
https://doi.org/10.1007/s12083-021-01216-0

DeepNav: A scalable and plug-and-play indoor navigation system
based on visual CNN

Jian Gong1 · Ju Ren1 · Yaoxue Zhang2

Received: 25 March 2021 / Accepted: 26 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
With the proliferation of smartphones, recent years have witnessed the rapid development of smartphone-based indoor
navigation systems. However, existing solutions either bear high deployment cost or cannot support large-scale navigation.
A scalable and plug-and-play indoor navigation system is still highly desirable. In this paper, we propose DeepNav, a
new indoor navigation system that fully uses visual CNN to realize large-scale navigation. DeepNav adopts a single-pilot
deployment scheme to realize fast deployment. It divides the indoor area into dense sub-areas to simplify image-based
location matching while ensuring reasonable resolution. Practical realization of DeepNav entails a set of key challenges,
e.g., invalid image recognition, classification of thousands of labels and under-fitting. In order to solve these challenges,
we propose invalid image filter, subgroup sigmoid layer and movable object filter, respectively, for DeepNav. Finally, we
implement a prototype of DeepNav on commercial smartphones. Experimental results demonstrate that DeepNav can be
quickly deployed (e.g., within an hour in a 4-storey building) with an average localization error of 2.3 meters.

Keywords Indoor navigation · Visual CNN · Scalability · Plug-and-play · Smartphone

1 Introduction

As GPS changes people’s lives outdoor, indoor navigation
is also becoming highly desirable. Generally, indoor navi-
gation applications can be divided into two categories: one
for conventional navigation demands in public buildings,
e.g., searching for specific stores in a shopping mall, and
the other for occasional events in dedicated buildings, e.g.
commercial activities in office buildings and route guidance
of meetings in hotels. Usually, there are no pre-deployed
infrastructures for navigation in both navigation scenarios.
For the former, in order to satisfy the diversity of navigation

� Jian Gong
gongjian@csu.edu.cn

Ju Ren
renju@csu.edu.cn

Yaoxue Zhang
zyx@csu.edu.cn

1 School of Computer Science and Engineering,
Central South University, Changsha, China

2 Department of Computer Science and Technology,
Tsinghua University, Beijing, China

routes and the coverage of uncertain destinations, indoor
navigation system is required to realize large-scale deploy-
ment and precise localization. Whereas for the latter, how to
fast deploy the indoor navigation system with a limited cost
becomes the key requirement.

At present, most of existing indoor localization and
navigation systems are designed for conventional naviga-
tion demands. Technically, they are developed based on
three kinds of techniques, including Wi-Fi fingerprints [1,
2], landmark with dead reckoning [3–8] and Simultaneous
Localization And Mapping (SLAM) [9, 10]. Wi-Fi finger-
print based methods [1, 2] use the collected fingerprints
of pre-deployed Wi-Fi devices to locate indoor devices by
triangulation location. However, they need to acquire com-
plete building floor maps and precise location information
of Wi-Fi devices, which are not easy and sometimes impos-
sible to obtain in realistic scenarios. In order to get rid of
the dependence on floor map, the landmark based meth-
ods [3–8] are proposed by setting up landmarks in a few
key locations that have absolute accuracy for indoor local-
ization. The locations between two neighboring landmarks
are estimated by the movement of the pedestrian with their
gait. However, in order to accurately model the path rela-
tionships between different landmarks, they need to collect
a large amount of gait data by crowdsourcing, leading to

/ Published online: 10 July 2021

Peer-to-Peer Networking and Applications (2021) 14:3718–3736

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-021-01216-0&domain=pdf
http://orcid.org/0000-0002-1548-6686
mailto: gongjian@csu.edu.cn
mailto: renju@csu.edu.cn
mailto: zyx@csu.edu.cn

considerable labor and time consumption. More impor-
tantly, the walking areas of different pedestrians are
repeated, making the collected data very redundant. With
the proliferation of smartphones, recent studies focus on
leveraging the embedded cameras and enriched comput-
ing capabilities of smartphones for indoor navigation. One
kind of solutions are visual SLAM-based methods [9, 10],
which model a complete 3D indoor map through video
keyframe matching and rigid body rotation relationships. In
order to solve the closed-loop problem unique to this kind
of methods, they have to collect a large number of redun-
dant images, resulting in extensive time consumption. For
occasional navigation, FollowMe [11] proposes a plug-and-
play navigation method leveraging the historical route traces
taken by other users. However, this method demands users
to start and finish navigation at specific place, which has
great limitation and could not realize large-scale deploy-
ment.

By now, there is still no mature indoor navigation
solution that can well satisfy both of the conventional and
occasional navigation demands. The gap between functional
integrity and deployment speed motivates us to raise a
question: Is there a solution that can be deployed in a very
short time while realizing large-scale navigation? For the
landmark based methods with dead reckoning, if we remove
the dead reckoning process and set dense landmarks,
can we reduce the redundancy of data collection? The
challenge may still be arisen by that dense landmarks also
involve massive data collection labor to guarantee precise
localization. Therefore, it is important to design a method
that can accurately locate the landmarks in a convenient and
labor-saving data collection way.

As the one of the fastest growing branch in deep learning,
Convolutional Neural Network (CNN) has shown the ability
of surpassing human in object classification task during
the past few years [12, 13]. Meanwhile, this computation-
intensive technology has evolved to be deployable on
smartphones and can achieve real-time processing [14–16].
In this paper, we propose DeepNav, a new indoor navigation
system for smartphones, which adopts CNN as the basic
recognizing module to recognize places. In DeepNav,
we adopt the pilot-follower architecture to implement
localization and navigation. All the data of navigation
routes are recorded by the captured videos of the pilots’
smartphones and then used for CNN training. An intuitive
method for using CNN as the location classifier is to
manually divide the indoor areas into multiple places, where
the pilot collects a large number of images in different
directions and then uses them to train the CNN after manual
labeling. However, it may raise significant challenges in
data collection, deviation detection and precise localization.
The primary contribution of DeepNav is to provide a

systematic solution for addressing these challenges to
achieve fast and scalable indoor navigation.

First, due to numerous factors in practical usage
scenarios (e.g., pointing to non-walking direction, camera
occlusion, route deviation), the input image usually
becomes invalid and may not belong to any existing label.
Thus, how to accurately filter out the invalid images
becomes very important. The existing image classification
CNN framework can achieve this by adding a background
class, which is a special class that represents no object.
However, background class training requires a large number
of positive samples for each model, which further increases
the workload. In DeepNav, we first replace the softmax
layer with a sigmoid layer, and then filter the invalid images
by the proposed invalid image filter based on outlier in the
sigmoid layer, to improve the training efficiency.

Second, in order to achieve high localization accuracy,
we divide the indoor area into multiple fine-grained sub-
places. Each sub-place denotes a place node labeled
uniquely in CNN model. In CNN-based recognition, a
large building often contains thousands of place nodes. The
number of labels is even larger than the current largest
public image classification dataset ILSVRC (containing
1000 categories). In order to execute CNN models directly
on the smartphone in real time, it is inapplicable to use large
networks that have state-of-the-art recognition accuracy but
are too complex for mobile devices (such as ResNet-101).
Additionally, due to the limitation of deployment speed, we
can only collect a small number of training data, which
further increases the difficulty of precise locating. In order
to increase the recognition accuracy, we propose a subgroup
sigmoid layer, which can narrow the classification range by
clustering recognition results. We also propose a moving
object filter to alleviate the occlusion from moving objects.

The main contributions of this paper are summarized as
follows (Table 1).

– We propose DeepNav, a new indoor localization
and navigation architecture for smartphones, which
fills the gap between large-scale navigation and fast
deployment. To the best of our knowledge, this is the
first work to provide a systematic visual CNN based
indoor navigation solution.

– We address several practical challenges due to the use
of CNN: (1) A subgroup sigmoid layer is designed to
alleviate the classification difficulties by massive labels
and small model size. (2) An invalid image filter and
a movable object filter are developed to address the
invalid recognition problem and improve the system
performance in dynamic environment, respectively.

– We implement a prototype of DeepNav and evaluate
its performance on smartphones. Experiment results

3719Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

Table 1 Motivation of DeepNav

Deployment speed Cost of human labor Large-scale navigation Navigation routes

Travi-Navi [1] low high support unlimited

ViNav [10] low high support unlimited

FollowMe [11] fast low not support limited

DeepNav fast low support unlimited

demonstrate that DeepNav can be deployed in a four-
story building within an hour. Additionally, it achieves
an average localization error of 2.3 meters.

2 System overview

As shown in Fig. 1, DeepNav is mainly composed of map
constructing stage and navigation stage.

Map constructing stage comprises the following steps.
(1) Route recording. A pilot records the navigation routes
using the embedded camera on smartphone and upload them
to the server. In order to alleviate the data redundancy
problem, we design an easy-to-use data collection scheme
which can finish data collect by only one pilot even in
large-scale buildings. (2) Semi-automatic data labeling.
The pilot only needs to input the timestamps of a few key
frames in the videos, then all the remaining labeling works
would be finished automatically. (3) CNN training. Each
place node in CNN is labeled uniquely and the video frames
are used to train the last layer of CNN. (4) Add additional
information and construct map. The pilot labels point-
of-interests (PoIs) by observing the scenes in videos and
adding them to the corresponding place nodes.

The navigation stage comprises the following steps. (1)
Download maps and models. Before starting navigation,
the follower needs to download a model file and a
map file corresponding to the building. Then, all the
navigation functions can work offline on smartphones. (2)
Navigation on smartphones. With the downloaded CNN
model and map file, DeepNav navigates the followers
by recognizing the image frames of smartphones in
real time. However, since DeepNav adopts small CNN
model, we propose a subgroup sigmoid layer and moving
object filter to tackle the problems of low accuracy and
under-fitting.

3Map constructing stage

In this section, we present the technical details of map
constructing in DeepNav. Summarily, DeepNav has the
following advantages for map constructing.

– Data collection is convenient to complete. Even in a
large-scale building, only one pilot is needed to finish
the data collection. It can significantly save human
labor without the need of crowdsourcing.

Fig. 1 Architecture of DeepNav

3720 Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

Fig. 2 Single pilot data
collection example

– Independent of dedicated infrastructures and indoor
floor maps. All the data is collected by the cameras
mounted on smartphones, and the PoI labeling does not
need indoor floor maps.

– Data labeling is semi-automatic. Pilot only needs to
label a small number of video frames, then all the
remaining frames are automatically labeled by the
designed method.

3.1 Easy-to-use image collection and labeling for
dense place nodes

The main target of image collection is to realize lowest
labor cost while maintaining high localization resolution.
We design to make all the image collection work able to be
done by one pilot using smartphone. The image collection
is based on two principles. First, only images in the walking
direction are collected at each place node. Thus, the pilot is
able to collect images as he walks and keep his smartphone
camera in front of him, which is easy to implement. Second,
the images are collected only once in each direction of
each place node. Thus, the pilot does not have to collect
repetitive images, which saves time. In order to make these
two principles feasible while guarantee that we can cover all
place nodes in the building, we will do some definitions and
model the map.

We use topological map to represent indoor navigation
area. Each place and its corresponding direction are
modeled as a place node. A place node is also the minimum
space unit in the map. For a T-shape indoor area shown
in Fig. 2a, there are totally 10 place nodes set in 4
different places and each of them represents a place with
corresponding direction. For instance, place A contains two
directions. So we have two place nodes in place A, each
of which points to a unique direction. We further classify
the place node into different categories according to special
situations. Cross node: if two or more place nodes exist in
the same place, e.g., the two place nodes in place A, then
these place nodes are defined as cross nodes. Spin node:
the place nodes do not belong to cross nodes but cross large
turning angles or crossroads are referred to as spin nodes.
For instance, the 2nd, 3th and 4th place nodes in Fig. 3a are
spin nodes in this map.

Now we describe how we represent the image and place
node in the maps. The distance between two adjacent
place nodes is defined as interval. In Figs. 2 and 3,
each small rectangle represents a collected image and the
arrows represent the walking directions while collecting
images. Each place node is labeled uniquely in the
CNN training process. The place node with the highest
recognition confidence in the sigmoid layer represents the
most probable place node corresponding to an image. In the

Fig. 3 Semi-automatic data
labeling example

3721Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

area centered at a place node with the width of an interval,
all the images in a specific walking direction belong to this
place node. For example, in Fig. 2b, there are totally 4
images collected at place node A in the right direction, then
all these 4 images are labeled as place node A.

In Fig. 2b, it may seem that this area have many images
to be collected. But in fact, the pilot only needs to collect
one video according to the walking route instructed by
the arrows in Fig. 2b. Then we can automatically extract
images from the video and label them according to the
time sequence. In the video, each frame can be extracted as
an image. In real buildings, we can observe many similar
corridor structures as in Fig. 2b. Even for a larger and
more complicated area, e.g., Fig. 3b, we also only need to
take one video for data collection by the walking routes
instructed by the arrows. This kind of routes are not hard to
think since it only need to guarantee that all the corners are
traversed by once. In our experiment, an experienced pilot
can complete all the data collection within 40 minutes in a
4-storey teaching building.

The semi-automatic data labeling in DeepNav is
designed as follows. In occasional navigation scenes (illus-
trated in Fig. 3a), the route is usually simple and contains
only one route from the entrance to the destination. There-
fore, there is usually no cross node and only spin nodes
in the route. The spin nodes in this map are marked as
2,3 and 4. When observing the video frames, the pilot
could get the time of a specific frame in the video, which
is called a time stamp. If we observe the time stamps of
some key place nodes, such as spin nodes, they could be
used for splitting the videos into multiple fragments which
only contain straight routes. A fragment of a video is con-
structed by a sequence of successive frames. In this case,
the route is divided into 4 sub-routes by the spin nodes.
Each sub-route is a straight route. Then we require the
pilots walking in a roughly constant speed, so the video
frames in a straight route could be automatically labeled
with incremental labels(e.g., 200, 201, 202) automatically
in time ascending order. In a large-scale navigation scene
with multiple cross nodes in each crossroad, the video is
split into multiple video fragments according to the rela-
tionship of actual places. The video frames between two
adjacent cross nodes are grouped into one fragment. The
pilot only needs to input the time stamp of the video frame
corresponding to each cross node and which cross place
nodes belong to the same place. Then, the video frames
between two adjacent cross nodes can be automatically
labeled by predefined interval. For example, in Fig. 3b, there
are totally only 15 video frames needed to be labeled by
human, then the rest thousands of frames are automatically
labeled.

After pilot finishing data collection and labeling, CNN
will be trained to recognize different places based on the

collected data. Finally, DeepNav generates a map file and a
CNN model file for followers to navigate in an off-line way.

3.2 Invalid image filter

Due to practical sophistications in indoor navigation (e.g.,
occlusion, camera blur, invalid camera direction), the
images collected by the followers usually become invalid
images, which represent the images that most of the features
are lost and can not be recognized. Invalid images cause
degradation of localization accuracy, so it is significant
to distinguish them with normal images. The existing
CNN based image classification methods can distinguish
the irrelevant images from normal images by adding a
background class [17]. All the invalid images are sorted into
background class. However, this method needs to collect
massive invalid images to train the model recognizing the
background class, which increases the burden of human
labor and decreases deployment speed.

Additionally, when the input maps are updated, e.g.,
changing stores, decorating or adding new stores, the CNN
model has to be updated accordingly. Due to the dependence
among the outputs of the softmax layer, the whole CNN
model needs to be retrained even only one element of
outputs is updated. The additional training process adds
unnecessary time in deployment.

In order to address the above problems, we propose
the invalid image filter, as shown in Fig. 5. It replace
the softmax layer with sigmoid layer in CNN in the
training process by treating place classification as a binary
classification task. In binary classification, each output
element calculates a confidence of whether the input image
belongs to a specific class. Therefore, we can decouple the
dependence among all the output elements and realize both
classification and judging the validness of the input images.
Additionally, when adding new labels or new training data
to the trained model, only the elements corresponding to the
specific classes need to be retrained.

However, the binary classification introduces the problem
of confusing confidence problem. Generally, the recognition
confidence of navigation area outputted by the CNN model
should be higher than the confidence of non-navigation area.
For instance, when an image points to the ceiling, the CNN
should be able to recognize it with 0 confidence because the
image does not belong to any valid place. But the expe-
rimental results show an opposite trend. For example, Fig. 4a
and b belong to navigation and non-navigation areas respec-
tively. However, the average navigation confidence of Fig. 4a
is much lower than that of Fig. 4b. It means that it is hard
to judge whether an image belongs to navigation area
according to the output confidence of sigmoid layer.

We use the term of ’negative samples’ to represent the
image samples do not belong to any of the classification

3722 Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

Fig. 4 The counter-intuitive
phenomenon of top-10
recognition confidence. The
confidence represents the
probability of whether the
images belong to existing place
nodes. There are hundreds of
places node confidence output
and we only show the top-10

labels. The reason of this phenomenon is that the number of
negative samples is much larger than the positive samples in
the training process, leading to the suppression of the output
confidence. For the training samples in navigation area, the
sigmoid layer tends to output confidence close to 0 because
the training samples are suppressed. For the non-navigation
samples, the sigmoid layer has a higher probability to output
high confidence because the samples are not involved in
training process. We also find that when the input image
is similar to the navigation area, the average recognition
confidence tends to be lower even though the image does
not belong to the existing labels, which further confirms the
above idea.

Based on these findings, we design a new method to
judge whether an image belongs to the navigation route. The
process is shown in Fig. 5.

For each input image, we first process it using the
CNN model and sort the recognition confidence in the
sigmoid layer. Specifically, we define the sorted node ID
list in which each node is composed of node ID and the
corresponding recognition confidence as:

Nodei
s = ArgSort (Li

s), (1)

where Li
s is the recognition confidence list of all the nodes

of frame i. Argsort () sorts them by confidence value in a
descending order.

Next, since the top few recognition confidence lev-
els are usually high and the bottom bunch of recognition
confidence are usually low, they have no contribution to
distinguish the validness of image. Therefore, we remove
them and only reserve the middle Me − Ms recognition

Fig. 5 Invalid image filter

confidence. Then, we define the valid recognition probabil-
ity of a navigation area as

P̄ i
ib = 1

Me − Ms

∗
Me∑

x=Ms

Li
s(Nodei

s(x)) ∗ Pm, (2)

where Li
s(x) denotes the recognition confidence of frame i

at place node x, Pm denotes the weight for movable object
detection. The setting of Me needs to guarantee that it can
distinguish the difference between navigation area and non-
navigation area. Then, we remove the top Ms recognition
confidence from these Me recognition confidence to avoid
confusion between recognition confidence of navigation
area and non-navigation area. Finally, we calculate the
average of these Me −Ms confidence to judge the validness
of an image.

Finally, we use F i
ib to represent whether frame i belongs

to the navigation area, which is calculated as

F i
ib =

{
0, P̄ i

ib > Tib

1, P̄ i
ib � Tib,

(3)

where Tib is the probability threshold. If F i
ib equals to 1, it

represents that image i belongs to navigation area, and vice
versa.

3.3 Solution for unbalanced training samples

The introduction of sigmoid layer raises the problem of
unbalanced training samples. For each element in sigmoid
layer, only a few training images are regarded as positive
samples and the rest are all regarded as negative samples.
A large-scale building may contain thousands of place
nodes, so the numbers of positive training samples and
negative training samples are extremely unbalanced, leading
to significant performance degradation and even model
divergence. Lin et al. [18] proposed focal loss function
to address the unbalanced training samples problem in
the model used in object detection field. Inspired by this
approach, we replace the original cross entropy loss function

3723Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

with the focal loss function [18], and then adjust the hyper
parameters α and γ in the training process to alleviate
the problem of unbalanced training samples. The hyper
parameters α and γ control the learning preference of
training samples. α should be adjust first. Usually, it could
be set at about 0.5 at first and then fine-tune the value
according to the extent of unbalance. Then the γ should be
adjust secondly. It could be adjust at range of 0-5 according
to the extent of unbalance.

4 Navigation stage

In the navigation stage, DeepNav uses the embedded
camera on smartphones to navigate users based on the
downloaded CNN model files. The navigation architecture
is shown in Fig. 6. The navigation is divided into 3 main
steps: filter movable objects, localize users and produce
navigation instruction. It first eliminates the influence of
pedestrian by the movable object filter. Then it estimates
the preliminary localization by the dual-output detector.
In order to eliminate the invalid detection and improve
localization accuracy, we propose the subgroup sigmoid
layer. Finally, the navigation instructions are generated from
the localization result by the instruction module.

4.1 Subgroup sigmoid layer and localization

For smartphone based indoor navigation, large CNNmodels
are unsuitable since the memory capability of smartphone
is small and the lack of high-performance GPU making
it not able to support real-time inference. On the other
hand, CNN model with small size could not achieve high
recognition accuracy due to under-fitting. By analyzing the
localization data collected in realistic scenarios, we find that
we could design an algorithm, denoted subgroup sigmoid
layer, to narrow down the range of localization and filter out
accidental recognition errors.

Fig. 6 Navigation architecture of DeepNav running on smartphone

Fig. 7 Recognition confidence correlation of neighbor nodes

4.1.1 Place node cluster

The first phenomenon we find in the experiment data
is place node cluster. When we observe the recognition
confidence of an image which belongs to a specific place
node, we find that the neighbor nodes also have high
recognition confidence.

Figure 7 shows the recognition confidence outputted by
the sigmoid layer of place node 115 and 194. It can be
observed that for the image belonging to node 115 (node
194), the recognition confidence of node 115 (node 194) is
much higher than that of node 194 (node 115). Moreover,
for the image belonging to a specific node, the recognition
confidence of its neighboring nodes gradually decreases as
their distance to the node increases. It indicates that the
recognition confidence among neighboring place nodes has
strong correlations. Therefore, we cluster the place nodes
with top N recognition confidence into multiple clusters
according to their relations in the map. The sum of the
recognition confidence of all the place nodes belonging to
the same cluster denotes a cluster confidence. If the cluster
confidence of a cluster is high, the location of the image is
likely to be in this cluster.

3724 Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

Fig. 8 Node cluster phenomenon

Although F i
ib can effectively distinguish navigation area

and non-navigation area, it is still hard to distinguish
navigation direction and non-navigation direction. The
reason is that the images belonging to a specific navigation
area but not in the navigation direction are still similar to
some place nodes. We also find that the number of place
nodes increases obviously when the images are captured in
the navigation direction. Meanwhile, it decreases when the
images are captured in the non-navigation direction.

Figure 8 shows the comparison of two situations. It
can be observed that the image captured in the navigation
direction covers more successive place nodes than that
captured in the non-navigation direction. Thus, the left
situation can achieve a higher cluster confidence than the
right situation. Therefore, we can determine whether an
image is in navigation direction by the cluster confidence
and the node number in cluster. If the cluster confidence is
high and the cluster owns many place nodes, we believe that
the image is more likely to be in the navigation direction and
vice versa.

4.1.2 Noise filter

In some special cases, such as occlusion and out of focus,
the recognition might be impacted temporarily, as shown
in Fig. 9. We can find that in the frames where occlusion

Fig. 9 Incidental recognition error caused by occlusion

appears, the recognition confidence decreases obviously.
But the confidence of neighboring frames are not impacted
by the occlusion. Therefore, we can correct the recognition
results of occluded frames according to their adjacent
recognition results.

4.1.3 Implementation details

From the node cluster phenomenon, we could replace
the node confidence with cluster confidence to get more
reliable recognition result, because the cluster confidence
is more stable than a single node confidence. From the
noise filter phenomenon, we could use recognition results
from neighbor frames to correct incidental recognition error.
Since these two solutions behave in different aspects, we
combine them together and propose a unified solution,
which denotes subgroup sigmoid layer. First, based on
the recognition results from multiple successive frames,
we calculate a weighted average recognition result, which
is called ‘moving center’. It may cause a certain lag on
the user’s real-time location but has a high probability
of being located near the user’s real-time location. Then,
we set a radius for the moving center. All place nodes
within the radius are sorted into the first group. Second,
we put place nodes into different clusters according to their
recognition confidence and sort the place nodes with high
cluster confidence into the second group. Finally, we use
the intersection of these two groups as the final group and
take the node with the highest recognition confidence in this
group as the localization result of the current frame.

Navigation in DeepNav has two main stages: navigation
and relocating. When the system is initializing or cannot
locate valid place for a long time, it enters relocating status.
First, we define the cluster list as

Li
c = getCluster(Nodei

s(0, Mc), map), (4)

where Nodei
s(0, Mc) denotes the first Mc nodes in Nodei

s .
i denotes the frame ID. The function getCluster() clusters
the nodes in input node list into multiple clusters according
to their relations in the map. For instance, the input
node list is [546, 547, 548, 834, 835, 1435] and the
nodes with adjacent IDs are also adjacent in the map, the
list after clustering is [[546,547,548], [834,835], [1435]].
Correspondingly, we define the cluster confidence list as

Li
cc = sumP(Li

c, L
i
s), (5)

where sumP() sums the recognition confidence of the
place nodes in the cluster list and adds them to the cluster
confidence list according to the clustering order.

After clustering, we need to find out the cluster with
maximum confidence. We can define the max confidence
cluster and the corresponding cluster confidence as

Li
mc, P

i
mc = getMaxCluster(Li

c, L
i
cc), (6)

3725Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

where getMaxCluster() is to obtain the cluster with the
maximum cluster confidence and the corresponding cluster
confidence in the cluster list. We use F i

id to represent
whether frame i is captured in the navigation direction,
which is defined as

F i
id =

{
1, len(Li

mc) � Tcn, F
i
ib = 1

0, otherwise
, (7)

where len() returns the number of place nodes in the
cluster. Tcn is a pre-defined threshold which represents the
minimized place node number of a straight route.

In order to calculate the proportion of valid frames in
recent N frames, we define valid frame proportion as

P i
vf = Nv

N
, (8)

where Nv is the number of valid frames (i.e., F i
id = 1)

in recent N frames. Then, we can calculate a smooth
recognition confidence for each place node x according to
the recognition results in recent N frames.

L̄i
s = 1

Nv

i∑

x=i−N

F i
id ∗ Li

s(x) ∗ P i
m, (9)

where P i
m is the weight of moving object detection.

Similarly, we can calculate max cluster L̄i
mc from L̄i

s .
The conditions of switching from relocating stage to

navigation stage are: 1. len(L̄i
mc) > T̄cn, where T̄cn is the

threshold value of cluster number. 2. P i
vf > T̄vf , where T̄vf

represents the threshold value of valid frame rate. Usually,
it can be set at range of 0.7-0.9, which represents that when
there are over 70%-90% frames in recent N frames are
valid, we regard it as valid detection. Before switching to
navigation status, we need to assign value to the ’moving
center’, representing the valid localization information. It is
assigned with the place node with the highest recognition
confidence in the smooth cluster list, which is denoted as
L̄i

mc.
In the navigation stage, DeepNav calculates a subgroup

based on recent recognition results to narrow the localiza-
tion range. The calculation of subgroup is a 2-stage process.
In the first stage, the ’moving center’ is updated to the node
with the highest valid smooth recognition confidence in the
current subgroup. The valid smooth recognition confidence
is defined as

L̄i
vs = 1

N

k∑

k=i−N

Li
vs(x) ∗ P i

m, (10)

where L
j
vs denotes the recognition confidence on recent N

valid images. Only when F i
id equals to 1, the recognition

confidence of frame i will be added to L
j
vs . In the second

stage, DeepNav first judges whether the recognition of
current frame is valid (i.e., F i

id = 1). If it is valid, all nodes
within the distance of K from ’moving center’ constitute
a new subgroup. Then, the place node with the highest
recognition confidence in the subgroup is taken as the
localization result.

The condition of switching back to relocating status is
P i

vf < T̄vf , (K ∈ (0, 1)). Since the subgroup sigmoid layer
utilizes the context location information and amplifies the
recognition confidence of the target node according to the
positional relationship among place nodes, it can greatly
reduce the number of labels needed to be classified and can
filter out incidental recognition errors..

4.2 Moving object filter design

The performance of image-based indoor navigation systems
is highly impacted by moving objects, such as pedestrians
and temporary advertising boards, since they cause signif-
icant noises on the captured images. By fully exploiting
the feature extraction ability of CNN, we propose moving
object (MO) filter to deal with occlusion problems. In the
following, we use pedestrians as an example to analyze the
impact of occlusion.

The proposed MO filter is composed of two processing
stages, as shown in Fig. 10. In the first stage, an object
detector recognizes the input image, locates moving objects
and generates a serious of bounding boxes. In the second
stage, the image patch placing module replaces the moving
objects in the bounding boxes with an image patch similar to
the original area. It can confuse the CNN model to perceive
the existence of pedestrian and thus increase the place
recognition confidence. In this way, we can alleviate the
degradation of recognition accuracy caused by the occlusion
of moving objects.

In some extreme cases, since the number of moving
objects is extremely large causing most of the image
features occluded, the confidence improvement brought
by the image patch decreases consequently. Therefore,
we define a weighted coefficient Pm to suppress the
recognition confidence of occluded images. Pm is involved
in the calculation process of subgroup sigmoid layer. Pm

is defined as the proportion of the image area occupied by

Fig. 10 Moving object filter

3726 Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

the bounding boxes, which is calculated in the first stage
as

Pm = 1 − Areabbox

Areaimage

. (11)

When there are many moving objects, Pm is close to
0, indicating that the recognition result of the current
image is very unreliable and the current recognition result
would have little effect on the localization. In this way, we
can filter out the recognition result suffering from severe
occlusion.

In addition, DeepNav can be improved to reduce the
CPU and memory usage from two perspectives. First, since
the moving objects locating at the image edge have few
impacts on the recognition confidence, we can perform
object detection on the image center area only. Second,
the MO filter is not executed for each frame. Before
using the MO filter, we first leverage a MO recognizer to
determine whether the image contains moving objects. The
MO filter is only used when the recognizer detects that it
exactly contains. Since the MO recognizer does not require
locating MOs, the computation complexity can be reduced.
Meanwhile, in order to share extracted features between the
moving object recognizer and the place recognition module,
we designed a dual output CNN to recognize both the place
and the moving object, as shown in Fig. 11. On the top of
the last convolutional layer in CNN model, we train two
parallel fully connected layers, one for place recognition
and another for moving object recognition. Since the
original CNN model is trained on public dataset, it is able to
recognize various objects. These two fully connected layers
are trained independently. The training data of each MO
class consists of two parts, the positive samples and negative
samples, with a ratio of 1:1. Positive samples are extracted
from the same class of samples in COCO trainval35k, and
negative samples are randomly extracted from the rest of the
trainval35k.

5 Evaluation

5.1 Test environment

Evaluation scenes We implement a prototype of DeepNav
on Android and evaluate its performance in two represen-
tative indoor scenarios. The first is a large-scale shopping
mall (denoted as SM), which contains rich image features
that are helpful for place distinguishing but also contains
abundant moving objects. Another scenario is a 4-storey
teaching building (denoted as TB), which lacks sufficient
image features and has a lot of similar sub-scenes.

Dataset In the TB scene, we collect 3 datasets. The first
one is a large-scale dataset containing all possible routes in
the building, which is denoted by TB-L. The second dataset
is used for simulating occasional navigation and contains
specific navigation routes, which is denoted by TB-O. The
third dataset is collected under the same route to TB-O, but
we ask a volunteer to walk in front of the camera during
the data collection to occlude some parts of the image.
This dataset is denoted by TB-OV. In the SM scene, we
collect one dataset for simulating occasional navigation,
named SM-O. Each of these datasets is divided into training
sets and test sets. All these datasets are collected by a
single pilot. In addition, in order to test the performance
of DeepNav from multiple aspects, we also generates some
other datasets from above datasets using image processing
technique and they will be described in the following
experiments.

Device We use a desktop computer for model training
and leverage the collaboration of a desktop computer
and smartphones for inference. To study the impact of
smartphone performance on DeepNav, we use two kinds
of smartphones with different computing capabilities in our
evaluations. The device specifications are summarized in
Table 2.

Fig. 11 Dual-output recognition
module

3727Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

Table 2 Device specifications in experiments

Device Model Configuration

Training server Supermicro
7048GR-TR

i7-6700 3.4GHz, 16GB
Ram, 128G SSD, Ubuntu
16.04

Smartphone XiaoMi Max2 Snapdragon 625, 4GB
Ram, 128GB Rom, 12
million pixels Camera,
Android 7.1

Smartphone BlackShark Snapdragon 845, 8GB
Ram, 128GB Rom, 20
million pixels Camera,
Android 8.1

CNN model We have implemented DeepNav based on
several popular CNN models, such as AlexNet [19], VGG-
16 [20], InceptionV3 [13] and MobileNet [14]. Based on
an evaluation of their performance on smartphones, we
finally choose the CNN stacks from MobileNet because it
has the best comprehensive performance. All the training
processes are conducted on a desktop computer and we
adopt TensorFlow [21] as deep learning platform for both
the desktop computer and smartphones.

5.2 CNN ablation experiment

5.2.1 CNN backbone comparison

We first evaluate the impacts of different CNN architectures
on the accuracy and efficiency of recognition. We adopt
the existing object classification CNN as the feature
extractor and replace the last fully connected layer with
new fully connected layer. Then we freeze the parameters
in backbone and only train the last fully connected
layer. We make comparisons among 4 popular CNNs,
including AlexNet [19], VGG-16 [20], InceptionV3 [13]
and MobileNet [14].

We use TB-O dataset in this experiment. The training
set and test set of this dataset are collected in the same
route but different dates (10 months apart) to ensure the
dissimilarity. The video of training set contains 8544 frames
that are sampled from 284 place nodes, covering an area of
around 2100 square meters. The size of all training batches
is 100. The learning rate is initialized to 0.01 and divided

Table 3 Recognition accuracy of training and testing

Models Top-1 train Top-5 train training time(s) Top-1 test Top-5 test

VGG-16 99.8% 100% 2212 10.6% 34.6%

AlexNet 99.9% 100% 626 9.8% 30.3%

InceptionV3 92.7% 100% 1071 11.7% 60.5%

MobileNet 100% 100% 306 13.9% 58.4%

by 10 when test error is stable. The training ends at the 50th
epoch.

As shown in Table 3, the MobileNet shows the best
top-1 recognition accuracy and InceptionV3 shows the best
top-5 accuracy. Apart from accuracy, the inference speed
and training time are also important in practical system.
The comprehensive performance comparisons of the four
models are shown in Table 4, where OOM means out of
memory. The training is done on PC and inference is done
on smartphone. It can be seen that MobileNet shows the best
efficiency of top-1 accuracy under constrained training time
and inference time. Therefore, we adopt it as the backbone
of the recognition model. However, all these four models
achieve top-1 accuracy of under 15% and top-5 accuracy of
under 70%, which is far from enough to be directly deployed
into practical system. To address this issue, we propose the
subgroup sigmoid layer to further improve the accuracy.

5.2.2 Place node interval

In DeepNav, we adopt automatic labeling to accelerate
map construction. The interval of place nodes causes direct
impacts on the map resolution. We define the localization
error of recognition result on frame i as

Ai = interval ∗ (NodeDist (Ni, Ngt) + 1), (12)

where NodeDist (a, b) denotes the distance between node
a and b in the map, Ni denotes the place node recognized
by the system, Ngt denotes the ground truth place node. The
total localization error is the mean of all Ai .

To achieve low localization error, we expect small
interval and high recognition accuracy. However, if we use
smaller interval, the number of labels becomes larger and
the number of training samples in one place node becomes
smaller, which decreases the recognition accuracy.

To find out the relation between interval and localization
error, we evaluate the localization error with different
interval settings. We set the place node interval from 1 meter
to 10 meters with an increment of 1 meter, then we train
10 CNNs of these interval settings respectively. The results
are shown in Fig. 12. The localization error increases with
the increasing interval. Although we can derive remarkably
high recognition accuracy by using a large interval, the
experiment results indicate that the increment of recognition

3728 Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

Table 4 Comprehensive performance on smartphone

Device Models Inference time (per image) Top-1 test /training time Top-1 test /inference time

Max2 VGG-16 OOM 4.8e-5 /

Max2 AlexNet 755ms 1.6e-4 1.3e-4

Max2 InceptionV3 1224ms 1.1e-4 9.6e-5

Max2 MobileNet 270ms 4.5e-4 5.1e-4

Shark VGG-16 OOM 4.8e-5 /

Shark AlexNet 254ms 1.6e-4 3.9e-4

Shark InceptionV3 491ms 1.1e-4 2.4e-4

Shark MobileNet 98ms 4.5e-4 1.4e-3

accuracy cannot afford the decrement of map resolution.
Therefore, the interval should be as small as possible.

It should be noticed that the top-1 recognition accuracy
reduces to 13.9% while the interval is 1 meter, this is
because the number of training samples of each node is
only about 30 and the total node number increases to
284. If we continue decreasing the interval, the number of
training samples becomes insufficient, resulting in unstable
recognition and aggravation of the similarity problem.
Therefore, we set interval to 1 meter finally to achieve the
lowest localization error. Due to the involvement of massive
image noise, the localization error reaches only 10.8 meters,
so we use subgroup sigmoid layer to decrease localization
error.

5.2.3 Softmax layer vs sigmoid layer with focal loss

Training time comparison when adding new labels We
conduct this experiment using the TB-L dataset. There are
totally 1654 place nodes assigned in this dataset and the
label number is 1.65 times of the ILSVRC2012 dataset.
There are roughly 30 training images corresponding to
each label and the number of total images is about 51000.
We compare the training time of adding 2 new labels
between using softmax layer and sigmoid layer. The result
is shown in Table 5. Due to the dependency among the

elements in the softmax layer, the whole layer needs to be
retrained even when only one label is added. Therefore,
the training time should be slightly longer than the initial
training time. Because the elements of sigmoid layer are
independent, only the newly added elements need to be
trained. Therefore, the training time is much shorter. All the
training epochs are 50 in this experiment.

From the experiment results, we find that although the
number of newly added label is only 0.12% of the original
map, the training time of softmax layer is longer than the
initial training. After we replace softmax with sigmoid, the
training time is decreased by 2/3, indicating that the use of
sigmoid layer dramatically decreases the training time when
adding new labels. We should also notice that the difference
of training time is getting larger with the increment of
building scale and place node number.

Comparison of recognition accuracy In this experiment, we
study the improvement of the recognition accuracy and the
unbalance of training samples after replacing softmax with
sigmoid. All the training epochs are 50 and the learning rate
is fixed to 0.01. The results are shown in Table 6.

First, we evaluate the original recognition accuracy of
softmax layer. The top5 accuracy is only 58.4%. The reason
is that the number of training samples is insufficient and
the number of labels is too large, resulting in overfitting.

Fig. 12 Impacts of interval

3729Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

Table 5 Comparison of training time between softmax and sigmoid

Layer Operation Training time

softmax initial train 1744s

softmax adding 2 new labels 1757s

sigmoid adding 2 new labels 598s

After replacing softmax with sigmoid, we set the two hyper-
parameters, i.e., α and γ , in the focal loss function [18] to
0.5 and 0, respectively, which are equivalent to not using
the focal loss function. The accuracy is lower than softmax.
The reason is that the unbalanced number of positive and
negative samples makes the training worse. Then, we adjust
α and γ separately, and the accuracy is improved by 3.4%
and 9.2%, where the two hyper-parameters are influenced
mutually. We can obtain the best improvement by setting
them to 0.9 and 5.0, respectively. The accuracy is increased
by 8.5% compared to softmax and 9.5% compared to the
original sigmoid.

5.3 Impacts of patch style

By leveraging prior knowledge and context information,
we design and compare 3 kinds of patch styles. The gray
patch is pure gray. The average patch averages the colors
around the MOs. In the gradual patch, we adopt the linear
interpolation approach.

In order to investigate the improvement of image patch
with different sizes and places, we use synthetic images
by synthesizing real place images and real image patches.
For each original image, we place pedestrian patches,
gray patches, average patches and gradual patches with 10
different sizes in 100 locations. Totally, we obtain 4000
synthetic images corresponding to each original image.
Then, we choose 10 place images with distinct appearance
to verify the generalization ability of MO filter. The pre-
trained CNN is used to inference these images and compare
the recognition confidence.

As shown in Fig. 13, the filter effect of image patches
is obvious on small moving objects. Over 90% of the

Table 6 Comparison of recognition accuracy between softmax and
sigmoid

Layer α γ Top-5 accuracy

softmax / / 58.4

sigmoid 0.5 0 57.4

sigmoid 0.9 0 60.8

sigmoid 0.5 6.0 66.3

sigmoid 0.9 6.0 66.6

sigmoid 0.9 5.0 66.9

confidence degradation is improved. Among these three
patch styles, gradual patch has the best performance. The
average patch is slightly better than the gray patch, which
shows that CNN is sensitive to lines and edges and we
should make the patch as smooth as possible.

The mean confidence improvement proportions of gray
patch, average patch and gradual patch are 31.18%, 41.29%,
76.71%, respectively, indicating that if we can precisely
locate pedestrian, the MO filter would filter the MOs
effectively.

5.4 Ablation experiment

In this experiment, we evaluate the improvement of
subgroup sigmoid layer and MOF on the localization
error under three datasets. The first dataset is TB-O,
which does not contain any movable object (NMO). The
second dataset is synthesized based on TB-O and contains
synthetic moving objects (SMO). The third dataset is TB-
OV and contains the images with true moving objects
(TMO). The experimental results on recognition accuracy
and localization error are shown in Table 7.

In the NMO test, the top-1 recognition accuracy and
localization of original softmax are only 0.127 and 11.32
respectively. After replacing it with subgroup sigmoid layer,
the top-1 recognition accuracy is increased by 0.016 and
localization error is decreased by 8.779, indicating that the
subgroup sigmoid layer effectively alleviates recognition
difficulties brought by massive labels and the lack of
training data. In addition, we can find that MOF almost has
no effect on the situation with no movable objects, which is
consistent to our expectation.

In the SMO test, the recognition accuracy decreases
and localization error of the original softmax increases
significantly, indicating that the synthetic moving objects
greatly impact the recognition accuracy of original softmax.
After introducing the MOF, the localization error is
decreased by 55.5%. After replacing the original softmax
with subgroup sigmoid layer, the localization error is
decreased by 85.0%. When combining subgroup sigmoid
layer and MOF, the localization error is decreased by
94.7%. It demonstrates that both of the MOF and subgroup
sigmoid layer have good performance on filtering moving
objects. And their effects show in different aspects, so
we can obtain the best performance when using them
together.

In the TMO test, the results are similar to that in the
SMO test. The localization error of using original softmax is
26.992m. After replacing it with the subgroup sigmoid layer
and using MOF, the localization error is decreased by 77.9%
and 27.3%, respectively. When using subgroup sigmoid
layer and MOF together, we decrease the localization error
by 91.4%, down to 2.3m.

3730 Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

Fig. 13 Improvement of
different patch styles

111 149 186

patch height (pixels)

0

0.1

0.2

0.3

0.4

co
nf

id
en

ce

Pedestrian
Gray Patch
Average Patch
Gradual Patch

111 149 186

patch height (pixels)

0

0.5

1

1.5

im
pr

ov
em

en
t p

er
ce

nt
ag

e

Gray Patch
Average Patch
Gradual Patch

Table 7 Ablation experiment results

NMO test SMO test TMO test

top-1 loc-err top-1 loc-err top-1 loc-err

o-sm 0.127 11.324 0.095 47.988 0.162 26.992

sg-sm 0.143 2.545 0.150 7.202 0.175 5.976

o-sm+ MOF 0.127 11.590 0.102 21.356 0.193 19.628

sg-sm+ MOF 0.144 2.560 0.162 2.534 0.221 2.333

Fig. 14 Demonstration and the
user interface of DeepNav

Table 8 Deployment time comparison in various scenes

Methods Scene Tc Tl Tu Tt Ttotal

DeepNav SM-O 284s 1320s 139s 320s 2063s

DeepNav TB-O 285s 900s 140s 306s 1631s

DeepNav TB-L 1860s 4200s 911s 1744s 8715s

ViNav [10] TB-L / / / / ∼ 10 days

3731Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

Table 9 Deployment
parameters rv ru nf Tt tl

0.245MB/s 0.5MB/s 30Hz 0.036sec 60sec

5.5 Deployment speed

We also evaluate the deployment time of DeepNav in the
scenes with different complexity. The total deployment
time is mainly composed of 4 parts: data collection time,
data labeling time, video uploading time and training
time, denoted as Tc, Tl , Tu and Tt , respectively. The total
deployment time Ttotal could be roughly calculated by
summing up these 4 parts. Tc roughly equals the video
length. Tl , Tu and Tt could be calculated by the equations
below.

Tl = ncr ∗ tl;
Tu = Tco ∗ rv/ru;
Tt = Tco ∗ rf ∗ Tt ,

where ncr denotes the number of cross place nodes in the
scene, rv denotes the video data rate, ru denotes uploading
rate, rf denotes frame rate and Tt denotes training time
amortized to one frame. The parameter settings are listed in
Table 9.

The first scene is a 4-storey shopping mall, as shown in
Fig. 14(a). In this scene we deploy occasional navigation
service, denoted by SM-O. The video length is about 5
minutes, the training frames are 8518 divided into 284
place nodes and the sub-route number is 22. The second
scene is a 4-storey teaching building, where we deploy both
occasional and large-scale navigation services, denoted by
TB-O and TB-L, respectively. In TB-O, the video length
is about 5 minutes, the training frames are 8544 divided
into 285 place nodes, and the sub-route number is 10. In
TB-L, the video length is 31 minutes, the training frames
are about 51000 divided into 1653 place nodes, and the
sub-route number is 70. In these scenes, the navigation
deployment is finished by a single pilot. The deployment
time of these scenes is shown in Table 8, and the deployment
time proportion is shown in Fig. 15.

Fig. 15 Navigation time consumption proportion in different scenes

For occasional navigation services, the total deployment
time is basically depending on the length of routes. In these
two different scenes (SM-O and TB-O), the total length of
each route is close to 300 meters and the total deployment
time is less than an hour. For large-scale navigation services,
the total deployment time increases by the increment of
scale. And the data labeling time is substantially increased
because of the increment of sub-routes. Although the scale
is large, the total deployment time is less than 3 hours
(Table 9).

We also compare the deployment time to other recent
indoor navigation system. According to the description in
ViNav [10], we estimate its deployment time in the same
scene. In order to achieve the localization accuracy of
1 meter and resolution of 6 degrees, there are at least
60 images needed to be collected at each node and the
interval between two nodes is at least 1 meter. Since
the area of each floor of the test building is about 2100
square meters, there are about 504000 images needed to
be collected in total. Since they use traditional image
collection method, which takes picture one by one. The
image collection speed is roughly 2/second. Therefore, the
total collection time is estimated to be 70 hours. However,
under on pilot situation, he needs rest time to share the 70
hours to 8-10 days with over 8 hours per day. Considering
the post-processing process, the total deployment time is
conservatively estimated to be 10 days.

5.6 Navigation time consumption

We evaluate the time consumption of navigation in the
TB-O scene. We set multiple start points in the whole
navigation route and arrange volunteers to start navigation
from these points. The navigation route and the start points
are shown in Fig. 16. The route spans from the first floor
to the fourth floor and contains multiple cross place nodes.

Fig. 16 The route map of the TB-O test

3732 Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

Fig. 17 Navigation time
consumption starting from
different places

When the volunteer is located at one of the start points,
DeepNav first enters relocating status and starts locating.
When it satisfies the switching condition, DeepNav enters
navigation status and the volunteers follow the instructions
until they arrive the end point. The snapshot of DeepNav is
shown in Fig. 14b.

The experimental results are shown in Fig. 17. Although
these start points are different from those collected by
the pilots, all the volunteers successfully switch from
relocating status to navigation status and arrive at the end
point by following the navigation instructions. The time
consumption of switching to navigation status is different in
different start points. The reason is that DeepNav switches
to navigation status only when it satisfies the switching
condition. The switching is fast in the start points which
locates in the straight corridor, such as start point 1 and 4,
because the straight corridor contains a lot of similar place
nodes and it is easier to satisfy the switching condition. The
switching time of point 2 is also short, since this location
contains abundant visual feature (Fig. 18).

We also compare the cumulative distribution of recogni-
tion results in the shopping mall and teaching building. This
distribution represents the difficulties of locating. Although
the environment of shopping mall is much more com-
plicated than teaching building, the results show that the
cumulative distribution of recognition results in shopping
mall is lower than teaching building. It demonstrates that

Fig. 18 Distribution of distance to groundtruth in different scenes

abundant visual features in shopping mall makes it easier to
be located than teaching building.

5.7 Deviation detection test

In this section, we evaluate the deviation detection ability
of DeepNav. In this experiment, volunteers start navigation
from the origin in the above scene and deviate intentionally
in the navigation process. When the system switches from
navigation status to the relocating status, it successfully
detects the deviation and starts relocating. As shown in
Fig. 19, all the deviations are detected within 6 seconds, and
65% of the deviations are detected within 3 seconds.

6 Related works

With the popularization of smartphones and the urgent
need for indoor navigation services, various kinds of
localization and navigation methods for smartphones have
been proposed in recent years. Wi-Fi fingerprint is one
of the most widely studied technique [1, 22–25], due
to its advantages of low power consumption and high
localization accuracy. However, the deployment process
of these methods is complicated. They require to derive
the building floor maps and correspond the position of

Fig. 19 Detection time of deviation

3733Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

WiFi devices to the floor maps. Additionally, they need to
do some post-processing algorithm to make the detection
robust, making it difficult to realize fast deployment.
Since DeepNav does not require floor maps and the data
processing is most done automatically, it is much easier to
be deployed in a fast speed.

By using vision-based technologies, SLAM is also a rep-
resentative indoor localization and navigation method [9,
10], which shows good performance in feature-rich areas.
However, this kind of methods relies on crowdsourcing to
collect large-scale image data, resulting in low deployment
speed. Another method using crowdsourcing is landmark
and dead reckoning [3–8], which realizes complete local-
ization by using the sensors on smartphones. However,
these methods require a large amount of data collected by
crowdsourcing, which consequently slows the deployment
speed. According to ViNav [10], in a building of 2100
square meters, there are about 504000 images needed to
be collected in total, which may take a couple of weeks to
complete. Comparatively, DeepNav does not involve crowd-
sourcing and all the deployment work can be completed by
only a single pilot.

Magnetic field fingerprinting is also a popular method
[11, 26–28]. However, due to the characteristics of the
magnetic field itself, the magnetic field fingerprint can
only be used as an auxiliary localization method. The
absolute localization can not be realized independently,
thereby increasing the complexity of the localization
system. Leveraging deep learning for indoor navigation is
an emerging research trend [2, 29]. Researchers combine
deep learning with classic methods, such as viewing
WiFi fingerprint and magnetic fingerprint as images,
and then use image recognition methods for localization.
Other works using deep learning model focus on robotic
autonomous navigation [30, 31], which require the support
of dedicated hardware and sensors. Another research trend
is to mix a variety of different methods [1, 32–37] to
obtain higher localization accuracy, but they increase the
complexity of the system at the same time. In contrast,
DeepNav uses camera alone, which is relatively simple
and relaxes the hardware requirements on the mobile
device.

In addition, there are also some other methods, including
RFID [38], IMU [39], Beacons [40], acoustic signal [41, 42]
and even light [43]. These methods are still in the early stage
of research, and they often rely on dedicated infrastructures
or devices. For instance, RFID based method [38] relies on
dedicated coil inductor, while beacons based method [40]
has to place dedicated beacons around the navigation area
and IMU based method [39] builds up a model only suitable
for smartwatch. However, DeepNav does not rely on any
other devices other than smartphone.

7 Conclusion

In this paper, we propose DeepNav, a fast deployable
indoor navigation system that fully exploits the capability
of visual CNN and works in a pilot-follower way. DeepNav
enables the pilots to collect data in an easy-to-use way to
solve the data redundancy problem. In order to solve the
challenges caused by insufficient training data and invalid
image recognition, we propose the subgroup sigmoid layer,
which can effectively improve the localization accuracy in
noisy environment. We also propose the movable object
filter to relieve the degradation of localization accuracy
caused by occlusion. We implement DeepNav on Android
smartphones and evaluate its performance in a shopping
mall and a teaching building. The experimental results
demonstrate that DeepNav can achieve the minimum
localization error of 2.3m with pedestrian occlusion. In the
future, we plan to introduce image semantic segmentation
in DeepNav to further improve the navigation performance.

References

1. Zheng Y, Shen G, Li L, Zhao C, Li M, Zhao F (2017) Travi-
navi: Self-deployable indoor navigation system. IEEE/ACM Trans
Netw 25(5):2655

2. Wang J, Zhang X, Gao Q, Yue H, Wang H (2017) Device-free
wireless localization and activity recognition: A deep learning
approach. IEEE Trans Veh Technol PP(99):1

3. Abdelnasser H, Mohamed R, Elgohary A, Alzantot M, Wang H,
Sen S, Choudhury RR, Youssef M (2016) SemanticSLAM: Using
environment landmarks for unsupervised indoor localization.
IEEE Trans Mob Comput 15(7):1770

4. Alzantot M, Youssef M (2012) Crowdinside: automatic construc-
tion of indoor floorplans. In: Proceedings of the 20th international
conference on advances in geographic information systems. ACM,
pp 99–108

5. Yang Z, Wu C, Liu Y (2012) Locating in fingerprint space:
wireless indoor localization with little human intervention. In:
Proceedings of the 18th annual international conference on mobile
computing and networking. ACM, pp 269–280

6. Chen S, Li M, Ren K, Fu X, Qiao C (2015) Rise of the
indoor crowd: Reconstruction of building interior view via mobile
crowdsourcing. In: Proceedings of the 13th ACM conference on
embedded networked sensor systems. ACM, pp 59–71

7. Gao R, ZhaoM, Ye T, Ye F,Wang Y, Bian K,Wang T, Li X (2014)
Jigsaw: Indoor floor plan reconstruction via mobile crowdsensing.
In: Proceedings of the 20th annual international conference on
Mobile computing and networking. ACM, pp 249–260

8. Chen S, Li M, Ren K, Qiao C (2015) Crowd map: Accurate
reconstruction of indoor floor plans from crowdsourced sensor-
rich videos. In: 2015 IEEE 35th International conference on
distributed computing systems. IEEE, pp 1–10

9. Mur-Artal R, Montiel JMM, Tardos JD (2015) ORB-SLAM: a
versatile and accurate monocular SLAM system. IEEE Trans
Robot 31(5):1147

10. Dong J, Noreikis M, XIAO Y, Yla-Jaaski A (2018) ViNav: A
vision-based indoor navigation system for smartphones. IEEE
Trans Mob Comput

3734 Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

11. Shu Y, Kang GS, He T, Chen J (2015) Last-mile navigation using
smartphones. In: International conference on mobile computing
and networking, pp 512–524

12. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp 770–778

13. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016)
Rethinking the inception architecture for computer vision. In:
Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 2818–2826

14. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W,
Weyand T, Andreetto M, Adam H (2017) Mobilenets: Efficient
convolutional neural networks for mobile vision applications.
arXiv:1704.04861

15. Huang J, Rathod V, Sun C, ZhuM, Korattikara A, Fathi A, Fischer
I, Wojna Z, Song Y, Guadarrama S, et al. (2017) Speed/accuracy
trade-offs for modern convolutional object detectors. In: IEEE
CVPR, vol 4

16. Ma N, Zhang X, Zheng HT, Sun J (2018) Shufflenet v2: Practical
guidelines for efficient cnn architecture design. arXiv:1807.11164

17. Wei Y, Xia W, Lin M, Huang J, Ni B, Dong J, Zhao Y, Yan S
(2015) HCP: A flexible CNN framework for multi-label image
classification. IEEE Trans Pattern Anal Mach Intell 38(9):1901

18. Lin TY, Goyal P, Girshick R, He K, Dollár P. (2017) Focal loss for
dense object detection. In: Proceedings of the IEEE international
conference on computer vision, pp 2980–2988

19. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifi-
cation with deep convolutional neural networks. In: Advances in
neural information processing systems, pp 1097–1105

20. Simonyan K, Zisserman A (2014) Very deep convolutional
networks for large-scale image recognition. arXiv:1409.1556

21. Google (2018) Tensorflow. https://www.tensorflow.org/
22. Yin Z, Wu C, Yang Z, Liu Y (2017) Peer-to-peer indoor navigation

using smartphones. IEEE J Select Areas Commun PP(99):1
23. Yin Z, Wu C, Yang Z, Lane N, Liu Y (2017) ppNav: Peer-to-

peer indoor navigation for smartphones. In: IEEE international
conference on parallel and distributed systems, pp 104–111

24. Zhuang Y, Syed Z, Li Y, Elsheimy N (2016) Evaluation of two
wifi positioning systems based on autonomous crowd sourcing on
handheld devices for indoor navigation. IEEE Trans Mob Comput
15(8):1982

25. Wang X, Gao L, Mao S, Pandey S (2017) CSI-Based fingerprint-
ing for indoor localization: a deep learning approach. IEEE Trans
Veh Technol 66(1):763

26. Zhang C, Subbu KP, Luo J, Wu J (2015) GROPING: Geomag-
netism and crowdsensing powered indoor navigation. IEEE Trans
Mob Comput 14(2):387

27. He S, Kang GS (2017) Geomagnetism for smartphone-based
indoor localization: challenges, advances, and comparisons. Acm
Comput Surv 50(6):1

28. Li Z, Shu Y, Karlsson BF, Lin Y, Moscibroda T (2017) Demo:
Towards flexible and scalable indoor navigation. In: International
conference on mobile computing and networking, pp 495–497

29. Liu Z, Zhang L, Liu Q, Yin Y, Cheng L, Zimmermann R (2017)
Fusion of magnetic and visual sensors for indoor localization:
infrastructure-free and more effective. IEEE Trans Multimed
19(4):874

30. Zhu Y, Mottaghi R, Kolve E, Lim JJ, Gupta A, Fei-Fei L,
Farhadi A (2017) Target-driven visual navigation in indoor scenes
using deep reinforcement learning. In: 2017 IEEE international
conference on robotics and automation (ICRA). IEEE, pp 3357–
3364

31. Kahn G, Villaflor A, Ding B, Abbeel P, Levine S (2018)
Self-supervised deep reinforcement learning with generalized

computation graphs for robot navigation. In: 2018 IEEE Inter-
national conference on robotics and automation (ICRA). IEEE,
pp 1–8

32. Shu Y, Bo C, Shen G, Zhao C, Li L, Zhao F (2015)
Magicol: Indoor localization using pervasive magnetic field
and opportunistic wifi sensing. IEEE J Select Areas Commun
33(7):1443

33. Li Y, Zhuang Y, Zhang P, Lan H, Niu X, El-Sheimy N (2017)
An improved inertial/wifi/magnetic fusion structure for indoor
navigation. Inf Fusion 34(C):101

34. Teng X, Guo D, Zhou X, Liu Z (2015) Poster: An indoor-outdoor
navigation service for subway transportation systems. In: ACM
Conference on embedded networked sensor systems, pp 415–416

35. Wu FJ (2018) A sensor-assisted emergency guiding sys-
tem: sensor-centric or user-centric? IEEE Trans Veh Technol
67(2):1598

36. Zhuang Y, Yang J, Qi L, Li Y, Cao Y, El-Sheimy N (2017) A
pervasive integration platform of low-cost MEMS sensors and
wireless signals for indoor localization. IEEE Internet Things J
PP(99):1

37. Atia MM, Liu S, Nematallah H, Karamat TB, Noureldin A (2015)
Integrated indoor navigation system for ground vehicles with
automatic 3-d alignment and position initialization. IEEE Trans
Veh Technol 64(4):1279

38. Tsirmpas C, Rompas A, Fokou O, Koutsouris D (2015) An indoor
navigation system for visually impaired and elderly people based
on Radio Frequency Identification (RFID). Inform Sci 320(C):288

39. Jiang Y, Li Z, Wang J (2017) PTrack: Enhancing the applicability
of pedestrian tracking with wearables. In: IEEE international
conference on distributed computing systems, pp 2193–2199

40. Xiang L, Tai TY, Li B, Li B (2017) Tack: learning towards
contextual and ephemeral indoor localization with crowdsourcing.
IEEE J Select Areas Commun PP(99):1

41. Liu K, Wu D, Li X (2016) Enhancing smartphone indoor
localization via opportunistic sensing. In: IEEE International
conference on sensing, communication, and networking, pp 1–9

42. HuangW, Xiong Y, Li XY, Lin H, Mao X, Yang P, Liu Y,Wang X
(2015) Swadloon: Direction finding and indoor localization using
acoustic signal by shaking smartphones. IEEE Trans Mob Comput
14(10):2145

43. Zhao Z, Wang J, Zhao X, Peng C, Guo Q, Wu B (2017) NaviLight:
Indoor localization and navigation under arbitrary lights. In:
INFOCOM 2017 - IEEE conference on computer communications
IEEE

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Jian Gong received the B.Sc.
(2014) and M.Sc. (2017)
degrees in electrical engi-
neering, from Central South
University, China. Currently,
he is an associated Ph.D
in computer science, Uni-
versity of California, San
Diego. His research interests
include multi-sensor fusion,
deep learning, and mobile
computing.

3735Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1807.11164
http://arxiv.org/abs/1409.1556
https://www.tensorflow.org/

Ju Ren received the B.Sc.
(2009), M.Sc. (2012), Ph.D.
(2016) degrees all in com-
puter science, from Central
South University, China.
Currently, he is a professor
with the School of Computer
Science and Engineering,
Central South University,
China. His research interests
include Internet-of-Things,
wireless communication, net-
work computing and cloud
computing. He received many
best paper awards from IEEE
flagship conferences, includ-

ing IEEE ICC’19, HPCC’19 and IoP’18, etc. He currently serves/has
served as an associate editor for IEEE Transactions on Vehicular
Technology and Peer-to-Peer Networking and Applications, a guest
editor for IEEE Wireless Communications, IEEE Transactions on
Industrial Informatics, and IEEE Network. He also served as the TPC
chair of IEEE BigDataSE’19, a poster co-chair of IEEE MASS’18, a
track co-chair for IEEE/CIC ICCC’19, IEEE I-SPAN’18 and VTC’17
Fall, and TPC member for many IEEE/ACM top-tier conferences. He
is a member of IEEE and ACM.

Yaoxue Zhang received his
B.Sc. degree from Northwest
Institute of Telecommunica-
tion Engineering, China, in
1982, and his Ph.D. degree
in computer networking from
Tohoku University, Japan, in
1989. He is a professor with
the Department of Computer
Science and Technology,
Tsinghua University, China
and also a professor with the
School of Computer Science
and Engineering, Central
South University, China. His
research interests include

computer networking, operating systems, ubiquitous/pervasive com-
puting, transparent computing, and big data. He has published over
200 technical papers in international journals and conferences, as
well as 9 monographs and text-books. Currently, he is serving as the
Editor-in-Chief of Chinese Journal of Electronics. He is a fellow of
the Chinese Academy of Engineering.

3736 Peer-to-Peer Netw. Appl. (2021) 14:3718–3736

	DeepNav: A scalable and plug-and-play indoor navigation system based on visual CNN
	Abstract
	Introduction
	System overview
	Map constructing stage
	Easy-to-use image collection and labeling for dense place nodes
	Invalid image filter
	Solution for unbalanced training samples

	Navigation stage
	Subgroup sigmoid layer and localization
	Place node cluster
	Noise filter
	Implementation details

	Moving object filter design

	Evaluation
	Test environment
	Evaluation scenes
	Dataset
	Device
	CNN model

	CNN ablation experiment
	CNN backbone comparison
	Place node interval
	Softmax layer vs sigmoid layer with focal loss
	Training time comparison when adding new labels
	Comparison of recognition accuracy

	Impacts of patch style
	Ablation experiment
	Deployment speed
	Navigation time consumption
	Deviation detection test

	Related works
	Conclusion
	References

