
https://doi.org/10.1007/s12083-021-01171-w

Joint optimization for throughput maximization in underwater
acoustic networks with energy harvesting

Zhixin Liu1 · XiangyunMeng1 · Yazhou Yuan1 · Yi Yang1 · Kit Yan Chan2

Received: 13 November 2020 / Accepted: 23 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Since autonomous underwater vehicles (AUVs) are increasing popular in maritime applications, underwater wireless
communication with multiple users is becoming more important and practical. In this paper, we investigate the resource
allocation in underwater acoustic networks (UAN) with time division multiple access (TDMA) technique. When the
uncertain channel state information (CSI) derived from the movement of AUVs in underwater environment is considered,
probability constraints are introduced to guarantee the quality of service (QoS). A joint optimization algorithm is proposed,
in order to schedule time for energy harvesting (EH) and wireless information transfer (WIT); the proposed algorithm also
allocates transmit power to multiple AUVs to maximize the sum-throughput over a time period. The constraints of outage
probability and available energy are both considered. The probability constraint is first transformed into an equivalent
formulation. Furthermore, an approach with low computational complexity is proposed for power allocation and time
assignment based on the residual energy of the buoy. In extensive simulation experiments, the proposed algorithm shows
significant throughput increases in long term compared to baseline schemes, and better performance in terms of convergence
and energy efficiency (EE) can be achieved.

Keywords Underwater acoustic communication · Energy harvesting · Robust power control · Outage probability ·
Joint resource allocation

1 Introduction

Underwater acoustic networks (UAN) have attracted wide
attention in recent years. UAN have many promising appli-
cations in various fields, including disaster warning, geo-
logical survey, and ecological protection [1]. However, there
exist a series of challenges due to the inherent characteristics
of underwater acoustic channel in practice. For an instance,
UAN are vulnerable to high bit error rate, long propagation
delay, and constrained power consumption [2].

UAN consist of sensors, autonomous underwater vehi-
cles (AUVs), buoys, and other equipments. As an important
role in UAN, AUV has become a mainstream option to
perform underwater search, deep-sea detection, data collec-
tion etc [3]. With the increasing complexity of underwater
missions, satisfying all requirements by a single AUV is
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becoming more and more challenging. Hence cooperative
multiple AUVs are essential to conduct these complicated
tasks [4, 5]. To effectively ensure accurate and timely oper-
ation, large amount of delay-sensitive cooperative control
massages are required for a group of AUVs [3]. A sufficient
data transmitting capacity is essential for the remote con-
trol of AUV network. However, throughput maximization
technologies are not well discussed in the downlink (DL)
networks, which tend to deliver control information from a
central buoy to multiple underwater receivers.

Unlike the terrestrial counterpart, batteries to power up
facilities in UAN are almost undesirable to recharge or
replace. When multiple AUVs are deployed to carry out
complicated missions simultaneously, a lot of time-sensitive
control massages need to be transmitted to the AUVs. The
battery of the buoy would be drained out quickly without
an efficient supplement of energy. Although appropriately
allocating power to maximize the transmitted information
in limited energy benefits prolonging the network lifetime,
EH, as a promising technology, is an sustainable source to
power the buoy. In ideal environment, renewable energy
in many sources can be harvested to recharge batteries,
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such as wind, solar, and water waves. However, network
stabilities cannot be ensured if UAN devices only rely on
the discontinuous and unpredictable energy acquired from
ambient environment. Without power broadcast stations,
all AUVs would be out of control once the energy
harvester of the buoy is intensely affected by weather and
other inevitable factors. Wireless power transmission is
controllable and more reliable to supply energy for energy
constrained devices. In order to improve the harvester
steadiness and make full use of acquired energy, we attempt
to solve the power allocation problem in a UAN with
wireless energy transfer (WET).

In recent years, many researches have paid attention to
the optimization problem for EH communication networks.
An optimal time allocation method was proposed to
maximize the sum-throughput in TDMA for all users,
but power control was not addressed [6]. A novel joint
optimization scheme for broadcasting power and time
sharing was developed to maximize the network throughput,
and better performance can be achieved compared to
algorithms which only optimize time allocation [7]. Yang
et al. [8] proposed an approach to minimize the energy
consumption for TDMA cellular networks. Since the
characteristic of EH is nonlinear, the minimization problem
is transformed from nonconvex to an equivalent tractable
one. To optimize cooperative networks with simultaneous
wireless information and power transfer (SWIPT), a novel
resource allocation and relay selection strategy were
developed to maximize the overall system sum-rate [9].
Wang et al. [10] proposed an optimization framework
with low time complexity to minimize the sum-power
consumption. In these works, the “harvest then transmit”
mechanism is implemented to use all energy acquired
during the EH phase. However, emergency information and
time-sensitive data cannot be transmitted at the highest rate
if no energy is stored in the batteries [11, 12]. Therefore, the
aforementioned mechanism cannot be directly implemented
on underwater scenario with long propagation delay. In this
paper, a novel scheme to regulate the EH time is proposed
to update the battery conditions in a sequence of TDMA
frames; hence, the change of channel state and energy
consumption can be considered in resource allocations.

To improve the system performance of UAN, many
schemes have been proposed. Liu et al. [13] proposed a
scheme in order to prolong network lifetime, where the
scheme is enhanced with three heuristic algorithms to ini-
tially deploy relay nodes (RNs), execute flow adjustment,
and move certain RN to a proper depth. Wang et al.
[14] proposed an enforcement learning approach to max-
imize long-term sum rate in a relay-assisted underwater
networks with EH. In order to increase the network opera-
tion time, the analytical solution of a least-square problem
was obtained for optimizing the link-layer network flow,

where transmission delay of underwater acoustic channel
was also considered [15]. When noise attenuation in deep
water is considered, an EE tree was established to reduce
energy consumption and improve robustness of UAN [16].
Jing et al. [17] studied the throughput maximization for
an underwater network with energy-harvesting-powered
nodes, where both timely and delayed CSI feedback were
take into consideration. When power and throughput con-
strains are considered, partial CSI feedback was introduced
into a power and bit loading algorithm to reduce bit error
rate for an orthogonal frequency-division multiplexing
(OFDM) DL network [18]. Song et al. [19] proposed an
approach to optimize the the power from base station (BS)
and time allocation in order to maximize the sum rate and
EE in relay-aided DL UAN. Prasad et al. [20] proposed
a joint optimization for relay placement and power allo-
cation to minimize outage probability in single-DF-relay
UAN. Most of the existing approaches only formulated the
problem with the perfect CSI, but outage probability of
underwater acoustic communication has attracted less atten-
tion. It is impractical to use a fixed channel gain in a period
of time for the real underwater environment [21].

In this paper, we attempt to maximize the long-term
throughput in the DL of a multiuser UAN with WET, while
the outage probability is considered for the robust opti-
mization. At each time block, the RN establishes a balance
between the time allocated for EH and for WIT. If the time
assigned to harvest energy is too long, the buoy is likely to
have enough energy stored in the battery. However, the over-
all throughput are not always increased when the available
power increases, since the time used for WIT is short. On
the contrary, if most of the time is used to transmit informa-
tion, the remaining energy is insufficient to support reliable
transmission, and the network throughput is reduced. Since
the network performance is impaired by both the over-
flow and overuse of batteries, we propose a joint approach
incorporating time allocation optimization and underwater
network power control, in order to maximize the through-
put. The main contributions of this paper are summarized
as follows:

• An underwater wireless acoustic networks model is
developed where the control unit (buoy) uses the
TDMA acoustic channel to harvest energy and trans-
mit information to AUVs. To maximize the sum-
throughput, we propose the joint optimization scheme
of time and power allocation at the buoy.

• A farsighted but flexible strategy is proposed to allocate
the time for EH based on the energy level. Hence,
the buoy can rationally allocate energy used in future
and avoid battery overflow and overuse. Thus the
throughput is maximized by fully using all the assigned
resource including power and time.
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• To guarantee the QoS of all users with uncertain under-
water acoustic channels, an outage-based constraint
is formulated in the optimization problem. Given the
statistical characteristics of user movements, the intro-
duced probability constraint is able to cope with the CSI
uncertainty.

The rest of this paper is organized as follows. In
Section 2, we introduce the system model. The problem
formulation for throughput maximization of the overall
network is presented in Section 3. Section 4 illustrates
our proposed method for solving the optimization problem.
Simulation results and conclusion are given in Sections 5
and 6, respectively. Some important symbols used in this
article are given in Table 1.

2 Systemmodel

We consider the DL of an underwater wireless acoustic
network with multiuser and single control unit as shown in
Fig. 1. The network consists of N users (i.e., AUVs) which
moves along their own trajectories and the network has
only one surface node which is responsible for delivering
message to AUVs and harvesting energy from a ship-located
BS by using TDMA. The set of N users is denoted by
N = {1, 2, · · · , N}. The surface control unit is typically an
ocean platform or a buoy and it is assumed that the node
is located at a relatively fixed position. The central node
is equipped with both radio and acoustic transceiver for
communicating with the mobile BS and transmitting control
information to underwater nodes, respectively. Note that the
buoy does not have any other extra energy sources despite
the wireless power transmission from the BS, whereas the

Table 1 List of symbols

Symbol Definition

N Number of users

T TDMA frame

N User set

l0,i Distance between buoy and user i

f Carrier frequency

�f System bandwidth

N(f ) Noise power spectral density in underwater acoustic channel

Pi Buoy transmission power to user i

τ0 Time ratio for EH

Emax Capacity of buoy battery

e Ratio of residual energy to Emax

ε Outage probability threshold

vi Speed of user i

mobile BS employs a stable and sufficient power supply. To
avoid over-complication, we consider a full data buffer of
which the buoy is assumed to have enough information to
be sent.

As shown in Fig. 2, each TDMA frame, denoted by
T , is split into N + 1 slots. The duration of each slot
is τiT , i = 0, 1, 2, · · · , N , with

∑N
i=0 τi = 1. The RN

has a rechargeable battery with capacity Emax and some
initial energy ER

1 before the first frame T . In each block,
the first time slot, τ0T , is assigned to RN for harvesting
wireless energy broadcasted from BS, while the rest of time
is equally divided into N slots (i.e., τ1 = τ2 = · · · =
τN ), during which the control unit transmits command
information to AUVs sequentially to avoid the interference
from each other. For the process of updating energy battery
of the buoy, we define energy level, denoted by 0 < e < 1,
as the ratio of energy stored in the battery to its capacity
Emax. Let 0 < β < 1 denote the fixed proportion of
energy consumed for WIT to its current energy ER

j , which
is assumed to be known at the beginning of j th frame,
j = 1, 2, · · · , Q. Then, ER

j is updated as follows

ER
j+1 = min{ER

j (1 − β) + wj , Emax}, (1)

where wj is the energy harvested by the buoy in τ0T at
the j th frame. During the phase of WET in j th frame,
xA denotes the baseband signal transmitted from the BS.
xA is assumed to be an arbitrary complex random signal
satisfying E[|xA|2] = PA, where PA is the transfer power
of the BS. We assume that PA is large enough to neglect
the energy harvested due to ambient noise at the surface
node, where the energy consumed by signal receiving and
processing is also negligible. The received signal at the buoy
is written as

y = √
hxA + n, (2)

where y and n are the received signal and noise at the buoy.
For a linear energy harvester, the power received at the buoy
can thus be expressed as

w = ζPAhτ0T , (3)

where 0 < ζ < 1 represents the EH efficiency at the buoy.
Compared to the model used in terrestrial wireless

communication, a significant property of acoustic channel
is that a signal experiences not only spreading but also
absorption loss, which is relevant to the signal frequency f .
The overall attenuation over a distance l is given by [22]

A(l, f ) = lka(f )l, (4)

where k represents the propagation geometry, whose usually
used value is 1.5 for practical spreading. The absorption
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Fig. 1 System model

coefficient a(f ) in dB/km for f in kHz is obtained by
Thorp’s formula [23]

10 log a(f ) = 0.11f 2

1 + f 2
+ 44f 2

4100 + f 2
+ 2.75

×10−4f 2 + 0.003. (5)

The power spectral density (PSD) of ambient noise in the
ocean namely, N(f ), is calculated as

N(f ) = Nt(f ) + Ns(f ) + Nw(f ) + Nth(f ). (6)

where Nt(f ), Ns(f ), Nw(f ), Nth(f ) are the PSD of the
turbulence noise, the distant shipping noise, the wind-driven
waves noise, and the thermal noise, respectively. These
noise, in dB re μ Pa per Hz as a function of f in kHz, can
be modeled by the following empirical formulas [24]

10 logNt(f ) = 17 − 30 log f,

10 logNs(f ) = 40 + 20(s − 0.5)

+ 26 log f − 60 log (f + 0.03),

10 logNw(f ) = 50 + 7.5
√

w + 20 log f

− 40 log (f + 0.4),

10 logNth(f ) = −15 + 20 log f .

(7)

Accordingly, one can calculate the narrow-band signal-to-
noise ratio (SNR) of ith AUV as (8), when the acoustic
signal frequency f , distance l0,i , and allocated transmit
power Pi are given [25].

γ R
i = Pi

A(l0,i , f )N(f )�f

, (8)

where �f is a narrow band around the frequency f .
According to [25], the available capacity associated with the
ith user is

C(li) = �f log2 (1 + γ R
i ). (9)

Each AUV is deployed randomly at a specified position
in the ocean, where the distance to the buoy is ranged
from 3 to 8 km. We presume that each AUV drifts in a
fixed direction and speed until the end of current frame.
The AUV moves towards a randomly selected direction at
an updated velocity in the next T [26]. To guarantee the
robustness of communication system, we further assume
that the trajectory of each vehicle is in a straight line from
the buoy to its own initial position. In other words, an
AUV can only move either opposite or present direction for
another N + 1 slots. The speed of the ith mobile AUV (i.e.
|vi |) is uniformly distributed between [Vmin, Vmax]m/s [27].

3 Problem formulation

To maximize the throughput of the overall network within
a finite time period of Q frames, we consider a joint
optimization of time allocation and power control. In
the underwater environment, perfect CSI is not always
available at the transmitter due to the long delay caused
by the slow sound speed [18]. To improve the reliability of
underwater acoustic communication, an extreme condition
is considered in this research. We assume that the AUVs
can be located precisely by the central node only at the
beginning of each T , and thus the position uncertainty is

Fig. 2 Frame structure for EH
and WIT
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taken into account in our model. In other words, the power
for data transmission is selected on the basis of the outdated
location information, since the real-time CSI is unknown
to the buoy. For each T , the total power that the buoy can
provide for information transfer is denoted as PR

max which is
defined as

PR
max = NERβ

(1 − τ0)T
, (10)

where ER is the current energy of the buoy. To dynamically
adjust the time for EH (i.e. τ0), the optimization is
integrating with the energy which will be used in future into
the problem, and thus the objective function is given by

U(Pi, τ0) =
N∑

i=1

τi log2 (1 + γ R
i ) + K ln (τ0 + e), (11)

where the overall throughput of N users is represented by
the first term. The second term affects the time allocated
for WET and subsequently the energy which will be used in
future, where K is a positive weight factor which attempts
to match the value of second term with the first term; the
energy level of the buoy, e, is a ratio of residual energy
of the buoy to its capacity. In other words, the time for
WET can be adaptively assigned according to e. By utilizing
the dynamic mechanism, more time is allocated for the
information transfer when e increases, and conversely, the
time for harvesting is longer when the buoy has less energy
to be consumed in future. Compared with the fixed τ0, our
proposed scheme can also avoid the battery overflow and
overuse, which result in the reduction in throughput and
potential energy waste.

Mathematically, the robust optimization problem to
maximize the throughput over a specified period is
formulated as

(P 1) : max U(Pi, τ0) (12a)

s.t.
N∑

i=1

Pi = PR
max, (12b)

Pr{γ̃i
R ≥ �i} ≥ 1 − ε, ∀i ∈ N , (12c)

N∑

i=0

τi = 1, (12d)

0 < τ0 < 1. (12e)

The availability of total power of the buoy is limited by P R
max

in Eq. 12b. To guarantee the QoS requirement of each user, a
constraint based on outage probability is adopted in Eq. 12c,
where 0 < ε < 1 is the outage probability threshold and
�i represents the minimal SNR which ensures the reliable
decoding at user i. The instantaneous SNR in the move
of an AUV is defined by γ̃i

R, and the outage probability

caused by the uncertain directions and velocities of AUVs
is constrained by Eq. 12c.

4 Joint resource allocation scheme

To solve the robust optimization problem, we first
transform the probability constraint (12c) into a form with
certainty. Then, a joint optimization algorithm is devised by
introducing a dynamic scheme for τ0 and employing a novel
method with low computational complexity.

4.1 Transformation of probability constraint

An outage-based probability constraint is used to ensure
the QoS requirement; hereby which the problem cannot
be solved directly [28, 29]. It is noteworthy that AUVs
drift directions in our assumption imply the worst case of
information transfer. If the power to satisfy (12c) meets the
requirement of an AUV and the longest distance is ahead by
the AUV direction, the signal can be correctly decoded by
this user while the movement direction is not a constraint.

Since the velocity of AUV is much slower than sound
speed, we presume that the movement of an AUV in the
time slot τiT , i = 1, 2, · · · , N , is negligible. Denote l0,i
be the initial distance between the buoy and ith user at
the beginning of each T ; the real distance at τiT , i =
1, 2, · · · , N , is denoted as li . In fact, the uncertainty of l0,i ,
which exists in an exponential function a(f )l0,i , dictates the
variation of lk0,ia(f )l0,i . Accordingly, we only focus on the

l0,i in a(f )l0,i , and replace it by li . For simplicity, the outage
probability in constraint (12c) is rewritten as

Pr{γ̃i
R ≥ �i} = Pr{ Pi

a(f )li lk0,iN(f )�f

≥ �i}, (13)

where the change of product lk0,ia(f )li caused by the
uncertainty of l0,i is ignored since this is an independent
variable of power function. When the ith user is receiving
information, its real distance from the buoy is calculated as

li = l0,i + vi(τ0 + 1 − τ0

N
i)T . (14)

If li > l0,i , the ith AUV leaves the central node coverage;
the transmit power calculated from l0,i may not satisfy
the QoS requirement for this user in the real environment.
Hence, the corresponding AUV should be removed from the
set N . Replacing li in Eqs. 13 by 14, a new form of outage
probability is represented as Pr{vi ≤ Vi}. Vi is defined as
the equivalent velocity and is given by

Vi =
loga(f )

Pi

lk0,iN(f )�f �i
− l0,i

(
τ0 + 1−τ0

N
i
)

T
. (15)
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Since |vi | follows uniform distribution with the range of
[Vmin, Vmax] m/s, the probability can be computed by

Pr{vi ≤ Vi} =
∫ −Vmin

−Vmax

1

2(Vmax − Vmin)
dvi

+
∫ Vi

Vmin

1

2(Vmax − Vmin)
dvi . (16)

Finally, the constraint (12c) is converted as follows,

Pi ≥ lk0,iN(f )�f �i

a(f )
T

(
τ0+ 1−τ0

N
i
)
(Vmax−2ε(Vmax−Vmin))+l0,i . (17)

The optimization problem (P 1) is reformulated as

(P 2) : maxU(Pi, τ0)

s.t.(12−1), (12−3), (12−4), (17), ∀i ∈ N . (18)

4.2 Power allocation for the buoy

To maximize the throughput of the network, we propose
Theorem 1.

Theorem 1 For a set with n communication pairs, the
objective function of the ith pair is denoted as fi(xi) =
ln(1 + xi/Fi), where xi > 0 and Fi > 0. To satisfy the

constraint that
n∑

i=1
xi = C with the constant C > 0, the

overall objective function
n∑

i=1
fi(xi) is maximal when Eq. 19

holds,

1

x1 + F1
= 1

x2 + F2
= · · · = 1

xn + Fn

, (19)

where the point (x1, x2, · · · , xn) is described as the equal-
efficiency point in this paper.

Proof See Appendix

For the sake of simplicity, A(l0,i , f )N(f )�f is denoted
by Gi . Given a fixed τ0, maximizing U(Pi, τ0) is equivalent

to maximizing
N∑

i=1
gi(Pi), where gi(Pi) is expressed as

gi(Pi) = 1 − τ0

N
log2 (1 + Pi

Gi

). (20)

Let r be an intermediate variable. Based on Theorem 1, the
following relationship can be created,

1 − τ0

N(G1 + P1) ln 2
= 1 − τ0

N(G2 + P2) ln 2

= · · · = 1 − τ0

N(GN + PN) ln 2
= r . (21)

Without the loss of generality, the power Pi is allocated to
the ith user.

Pi = 1 − τ0

Nr ln 2
− Gi . (22)

Note that when
N∑

i=1
Pi = PR

max, r can be calculated as

r = 1 − τ0

(
N∑

i=1
Gi + PR

max) ln 2

, (23)

Substituting r into Eq. 22, the optimal power allocation for
user i is

P ∗
i =

N∑

i=1
A(l0,i , f )N(f )�f + PR

max

N
−A(l0,i , f )N(f )�f . (24)

4.3 Optimal time allocation

Similarly, when the fixed Pi is given, the first and second
order partial derivatives with respect to τ0 can be computed
as

∂U

∂τ0
= − 1

N

N∑

i=1

log2 (1 + γ R
i ) + K

τ0 + e
, (25)

∂2U

∂τ 20

= − K

(τ0 + e)2
. (26)

Since it is obvious that ∂2U

∂τ 20
< 0, U is concave to τ0. By

setting ∂U
∂τ0

= 0, the time ratio for EH can be obtained by

τ0 = KN

N∑

i=1
log2 (1 + γ R

i )

− e. (27)

Considering the physical meaning of τ0, the optimal τ0 can
be determined by

τ ∗
0 = min

((
KN

N∑

i=1
log2 (1 + γ R

i )

− e

)+
, 1

)

, (28)

where (t)+ = max(0, t). The proposed approach to
throughput maximization is detailed in Algorithm 1.

In Algorithm 1, most operations are included in checking
if (17) is satisfied. For the most extreme case, the residual
energy is too little to provide a reliable link to any one
of the AUVs, then the algorithm is performed N times
until all AUVs have been successively removed from the
set N . Note that Pi and τ0 converge after I iterations, the
overall computational complexity of the designed scheme is
O(N · I ).
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5 Simulation results

In this section, we verify the effectiveness and evaluate
the performance of the proposed throughput maximization
algorithm in terms of the power control and time allocation.
In the underwater wireless network, all AUVs are randomly
deployed; the distance between the AUV and the surface
node (buoy) varies from 3 to 8 km. It is set that typical
speeds for AUVs ranges from 0.5 to 2.8 m/s [27]. The
number of users and TDMA frames are set to N = 10
and Q = 5, respectively. In the simplest case, the minimal
SNR at each user is assumed to be the same, i.e., �1 =
�2 = · · · = �N = �. In this study, the carrier frequency
f is set to 30 kHz, and bandwidth �f is 1 kHz. The buoy
has a rechargeable battery with capacity Emax = 50 J
and the EH efficiency ζ is chosen to be 0.8. The results

Table 2 Simulation parameters

Parameter Value

TDMA frame (T ) 100 s

Number of TDMA frame (Q) 5

Number of users (N) 10

Carrier frequency (f ) 30 kHz

Bandwidth (�f ) 1 kHz

Minimal acceptable Signal-to-Noise Ratio for users (�) 10 dB

Proportion of energy for WIT (beta) 0.1

EH efficiency (ζ ) 0.8

Capacity of buoy battery (Emax) 50 J

Channel gain (h) -10 dB

Range of |vi | [0.5,2.8] m/s

of network throughput and EE are averaged under Monte-
Carlo simulations. Main parameters in the simulation are
summarized in Table 2.

In Figs. 3 and 4, we investigate the convergence of
Algorithm 1. Figure 3 illustrates that the power allocated to
different users within a TDMA frame T gradually converges
after seven iterations. Figure 4 shows the ratio of time
assigned to WET (i.e. τ0) for the Q TDMA frames; this
figure shows that the optimal result can be determined
quickly after about five iterations. The steady state of τ0
depends on the buoy energy level. Both Figs. 3 and 4 reveal
that our proposed algorithm requires small amount of time
to converge. A decreasing trend of τ0 is shown in Fig. 5
when the energy level e increases. When the residual energy

Fig. 3 Power convergence of all users
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is in a lower level, longer time is allocated for EH to provide
enough energy to be used in future and to increase the
throughput in long term. On the contrary, a larger e lead
to more time being used to data transmission in current
T ; the time for EH is thus reduced. This result further
unveils the effectiveness of our designed adaptive regulation
mechanism for τ0.

Given calculated P ∗
i , one should check if the outage

probability constraint in Eq. 17 is satisfied. The actual
outage probability of users are obtained by 10000 indepen-
dent tests of which the distances are randomly generated
between AUVs and the buoy. In Fig. 6, we plot the actual
outage probability versus different thresholds, which are
0.1, 0.2, 0.3 and 0.4. Figure 6 also shows that the actual
outage probability is always less than target value. This
result demonstrates the robustness of our proposed scheme.
Therefore, our designed algorithm is able to adapt dynamic
and strict communication condition in the ocean. Figure 7
shows that fewer AUVs will be removed from the set, if
more residual energy is available for WIT. It is because
higher power can cover a wider range. A larger acceptable
outage probability means lower threshold for an AUV to
be connected to the buoy. Therefore, more AUVs can be
accepted when ε is larger.

Two variants are created as baselines to verify the
effectiveness of our algorithm. Figure 8 compares our
proposed algorithm with an equal power allocation scheme
with a dynamic τ0. The simulation results that compare the
policy in [19] with the strategy which is engaged with a
invariable τ0 but power allocation is identical to those of our
proposed method are also presented in Fig. 8. We observe
that the system throughput of using our algorithm increases
by rising the transfer power PA; since PA increases, more
energy is available for information transfer, and time for

Fig. 4 EH time convergence among TDMA frames

Fig. 5 Ratio of EH time with respect to energy levels

EH is less and consequently throughput is larger. We also
find that the throughput derived from our algorithm is lower
than that achieved from the scheme with a fixed τ0 when
PA has a small value, since more time is required to harvest
energy in our algorithm. However, when our proposed
power allocation method is not engaged with a flexible
τ0, the system performance are seriously suffered with the
invariable τ0 and network throughput cannot be improved
with an increasing PA. It is note that our devised algorithm
outperforms the strategy proposed in [19]. The reason is that
our devised algorithm takes into account the throughput in
current T and also that in next time periods, whereas τ0 is
only determined by the updated acoustic channel state using
the algorithm proposed in [19]. These phenomena reveal the
advantage of variable τ0.

Fig. 6 Outage probabilities from the buoy to users

2122 Peer-to-Peer Netw. Appl. (2021) 14:2115–2126



Fig. 7 Removal of users versus battery energy levels

To further evaluate the EE of our proposed algorithm,
Fig. 9 shows the system EE of our proposed method
and that of other three strategies which can be treated as
baselines. We find that the EE of our scheme is almost
unchanged with the transmit power since larger PA brings
more available energy and longer time for information
transfer, which owing to the flexible τ0. This result also
explains why another scheme with dynamic τ0 and equal
power allocation has the same trend. In Fig. 9, we observe
that for increasing values of transmit power, EE shows a
decreasing trend when the algorithm proposed in [19] and
the strategy with invariable τ0 are applied in the two tests.
The reason is that τ0 cannot be effectively decreased to

Fig. 8 Network throughput with respect to the power broadcasted
from BS

Fig. 9 System EE versus the power broadcasted from BS

make full use of harvested energy for information transfer
when the energy consumption increases. For the policy with
a fixed τ0, the network EE first decreases with a larger PA

and then saturates when PA is larger than 4 watts, since
the battery is filled with energy due to sufficient power
transfer. The overall throughput of our proposed algorithm
always outperforms other three baseline schemes, although
EE of our proposed algorithm is lower than that of the two
baselines when PA is small.

6 Conclusion

In this paper, a resource allocation algorithm was designed
to maximize the throughput in the DL of UAN. To guarantee
the QoS requirements, we adopted an outage probability
constraint and then transformed into a deterministic form.
In this paper, a novel approach was proposed to solve
the the joint resource optimization. The proposed approach
is able to determine the optimal power allocation and
the computational complexity is linear. The converted
optimization problem was solved by jointly utilizing
the proposed farsighted scheme for adaptively changing
WET time and the novel approach for power allocation.
Simulation results validated that the proposed strategy can
effectively improve the system throughput and guarantee
outage requirement in harsh underwater environment.
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Appendix

Proof of Theorem 1 We first assume that (x1, x2, ..., xn) is

the maximum of
n∑

i=1
fi(xi) while (19) is not satisfied, i.e.

(29) holds.

1

xj + Fj

�= 1

xk + Fk

. (29)

When the constraint
n∑

i=1
xi = C is considered, x′

j = xj + θ

and x′
k = xk − θ are assumed, where θ is a constant with

tiny value and i �= j . We can obtain the following,

ln(1 + x′
j /Fj ) + ln(1 + x′

k/Fk)

= ln(1 + xj /Fj ) + ln(1 + xk/Fk)

−θ(
1

xj + Fj

− 1

xk + Fk

). (30)

According to Eq. 30, it can be found that ln(1 + x′
j /Fj ) +

ln(1 + x′
k/Fk) �= ln(1 + xj/Fj ) + ln(1 + xk/Fk); hence

the value of
n∑

i=1
fi(xi) can be changed by adding θ to

xj . In other words, (x1, x2, · · · , xn) is not the optimum

of
n∑

i=1
fi(xi) if Eq. 29 is true. Therefore, Theorem 1 is

proved.
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