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Abstract
Cloud computing and the Internet of Things (IoT) are new platforms in the information and communication technology 
revolution. Selecting Cloud of Things (CloudIoT) in applications with fixed and mobile resources can provide many oppor-
tunities in different technologies, such as healthcare and transportation. Discovering fixed and mobile resources are one of 
the main concerns of the CloudIoT paradigm that requires a proper discovery mechanism. This paper proposes a mathemati-
cal optimization model to minimize response time, cost, and bandwidth of CloudIoT platforms by considering fixed and 
mobile resources in resource discovery. Moreover, a heuristic Single Resource Discovery algorithm is presented based on 
a Mathematical optimization model (SRDM). Furthermore, a heuristic Multi Resource Discovery algorithm is introduced 
based on a Mathematical optimization model (MRDM). In addition, this paper employs Particle Swarm Optimization (PSO) 
and Multi-Objective Particle Swarm Optimization (MOPSO) to solve the optimization problem. Finally, according to the 
simulation results, the proposed MOPSO-based algorithm significantly reduces the latency and improves the success ratio 
and availability compared to other algorithms.

Keywords  CloudIoT · Resource discovery · Mobility · PSO algorithm · Goal programming · Linear programming

1  Introduction

The development of practical solutions has created new 
Cloud of Things (CloudIoT) patterns in real environments. 
This model uses cloud computing operating systems with 
infinite storing and processing capabilities to introduce a 
new and promising solution for Internet of Things (IoT) 
systems. These systems consist of devices with limited 
resources, which are not powerful enough to process and 
store complex tasks on data-generating devices. Therefore, 
the combination of cloud computing and IoT provides a 

framework for users to use the offered services by different 
providers in each location [1–3]. A trading market provides 
computing resources for a set of computing resource buyers 
with a group of computational resource sellers. CloudIoT 
can be used in various fields, such as smart healthcare sys-
tems/hospitals and smart transportation systems [4–6].

The decentralized processing of data in IoT devices with 
cloud technology has led to a new computing method to 
reduce communication overhead and data transfer time, 
which, in turn, has led to a promising trend in fog com-
puting. In fog computing, services, data, computing power, 
and decision-making are distributed, so unbearable delays 
and long response times can be prevented. Furthermore, fog 
computing prevents unpredictable connections to the cloud 
by blindly sending IoT data for processing and storing in the 
cloud and resending it to the users. Integrating cloud, fog, 
and IoT resources into a single architecture has created a 
reliable platform called IFCIoT. Some of the benefits of this 
platform for future IoT applications are better performance, 
faster response time, scalability, and higher accuracy [7, 8].

Fog computing faces challenges such as node mobil-
ity and keeping resources permanently available. The sta-
tus of fog nodes changes considerably because of various 
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parameters, such as broken wireless access links and battery 
life limitations. For this reason, resource management in fog 
computing must be able to manage mobility [9]. Another 
important issue is different owners' ownership of fog nodes 
[10]. Additionally, a sudden increase in workload reduces 
resources for the fog, and this causes unbearable additional 
delays in the execution of the tasks [11]. Applications or 
data may require a high processing speed. In addition, the 
lack of bandwidth to process information and the expensive 
bandwidth needed for sending information to a data center 
or cloud is the issues that fog computing needs to manage 
[12, 13].

The efficient use of resources to minimize response time, 
cost, and energy consumption is an important optimization 
problem in cloud computing and IoT environments. The 
mobile devices that are connected to edge servers have a 
common communication network. Guo et al. [14] presented 
a high-resistance offloading algorithm in the cloud comput-
ing environment, which minimized the average response 
time for offloading strategy and determining the common 
bandwidth. Abdel-Basset et al. [15] proposed a bandwidth-
based Virtual Machine (VM) allocation algorithm using the 
whale optimization algorithm and an algorithm for merging 
VMs. The latter algorithm was based on energy improve-
ment and cost-awareness by using genetic algorithms to 
minimize the number of active physical servers. Finally, an 
algorithm for dynamic and safe loading was introduced by 
Alli and Alam [16] to reduce the latency and energy con-
sumption in the fog computing environment using machine 
learning methods. Their proposed algorithm used the Par-
ticle Swarm Optimization (PSO) algorithm to select the 
optimal node for dynamic loading at the IoT level and the 
Reinforcement Learning (RL) to choose the appropriate 
cloud at the fog level.

This study aims to discover IoT and cloud resources 
with three objectives. Due to many requests in the cloudIoT 
environment, using three dimensions is very important. The 
first dimension deals with responding to requests that must 
be handled within a reasonable response time. The second 
dimension considers the reasonable cost of using resources. 
The third dimension necessitates the rational distribution of 
bandwidth among requests. We use Mixed-Integer Linear 
Programming (MILP) for the three dimensions and consider 
the proposed method in single-objective and multi-objective 
modes.

The use of evolutionary algorithms, such as PSO, to pre-
sent, Single Resource Discovery algorithm based on a Math-
ematical optimization model (SRDM) is discussed as follows. 
The PSO algorithm has fewer parameters, easier implemen-
tation, and higher flexibility than other evolutionary algo-
rithms, so we use PSO to implement the SRDM algorithm. In 
addition, we use Multi-Objective PSO (MOPSO) to present 
Multi Resource Discovery algorithm based on a Mathematical 

optimization model (MRDM). The main reason for using the 
MOPSO algorithm instead of other multi-objective algorithms 
is that MOPSO uses the actual values of the variables as mem-
bers of the population and reduces the computational burden. 
The most important innovations of this study are as follows:

•	 Combining PSO and MILP to present a new mathemati-
cal model to optimize response time, cost, and bandwidth 
so that a PSO-based meta-heuristic algorithm is intro-
duced for resource discovery

•	 Providing a multi-objective approach to the proposed 
method using the MOPSO algorithm, which uses the 
actual values of variables as the members of the popula-
tion and reduces the computational burden

We simulate the proposed algorithm using the IFogSim 
simulator. Then, the SRDM algorithm and MRDM algo-
rithm are compared with the algorithms presented in [29, 
30, 35], and [36].

The remaining of this paper includes the following sec-
tions. Section 2 reviews the related works. The proposed 
method is analyzed in Sect. 3. In Sect. 4, the results are 
discussed, and simulations are examined. The conclusion is 
presented in the last section.

2 � Related work

The related work section is divided into 1) PSO algorithm, 
2) MOPSO algorithm, and 3) resource discovery and alloca-
tion algorithms.

2.1 � PSO Algorithm

PSO is one of the most important evolutionary optimization 
methods to solve complex optimization problems. The main 
part of the PSO is the particles' initialization. In PSO, the 
system is initialized with many random solutions. The solu-
tions are called particles with an assigned random velocity 
and position. Each particle calculates the value of an objec-
tive function according to its position in a multi-dimensional 
space. Moreover, each particle adjusts its velocity and posi-
tion according to each generation's best position and the best 
global population [17]. The velocity and position of particles 
can be obtained using Eqs. (1) and (2).

In these relationships, vp(k + 1) and vp(k) denote the cur-
rent and previous velocities of particle p ; xp(k + 1) and xp(k) 

(1)
vp(k + 1) = w × vp(k) + c1 × rand1 ×

(

pbest − xp(k)
)

+ c2 × rand2 ×
(

gbest − xp(k)
)

(2)xp(k + 1) = xp(k) + vp(k + 1)
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are the current and previous positions of particle p . The 
two acceleration coefficients c1 and c2 and the two random 
numbers rand1 and rand2 (which are between 0 and 1) are 
used to calculate the velocity. The best position of particle 
p and the best particle position in the population are rep-
resented by pbest and gbest , respectively; w represents the 
inertia weight; the other two variables, N − pop and Maxiter , 
denote the population size and the maximum number of 
iterations [18].

2.2 � MOPSO Algorithm

The MOPSO algorithm is a generalization of the PSO algo-
rithm used to solve multi-objective problems. In MOPSO, a 
concept called archive or repository, also known as the hall 
of fame, has been added to the PSO algorithm. Before mov-
ing, particles select a member of the repository as a leader. 
This leader must be a member of the repository and domi-
nant. The members of the repository represent the Pareto 
front and contain dominant particles. Therefore, instead of 
gbest , one of the repository members is selected. There is 
no repository in PSO because there is only one objective in 
it, and there is a particle that is the best.

Particles have two parts: position and velocity. Particles 
are updated via velocity vectors differently from the genetic 
algorithm. There are two leaders: choosing the global best 
solution ( gbest ) and the personal best memory ( pbest ) [19]. 
The velocity and position of particle i are updated as follows:

where i = 1, 2,… ,N is the population size, k is the parti-
cle iteration index, and w is the inertia weight with a linear 
decrease from 0.9 to 0.4 as the particles are updated. Thus, 
local search c1 and c2 are two acceleration coefficients; r1 
and r2 are two uniformly distributed random numbers in the 
range [0, 1] . Moreover, xib is the best position for the ith par-
ticle, and xgb is the best position in the whole swarm [20].

2.3 � Resource discovery and allocation algorithms

The main purpose of this study is to provide a meta-heuris-
tic algorithm for resource discovery by reducing response 
time, cost and bandwidth. For this reason, it was necessary 
to examine further the meta-heuristic algorithms for discov-
ering and allocating resources in the related work section. 
Consequently, the meta-heuristic algorithm was investigated 
by reducing several objectives and presenting various mathe-
matical models for resource discovery. In addition, to present 

(3)
vi,k+1 = w × vi,k + c1 × r1 ×

(

xib − xi,k
)

+ c2 × r2 × (xgb − xi,k)

(4)xi,k+1 = xi,k + vi,k+1

the algorithm, we studied some papers that used different 
mathematical theories.

Resource management is an essential element in fog com-
puting environments. Fog computing provides short response 
times through a virtual intermediate layer to procure latency-
sensitive real-time programs in an IoT infrastructure. Fur-
thermore, it enables data calculation, storage, and network 
services between data centers of the cloud and end-users. 
Therefore, resource management is an essential element in 
fog computing environments. Gill et al. [21] presented a 
PSO-based resource management approach to optimize net-
work bandwidth, response time, synchronized delays, and 
energy consumption simultaneously. This approach was 
suggested for managing fog computing resources in smart 
homes. The results showed that this approach reduces band-
width, latency, and energy consumption.

Bharti et al. [22] presented a method for discovering 
resources called the Iterative K-Means Clustering Algo-
rithm (IKM-CA), which grouped the textual information 
of clusters for efficient search using similarity coefficients 
of a vector space model. By using metadata to identify an 
object, this method makes it possible to calculate and access 
resources. The IKM-CA consists of three stages of cluster 
formation, repetitive K-means clustering, and discovering 
matching conditions. In general, this algorithm replicates 
the formation of clusters repetitively to search for resources 
using the matching criteria. These criteria emphasize the 
relationship between the two points considering the thresh-
old value.

Resource discovery is a complex and challenging problem 
requiring an effective algorithm for optimal performance. 
Ezugwu and Adewumi [23] introduced an optimization 
algorithm called Soft-Set SymbIoTic Organism's Search 
(SSSOS) to simulate selecting resources for effective plan-
ning in a cloud computing environment. This algorithm 
searches and selects the best resources using the techniques 
available in both symbIoTic organisms search optimiza-
tion and soft set attribute reduction theory. The SSSOS 
algorithm provides users with high-quality services using 
tracking, matching, and easy selection of information con-
figuration. The algorithm consists of three steps: 1) reduc-
ing resource-dependent properties using a software feature 
reduction algorithm, 2) searching and matching the candi-
date resources from the first stage output, and 3) selecting 
the best source from the first and second stages.

Scheduling user tasks in VMs and data centers is a chal-
lenging issue due to many users. Accordingly, Panwar et al. 
[24] introduced a hybrid algorithm to solve task schedul-
ing problems using the PSO algorithm with a Technique of 
Order Preference by Similarity to Ideal Solution (TOPSIS). 
The proposed algorithm uses TOPSIS to calculate the opti-
mized Fitness Value (FV). Then, the FV evaluated for each 
task is introduced to PSO to be optimized further. The main 
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purpose of this algorithm is to connect the user task collec-
tion set to the distributed resources set for achieving some 
goals, such as minimizing transfer time, minimizing Makes-
pan execution time, and maximizing resource utilization in 
the cloud computing environment.

The integration of Wireless Sensor Networks (WSNs) 
and IoT makes the cluster-head selection very complicated 
because it is necessary to consider the features of both IoT 
and WSN networks. To overcome fundamental limitations, 
such as low accuracy and slow convergence, Reddy and 
Babu [25] presented an algorithm called the Self-Adaptive 
Whale Optimization Algorithm (SAWOA) to achieve cluster 
head selection WSN-IoT networks. This algorithm consid-
ers the distance, energy, and delay of sensor nodes in WSN, 
temperature, and IoT devices load. The performance of 
SAWOA was compared with other cluster-head algorithms, 
and the results showed that SAWOA performs better than 
different algorithms.

Alzubi et al. [26] introduced a Location-assisted Delay-
less Service Discovery (LDSD) for processing IoT user 
requests. Depending on the location of the resources, LDSD 
classifies resources based on service delivery delay, avail-
ability for rapid resource mapping, and service respon-
siveness. However, on-time response in IoT is challenging 
because of access to heterogeneous self-adaptable resources. 
Therefore, replication and location errors were considered 
during resource discovery and mapping in this research. The 
primary goal of this algorithm is to improve resource access 
and minimize resource access costs.

A method of discovering and allocating resources was 
introduced by Kalaiselvi and Selvi [27]. Resource dis-
covery and allocation algorithm are the two main parts of 
the proposed solution. First, the tasks are executed by the 
resource discovery approach. Then, the Multiple Kernel 
Fuzzy C-Means (MKFCM) clustering algorithm delivers 
the available resources. The Cloud provider selects the most 
cost-effective VM from the resources available to run the 
tasks. If the desired resource is unavailable, the provider 
will request it from the owner. Reducing the total cost over 
a period is the main objective of this approach.

Skarlat et al. [28] implemented a fog frame framework 
with the necessary communication mechanisms to run 
services in fog environments. Additionally, two heuristic 
algorithms were considered to place the service in fog (the 
first fit algorithm and the genetic algorithm). Considering 
the capacities of the available resources, the first fit algo-
rithm discovers the right resource to deploy the service. 
Genetic algorithm chromosomes are defined using a vec-
tor in this algorithm. If the desired service can be applied 
to each device, it is expressed as one. Otherwise, it is 
expressed as zero. As a result, the genetic algorithm per-
forms better than other algorithms for distributed requests 
and services.

An Elimination-Selection (E-S) algorithm was suggested 
by Nunes et al. [29] for searching and discovering resources 
in IoT environments. Their algorithm used the TOPSIS algo-
rithm and quick sorting. However, quick sorting approaches 
have much complexity in time and storage, making them 
difficult to run. Consequently, these authors tried to take 
advantage of both approaches in their proposed approach; 
namely, they benefited from the speed of TOPSIS and the 
ability to select the best option by the sorting methods. One 
of the contrasting points of the E-S algorithm compared to 
the algorithm proposed in the present study is that the E-S 
algorithm is designed for IoT environments. Still, it does not 
address mobility, resource availability, and time constraints 
of tasks.

Md et al. [30] proposed a new approach for cloud services 
with ease of resource identification, dissemination, and dis-
covery based on dynamic Quality of Service (QoS) features 
through the web Graphical User Interface (GUI) interface 
backed by a set of validation tests. The proposed approach 
consisted of three algorithms. First, they presented an effi-
cient algorithm based on the QoS criterion given by cloud 
consumers using the decision tree classification algorithm 
to identify cloud services. Second, they introduced an algo-
rithm for registering cloud service resources to enable Cloud 
Service Providers (CSPs) to register their services with their 
QoS features. Finally, they proposed an algorithm to find the 
appropriate cloud service and its features by Cloud Consum-
ers (CCs).

One of the best-structured programs to run in a feder-
ated cloud is a Bag-Of-Tasks (BOT) application since it uses 
independent tasks. Additionally, the program's total cost can 
be affected by the policies of running programs in the feder-
ated cloud. Consequently, a mathematical planning model 
was proposed by Abadi et al. [31] to allocate resources in a 
federated hybrid cloud. The proposed model is binary lin-
ear programming that includes time constraints of tasks and 
resource limitations in federated clouds. The main purpose 
of this algorithm is to minimize the total cost of programs.

Kalantary et  al. [32] used the hidden Markov chain 
learning method to address the challenges of searching and 
selecting resources for the combined IoT and fog computing. 
This method reduces latency and increases scalability. These 
authors implemented the proposed solution using Cloudsim 
simulator and compared the results with decision algorithms 
such as TOPSIS. They showed the superiority of their pro-
posed method over other methods in terms of latency and 
scalability.

Bharti and Jindal [33] provided a framework for discover-
ing optimal clustering-based resources in IoT, called Opti-
mal Clustering-based Discovery Framework on IoT (OCDF-
IoT). The proposed architecture can automatically discover 
resources and related services using an ontology, form/dis-
play knowledge about resources, and list resources based 
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on maximum similarity and optimal selection of resources 
among candidates. The results from the real environment 
indicate that this architecture minimizes CPU power for 
query processing and increases CPU performance with less 
load on the server.

Xu et al. [34] examined confidential performance predic-
tions for mobile IoT health care networks. The proposed 
solution is an improved Convolutional Neural Network 
(CNN) model that combines four convolution layers and a 
four-prong primary block. The four-prong primary block 
reduces CNN width by extracting parameters, extracting 
different sizes of health care data, and adapting to nonlin-
ear health care data. According to the comparisons made, 
this algorithm performs 20% better than other methods in 
forecasting.

Human Resource Management (HRM) in federal cloud 
edge computing and selecting the optimal hardware and soft-
ware resources to respond to the requests based on QoS fac-
tors in IoT environments are major challenges. As a result, 
Liu et al. [35] introduced an optimization model for the 
HRM problem in cloud edge computing using the WOA. 
The results showed that this model reduces response time 
and allocation costs and increases the number of allocated 
human resources in two different scenarios compared to 
other meta-heuristic algorithms.

Murturi and Dustdar [36] proposed a decentralized 
resource discovery mechanism with the ability to detect 
resources automatically in edge networks. The presented 
solution exchanges resource information in each domain 
with other domains by repeating resource descriptions peer-
to-peer. In addition, this mechanism was proposed as a flat 
model that can better address the complexities of resource 
discovery and allow the organization of edge devices in 
clusters. These authors evaluated the prototype in a testbed 
consisting of low-power-based edge devices to validate the 
approach's feasibility.

The mentioned studies focus on reducing bandwidth, 
response time, mobility, and time constraints of tasks in 
cloud or IoT environments. However, at the same time, they 
do not consider resource discovery to cope with these chal-
lenges in cloud-based IoT. In this study, we try to address 
this shortcoming.

3 � Proposed method

The proposed method is divided into three sub-sections, i.e., 
the proposed mathematical model, the proposed architecture, 
and a proposed algorithm. First, the proposed mathematical 
model is analyzed thoroughly. Then, the proposed architec-
ture and its components are introduced in full detail. Finally, 
a proposed algorithm is presented for resource discovery.

3.1 � Mathematical model

In this section, a MILP model is presented to pursue three 
goals of minimizing the response time, cost, and band-
width to discover resources in CloudIoT platforms. Table 1 
shows the symbols used in the mathematical model. We 
assume that the domains of fog nodes are independent. 
Therefore, there are several resources in each domain 
which process the received requests from IoT resources. 
Furthermore, some requests will be sent to the cloud with-
out processing in the fog domains (Table 2). The main 
assumptions of the proposed model are as follows:

•	 The number of fog node domains is already specified.
•	 The cost of using each resource is determined in 

advance.
•	 Each task is assigned only to one resource.

The following is the proposed mathematical model.
Parameters z1, z2, z3, are the optimization models of 

response time, cost, and bandwidth, which are presented 
in Eqs. (5), (6) and (7), respectively. In the present system, 
we define the time between sending a request and respond-
ing to the request as the response time, the duration of 
using resources as the cost, and the amount of transfer of 
requests by a network (wireless) connection or an interface 
the bandwidth. The total time of using the resources by 
tasks is considered the total cost. The goal is to maximize 
the fog bandwidth and minimize the system's cloud band-
width. The main goal of the introduced system is to reduce 
response time, cost, and bandwidth for all requests.

A series of constraints presented in Eqs. (8) to (15) pro-
duces a possible domain. Equation (8) ensures that the sum 
of the time constraints of requests will be greater than or 
equal to the response time of the requests. Equation (9) 
states that the total number of requests is greater than or 
equal to the number of performed requests as the number of 
requests is unknown. Equation (10) states that the sum of the 
bandwidth of all domains fog nodes is larger than or equal 
to the sum of the bandwidth allocated to the requests in each 
domain. Equation (11) checks that the cloud bandwidth is 
greater than or equal to the sum of the bandwidth allocated 
to the requests to be performed in the cloud. Equation (12) 
ensures that each request is allocated to a maximum of one 
bandwidth from the Rth node of the fog due to the mobility 
of some resources. In addition, each request is allocated 
through a maximum of one fog node to the cloud bandwidth, 
and this is expressed by Eq. (13). The last two equations, 
(14) and (15), specify the decision variablesVf

rki
,Vc

ji
 , Hf

ri
 and 

Hc
i
 with the values that can only be zero or one.
Decision-making problems and the management of 

conflicting criteria are the solutions to the MILP model. 
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The main challenge of solving multi-objective problems 
is determining the solution that simultaneously optimizes 
all objective functions. Given the contradiction between 
objective functions, it is usually challenging to find such 
a solution; therefore, the efficient multi-objective method 
is a method that balances functions well. One of the best 
ways to solve multi-objective problems is to turn them 
into single-objective problems, which Goal Programming 

(GP) is a good way to do. Still, the main limitation of 
GP is that it can only achieve levels of aspiration with 
numerical values. We use the Multi-Choice GP (MCGP) 
method [37]. The main advantage of the MCGP method is 
that it can be employed as a measurement tool for helping 
decision-makers make the best policies or use the most 
appropriate policies under their goals with the highest 
level of benefit.

Table 1   Symbol definition for the MILP model

Symbols Description

Indices
i Indicate of request (i = 1, 2,… , n)

j Indicate of cloud resource (j = 1, 2,… ,m)

k Indicate of fog resource (k = 1, 2,… , g)

r Indicate the fog domain (r = 1, 2,… , q)

l Indicate of IoT resource (l = 1, 2,… ,w)

Parameters
Sc
i

Number of cloud resource
Sf
k

Number of fog resource
Af

r
Number of fog domain

Sl
i

Number of IoT resources
N Indicate the number of requests
Time

f

rki
Time to execute request i on resource k of domain r of fog

Time
c

ji
Time to execute request i on resource j of cloud

Time
If

rki
Transfer time from IoT resource to fog

Time
fc

rji
Transfer time from node r fog to cloud

Time
waitf

rki
Waiting time request i on resource k of domain r of fog

Time
waitc

ji
Waiting time request i on resource j of cloud

Cf
rki

Execution price request i on resource k of domain r of fog
Cc

ji
Execution price request i on resource j of cloud

CIf
rki

Transfer price from IoT resource to fog
Cfc

ji
Transfer price from fog to cloud

Mf
ri

A measure of request i from domain r of fog
Mc

i
A measure of request i from the cloud

Deadlinei Deadline of request i
Bandwidth

c

i
The bandwidth size for request i of cloud bandwidth

Bandwidth
f

ri
The bandwidth size for request i of node r fog bandwidth

Bandwidth
c Cloud bandwidth

Bandwidth
f

r
Fog bandwidth of node r

Variables

Vf
rki

=

{

1, if request i excute on resource k of domain r fog

0, otherwise   

Vc

ji
=

{

1, if request i excute on resource j of cloud

0, otherwise   

Hf
ji
=

{

1, if fog bandwidth of node r allocates to request i

0, otherwise   

Hc

i
=

{

1, if cloud bandwidth allocates to request i

0, otherwise   
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Moreover, these features improve the practical applica-
tion of MCGP for solving decision/management problems 
in the real world. The MCGP solution with a utility function 
is used to formulate resource discovery in CloudIoT to mini-
mize response time, cost, and bandwidth in Table 3. Conse-
quently, a multi-objective MCGP with the utility function 
approach is used to solve the problem. The fitness function 
determines the problem by considering three objectives 
(response time, cost, and bandwidth). Simultaneous focus 
on these three objectives leads to a reasonable solution, so 
we used Eqs. (16)–(23) to define the fitness function in the 
proposed algorithm. These equations transform the multi-
objective problem into a single-objective one.

In these relationships,U1,min , U1,min are the kth level of 
the goal of yk is a continuous variable. d+

k
 , d−

k
 are positive 

and negative deviations of fx(k) . �−k  is the normal devia-
tion ofyk , wk

d
 is the weight of(d+

k
, d−

k
) , wk is the weight of 

f −
k
. In Eq. (16), �d

1

(

d+
1
+ d−

1

)

 represents the response time, 
�d
2

(

d+
2
+ d−

2

)

 represents the cost, and �d
3

(

d+
3
+ d−

3
+ e+

1
+ e−

1

)

 
represents the bandwidth. Due to the known bandwidth of 
fog and cloud, it is needed to define e+

1
+ e−

1
 in Eq. (16). 

Equations (16) to (23) express the limits, and the reason-
able solution of the fitness function is determined consid-
ering the results of these equations. The total value of � is 
equal to 1. For obtaining equal values, 1 is divided by 3, 
so the value of each � is equal to 0.33.

3.2 � The proposed architecture

The proposed three-layer architecture is shown in Fig. 1. 
In this architecture, the layers are examined separately. In 
addition, it shows the components needed to implement 
the proposed algorithm. Our primary purpose in present-
ing this section is to offer an overview of the proposed 
system and the components required to implement the pro-
posed algorithm in the IaaS service model. Each layer is 
described in the following.

•	 User devices/IoT, such as smartphones and tablets, are 
the lowest layer. Requests of these devices are sent to the 
top layer to run.

Table 2   The MILP model
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Table 3   MCGP model
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•	 Several independent domains based on geographical 
areas with limited network connection make the middle 
layer fog computing [38]. A fog controller is specified for 
each domain. Fog nodes, which include smart devices, 
such as edge routers and switches, are capable of comput-
ing, data storing, and networking. Lightweight contain-
ers such as LXC [39], and Docker [40] are promising 
approaches to performing tasks in fog nodes of devices 
with limited resources. As a result, each fog node in the 
bed container uses lightweight containers to manage its 
containers locally [41].

•	 Long requests and storage are completed in the top layer 
(cloud computing layer).

The requests are sent by the lower layer devices and pro-
cessed in the middle layer to be placed in a specific template 
format. The template format includes the optimization crite-
ria (such as cost and response time) and a set of constraints 
(such as deadlines for each task execution time and required 
storage space). Requests are divided into two groups. The 
first group can be executed in the fog nodes, while the sec-
ond group should be sent to the top layer. The controller 
in each node creates a suitable resource discovery strategy 
to execute user requests. In addition, the controller selects 
the best resource for requests based on the end-users, fog 
node locations, and resources in the nodes. Requests for the 

transfer to another fog domain will be sent to the node con-
tainer of that domain. Immigration is done by the container 
platforms embedded in each fog node.

The cloud controller must optimize resources based 
on user requirements by placing requests in a queue. The 
resource controller uses an optimization model to mini-
mize response time, cost, and bandwidth. The output of 
the resource controller is delivered in the form of a plan 
to identify the best resource for the resource management 
component. The resource management component contains 
fog and cloud resources.

Resource discovery can be implemented by a software 
platform, such as OpenStack [42], OpenNebula [43], and 
Eucalyptus [44]. The discovery component uses the PSO/
MOPSO algorithm to discover the most suitable resource, 
considering response time, cost, and bandwidth criteria.

Resources in the fog nodes send their information to the 
registry via messages. New resource information can be 
used in the next step of decision-making. Moreover, una-
vailable resource information will be sent to the registry 
via the corresponding nodes to update information about 
the resources. The registry needs to be periodically updated 
with information from different providers and resources to 
define a lifetime. Resources and providers that are out of 
reach do not participate in the decision-making process in 
the next step.

Fig. 1   Proposed architecture
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3.3 � The proposed algorithm

Our goal was to use the meta-heuristic algorithm in a new 
dimension. The combination of cloud technology and IoT is 
a new technology, so we used a meta-heuristic algorithm to 
discover resources in cloudIoT. There are several methods to 
solve resource discovery problems in cloudIoT, one of which 
is meta-heuristic algorithms. Meta-heuristic algorithms are 
approximate optimization algorithms with solutions that can 
exit local optimal points and are used in many problems. 
For this reason, we used meta-heuristic algorithms. This 
subsection examines the proposed method based on the two 
algorithms, PSO and MOPSO. In order to use PSO, as men-
tioned earlier, the proposed method was transformed into a 
single-objective problem using MCGP.

3.3.1 � SRDM algorithm

The PSO algorithm makes it possible to select resources 
based on the defined criteria while the amount of search 
in resource discovery is reduced. This is done by increas-
ing the number of resource requests and evaluating them. 
We implemented the SRDM, a fitness function defined in 
the algorithm using Eq. (16) and the constraints applied 
in Eqs. (17)–(23). The function defined according to these 
relations discovers the most reasonable resource for a 
request. Using the PSO algorithm includes features such 
as rapid convergence of PSO compared to other meta-
heuristic methods, the proper weighting of quantitative 
and qualitative elements, and presenting a comprehen-
sive analysis. We define a 2 ∗ m matrix to construct the 
proposed algorithm so that the rows and columns repre-
sent the cloud/fog computing and resources, respectively. 
Each element specifies the number of requests. Accepted 
requests in fog nodes and cloud are placed in a separate 

queue with a different assigned number. As Fig. 2 shows, 
some requests will not be executed due to their expiration. 
Moreover, some of them require multiple resources to run.

Each particle (which represents a resource in the pro-
posed method) at any given time is affected by the best 
position and pbest position in the search space. FV is used 
to evaluate each particle. Particles are randomly selected. 
pbest is the best particle result (FV) ever obtained by a 
particle, and gbest is the best particle in the search space. 
The obtained gbest is compared with the FV for each par-
ticle. If it is smaller, gbest will be updated. Otherwise, the 
best resource will be marked with the largest gbest , and 
the request will be assigned to that resource. This process 
significantly reduces response time, cost, and bandwidth 
for each request. The performance of PSO is shown in 
Algorithm 1. Additionally, Fig. 3 shows the algorithm.

Fig. 2   The structure of a parti-
cle with a sample allocation

S1    S2    S3    S4    S5     S6     S7    S8    S9     S10

Fog(F)
Cloud(C)

2 10 4 7 4 8 16 2 9 2
1 5 12 2 6 11 5 4 19 16

Fig. 3   The PSO algorithm, 
according to the image

S1    S2    S3    S4    S5    S6
F
C

2 4 7 9 10 12
1 3 6 5 8 11

Vi= Loca on Velocity (xi)

pbest= FV(S1) S3= gbest

i= number of request
(A)

S1    S2    S3    S4    S5    S6    
F
C

8 4 2 9 10 12
4 3 1 5 8 11

pbest= FV(S3) S3= gbest

(B)
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3.3.2 � MRDM algorithm

The transformation steps of the objective function using the 
MOPSO algorithm are as follows:

Step 1: Entering the information required by the program, 
including the numbers of fog nodes, resources per node, 
resources in the cloud layer, and requests.
Step 2: Selecting the parameters of the MOPSO algo-
rithm (i.e., the parameters specified in Subsect. 2.2).
Step 3: The initial solutions are generated randomly 
based on the constraints imposed by the objective func-
tion. According to the objective function, which opti-
mizes the resource discovery, the initial solutions include 
a variable x matrix, which is assigned ′′0′′ or ′′1′′ to each 
of its cells. ′′1′′ indicates the presence of the resource in 
different nodes of fog or cloud, and "0" is the absence of 
the resource.
Step 4: Calculating the objective function using Eqs. (5) 
to (7).
Step 5: Producing a new generation using the production 
function.
Step 6: Upgrading generations (previously-dominant 
members are added to the archive, and non-dominant 
ones are removed from the archive).
Step 7: Repeating until reaching the specified number 
of iterations.

3.3.3 � Complexity of proposed algorithm

(A)	 Complexity of SRDM algorithm

In order to analyze the complexity of the SRDM, the total 
number of complex additions and complex multiplications 
per iteration were counted. To calculate the complexity, the 
following parameters were considered: r the domain of fog, 
R the number of resources, d the dimension, and n the total 
resources available in each fog domain.

1.	 Updating the velocity and position of each resource at 
each node requires five complex multiplication opera-
tions and seven complex addition operations in each 
dimension. The values of c1 and c2 were considered 
equal to 1. Moreover, velocity is easily calculated. For 
resource R in any fog domain with d dimensions, 5dR 
complex multiplication operations and 7dR complex 
addition operations are required to update the position 
and velocity of each resource.

2.	 The values of �p(k + 1) and �p(k) , These correspond 
to the current and previous state of velocity for each 
resource and require a complex addition operation stored 
in a table for faster access.

3.	 Updating each resource requires four complex multipli-
cation operations and five complex addition operations 
due to the limitations set for the intended purposes.

4.	 Because there are r domains for fog nodes, each resource 
in the domain requires (d − 2)rR multiplication opera-
tions and drR addition operations to update all available 
resources.

5.	 nr complex addition operations are required to calcu-
late the most suitable resource among the available 
resources.

The SRDM requires (d − 2)rR + 5dR + 9 complex mul-
tiplication operations and nr + drR + 7dR + 13 complex 
addition operations. In general, the complexity of the pro-
posed algorithm is equal to drR. As a result, the complex-
ity of the SRDM is equivalent to O

(

N3
)

.

(B)	 Complexity of MRDM algorithm

The complexity analysis of the MRDM is as follows:

1.	 Updating the velocity and position of each resource at 
each node requires ten complex multiplication opera-
tions and eight complex addition operations in each 
dimension. For resource R in any fog domain with d 
dimensions, 10dR complex multiplication operations and 
8dR complex addition operations are required to update 
the position and velocity of each resource.

2.	 The values of �i,k+1 and xi,k , which correspond to the veloc-
ity modes for each resource, require n complex addition 
operations, which are stored in a table for faster access.

3.	 Updating each resource requires four complex multipli-
cation operations and two complex addition operations 
due to the constraints set for the intended purposes.

4.	 Because there are n domains for fog nodes, each resource in 
the domain requires (d − 2)rR addition operations and drR 
multiplication operations to update all available resources.

5.	 nr complex addition operations are required to calcu-
late the most appropriate resource among the available 
resources.

The complexity of the MRDM requires nr + (d − 2)rR+

8dR + 11 complex addition operations and drR + 10dR + 14 
complex multiplication operations. According to the exist-
ing relationship, the highest degree is related to drR . As 
a result, the complexity of the MRDM is equal to O

(

N3
)

.

4 � Results and experiments

We simulate the proposed algorithm to evaluate its perfor-
mance. In the following, the simulation environment and its 
configuration are briefly introduced. Finally, the evaluation 
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criteria and the results, along with their analyses, are 
presented.

4.1 � Simulation and configuration environment

We use the IFogSim platform to simulate the proposed 
algorithm. This platform provides the opportunity to use 
the capabilities of the PSO algorithm, which is available as 
an optimization tool to facilitate simulations.

To analyze the algorithm, the number of clouds, fog nodes, 
and requests are 1, 4, and from 50 to 500, respectively. Moreo-
ver, the number of IoT devices has increased from 500 to 3,000. 
Table 4 depicts the range of SRDM and MRDM parameters.

For performance analysis, the SRDM algorithm and 
MRDM algorithm are compared with the algorithms pre-
sented in [29, 30, 35], and [36].

4.1.1 � Adjusting parameters

There are several statistical methods for designing experi-
ments for meta-heuristic algorithms, and in this study, the 
Taguchi method [45] is used. In this method, the orthogo-
nal arrays set contains complete information about the fac-
tors affecting the performance of the algorithms. These 
factors fall under (1) control label or signal factors and (2) 
noise factors. This method uses a signal-to-noise ratio ( S

N
 ) 

to calculate the number of response variables. All objec-
tive functions related to resource discovery in the cloudIoT 
platform are of the minimization type. In experiments, the 
aim is to find the value of the parameters of the algo-
rithms as input variables to obtain the optimal solution. As 
a result, the goal is to minimize S

N
 . The corresponding S

N
 is 

calculated using Eq. (24), in which n denotes the number 
of iterations of the experiment and yi is the solution of the 
problem.

(24)
S

Ns
= −10log(

1

n

n
∑

i=1

yi
2)

4.1.2 � Popular metrics for evaluating the MOPSO algorithm

We use the following popular performance metrics to ana-
lyze the performance of the MRDM algorithm.

Set coverage (C metric)  This measurement is suggested in 
[46]. For P and Q as two PFs , C(P,Q) is the percentage of Q 
solutions dominated by at least one solution in P:

where |X| specifies the size of PFX . Given the correct value 
of PFP∗ and the approximation of PFP , the smallest value 
of C(P∗,P) is better than P solutions.

Spacing (SP)  This parameter measures the distribution of 
non-dominant solutions on the approximation front. This 
parameter is defined as follows [47]:

where n specifies the number of dominant solutions 
on the approximation front,  di = minj

∑m

k=1
�f i
k
− f

j

k
 |, 

i, j = 1, 2,… , n,m specifies the number of objectives and 
d =

∑n

i=1

di

n
 . Solutions are evenly distributed for a close-to-

zero value.

The number of non‑dominant solutions (NS)  This criterion 
represents many dominant solutions in the set. When we 
have a large NS, the problem is better solved [20].

Inverted generational distance (IGD)  This criterion reflects 
the convergence and diversity of solutions. For a lower value 
of IGD , the quality of the P solution is higher. To obtain a 
lower IGD , the set P must be close to the true PF in each 
part. Considering the uniform distribution of PFP∗ and the 
PFP approximation, for IGD , we have [48]:

where d = (v, p∗) denotes the minimum Euclidean distance 
from v to all points P∗.

Hypervolume (HV)  This criterion is determined by approxi-
mating the volume of PF using a reference point. This is a 
metric measure of both proximity and diversity [49], which 
is calculated as follows:

where xi is an individual in PFP , and (xi) is a rectangu-
lar area bounded by a reference point and f (xi) . Here, the 

(25)C(P,Q) =
|{q ∈ Q|∃p ∈ P ∶ pdominatesq}|

|Q|

(26)SP =

√

1

n

n
∑

i=1

(di −
−d)2

(27)IDG(P,P∗) =

∑

v∈P d(v,P
∗)

�P∗
�

(28)HV(P) =
{

∪ia(xi)
|

|

∀xi ∈ P}

Table 4   PSO & MOPSO parameter ranges and levels

Algorithms Parameter Level 1 Level 2

SRDM C1
C2
w
Population Size
Maxiter

1
1
0.5
150
250

2
2
1
300
500

MRDM C1
C2
Population Size
Number of Generation

1
1
50
150

2
2
100
300
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adopted reference point is 
[

maxf1(x),maxf2(x)
]

 . The set of 
solutions P with a large HV  value performs better.

Combinatorial ratio (CR) criterion  The Taguchi method deals 
with only one response function. Consequently, the combi-
nation of performance metrics must be defined. This crite-
rion is the combination ratio introduced in [20], which has 
the role of a response variable of the Taguchi method. This 
variable is calculated as follows:

4.2 � Mathematical results

Mathematical results consist of three parts. First, the intro-
duced parameters of the multi-objective algorithm for the 
MRDM algorithm are calculated and investigated. Then, 
according to the Taguchi method, the optimal parameters of 
PSO and MOPSO algorithms are calculated for the SRDM 
algorithm and MRDM algorithm. Finally, the mathematical 
results of the proposed algorithm are compared with SAC 
and E-S algorithms using a t-test and sign test.

4.2.1 � Mathematical results of the MRDM algorithm

For evaluating the mathematical results of the MRDM algo-
rithm, we define three scenarios. First, in the defined sce-
narios, we consider the numbers of clouds, fog nodes, and 
IoT devices per fog node as 4,1, and 500, respectively. Next, 
we change the number of requests from 1000 to 10,000. 
Then, according to the defined scenarios, we calculate the 
parameters introduced for the MRDM algorithm and present 
them in Table 5.

4.2.2 � Evaluation of the results of the SRDM algorithm 
and MRDM algorithm

To evaluate the mathematical results of the SRDM algorithm 
and MRDM algorithm, we consider the numbers of clouds, 
fog nodes, IoT devices per fog node, and requests as 4, 1, 
500, and 5000, respectively. In each algorithm, two levels 

(29)C.R. =
IGD

HV

are considered for each factor. The results of S
N

 for both algo-
rithms are shown in Fig. 2A, B. According to this figure, 
we designed Table 6, which shows the optimization for the 
parameters defined for both algorithms.

4.2.3 � Evaluating and comparing mathematical results

We use two tests to evaluate the proposed algorithm perfor-
mance and compare it with other algorithms. The T-test is 
a parametric test of the results, and the sign test is a non-
parametric test of results.

Tables 7 and 8 show comparisons of statistical analyses 
of the proposed algorithm and other algorithms. We use a 
t-test for the statistical analysis of the algorithms. In Table 7, 
there are 10 numbers, and the option value is equal to 300. 
This table shows the Mean Std.Dviation and std.Error Mean . 
According to the obtained numbers, the MRDM algorithm 
performs better than other algorithms. Table 9 shows the 
mean difference and the difference interval between the 
MRDM algorithm and different algorithms. Test value = 300 
is a specific value used to compare the mean of the popula-
tion. The analyst guesses its value. We used SPSS in our 
study, and according to the statistical sample and population, 
SPSS suggested the best test value as 300 . We use this value 
to compare the mean of the population. The results show a 
smaller difference between the mean and the value related to 
the MRDM, which indicates the MRDM algorithm's better 
performance than other algorithms. MRDM algorithm has a 
smaller difference than other algorithms, and the difference 

Table 5   Process MRDM algorithm with a different scenario

Scenarios MRDM
Cloud Fog IoT device order C-metric SP NS IGD HV

1 4 500 1000 Ave. 0.93 [4]
St.dev. 0.082

Ave. 323.53 [3]
St.dev. 42.80

Ave. 33.11 [4]
St.dev. 4.97

Ave. 97.06 [3]
St.dev. 51.13

Ave. 0.67 [1]
St.dev.0.049

1 4 500 5000 Ave.0.81 [5]
St.dev. 0.092

Ave. 356.27 [4]
St.dev. 51.12

Ave. 37.28 [3]
St.dev. 5.3

Ave. 101.02 [3]
St.dev. 56.15

Ave. 0.75 [2]
St.dev. 0.052

1 4 500 10000 Ave. 0.95 [3]
St.dev. 0.097

Ave. 371.12 [5]
St.dev. 55.14

Ave. 42.34 [4]
St.dev. 5.7

Ave. 106.01 [4]
St.dev. 59.25

Ave. 0.82 [1]
St.dev. 0.062

Table 6   Optimal value of SRDM algorithm & MRDM algorithm

Algorithms Parameters Optimal Value

SRDM C1
C2
W
Population Size
Maxiter

2
2
0.5
150
500

MRDM C1
C2
Population Size
Number of Generation

2
1
100
300
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interval of the MRDM algorithm has the lowest value in 
both the lower and upper parts. Consequently, MRDM algo-
rithm performs better than other algorithms.

Table 9 shows the sign test results to compare the MRDM 
algorithm with the other three algorithms. Part (A) compares 
the MRDM and the E-S algorithms. In the table of frequen-
cies, the first row shows that the value of the MRDM is 
larger than the E-S algorithm, the second row shows that 
the values of the E-S algorithm are larger than the MRDM, 
the third row shows that the values of both algorithms are 
equal. The last row shows the total values. The test statistics 
table in section (A) shows the sign test results to compare 
the MRDM with the E-S algorithm; the sign value is 0.008, 
far less than 0.5. Therefore, there is a significant difference 
between the MRDM and the E-S algorithm. Section (B) 
compares the MRDM with the SAC algorithm. The table of 
frequencies in part (B) shows that the MRDM value is larger 
than the SAC algorithm in one case in the first row. Finally, 
the statistics table in section (B) shows a value of 0.07 (less 
than 0.5), which indicates a large difference between the 
MRDM and the SAC algorithm. Next, section (C) shows a 
comparison between the MRDM and the algorithm in [36]. 
The table of frequencies in part (C) shows that in the first 
row, the value of the MRDM algorithm is larger than the 
algorithm in [36], however, according to the value of 0.098 
(less than 0.5) in the test statistics table. Then, section (D) 
shows a comparison between the MRDM and the algorithm 
in [35]. The table of frequencies in part (D) shows that in the 
first row, the value of the MRDM algorithm is larger than the 

algorithm in [35]. However, according to the value of 0.215 
(less than0.5) in the test statistics table. Finally, we can see 
a significant difference between the SRDM algorithm and 
the MRDM algorithm. However, according to the sign test 
results, there is a significant difference between the MRDM 
and the E-S algorithm. A slight difference can be observed 
between the MRDM algorithm and the SRDM algorithm.

4.2.4 � Comparison of the complexity of algorithms

One of the best ways to compare algorithms is to consider 
their complexity. Table 10 shows the complexity of the pro-
posed algorithm and other algorithms. Algorithms (MRDM, 
SRDM, algorithm in [35], and E-S algorithm) are equally 
complex due to their rapid resource discovery techniques. 
However, the other two algorithms (SAC algorithm and 
algorithm in [36]) are more complex than these algorithms.

4.3 � Performance comparison

We measure the success ratio and availability for evalu-
ating the performance of the proposed algorithm. These 
parameters can be measured in the simulator using decision 
variables. The success ratio parameter shows the number 
of successful responses to requests. The latency equals the 
response time to a request from when the request has been 
sent. The maximum availability is an interval in which a 
device is available for the requests. Resource efficiency 
measures how resources respond to requests in the shortest 

Table 7   One-sample statistics 
of the different algorithms. 
MRDM algorithm, E-S 
algorithm in [29], SAC 
algorithm in [30], algorithm in 
[36], algorithm in [35], SRDM 
algorithm

One-Sample Statistics

N Mean Std. Deviation Std. Error Mean

MRDM algorithm 10 3.3640E2 12.49178 3.95025
E-S algorithm in [29] 10 4.6720E2 40.87325 12.92526
SAC algorithm in [30]
Algorithm in [35]
Algorithm in [36]

10
10
10

3.8350E2
3.978E2
3.732E2

33.20057
31.2567
26.9625

10.49894
9.6742
8.9354

SRDM algorithm 10 3.5340E2 22.63754 7.46735

Table 8   One-sample test of 
different algorithm. MRDM 
algorithm, E-S algorithm in 
[29], SAC algorithm in [30], 
Algorithm in [36], Algorithm in 
[35], SRDM algorithm

Test Value = 300

t df Sig. (2-tailed) Mean Difference 95% Confidence 
Interval of the  
Difference

Lower Upper

MRDM algorithm 9.215 9 0.000 36.40000 27.4639 45.3361
E-S algorithm in [29] 12.936 9 0.000 167.20000 137.9610 196.4390
SAC algorithm in [30]
Algorithm in [35]
Algorithm in [36]

7.953
10.325
6.927

9
9
9

0.000
0.000
0.000

83.50000
67.90000
63.50000

59.7497
48.9632
42.6874

107.2503
85.9312
78.9362

SRDM algorithm 8.105 9 0.000 54.40000 38.4574 68.3656
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possible time. The energy consumption demonstrates the 
energy consumption rate of IoT devices when the num-
ber of requests changes. Several simulations with differ-
ent resources, from 500 to 3000, and a different number 
of requests from 2000 to 20,000 are performed to evaluate 
these parameters.

Figure 5 shows the results of the success ratio for four 
algorithms. The X- and Y-axis are the number of requests 
and success ratio. The MRDM has a higher success ratio 
than the other algorithms. The main reason for the higher 
success ratio is that most requests are performed in the fog 
nodes besides dividing IoT devices into different domains. 
This allows the proposed algorithm to respond to more 
requests in the cloudIoT platform successfully. As the num-
ber of requests increases, a more significant number of IoT 

devices and cloud resources are engaged, and the success 
rate in resource discovery decreases. However, the MRDM 
is more stable and successful in resource discovery and can 
respond to more requests positively. For 2000 requests, the 
MRDM, SRDM, algorithm in [35], and algorithm in [36] 
can successfully respond to all requests, while the SAC algo-
rithm and E-S respond to, respectively, 97% and 92% of 
requests. The most considerable difference in success ratio 
between the MRDM and other algorithms occurs for 20,000 
requests; the difference is equal to 18% for the SRDM, to 
24% for the algorithm in [35], to 26% for algorithm in [36], 
and 35% for both SAC and E-S algorithms.

In Fig.  6, the horizontal axis shows the number of 
requests ranging from 2000 to 20,000. The vertical axis 
represents the latency of algorithms. According to this 

Table 9   Sign test statistics of the different algorithms. MRDM algorithm, E-S algorithm in [29], SAC algorithm in [30], algorithm in [36], algo-
rithm in [35], SRDM algorithm

Frequencies

N

E-S algorithm in [29] – MRDM Nega�ve Differences a 0

Posi�ve Differences b 8

Ties c 0

Total 8

a. E-S algorithm in [29]< MRDM algorithm

b. E-S algorithm in [29] > MRDM algorithm

c. E-S algorithm in [29] = MRDM algorithm
(A)

Test Sta�s�cs b

E-S algorithm in [29]– MRDM

Exact Sig. (2-tailed) .008 a

a. Binomial distribu�on used.

b. Sign test

(B)

Frequencies

N

SAC algorithm in [30] – MRDM Nega�ve Differences a 1

Posi�ve Differences b 7

Ties c 0

Total 8

a. SAC algorithm in [30] < MRDM algorithm

b. SAC algorithm in [30] > MRDM algorithm

c. SAC algorithm in [30] = MRDM algorithm

Test Sta�s�cs b

SAC algorithm in[30]–MRDM

Exact Sig. (2-

tailed)
.070a

a. Binomial distribu�on used.

b. Sign Test
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Table 9   (continued)

(C)

Frequencies

N

Algorithm in [36] – MRDM Nega�ve Differences a 2

Posi�ve Differences b 6

Ties c 0

Total 8

a. Algorithm in [36] < MRDM algorithm

b. Algorithm in [36] > MRDM algorithm

c. Algorithm in [36] = MRDM algorithm

Test Sta�s�cs b

Algorithm in [36] 

– MRDM

Exact Sig. (2-tailed) .098 a

a. Binomial distribu�on used.

b. Sign Test

Frequencies

N

Algorithm in [35] – MRDM Nega�ve Differences a 2

Posi�ve Differences b 6

Ties c 0

Total 8

a. Algorithm in [35]< MRDM algorithm

b. Algorithm in [35] > MRDM algorithm

c. Algorithm in [35] = MRDM algorithm
(D)

Test Sta�s�cs b

Algorithm in [35] –MRDM

Exact Sig. (2-tailed) .215 a

a. Binomial distribu�on used.

b. Sign test

(E)

Frequencies

N

SRDM – MRDM Nega�ve Differences a 2

Posi�ve Differences b 6

Ties c 0

Total 8

a. SRDM algorithm < MRDM algorithm

b. SRDM algorithm > MRDM algorithm

c. SRDM algorithm = MRDM algorithm

Test Sta�s�cs b

SRDM –MRDM

Exact Sig. (2-tailed) .289 a

a. Binomial distribu�on used.

b. Sign Test
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figure, for 4000 requests, the minimum latency differ-
ence occurs between the MRDM and the SRDM, which 
is 20(ms). The minimum differences between the MRDM 
and each of the other algorithms occur for 2000 requests. 
However, for 20,000 requests, the largest latency occurred 
between the MRDM and the SRDM, the algorithm in [35], 
the algorithm in [36], E-S, and SAC with the values of 
26, 40, 59, 67, and 145(ms), respectively. The latency dif-
ference between the MRDM and the SRDM is 10%. The 
latency increases with the number of requests since more 
time is needed to finish the requests. Because the MRDM 
can respond to more search requests, the latency of the 
MRDM is reduced.

Figure 7 shows the experimental results of the availability 
of the proposed algorithm and the other algorithms. The 
horizontal and vertical axes are the number of IoT devices 
from 500 to 3000 and the availability in percent. Some IoT 
devices that may have expired are moved from one domain 
to another and become unavailable in order to reduce power 
consumption. This is a reason for reducing the availability 
rate of the proposed algorithm in the CloudIoT platform. 
Increasing the number of IoT devices and their mobil-
ity increases the complexity of the network structure and 
reduces the availability of devices. However, the MRDM is 
more successful in discovering available resources. When 
the number of IoT devices is 500, the availability rate for 
the MRDM, SRDM, the algorithm in [35], the algorithm in 
[36], SAC, and E-S are 45%, 40%,35%,34%, 33%, and 30%, 
respectively. Availability of all four algorithms increases 
when the number of devices increases from 1000 to 25,000. 
A minor difference in the availability of algorithms occurs 
for 2500 devices, where the difference between the MRDM 
and SRDM is 4%, while the difference between the MRDM 
and other algorithms is approximately equal to 12%.

Figure 8 demonstrates the results of the resource effi-
ciency for the examined algorithms. The X- and Y-axis 
are, respectively, the number of requests and resource 

Table 10   Comparison of the proposed algorithm complexity with 
other algorithms

Algorithms Complexity

MRDM algorithm
SRDM algorithm
The algorithm in [35]
The algorithm in [36]
SAC algorithm in [30]
E-S algorithm in [29]

O(N3)

O(N3)

O(N3)

O(N4)

O(N3logN)

O(N3)

Fig. 5   The average success ratio in response to requests. The MRDM, SRDM, Algorithm in [35], Algorithm in [36], SAC algorithm [30], E-S 
algorithm in [29]



2343Peer-to-Peer Networking and Applications (2022) 15:2326–2346	

1 3

efficiency. The MRDM has a lower resource efficiency 
than other algorithms. The main reason for the lower 
resource efficiency is that most requests are handled in 
the fog nodes besides dividing IoT devices into different 
domains. This allows the proposed algorithm to respond 
to more requests in the cloudIoT platform successfully. 
As the number of requests increases, many IoT devices 
and cloud resources are engaged, and the resource effi-
ciency in resource discovery decreases. However, for 
20,000 requests, the largest occurs between the MRDM 
and other algorithms. The energy efficiency difference 
between the MRDM and the SRDM is 8%, while the dif-
ferences between the MRDM and the algorithm in [35], 
the algorithm in [36], SAC, and E-S are 21%, 24%, 28%, 
and 31%, respectively.

Figure 9 illustrates the experimental results of the energy 
consumption of the proposed algorithm and other algo-
rithms. The number of IoT devices is considered 500. The 
horizontal and vertical axes are the number of requests from 
2000 to 20,000 and the energy consumption of resources. 
As the number of requests increases, the energy consump-
tion in the MRDM algorithm decreases. The main reason 

for the lower value is that most requests are handled in the 
fog nodes. When the number of requests is 2000, the differ-
ence between the energy consumption of the MRDM and the 
SRDM, the algorithm in [35], the algorithm in [36], SAC, 
and E-S are 13%, 17%, 19%, 22%, and 25%, respectively. 
Energy consumption of all algorithms increases sharply 
when the number of requests increases from 12,000 to 
20,000.

4.4 � Analysis of results

The main factors affecting the performance of the MRDM 
algorithm include success rate, latency, availability, resource 
efficiency, and energy consumption. According to the exper-
iments, the results show that the proposed solution has a 
high success rate in responding to requests, low latency, 
high availability, and low energy consumption. Resources 
in different domains of fog provide faster access to the 
right resource, which makes it possible to better respond to 
requests with low latency and low power consumption. This 
has significantly improved the performance of the proposed 
algorithm.

Fig. 6   The average latency 
in response to requests. The 
MRDM, SRDM, Algorithm in 
[35], Algorithm in [36], SAC 
algorithm in [30], E-S algorithm 
in [29]
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Fig. 7   The average availability 
of IoT devices. The MRDM, 
SRDM, Algorithm in [35], 
Algorithm in [36], SAC algo-
rithm in [30], E-S algorithm 
in [29]
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We implemented the proposed method using both sin-
gle-objective and multi-objective approaches. However, 
according to the evaluation, the multi-objective approach 
works better than the single-objective approach. In contrast, 

using these two approaches, the proposed method provides 
better results than the previous algorithms for discovering 
resources, so the proposed algorithm has a higher perfor-
mance than the previously presented solutions.

Fig. 8   The average resource efficiency in response to requests. The MRDM, SRDM, Algorithm in [35], Algorithm in [36], SAC algorithm in 
[30], E-S algorithm in [29]

Fig. 9   The average energy consumption in response to requests. The MRDM, SRDM, Algorithm in [35], Algorithm in [36], SAC algorithm in 
[30], E-S algorithm in [29]
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5 � Conclusions

In this paper, the main purpose of the proposed resource dis-
covery algorithm was to minimize response time, cost, and 
bandwidth in CloudIoT platforms. First, a new mathematical 
model was developed using a MILP model. Since the pro-
posed MILP has three purposes, a multi-objective MCGP 
with a utility function was used to solve it. Then, PSO was 
used for solving the MCGP. In addition, we implemented 
the proposed algorithm based on MOPSO. Finally, to com-
pare the performances of the proposed algorithm and other 
algorithms, we defined a scenario in which the weights of 
all functions were the same. The parameters of comparison 
were success ratio, latency, and availability. The results indi-
cated a considerable performance improvement in MRDM 
algorithm compared to other algorithms.
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