optimal points and are used in many problems.
For this reason, we used meta-heuristic algorithms. This
subsection examines the proposed method based on the two
algorithms, PSO and MOPSO. In order to use PSO, as men-
tioned earlier, the proposed method was transformed into a
single-objective problem using MCGP.

3.3.1 � SRDM algorithm

The PSO algorithm makes it possible to select resources
based on the defined criteria while the amount of search
in resource discovery is reduced. This is done by increas-
ing the number of resource requests and evaluating them.
We implemented the SRDM, a fitness function defined in
the algorithm using Eq. (16) and the constraints applied
in Eqs. (17)–(23). The function defined according to these
relations discovers the most reasonable resource for a
request. Using the PSO algorithm includes features such
as rapid convergence of PSO compared to other meta-
heuristic methods, the proper weighting of quantitative
and qualitative elements, and presenting a comprehen-
sive analysis. We define a 2 ∗ m matrix to construct the
proposed algorithm so that the rows and columns repre-
sent the cloud/fog computing and resources, respectively.
Each element specifies the number of requests. Accepted
requests in fog nodes and cloud are placed in a separate

queue with a different assigned number. As Fig. 2 shows,
some requests will not be executed due to their expiration.
Moreover, some of them require multiple resources to run.

Each particle (which represents a resource in the pro-
posed method) at any given time is affected by the best
position and pbest position in the search space. FV is used
to evaluate each particle. Particles are randomly selected.
pbest is the best particle result (FV) ever obtained by a
particle, and gbest is the best particle in the search space.
The obtained gbest is compared with the FV for each par-
ticle. If it is smaller, gbest will be updated. Otherwise, the
best resource will be marked with the largest gbest , and
the request will be assigned to that resource. This process
significantly reduces response time, cost, and bandwidth
for each request. The performance of PSO is shown in
Algorithm 1. Additionally, Fig. 3 shows the algorithm.

Fig. 2   The structure of a parti-
cle with a sample allocation

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Fog(F)
Cloud(C)

2 10 4 7 4 8 16 2 9 2
1 5 12 2 6 11 5 4 19 16

Fig. 3   The PSO algorithm,
according to the image

S1 S2 S3 S4 S5 S6
F
C

2 4 7 9 10 12
1 3 6 5 8 11

Vi= Loca on Velocity (xi)

pbest= FV(S1) S3= gbest

i= number of request
(A)

S1 S2 S3 S4 S5 S6
F
C

8 4 2 9 10 12
4 3 1 5 8 11

pbest= FV(S3) S3= gbest

(B)

2335Peer-to-Peer Networking and Applications (2022) 15:2326–2346	

1 3

21

12.0

11.5

11.0

21 21

21

12.0

11.5

11.0

21

C1
M
e
a
n
o
f
S
N
ra

ti
o
s

C2 W

Population size Maxiter

Main Effects Plot for SN ratios
Data Means

Signal-to-noise: Smaller is better

(A) SRDM

21

12.4

12.2

12.0

21

21

12.4

12.2

12.0

21

C1

M
e
a
n
o
f
S
N
ra

ti
o
s

C2

Population size Number of Generation

Main Effects Plot for SN ratios
Data Means

Signal-to-noise: Smaller is better

(B)MRDM

Fig. 4   Taguchi ratios for SRDM algorithm and MRDM algorithm. Figure 4A SRDM algorithm, Fig. 4B MRDM algorithm

2336	 Peer-to-Peer Networking and Applications (2022) 15:2326–2346

1 3

3.3.2 � MRDM algorithm

The transformation steps of the objective function using the
MOPSO algorithm are as follows:

Step 1: Entering the information required by the program,
including the numbers of fog nodes, resources per node,
resources in the cloud layer, and requests.
Step 2: Selecting the parameters of the MOPSO algo-
rithm (i.e., the parameters specified in Subsect. 2.2).
Step 3: The initial solutions are generated randomly
based on the constraints imposed by the objective func-
tion. According to the objective function, which opti-
mizes the resource discovery, the initial solutions include
a variable x matrix, which is assigned ′′0′′ or ′′1′′ to each
of its cells. ′′1′′ indicates the presence of the resource in
different nodes of fog or cloud, and "0" is the absence of
the resource.
Step 4: Calculating the objective function using Eqs. (5)
to (7).
Step 5: Producing a new generation using the production
function.
Step 6: Upgrading generations (previously-dominant
members are added to the archive, and non-dominant
ones are removed from the archive).
Step 7: Repeating until reaching the specified number
of iterations.

3.3.3 � Complexity of proposed algorithm

(A)	 Complexity of SRDM algorithm

In order to analyze the complexity of the SRDM, the total
number of complex additions and complex multiplications
per iteration were counted. To calculate the complexity, the
following parameters were considered: r the domain of fog,
R the number of resources, d the dimension, and n the total
resources available in each fog domain.

1.	 Updating the velocity and position of each resource at
each node requires five complex multiplication opera-
tions and seven complex addition operations in each
dimension. The values of c1 and c2 were considered
equal to 1. Moreover, velocity is easily calculated. For
resource R in any fog domain with d dimensions, 5dR
complex multiplication operations and 7dR complex
addition operations are required to update the position
and velocity of each resource.

2.	 The values of �p(k + 1) and �p(k) , These correspond
to the current and previous state of velocity for each
resource and require a complex addition operation stored
in a table for faster access.

3.	 Updating each resource requires four complex multipli-
cation operations and five complex addition operations
due to the limitations set for the intended purposes.

4.	 Because there are r domains for fog nodes, each resource
in the domain requires (d − 2)rR multiplication opera-
tions and drR addition operations to update all available
resources.

5.	 nr complex addition operations are required to calcu-
late the most suitable resource among the available
resources.

The SRDM requires (d − 2)rR + 5dR + 9 complex mul-
tiplication operations and nr + drR + 7dR + 13 complex
addition operations. In general, the complexity of the pro-
posed algorithm is equal to drR. As a result, the complex-
ity of the SRDM is equivalent to O

(

N3
)

.

(B)	 Complexity of MRDM algorithm

The complexity analysis of the MRDM is as follows:

1.	 Updating the velocity and position of each resource at
each node requires ten complex multiplication opera-
tions and eight complex addition operations in each
dimension. For resource R in any fog domain with d
dimensions, 10dR complex multiplication operations and
8dR complex addition operations are required to update
the position and velocity of each resource.

2.	 The values of �i,k+1 and xi,k , which correspond to the veloc-
ity modes for each resource, require n complex addition
operations, which are stored in a table for faster access.

3.	 Updating each resource requires four complex multipli-
cation operations and two complex addition operations
due to the constraints set for the intended purposes.

4.	 Because there are n domains for fog nodes, each resource in
the domain requires (d − 2)rR addition operations and drR
multiplication operations to update all available resources.

5.	 nr complex addition operations are required to calcu-
late the most appropriate resource among the available
resources.

The complexity of the MRDM requires nr + (d − 2)rR+

8dR + 11 complex addition operations and drR + 10dR + 14
complex multiplication operations. According to the exist-
ing relationship, the highest degree is related to drR . As
a result, the complexity of the MRDM is equal to O

(

N3
)

.

4 � Results and experiments

We simulate the proposed algorithm to evaluate its perfor-
mance. In the following, the simulation environment and its
configuration are briefly introduced. Finally, the evaluation

2337Peer-to-Peer Networking and Applications (2022) 15:2326–2346	

1 3

criteria and the results, along with their analyses, are
presented.

4.1 � Simulation and configuration environment

We use the IFogSim platform to simulate the proposed
algorithm. This platform provides the opportunity to use
the capabilities of the PSO algorithm, which is available as
an optimization tool to facilitate simulations.

To analyze the algorithm, the number of clouds, fog nodes,
and requests are 1, 4, and from 50 to 500, respectively. Moreo-
ver, the number of IoT devices has increased from 500 to 3,000.
Table 4 depicts the range of SRDM and MRDM parameters.

For performance analysis, the SRDM algorithm and
MRDM algorithm are compared with the algorithms pre-
sented in [29, 30, 35], and [36].

4.1.1 � Adjusting parameters

There are several statistical methods for designing experi-
ments for meta-heuristic algorithms, and in this study, the
Taguchi method [45] is used. In this method, the orthogo-
nal arrays set contains complete information about the fac-
tors affecting the performance of the algorithms. These
factors fall under (1) control label or signal factors and (2)
noise factors. This method uses a signal-to-noise ratio (S

N
 )

to calculate the number of response variables. All objec-
tive functions related to resource discovery in the cloudIoT
platform are of the minimization type. In experiments, the
aim is to find the value of the parameters of the algo-
rithms as input variables to obtain the optimal solution. As
a result, the goal is to minimize S

N
 . The corresponding S

N
 is

calculated using Eq. (24), in which n denotes the number
of iterations of the experiment and yi is the solution of the
problem.

(24)
S

Ns
= −10log(

1

n

n
∑

i=1

yi
2)

4.1.2 � Popular metrics for evaluating the MOPSO algorithm

We use the following popular performance metrics to ana-
lyze the performance of the MRDM algorithm.

Set coverage (C metric)  This measurement is suggested in
[46]. For P and Q as two PFs , C(P,Q) is the percentage of Q
solutions dominated by at least one solution in P:

where |X| specifies the size of PFX . Given the correct value
of PFP∗ and the approximation of PFP , the smallest value
of C(P∗,P) is better than P solutions.

Spacing (SP)  This parameter measures the distribution of
non-dominant solutions on the approximation front. This
parameter is defined as follows [47]:

where n specifies the number of dominant solutions
on the approximation front, di = minj

∑m

k=1
�f i
k
− f

j

k
 |,

i, j = 1, 2,… , n,m specifies the number of objectives and
d =

∑n

i=1

di

n
 . Solutions are evenly distributed for a close-to-

zero value.

The number of non‑dominant solutions (NS)  This criterion
represents many dominant solutions in the set. When we
have a large NS, the problem is better solved [20].

Inverted generational distance (IGD)  This criterion reflects
the convergence and diversity of solutions. For a lower value
of IGD , the quality of the P solution is higher. To obtain a
lower IGD , the set P must be close to the true PF in each
part. Considering the uniform distribution of PFP∗ and the
PFP approximation, for IGD , we have [48]:

where d = (v, p∗) denotes the minimum Euclidean distance
from v to all points P∗.

Hypervolume (HV)  This criterion is determined by approxi-
mating the volume of PF using a reference point. This is a
metric measure of both proximity and diversity [49], which
is calculated as follows:

where xi is an individual in PFP , and (xi) is a rectangu-
lar area bounded by a reference point and f (xi) . Here, the

(25)C(P,Q) =
|{q ∈ Q|∃p ∈ P ∶ pdominatesq}|

|Q|

(26)SP =

√

1

n

n
∑

i=1

(di −
−d)2

(27)IDG(P,P∗) =

∑

v∈P d(v,P
∗)

�P∗
�

(28)HV(P) =
{

∪ia(xi)
|

|

∀xi ∈ P}

Table 4   PSO & MOPSO parameter ranges and levels

Algorithms Parameter Level 1 Level 2

SRDM C1
C2
w
Population Size
Maxiter

1
1
0.5
150
250

2
2
1
300
500

MRDM C1
C2
Population Size
Number of Generation

1
1
50
150

2
2
100
300

2338	 Peer-to-Peer Networking and Applications (2022) 15:2326–2346

1 3

adopted reference point is
[

maxf1(x),maxf2(x)
]

 . The set of
solutions P with a large HV value performs better.

Combinatorial ratio (CR) criterion  The Taguchi method deals
with only one response function. Consequently, the combi-
nation of performance metrics must be defined. This crite-
rion is the combination ratio introduced in [20], which has
the role of a response variable of the Taguchi method. This
variable is calculated as follows:

4.2 � Mathematical results

Mathematical results consist of three parts. First, the intro-
duced parameters of the multi-objective algorithm for the
MRDM algorithm are calculated and investigated. Then,
according to the Taguchi method, the optimal parameters of
PSO and MOPSO algorithms are calculated for the SRDM
algorithm and MRDM algorithm. Finally, the mathematical
results of the proposed algorithm are compared with SAC
and E-S algorithms using a t-test and sign test.

4.2.1 � Mathematical results of the MRDM algorithm

For evaluating the mathematical results of the MRDM algo-
rithm, we define three scenarios. First, in the defined sce-
narios, we consider the numbers of clouds, fog nodes, and
IoT devices per fog node as 4,1, and 500, respectively. Next,
we change the number of requests from 1000 to 10,000.
Then, according to the defined scenarios, we calculate the
parameters introduced for the MRDM algorithm and present
them in Table 5.

4.2.2 � Evaluation of the results of the SRDM algorithm
and MRDM algorithm

To evaluate the mathematical results of the SRDM algorithm
and MRDM algorithm, we consider the numbers of clouds,
fog nodes, IoT devices per fog node, and requests as 4, 1,
500, and 5000, respectively. In each algorithm, two levels

(29)C.R. =
IGD

HV

are considered for each factor. The results of S
N

 for both algo-
rithms are shown in Fig. 2A, B. According to this figure,
we designed Table 6, which shows the optimization for the
parameters defined for both algorithms.

4.2.3 � Evaluating and comparing mathematical results

We use two tests to evaluate the proposed algorithm perfor-
mance and compare it with other algorithms. The T-test is
a parametric test of the results, and the sign test is a non-
parametric test of results.

Tables 7 and 8 show comparisons of statistical analyses
of the proposed algorithm and other algorithms. We use a
t-test for the statistical analysis of the algorithms. In Table 7,
there are 10 numbers, and the option value is equal to 300.
This table shows the Mean Std.Dviation and std.Error Mean .
According to the obtained numbers, the MRDM algorithm
performs better than other algorithms. Table 9 shows the
mean difference and the difference interval between the
MRDM algorithm and different algorithms. Test value = 300
is a specific value used to compare the mean of the popula-
tion. The analyst guesses its value. We used SPSS in our
study, and according to the statistical sample and population,
SPSS suggested the best test value as 300 . We use this value
to compare the mean of the population. The results show a
smaller difference between the mean and the value related to
the MRDM, which indicates the MRDM algorithm's better
performance than other algorithms. MRDM algorithm has a
smaller difference than other algorithms, and the difference

Table 5   Process MRDM algorithm with a different scenario

Scenarios MRDM
Cloud Fog IoT device order C-metric SP NS IGD HV

1 4 500 1000 Ave. 0.93 [4]
St.dev. 0.082

Ave. 323.53 [3]
St.dev. 42.80

Ave. 33.11 [4]
St.dev. 4.97

Ave. 97.06 [3]
St.dev. 51.13

Ave. 0.67 [1]
St.dev.0.049

1 4 500 5000 Ave.0.81 [5]
St.dev. 0.092

Ave. 356.27 [4]
St.dev. 51.12

Ave. 37.28 [3]
St.dev. 5.3

Ave. 101.02 [3]
St.dev. 56.15

Ave. 0.75 [2]
St.dev. 0.052

1 4 500 10000 Ave. 0.95 [3]
St.dev. 0.097

Ave. 371.12 [5]
St.dev. 55.14

Ave. 42.34 [4]
St.dev. 5.7

Ave. 106.01 [4]
St.dev. 59.25

Ave. 0.82 [1]
St.dev. 0.062

Table 6   Optimal value of SRDM algorithm & MRDM algorithm

Algorithms Parameters Optimal Value

SRDM C1
C2
W
Population Size
Maxiter

2
2
0.5
150
500

MRDM C1
C2
Population Size
Number of Generation

2
1
100
300

2339Peer-to-Peer Networking and Applications (2022) 15:2326–2346	

1 3

interval of the MRDM algorithm has the lowest value in
both the lower and upper parts. Consequently, MRDM algo-
rithm performs better than other algorithms.

Table 9 shows the sign test results to compare the MRDM
algorithm with the other three algorithms. Part (A) compares
the MRDM and the E-S algorithms. In the table of frequen-
cies, the first row shows that the value of the MRDM is
larger than the E-S algorithm, the second row shows that
the values of the E-S algorithm are larger than the MRDM,
the third row shows that the values of both algorithms are
equal. The last row shows the total values. The test statistics
table in section (A) shows the sign test results to compare
the MRDM with the E-S algorithm; the sign value is 0.008,
far less than 0.5. Therefore, there is a significant difference
between the MRDM and the E-S algorithm. Section (B)
compares the MRDM with the SAC algorithm. The table of
frequencies in part (B) shows that the MRDM value is larger
than the SAC algorithm in one case in the first row. Finally,
the statistics table in section (B) shows a value of 0.07 (less
than 0.5), which indicates a large difference between the
MRDM and the SAC algorithm. Next, section (C) shows a
comparison between the MRDM and the algorithm in [36].
The table of frequencies in part (C) shows that in the first
row, the value of the MRDM algorithm is larger than the
algorithm in [36], however, according to the value of 0.098
(less than 0.5) in the test statistics table. Then, section (D)
shows a comparison between the MRDM and the algorithm
in [35]. The table of frequencies in part (D) shows that in the
first row, the value of the MRDM algorithm is larger than the

algorithm in [35]. However, according to the value of 0.215
(less than0.5) in the test statistics table. Finally, we can see
a significant difference between the SRDM algorithm and
the MRDM algorithm. However, according to the sign test
results, there is a significant difference between the MRDM
and the E-S algorithm. A slight difference can be observed
between the MRDM algorithm and the SRDM algorithm.

4.2.4 � Comparison of the complexity of algorithms

One of the best ways to compare algorithms is to consider
their complexity. Table 10 shows the complexity of the pro-
posed algorithm and other algorithms. Algorithms (MRDM,
SRDM, algorithm in [35], and E-S algorithm) are equally
complex due to their rapid resource discovery techniques.
However, the other two algorithms (SAC algorithm and
algorithm in [36]) are more complex than these algorithms.

4.3 � Performance comparison

We measure the success ratio and availability for evalu-
ating the performance of the proposed algorithm. These
parameters can be measured in the simulator using decision
variables. The success ratio parameter shows the number
of successful responses to requests. The latency equals the
response time to a request from when the request has been
sent. The maximum availability is an interval in which a
device is available for the requests. Resource efficiency
measures how resources respond to requests in the shortest

Table 7   One-sample statistics
of the different algorithms.
MRDM algorithm, E-S
algorithm in [29], SAC
algorithm in [30], algorithm in
[36], algorithm in [35], SRDM
algorithm

One-Sample Statistics

N Mean Std. Deviation Std. Error Mean

MRDM algorithm 10 3.3640E2 12.49178 3.95025
E-S algorithm in [29] 10 4.6720E2 40.87325 12.92526
SAC algorithm in [30]
Algorithm in [35]
Algorithm in [36]

10
10
10

3.8350E2
3.978E2
3.732E2

33.20057
31.2567
26.9625

10.49894
9.6742
8.9354

SRDM algorithm 10 3.5340E2 22.63754 7.46735

Table 8   One-sample test of
different algorithm. MRDM
algorithm, E-S algorithm in
[29], SAC algorithm in [30],
Algorithm in [36], Algorithm in
[35], SRDM algorithm

Test Value = 300

t df Sig. (2-tailed) Mean Difference 95% Confidence
Interval of the
Difference

Lower Upper

MRDM algorithm 9.215 9 0.000 36.40000 27.4639 45.3361
E-S algorithm in [29] 12.936 9 0.000 167.20000 137.9610 196.4390
SAC algorithm in [30]
Algorithm in [35]
Algorithm in [36]

7.953
10.325
6.927

9
9
9

0.000
0.000
0.000

83.50000
67.90000
63.50000

59.7497
48.9632
42.6874

107.2503
85.9312
78.9362

SRDM algorithm 8.105 9 0.000 54.40000 38.4574 68.3656

2340	 Peer-to-Peer Networking and Applications (2022) 15:2326–2346

1 3

possible time. The energy consumption demonstrates the
energy consumption rate of IoT devices when the num-
ber of requests changes. Several simulations with differ-
ent resources, from 500 to 3000, and a different number
of requests from 2000 to 20,000 are performed to evaluate
these parameters.

Figure 5 shows the results of the success ratio for four
algorithms. The X- and Y-axis are the number of requests
and success ratio. The MRDM has a higher success ratio
than the other algorithms. The main reason for the higher
success ratio is that most requests are performed in the fog
nodes besides dividing IoT devices into different domains.
This allows the proposed algorithm to respond to more
requests in the cloudIoT platform successfully. As the num-
ber of requests increases, a more significant number of IoT

devices and cloud resources are engaged, and the success
rate in resource discovery decreases. However, the MRDM
is more stable and successful in resource discovery and can
respond to more requests positively. For 2000 requests, the
MRDM, SRDM, algorithm in [35], and algorithm in [36]
can successfully respond to all requests, while the SAC algo-
rithm and E-S respond to, respectively, 97% and 92% of
requests. The most considerable difference in success ratio
between the MRDM and other algorithms occurs for 20,000
requests; the difference is equal to 18% for the SRDM, to
24% for the algorithm in [35], to 26% for algorithm in [36],
and 35% for both SAC and E-S algorithms.

In Fig. 6, the horizontal axis shows the number of
requests ranging from 2000 to 20,000. The vertical axis
represents the latency of algorithms. According to this

Table 9   Sign test statistics of the different algorithms. MRDM algorithm, E-S algorithm in [29], SAC algorithm in [30], algorithm in [36], algo-
rithm in [35], SRDM algorithm

Frequencies

N

E-S algorithm in [29] – MRDM Nega�ve Differences a 0

Posi�ve Differences b 8

Ties c 0

Total 8

a. E-S algorithm in [29]< MRDM algorithm

b. E-S algorithm in [29] > MRDM algorithm

c. E-S algorithm in [29] = MRDM algorithm
(A)

Test Sta�s�cs b

E-S algorithm in [29]– MRDM

Exact Sig. (2-tailed) .008 a

a. Binomial distribu�on used.

b. Sign test

(B)

Frequencies

N

SAC algorithm in [30] – MRDM Nega�ve Differences a 1

Posi�ve Differences b 7

Ties c 0

Total 8

a. SAC algorithm in [30] < MRDM algorithm

b. SAC algorithm in [30] > MRDM algorithm

c. SAC algorithm in [30] = MRDM algorithm

Test Sta�s�cs b

SAC algorithm in[30]–MRDM

Exact Sig. (2-

tailed)
.070a

a. Binomial distribu�on used.

b. Sign Test

2341Peer-to-Peer Networking and Applications (2022) 15:2326–2346	

1 3

Table 9   (continued)

(C)

Frequencies

N

Algorithm in [36] – MRDM Nega�ve Differences a 2

Posi�ve Differences b 6

Ties c 0

Total 8

a. Algorithm in [36] < MRDM algorithm

b. Algorithm in [36] > MRDM algorithm

c. Algorithm in [36] = MRDM algorithm

Test Sta�s�cs b

Algorithm in [36]

– MRDM

Exact Sig. (2-tailed) .098 a

a. Binomial distribu�on used.

b. Sign Test

Frequencies

N

Algorithm in [35] – MRDM Nega�ve Differences a 2

Posi�ve Differences b 6

Ties c 0

Total 8

a. Algorithm in [35]< MRDM algorithm

b. Algorithm in [35] > MRDM algorithm

c. Algorithm in [35] = MRDM algorithm
(D)

Test Sta�s�cs b

Algorithm in [35] –MRDM

Exact Sig. (2-tailed) .215 a

a. Binomial distribu�on used.

b. Sign test

(E)

Frequencies

N

SRDM – MRDM Nega�ve Differences a 2

Posi�ve Differences b 6

Ties c 0

Total 8

a. SRDM algorithm < MRDM algorithm

b. SRDM algorithm > MRDM algorithm

c. SRDM algorithm = MRDM algorithm

Test Sta�s�cs b

SRDM –MRDM

Exact Sig. (2-tailed) .289 a

a. Binomial distribu�on used.

b. Sign Test

2342	 Peer-to-Peer Networking and Applications (2022) 15:2326–2346

1 3

figure, for 4000 requests, the minimum latency differ-
ence occurs between the MRDM and the SRDM, which
is 20(ms). The minimum differences between the MRDM
and each of the other algorithms occur for 2000 requests.
However, for 20,000 requests, the largest latency occurred
between the MRDM and the SRDM, the algorithm in [35],
the algorithm in [36], E-S, and SAC with the values of
26, 40, 59, 67, and 145(ms), respectively. The latency dif-
ference between the MRDM and the SRDM is 10%. The
latency increases with the number of requests since more
time is needed to finish the requests. Because the MRDM
can respond to more search requests, the latency of the
MRDM is reduced.

Figure 7 shows the experimental results of the availability
of the proposed algorithm and the other algorithms. The
horizontal and vertical axes are the number of IoT devices
from 500 to 3000 and the availability in percent. Some IoT
devices that may have expired are moved from one domain
to another and become unavailable in order to reduce power
consumption. This is a reason for reducing the availability
rate of the proposed algorithm in the CloudIoT platform.
Increasing the number of IoT devices and their mobil-
ity increases the complexity of the network structure and
reduces the availability of devices. However, the MRDM is
more successful in discovering available resources. When
the number of IoT devices is 500, the availability rate for
the MRDM, SRDM, the algorithm in [35], the algorithm in
[36], SAC, and E-S are 45%, 40%,35%,34%, 33%, and 30%,
respectively. Availability of all four algorithms increases
when the number of devices increases from 1000 to 25,000.
A minor difference in the availability of algorithms occurs
for 2500 devices, where the difference between the MRDM
and SRDM is 4%, while the difference between the MRDM
and other algorithms is approximately equal to 12%.

Figure 8 demonstrates the results of the resource effi-
ciency for the examined algorithms. The X- and Y-axis
are, respectively, the number of requests and resource

Table 10   Comparison of the proposed algorithm complexity with
other algorithms

Algorithms Complexity

MRDM algorithm
SRDM algorithm
The algorithm in [35]
The algorithm in [36]
SAC algorithm in [30]
E-S algorithm in [29]

O(N3)

O(N3)

O(N3)

O(N4)

O(N3logN)

O(N3)

Fig. 5   The average success ratio in response to requests. The MRDM, SRDM, Algorithm in [35], Algorithm in [36], SAC algorithm [30], E-S
algorithm in [29]

2343Peer-to-Peer Networking and Applications (2022) 15:2326–2346	

1 3

efficiency. The MRDM has a lower resource efficiency
than other algorithms. The main reason for the lower
resource efficiency is that most requests are handled in
the fog nodes besides dividing IoT devices into different
domains. This allows the proposed algorithm to respond
to more requests in the cloudIoT platform successfully.
As the number of requests increases, many IoT devices
and cloud resources are engaged, and the resource effi-
ciency in resource discovery decreases. However, for
20,000 requests, the largest occurs between the MRDM
and other algorithms. The energy efficiency difference
between the MRDM and the SRDM is 8%, while the dif-
ferences between the MRDM and the algorithm in [35],
the algorithm in [36], SAC, and E-S are 21%, 24%, 28%,
and 31%, respectively.

Figure 9 illustrates the experimental results of the energy
consumption of the proposed algorithm and other algo-
rithms. The number of IoT devices is considered 500. The
horizontal and vertical axes are the number of requests from
2000 to 20,000 and the energy consumption of resources.
As the number of requests increases, the energy consump-
tion in the MRDM algorithm decreases. The main reason

for the lower value is that most requests are handled in the
fog nodes. When the number of requests is 2000, the differ-
ence between the energy consumption of the MRDM and the
SRDM, the algorithm in [35], the algorithm in [36], SAC,
and E-S are 13%, 17%, 19%, 22%, and 25%, respectively.
Energy consumption of all algorithms increases sharply
when the number of requests increases from 12,000 to
20,000.

4.4 � Analysis of results

The main factors affecting the performance of the MRDM
algorithm include success rate, latency, availability, resource
efficiency, and energy consumption. According to the exper-
iments, the results show that the proposed solution has a
high success rate in responding to requests, low latency,
high availability, and low energy consumption. Resources
in different domains of fog provide faster access to the
right resource, which makes it possible to better respond to
requests with low latency and low power consumption. This
has significantly improved the performance of the proposed
algorithm.

Fig. 6   The average latency
in response to requests. The
MRDM, SRDM, Algorithm in
[35], Algorithm in [36], SAC
algorithm in [30], E-S algorithm
in [29]

0

50

100

150

200

250

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
s

m(ycnetaL
)

Numberof task(N)

MRDMalgorithm SRDMalgorithm Algorithm in [35]

Algorithm in [36] SAC algorithm in [30] E-S algorithm in [29]

Fig. 7   The average availability
of IoT devices. The MRDM,
SRDM, Algorithm in [35],
Algorithm in [36], SAC algo-
rithm in [30], E-S algorithm
in [29]

2344	 Peer-to-Peer Networking and Applications (2022) 15:2326–2346

1 3

We implemented the proposed method using both sin-
gle-objective and multi-objective approaches. However,
according to the evaluation, the multi-objective approach
works better than the single-objective approach. In contrast,

using these two approaches, the proposed method provides
better results than the previous algorithms for discovering
resources, so the proposed algorithm has a higher perfor-
mance than the previously presented solutions.

Fig. 8   The average resource efficiency in response to requests. The MRDM, SRDM, Algorithm in [35], Algorithm in [36], SAC algorithm in
[30], E-S algorithm in [29]

Fig. 9   The average energy consumption in response to requests. The MRDM, SRDM, Algorithm in [35], Algorithm in [36], SAC algorithm in
[30], E-S algorithm in [29]

2345Peer-to-Peer Networking and Applications (2022) 15:2326–2346	

1 3

5 � Conclusions

In this paper, the main purpose of the proposed resource dis-
covery algorithm was to minimize response time, cost, and
bandwidth in CloudIoT platforms. First, a new mathematical
model was developed using a MILP model. Since the pro-
posed MILP has three purposes, a multi-objective MCGP
with a utility function was used to solve it. Then, PSO was
used for solving the MCGP. In addition, we implemented
the proposed algorithm based on MOPSO. Finally, to com-
pare the performances of the proposed algorithm and other
algorithms, we defined a scenario in which the weights of
all functions were the same. The parameters of comparison
were success ratio, latency, and availability. The results indi-
cated a considerable performance improvement in MRDM
algorithm compared to other algorithms.

Authors' contributions  All authors contributed equally to this
manuscript.

Availability of data and material  Not applicable.

Declarations 

Competing interests  There is no conflict of interest.

References

	 1.	 Nawaz F, Hussain O, Hussain FK, Janjua NK, Saberi M, Chang
E (2019) Proactive management of SLA violations by capturing
relevant external events in a Cloud of Things environment. Futur
Gener Comput Syst 95:26–44

	 2.	 Xavier TC, Santos IL, Delicato FC, Pires PF, Alves MP, Calmon
TS, Amorim CL (2020) Collaborative resource allocation for
Cloud of Things systems. J Netw Comput Appl 159:102592

	 3.	 Tian Y, Kaleemullah MM, Rodhaan MA, Song B, Al-Dhelaan A,
Ma T (2019) A privacy preserving location service for cloud-of-
things system. J Parallel Distrib Comput 123:215–222

	 4.	 Li Z, Yang Z, Xie S (2019) Computing resource trading for
edge-cloud-assisted Internet of Things. IEEE Trans Industr Inf
15(6):3661–3669

	 5.	 Elazhary H (2019) Internet of Things (IoT), mobile cloud, cloud-
let, mobile IoT, IoT cloud, fog, mobile edge, and edge emerging
computing paradigms: Disambiguation and research directions. J
Netw Comput Appl 128:105–140

	 6.	 Darwish A, Hassanien AE, Elhoseny M, Sangaiah AK, Muhammad
K (2019) The impact of the hybrid platform of internet of things
and cloud computing on healthcare systems: opportunities, chal-
lenges, and open problems. J Ambient Intell Humaniz Comput
10(10):4151–4166

	 7.	 Munir A, Kansakar P, Khan SU (2017) IFCIoT: Integrated Fog
Cloud IoT: A novel architectural paradigm for the future Internet
of Things. IEEE Consum Electron Mag 6(3):74–82

	 8.	 Wang SC, Tseng SC, Yan KQ, Tsai YT (2018) Reaching agree-
ment in an integrated fog cloud IoT. IEEE Access 6:64515–64524

	 9.	 Jiang Y, Huang Z, Tsang DH (2017) Challenges and solutions in
fog computing orchestration. IEEE Network 32(3):122–129

	10.	 Kochar V, Sarkar A (2016) Real time resource allocation on a
dynamic two level symbiotic fog architecture. In 2016 Sixth
International Symposium on Embedded Computing and System
Design (ISED) (pp. 49–55). IEEE

	11.	 Mseddi A, Jaafar W, Elbiaze H, Ajib W (2019) Joint container
placement and task provisioning in dynamic fog computing. IEEE
Internet Things J 6(6):10028–10040

	12.	 Zhang F, Ge J, Li Z, Li C, Huang Z, Kong L, Luo B (2017) Task
Offloading for Scientific Workflow Application in Mobile Cloud.
In IoTBDS (pp. 136–148)

	13.	 Kozyrev D, Ometov A, Moltchanov D, Rykov V, Efrosinin D,
Milovanova T, Koucheryavy Y (2018) Mobility-centric analysis
of communication offloading for heterogeneous Internet of Things
devices. Wirel Commun Mob Comput

	14.	 Guo K, Yang M, Zhang Y, Cao J (2019) Joint computation offload-
ing and bandwidth assignment in cloud-assisted edge comput-
ing. IEEE Trans Cloud Comput

	15.	 Abdel-Basset M, Abdle-Fatah L, Sangaiah AK (2019) An
improved Lévy based whale optimization algorithm for band-
width-efficient virtual machine placement in cloud computing
environment. Clust Comput 22(4):8319–8334

	16.	 Alli AA, Alam MM (2019) SecOFF-FCIoT: Machine learning
based secure offloading in Fog-Cloud of things for smart city
applications. Internet Things 7:100070

	17.	 Zhang Q, Liang H, Xing Y (2014) A parallel task scheduling algo-
rithm based on fuzzy clustering in cloud computing environment.
Int J Mach Learn Comput 4(5):437

	18.	 Lin W, Liang C, Wang JZ, Buyya R (2014) Bandwidth‐aware
divisible task scheduling for cloud computing. Softw Pract
Exp 44(2):163–174

	19.	 Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple
objectives with particle swarm optimization. IEEE Trans Evol
Comput 8(3):256–279

	20.	 Ding S, Chen C, Xin B, Pardalos PM (2018) A bi-objective load
balancing model in a distributed simulation system using NSGA-
II and MOPSO approaches. Appl Soft Comput 63:249–267

	21.	 Gill SS, Garraghan P, Buyya R (2019) ROUTER: Fog enabled
cloud based intelligent resource management approach for smart
home IoT devices. J Syst Softw 154:125–138

	22.	 Bharti M, Kumar R, Saxena S (2018) Clustering-based resource
discovery on Internet-of-Things. Int J Commun Syst 31(5):e3501

	23.	 Ezugwu AE, Adewumi AO (2017) Soft sets based symbiotic
organisms search algorithm for resource discovery in cloud com-
puting environment. Futur Gener Comput Syst 76:33–50

	24.	 Panwar N, Negi S, Rauthan MMS, Vaisla KS (2019) TOPSIS–
PSO inspired non-preemptive tasks scheduling algorithm in cloud
environment. Clust Comput 22(4):1379–1396

	25.	 Reddy MPK, Babu MR (2019) Implementing self adaptiveness in
whale optimization for cluster head section in Internet of Things.
Clust Comput 22(1):1361–1372

	26.	 AlZubi A, Alarifi A, Al-Maitah M, Albasheer OA (2020) Loca-
tion assisted delay-less service discovery method for IoT environ-
ments. Comput Commun 150:405–412

	27.	 Kalaiselvi S, Selvi CK (2020) Hybrid cloud resource provisioning
(HCRP) algorithm for optimal resource allocation using MKFCM
and bat algorithm. Wirel Pers Commun 111(2):1171–1185

	28.	 Skarlat O, Karagiannis V, Rausch T, Bachmann K, Schulte S
(2018) A framework for optimization, service placement, and
runtime operation in the fog. In 2018 IEEE/ACM 11th Interna-
tional Conference on Utility and Cloud Computing (UCC) (pp.
164–173). IEEE

	29.	 Nunes LH, Estrella JC, Perera C, Reiff-Marganiec S, Delbem AC
(2018) The elimination-selection based algorithm for efficient
resource discovery in Internet of Things environments. In 2018
15th IEEE Annual Consumer Communications & Networking
Conference (CCNC) (pp. 1–7). IEEE

2346	 Peer-to-Peer Networking and Applications (2022) 15:2326–2346

1 3

	30.	 Md AQ, Varadarajan V, Mandal K (2019) Efficient algorithm for
identification and cache based discovery of cloud services. Mob
Netw Appl 24(4):1181–1197

	31.	 Abdi S, PourKarimi L, Ahmadi M, Zargari F (2017) Cost mini-
mization for deadline-constrained bag-of-tasks applications in
federated hybrid clouds. Futur Gener Comput Syst 71:113–128

	32.	 Kalantary S, Akbari Torkestani J, Shahidinejad A (2021) Resource
discovery in the Internet of Things integrated with fog computing
using Markov learning model. J Supercomput 1–22

	33.	 Bharti M, Jindal H (2021) Optimized clustering-based discovery
framework on Internet of Things. J Supercomput 77(2):1739–1778

	34.	 Xu L, Zhou X, Tao Ye, Lei Liu XuYu, Kumar N (2021) Intel-
ligent Security Performance Prediction for IoT-Enabled Health-
care Networks Using an Improved CNN. IEEE Trans Industr Inf
18(3):2063–2074

	35.	 Liu Y, Zhang W, Zhang Q, Norouzi M (2021) An optimized
human resource management model for cloud-edge computing in
the internet of things. Cluster Comput 1–13

	36.	 Murturi I, Dustdar S (2021) A decentralized approach for resource
discovery using metadata replication in edge networks. IEEE
Trans Serv Comput

	37.	 Chang CT (2011) Multi-choice goal programming with utility
functions. Eur J Oper Res 215(2):439–445

	38.	 Varshney P, Simmhan Y (2017) Demystifying fog computing:
Characterizing architectures, applications and abstractions.
In 2017 IEEE 1st International Conference on Fog and Edge
Computing (ICFEC) (pp. 115–124). IEEE

	39.	 Helsley M (2009) LXC: Linux container tools. IBM Devloper-
Works Technical Library 11

	40.	 Merkel D (2014) Docker: lightweight linux containers for consist-
ent development and deployment. Linux J 2014(239):2

	41.	 Yannuzzi M, Milito R, Serral-Gracià R, Montero D, Nemirovsky
M (2014) Key ingredients in an IoT recipe: Fog Computing, Cloud
computing, and more Fog Computing. In 2014 IEEE 19th Inter-
national Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD) (pp. 325–329).
IEEE

	42.	 Openstack. http://​www.​opens​tack.​org. Accessed 13 Oct 2018
	43.	 OpenNebula.org. http://​www.​openn​ebula.​org. Accessed 22 Jan 2021
	44.	 Eucalyptus. https://​www.​eucal​yptus.​cloud/. Accessed 17 Apr 2020
	45.	 Taguchi G, Chowdhury S, Wu Y (2005) Taguchi's quality engi-

neering handbook. Wiley Publishing
	46.	 Zitzler E, Thiele L (1998) Multi-objective optimization using

evolutionary algorithms—a comparative case study. In Interna-
tional conference on parallel problem solving from nature (pp.
292–301). Springer, Berlin, Heidelberg

	47.	 Schott JR (1995) Fault tolerant design using single and multicri-
teria genetic algorithm optimization (Doctoral dissertation, Mas-
sachusetts Institute of Technology)

	48.	 Zhang Q, Li H (2007) MOEA/D: A multi-objective evolution-
ary algorithm based on decomposition. IEEE Trans Evol Comput
11(6):712–731

	49.	 Yen GG, He Z (2013) Performance metric ensemble for multi-
objective evolutionary algorithms. IEEE Trans Evol Comput
18(1):131–144

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Parisa Goudarzi  received her BS in
Computer Engineering from Islamic
Azad University, Borujerd Branch, in
2009, the MS in Information Technol-
ogy Engineering from IAU University,
Qazvin, in 2015. She is a full-time
PhD Candidate in Computer Engineer-
ing at Islamic Azad University, Dez-
ful Branch, Dezful, Iran. Her research
interests include IIoT, Distributed Sys-
tems, Resource Discovery, and Cloud
Computing.

Amir Masoud Rahmani  received his BS
in Computer Engineering from AmirK-
abir University, Tehran, in 1996, the MS
in Computer Engineering from Sharif
University of Technology,Tehran, in
1998 and the PhD degree in Computer
Engineering from IAU University, Teh-
ran, in 2005.Currently, he is a Professor
in the Department of Computer Engi-
neering at the IAU University. He is the
author/co-author of more than 150publi-
cations in technical journals and confer-
ences. His research interests are in the
areas of distributed systems, adhoc and
wireless sensor networks and evolution-
ary computing.

Mohammad Mosleh  received the
BS degree in Computer Hardware
Engineering from Islamic Azad
University, Dezful Branch, Dez-
ful, Iran in 2003, the MS degree in
Architecture of Computer Systems
from Islamic Azad University, Sci-
ence and Research Branch, Tehran,
Iran, in 2006 as well as the Ph.D
degree in Computer Engineering
from the Islamic Azad University,
Science and Research Branch,
Tehran, Iran in 2010. He is an
assistant professor in the Depart-

ment of Computer Engineering at the Islamic Azad University of
Dezful. His research interests are in audio security (watermarking
and steganagraphy), machine learning and nano computing including
quantum-dot cellular automata (QCA) and reversible circuits.

http://www.openstack.org
http://www.opennebula.org
https://www.eucalyptus.cloud/

	A Mixed-integer programming model using particle swarm optimization algorithm for resource discovery in the cloudiot
	Abstract
	1 Introduction
	2 Related work
	2.1 PSO Algorithm
	2.2 MOPSO Algorithm
	2.3 Resource discovery and allocation algorithms

	3 Proposed method
	3.1 Mathematical model
	3.2 The proposed architecture
	3.3 The proposed algorithm
	3.3.1 SRDM algorithm
	3.3.2 MRDM algorithm
	3.3.3 Complexity of proposed algorithm

	4 Results and experiments
	4.1 Simulation and configuration environment
	4.1.1 Adjusting parameters
	4.1.2 Popular metrics for evaluating the MOPSO algorithm

	4.2 Mathematical results
	4.2.1 Mathematical results of the MRDM algorithm
	4.2.2 Evaluation of the results of the SRDM algorithm and MRDM algorithm
	4.2.3 Evaluating and comparing mathematical results
	4.2.4 Comparison of the complexity of algorithms

	4.3 Performance comparison
	4.4 Analysis of results

	5 Conclusions
	References

