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Abstract
Spectrum sensing (SS) is a concept of cognitive radio systems at base transceiver stations that can find the white space i.e.
licensed spectrum owned by primary users (PU), for transmission over a wireless network without any channel interference. The
cognitive radio network is designed to overcome the problem of the limited radio frequency spectrum as most of the applications
are dependent on wireless devices in 5G. The major concern that arises here is the detection of spectrum availability. The
traditional approaches can solve this issue but consume a large amount of time and prior information about PU and spectrum.
The objective of this paper is to give a solution to resolve such issues. In this paper, we have used the learning capabilities of deep
learning algorithms such as Convolution neural network (CNN) and Recurrent neural network (RNN) for spectrum sensing
without prior knowledge of PU. The proposed model is termed ensemble CNN and RNN (ECRNN) to learn the features of
spectrum data and predict the spectrum availability at base transceiver stations in 5G. The simulation result of the ECRNN
showed the improvement of accuracy of the systemwith a reduction in losses that occurred during the false alarm of prediction as
well as an improvement in the probability of detection. ECRNN had analyzed PU statistics and result in better spectrum sensing.
This paper also supported multiple SUs that would increase the speed of spectrum sensing and data transmission over the
available limited spectrum at the same time.
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1 Introduction

The advancement of 5G technologies and modern wireless
communication systems had led to the scarcity of spectrum
resources [1]. From different studies, it has been reported that

there is a variation of spectrum usage from 7% to 34%. So, to
overcome the scarcity of the limited spectrum resources,
Cognitive radio (CR) appeared as a potent approach that can
balance the trade-off of demand and availability of spectrum
resources [2, 3]. The main concept of CR is to reuse the
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available unused frequency bands. These are also termed
white spaces or spectrum holes. This method also ensures that
there is no interference in the spectrum of licensed users [4].
The licensed user is technically termed a primary user (PU)
whereas unlicensed users are termed as a secondary user (SU)
(Fig. 1). The CR technology allows SU to access the available
unused spectrum frequency bands in a non-interfering way to
PU [5]. This makes spectrum sensing highly robust and effi-
cient. An intelligent, multi-dimensional, adaptive, and wire-
less communication device that learns from its experience,
plans, and determines future behavior to meet customer needs,
can be described simply as a cognitive radio [6]. Cognitive
radio has two major characteristics. One is the cognitive ca-
pacity that collects the information from its radio environment
is the skill of cognitive radio technology. The second is
reconfigurability that makes it possible to dynamically pro-
gram the cognitive radio according to the radio environment
necessary.

The four key functions of Cognitive Radio [7] are spectrum
sensing, management, sharing, and mobility. Radio is contin-
ually looking for the unused bandwidth known as the void in
the spectrum. This cognitive radio property is known as spec-
trum sensing. Once the spectrum holes are located, the avail-
able hole or channel is chosen by the cognitive antenna. This
cognitive radio property is referred to as spectrum manage-
ment. As long as the primary user does not require it, the
property of cognitive radio to delegate the spectrum holes to
secondary users is called spectrum sharing. It is the property
where, when a licensed (primary) user is identified, the cog-
nitive radio (CR) vacates the channel.

One of the aspects of 5G transmission is spectrum sensing
for fast data transmission and utilization of limited spectrum

band. Empty spectrum was utilized for the elimination of con-
gestion created due to traffic of a large amount of data. An
efficient spectrum sensing algorithm is integrated with current
5G technologies. There is no way for disruption or delay of
communication. Radio frequencies only can obtain spectrum
sensing in cognitive radio [8]. To make the idea of cognitive
radio performance, witnessing a licensed user’s unused spec-
trum is important. Thus, the primary user is sensed to enable
the mobility of the SU’s channel in another part of the spec-
trum; if the primary user initiates the transmission. Efficient
hardware is needed with minimal error. The detection thresh-
old is the key. The intervention in the worst-case scenario
should be considered. Future study of the spectrum and deci-
sions rely on the right sensing of the primary consumer. This
is known as the dynamic management of the spectrum.

Parametric and non-parametric schemes are two categories
for spectrum sensing (SS). In the condition of parametric sens-
ing, there is a need for prior PU activity information. Whereas
in non-parametric schemes there is no need for any prior in-
formation. Therefore, non-parametric SS is preferred over
parametric SS [9]. There are some conventional non-
parametric (SS) techniques, for example, matched filter,
cyclostationary, and energy detection are commonly used to
their low computational complexity [10]. The matched-filter
detection is used when the CR has previous information about
PU. In this condition, a matched-filter can be considered to be
the best detection technique. It’s precise since the signal-to-
noise ratio (SNR) is maximized. The matched filter coincides
with the time version of the received signal. The primary user
presence is calculated by a contrast between the final output of
the corresponding filter and the specified threshold. Therefore,
the matched filter will work weakly if this information is not
correct. Similarly, a spectrum sensing technique that can dis-
tinguish the modulated signal from the additive noise is the
implementation of a Cyclostationary function detector.
Cyclostationary is a signal, provided it has a normal mean
and autocorrelation. The identification of cyclostationary fea-
tures will differentiate PU signal from noise and use the infor-
mation present in the PU signal that is not present in the noise
at a very low Signal to Noise Ratio (SNR). Due to its low
computational and application complexity, energy detection
is the most common means of spectrum sensing. No prior
information about the primary users is required by the re-
ceivers. An energy detector (ED) essentially considers the
primary signal as noise and, depending on the energy of the
signal detected, determines the presence or absence of the
primary signal. Even though these conventional SS methods
have low computational complexity but these low detection
rate with increasing communication advancements.

With the advancement of communication technologies
from 5G to 6G, it is needed not only to adapt to the changing
environment but also to adapt its hardware [11]. The current
spectrum sensing techniques for cognitive radio network

Secondary UserPrimary User

Fig. 1 An Example of Cognitive Radio Network
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(CRN) requires the adoption of artificial intelligence or ma-
chine learning features. The journey of the communication
system towards 6G needs deep learning trained transmission
control because the traditional approaches consume a large
amount of time and need prior information about PU and
spectrum. So, to resolve issues of the traditional approach in
CRN, this paper presented an application of computational
intelligence algorithms (machine learning or deep learning)
due to their learning ability so that they can learn the features
of spectrum data and predict the spectrum availability at base
transceiver stations in 5G.

1.1 Scope of the research

This paper is focused to design a blind spectrum sensing al-
gorithm with the application of deep learning for cognitive
radio (CR) system. The main scope of this paper is to mitigate
the limitations of existing spectrum sensing algorithms for PU
misdetection and to allow interference-free sensing of the
spectrum. Based on the properties of the input data covariance
matrix, this paper formulates the application of deep learning
for spectrum sensing techniques. This paper employs the ap-
proach to detect PU activities in a blind state in which the
sensing unit doesn’t have prior knowledge about the PU ac-
tivities or channel state. To overcome the limitations of prac-
tical spectrum sensing, aggregation of the most advanced
method is expected. The data covariance matrix has different
descriptive features such as energy, eigenvalues, etc.

It can be noted that the CNN model can learn the 2-D
structured input data matrix. It has the powerful capability to
extract correlation features from input covariance matrices.
Whereas at the same time RNN can extract temporal features
and can find time-shifted correlation features from the covari-
ance matrix. In this paper, we propose the hybrid ensemble
approach of CNN and RNN to extract energy correlation as
well as temporal correlation to learn the PU’s activities and
pattern for spectrum sensing.

1.2 Key contributions of research

The key contributions of this paper are as follows:
In this paper, a state-of-the-art about spectrum sensing in

cognitive radio is discussed along with detection techniques
and associated challenges. Related works of researchers are
also focused in this paper to explore their advantages and
limitations for further improvement.

& We have proposed an ensemble deep learning model that
supports a non-linear function termed ensemble CNN and
RNN (ECRNN) to test the presence of PU in data samples.

& Further, we have also conducted simulation analysis under
different test conditions to prove the efficiency of the pro-
posed model concerning existing models.

1.3 Organization of Paper

The remaining section of this paper are illustrated to be as
follows: Section 2 describes related works about spectrum
sensing or detection in cognitive radio networks. In
Section 3 paper illustrates the problem statement summarized
from existing works. Section 4 gives a descriptive overview of
the system model. Section 5 gives information about the per-
formance parameters used. Finally, in Section 6 conclusion,
limitations and future research scope are discussed.

2 Related work

In CRN, one of the major research topics for industrial applica-
tion is spectrum sensing as the demand for high-speed data trans-
mission is increasing day by day. Themajor function of spectrum
sensing technologies is to sense the availability of spectrum. In
the last few years, there is the development of different tech-
niques for spectrum sensing for different scenarios such as blind,
semi-blind, and non-blind. One of the approaches for the blind
scenario was proposed by [9] termed as maximum to average
eigenvalue ratio detector (MAER) and arithmetic to the geomet-
ric mean detector (AGM) [10] in which there is no need for
known noise power. Similarly, in [12], a maximum eigenvalue
detector (MED) and generalized likelihood ratio test-based signal
subspace eigenvalues detector (GLRT-SSE) [13] was developed
for the semi-blind scenario. This is termed semi-blind because
there is a need for known noise power. Whereas in the condition
of non-blind network scenario, sensing samples are needed for
the detection process of PU. It has been reported in [14] that in
non-blind conditions, there is the transition of PU from the silent
state to transmission state and remains in the same period for the
entire process. The HiddenMarkovModel [15], had resolved the
issues related to PU for such activities. In the current research
area, machine learning or deep learning is also proposed for
spectrum sensing. The local spectrum sensing quality can be
improved by introducing the concept of cooperative spectrum
sensing (CSS) whose function is to combine the local sensing
information. In [16], the application of deep reinforcement learn-
ing (DRL) was adopted to classify the SU signals and resolved
the CSS issues by reducing the signaling of SUs. Another deep
learning approach such as long short-termmemory (LSTM) [17]
and convolutional neural networks (CNNs) [18] was proposed to
detect available spectrum by learning the correlation between the
energy of PU signals. In [19] hierarchical CNN model was pro-
posed to learn co-relation between the energy of PU signals as
well as the pattern of PU activities recorded from previous sens-
ing data to enhance future sensing performance. It should be
noted that CNN has shown up its capabilities to learn spatial
features extracted from signals. At the same time, LSTM had
shown up their capabilities for extraction of temporal features
from energy correlation samples.
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In [20] a combined CNN-LSTM detector was used. The
energy correlation features are extracted frommultiple sensing
inputs and PU activity pattern was learned. The detection
probability was increased by analyzing PU activities. The lim-
itation of CNN-LSTM is that its computational complexity is
somehow dependent on its input. In [21] spectrum sensing
was proposed using LSTM which established the temporal
correlation from spectrum data. The PU activity is also
exploited to improve the performance of CR. The PU activi-
ties such as off period and the duty cycle is used as statistics to
train the LSTM network. The detection process and classifi-
cation accuracy were improved in terms of training time and
execution time. The drawback of [21] was observed that it
doesn’t support multiple PU and SU scenarios which are con-
sidered to be a generic scenario. In [22] efficiency of DL is
presented for spectrum sensing. But still in these DL algo-
rithms learning process is generally based on a single feature
that degrades performance in the noisy scenario. Furthermore,
in [23] spectrum sensing is performed using two-autoencoder
for OFDM scenario that gives better performance over tradi-
tional OFDM. In [24] CNN model is used for cooperative
spectrum sensing (CSS) for multiple secondary users in a
cognitive radio network (CRN) by using spectral and spatial
correlation of each sense. In [25] deep reinforcement learning
was used to explore the spectrum sensing issues in CRN. Even
though these existing deep learning algorithms improve the
detection performance that needs prior statistical knowledge.
These methods are vulnerable to noise uncertainty.

3 Problem statement

Themain working principle of spectrum sensing techniques to
sense the available spectrum at base transceiver stations and to
check whether the primary user is present or not. So, this arises
an issue to track all channel statistics, spectrum characteristics
to predict the available spectrumwith high probability. During
the last decade, there are much research presented, the most
used statistic is the covariance matrix that contains different
discriminative detection features. The key problem associated
with spectrum sensing traditional techniques there is a require-
ment of prior knowledge about both PU signal and noise then
only optimal performance is achieved. In traditional non-
cooperative detection methods such as energy detection or
cyclostationary detection algorithm there arise the problem
of hidden terminal that generally occurs when cognitive radio
is shadowed due to very low SNR values and detection
methods cannot SNR sense the PU’s presence. Designing an
effective and robust spectrum sensing technique is a quite
challenging task due to the level of complexity, accuracy,
computational cost, error rate, etc. These performance param-
eters create a trade-off between the spectrum sensing tech-
nique and its requirements. Therefore, to resolve these issue

that arises a need for prior knowledge about primary users,
computational intelligence algorithms showed up their effi-
ciency. But still, there is a need to improvise their performance
in terms of probability and accuracy of detection with reduced
complexity. So, this paper had adopted a deep learning ap-
proach for detection and classification of statistics as PU and
SU.

4 Methodology

4.1 System model

In this model, we have considered a multi-antenna scenario of
cognitive radio, as shown in Fig. 2. This figure illustrates
multi-antenna (Am) with observation vector (Vn) for spectrum
sensing. The spectrum sensing problem is formulated on the
following hypothesis, Eqn (1):

H0 : Yn ¼ Un

H1 : Yn ¼ hnX n þ Un
ð1Þ

Where,H0 represents the hypothesis of absence of PU i.e., PU is
silent whereasH1 represents the hypothesis of the presence of PU
i.e., PU is in an active state. Xn and Yn represents the PU trans-
mitted signal vector as well as the received signal vector. hn∈Cm,
that represents the channel index between PU and SU. Un repre-
sents the received noise. In some scenarios, it may suffer some
path loss or fading. As per the signal vector, we can design the
decision statistics that detect PU state to be H1 in test statistics (T)
based on decision threshold (Ds). If the T >Ds then it will repre-
sent the presence of PUs otherwise, the PUs are absent. As illus-
trated in Fig. 2, the conventional framework for spectrum sensing
in which transmitted signals are sampled together and the further
test statistic is calculated for decision making. The CR will col-
lect all signal vectors from multiple SUs system and further
features associated with a signal vector such as energy, covari-
ance matrix, co-relation, etc. to design the decision statistics
methods such as ED [7, 26], MED [12], CM-CNN [18], CAV
[26], etc. Based on a threshold value, test statistics will compare
and finally decide the presence of PU.Hence, it can be stated that
test statistics have importance for detection performance im-
provement. So, in this paper, we have focused on the deep learn-
ing model to design decision statistics to show its efficiency over
existing techniques.

4.2 CNN-based framework for Spectrum sensing

We have adopted the deep learning approach and termed it as
ensemble CNN and RNN (ECRNN). As compared to machine
learning, deep learning showed up its proficiency of great learn-
ing capacity. Another issue with the machine learning problem
is the overfitting problem that is resolved by deep learning.
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Therefore, we have adopted deep learning for PU presence
from previous signal statistics. While training there is a require-
ment of labeled data, even for the deep learning (DL) approach.
In this paper, we have taken Y = {(x1,l1), (x2,l2), (x3,l3),
………,(xN,lN)} where Y is termed as a training set having
training data of size ‘N’ with input data, xN and lN represents
the labeled data. The PU presence is represented by Y. As it is
observed that with the increased size of training input, the com-
putational complexity increases. For PU sensing, sampling sta-
tistics may contain redundant data, because it may be from the
same distribution source. Therefore, there is a requirement to
pre-processing the input data before the start of the training
process. The energy correlation and cyclostationary correlation
are the two most important features that are applied in this
paper.

In this paper, we have proposed an ensemble deep learning
approach using CNN, as illustrated in Fig. 3. In this, two inputs,
sample covariance matrix (⊙n) are fed into two CNN layers and
one RNN layer respectively, as covariance matrix is considered
to be the complex mathematical problem that contains real and
imaginary parts. CNN and RNN layers are illustrated in Figs. 4
and 5 respectively. Here RNN is used for time-shifted correlation
feature extraction because it can work effectively in time series
data. In the case of the H0 hypothesis, the feature information
such as energy is given in diagonal elements of the real part of the

matrix whereas, in the case of the H1 hypothesis, feature infor-
mation is scattered. The difference between features ofH0 andH1

is enough for the learning process of CNN. The training covari-
ance matrices (⊙n) of both hypotheses are fed into three layers of
CNN. Then each layer works on three different feature vectors
out of the input covariance matrix. In this architecture, three
features are considered, energy, correlation, and time-shift signal
correlation, individually and lastly their decisions are ensembled
together to make a final decision of either presence of PU, DH1

⊙nð Þ or absence of PU, DH0 ⊙nð Þ, such that DH0 ⊙nð Þ
+ DH1 ⊙nð Þ =1 where D stands for decision parameters of CNN.

The convolution component in our spectrum sensing structure
consists of three sub-blocks. Each sub-block also consists of a
convolution layer a leaky rectified linear unit (LReLU) layer,
which is also linked together in tandem. The retrieved spatial
features of input data are fed into a 2D convolution layer. Each
filter is set to 3 × 3 in the convolution layer. The convolution
layer depth for the basic ith sub-block is set to Ci. To keep the
result as same as that of the input set the stride to one and use the
zero paddings. The LReLU layer activation layer complements
non-linearity to the CNN. The convolution layer is linear that
cannot classify non-linear data without the presence of LReLU.
The fully connected layer classifies the function by obtaining the
results of extraction of the function. At last, a fully connected
(FC) layer is applied that performs classification process taking

Transmitted signal

Vector

(x1, x2,……,xn)
Multiple 

SUs

Scenario

PU transmission

Signal Statistics 

Calculation (Energy, Co-

variance, Co-relation, 

etc.)
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PU or not.
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H
1

Fig. 2 Conventional framework for spectrum sensing

Fig. 3 The network structure of
ensemble CNN
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input from the output of the previous convolution layer. The
performance of the FC layers is then integrated into the ensemble
classification system. By applying the ensembling approach final
decision about the presence of PU or absence of PU is takenwith
the boosting function. Indexes 1 and 0 will present the presence
and absence of PU respectively. The performance of CNN can
be decreased there is no information about the presence of SU
that makes the learning process difficult. Here, many CNN
models with multiple SU permutations can be trained simulta-
neously that can achieve the highest accuracy. A permutation
operation is performed for the correct order of the SU index that
can be found in a data array to boost SS efficiency such that the
sensing result of neighboring SU is located close to one another.
The trained model can then be used to evaluate H1 state or H0

state based on different detecting outcomes. While preparation
for the spectrum sensing process can lead to computational over-
head, the conclusion of the final sensing result can, as shown later
in the performance assessment, be carried out with relatively low
overhead so that the operation of our proposed system in real-
time is feasible.

4.3 Network training and complexity analysis

4.3.1 Network training

When dealing with the offline based training modules the
unlabelled samples are accumulated and constructed to bring
about the formation of training data set, (X,L) = {(x1,l1), (x2,l2),
(x3,l3),.…,(xN,lN)}.The (X, l) is the training sample in the equa-
tion and the value of the example persisting in it. While taking
into account only a single example in this set, (x,l) then they in it

is indicative of the input value provided to the neural network for
the training purpose. The value y as an input can be a raw ob-
servation vector or can also be utilized in the form of the test
statistic that has been derived from the observational vector. The
X and L are indicative of the collections comprising the data
associated with x and data associated with l respectively. The
architectural design for the training has been done by utilizing
the ensembling of CNN and RNN architecture to extract the
features from the training set. The study concludes the ECRNN
training requires to be dealing with the classification problems as
the spectrum identification and sensing is a binary testing chal-
lenge. Therefore, the (xN,lN) being a single part of the set, the
label for it can be encoded as one vector, Eqn (2):

lN ¼ 1½ �N ; H1

0½ �N ; H0

� �
ð2Þ

The Training process of ECRNN shall maximize the like-
lihood, L(⊙), based on Eqn (3).

L ⊙ð Þ ¼ P LjX ;⊙ð Þ ¼ ∏
k

k¼1
D ⊙ð ÞH1

xNð Þ
� �lN

D ⊙ð ÞHo
xNð Þ

� �1−lN ð3Þ

In terms of log-likelihood:

l ⊙ð Þ ¼ logL ⊙ð Þ
¼ ∑

N

n¼1
lN logD ⊙ð Þ xNð Þ þ 1−lNð Þlog 1−D ⊙ð Þ xNð Þð Þ ð4Þ

This can be used for maximizing the cost function, Cf. The
posterior probability enhancement P(L|X), can only be
achieved by the optimal ⊙ evaluation that forms the key ob-
jective for the proposed model training process.

Fig. 4 CNN Architecture

Fig. 5 RNN Architecture
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C f ¼ max P LjXð Þ;⊙ð Þ ð5Þ

The derivation of a well-trained ECRNNmodel is achieved
by continuously updating the ECRNN network parameters via
another backpropagation algorithm of calculation that is de-
pendent on the cost function achieved the well-trained net-
work is represented as Eqn (6):

D*
⊙ xð Þ ¼ D ⊙ð Þ*jH1

xð Þ
D ⊙ð Þ*jH0

xð Þ

" #
ð6Þ

The expression comprises of the well-trained CNN net-
work having input as x which is indicated by D*

⊙ xð Þ. The
expression D ⊙ð Þ*jH1

xð Þ depicts the class score for H1 or H0.

These can be used to derive the posterior probabilities associ-
ated with two hypotheses, Eqn (7):

H1 : P H1jxð Þ ¼ D ⊙ð Þ*jH1
xð Þ

H0 : P H0jxð Þ ¼ D ⊙ð Þ*jH0
xð Þ ð7Þ

When the system if completely and efficiently trained with
respective parameters, we can say that the training process is
converged as well as “well trained”. On referring to the Bayes
theorem Eqn (8) [28]:

P xjH1ð Þ ¼ P H1jxð Þ: P xð Þ
P H1ð Þ ¼ D ⊙ð Þ*jH1

xð Þ: P xð Þ
P H1ð Þ

P xjH0ð Þ ¼ P H0jxð Þ: P xð Þ
P H0ð Þ ¼ D ⊙ð Þ*jH0

xð Þ: P xð Þ
P H0ð Þ

ð8Þ

Where, P(x|H1) = conditional probability, P(Hi) = prior prob-
ability of Hi, and P(x)=marginal probability. P(x|H1) and P(x|
H0) are calculated and the conclusion is drawn that the NP is
indicative of the optimum statistic for the test which is the
likelihood ratio (LR).

4.3.2 Neyman Pearson detection

Tomaximize the probability of detection (Pd) for a given PFA,
we decide H1 if

Pd ¼ P xjH1ð Þ
P xjH0ð Þ > Ds ð9Þ

The derivation of the ECRNN has been made as Eqn (10),
x utilizing the above equations.

LECRNN xð Þ ¼ D ⊙ð Þ*jH1
xð Þ

D ⊙ð Þ*jH0
xð Þ :

P H0ð Þ
P H1ð Þ

¼ D ⊙ð Þ*jH1
xð Þ

D ⊙ð Þ*jH0
xð Þ ⩾Ds ð10Þ

TheDs is the threshold value selected that is derived by the false
alarm constraint and the LECRNN(x) is the test statistic framework
indicating the ECRNN. The ECRNN testing framework helps in
acquiring posterior probabilities for two distinct hypotheses by
training the data set of (X,L). However, it has been found that
the training process generates posterior probabilities associated
expressions that were not suitable for testing the samples that
command the requirement of the conditional probability-based
derivation of the ECRNNduring the detection process. To achieve
this P(x|H1) and P(x|H0) are being derived as the conditional
probability that utilizes the Bayes’ hypothesis for derivation. The
process follows the attaining ECRNN that lays on theNP theorem.
Further, the decision-making process shall inculcate comparison
with a detection threshold (Ds). The threshold value can even be
determined with a method referred to as the Monte Carlo process
that aids in achieving the Pd required. The training process is
performed using Algorithm as shown below:

4.3.3 Testing process

The test data that is to be utilized during the detection based on

the test framework is represented as eX for a single as well as
multi SU system that aims at achieving this data as a set of

unlabelled samples. The ECRNN is trained for eX samples of
the collected data and further the ECRNN steps are processed
for the test samples, this is denoted by the Eqn (11):

LECRNN eX� �
¼ D ⊙ð Þ*jH1

xð Þ
D ⊙ð Þ*jH0

xð Þ ⩾Ds ð11Þ

The inherent comparison with the threshold value that has
been preset previously, can bring about the decision-making pro-
cess after achieving the test statistic. It has also been found that
currently, an existing algorithm such as DL-based sensing of the
spectrum has the capability of completely replacing the system
with the neural network for end-to-end analysis and detection.
The work in this process shall not comprise of the provision to
define the threshold for attaining the Pd. The ECRNN based
schemes for spectral identification hold within itself the frame-
work for determining the current practical threshold value during
the function other than other frameworks, whose objective of to

Algorithm 1 Training algorithm

3241Peer-to-Peer Netw. Appl. (2021) 14:3235–3249



keep updating the threshold value to achieve the desired Pd. The
complete algorithm of ECRNN (called Specturum Sensing algo-
rithm using ECRNN) is given below :

4.3.4 Complexity analysis

While training any network, the complexity of CNN for pro-
cessing one data sample is evaluated to be as in Eqn (12) [29]:

O ∑P
p¼1Nk;p−1S2k;pnc;pO

2
k;p

� �
ð12Þ

where P =Number of convolution layer with Nk, p− 1 to be the
number of input channels. WithNk, p as number of convolutional

kernels for pth kernel with the spatial size of S2k;p that generates

O2
k;p of the output feature map.We have designed the CNN layer

of ECRNN with two convolution layers and taken the input of
real and imaginary data of size (S × S × 1). The CNN stride is set
to 1 to reduce the computational complexity. While for the RNN
network, the computational complexity is dependent on the num-
ber of neurons and internal parameters of the network. This can
be illustrated in Eqn (13):

O nið Þ ð13Þ

Fig. 6 Dataset Preparation for ECRNN

Fig. 7 Pd versus SNR Fig. 8 Pf versus Pd

Algorithm 2 Spectrum Sensing using ECRNN

3242 Peer-to-Peer Netw. Appl. (2021) 14:3235–3249



Where ni is the number of neurons present in hidden layers.
Therefore, the complexity of ECRNN for one data sample is
represented as in Eqn (14):

O ∑P
p¼1Nk;p−1S2k;pnc;pO

2
k;pni

� �
ð14Þ

4.3.5 Dataset preparation

In this subsection, the dataset required for training the pro-
posed ECRNN model is prepared. The spectrum data is used
for training and test validation purposes. The data is captured
through a simulation setup (Fig. 6). The clean PU signal is
generated from the generator and its spectrum power is mea-
sured as σ2

x :

The Additive white Gaussian noise (AWGN), n, is added
to achieve a required signal-to-noise ratio (SNR). This noise is
added to PU signal for timestamp t.

X ¼ x1; x2;…:xt½ �T ð15Þ

For this study, approx. 5000 data samples are generated in
the SNR range − 15 dB to +5 d B having equal number of PU
signal and AWGN signals. The generated dataset is divided
into 2 sets 70% training and 30% testing samples.

5 Results and discussions

In this section, the simulation setup of ECRNN is presented.
In our implementations, we have utilized the MATLAB plat-
form for training and testing scenarios. The training is per-
formed with different data samples having two classes i.e.
H1 and H0. The individual CNN or RNN are trained on dif-
ferent signal features and their results are ensembled together
to generate the final result.

For training, the model simulation was performed with
10,000 data samples in which 7000 data samples are used
for training and 3000 data samples are used for testing. The
learning rate was set to be 0.0003 and 64 sample patches are
used. The performance metrics are used to show the relation-
ship between the probability of false alarm rate (Pf), probabil-
ity of detection (Pd), and probability of misdetection (Pm). The
variation of Pd concerning Pf is also observed. The training
process is performed using Algorithm 1.While Algorithm 2 is
used to test the data samples for the presence of PU.

5.1 Relation between Pf and Ds

Theorem 1 In spectrum sensing, theoretically, the probability
of false alarm (Pf) is related to decision threshold (Ds) value as
following in Eqn (16):

P f ¼ 1−Dsð ÞM−1 ð16Þ

Proof When there is the presence of noise in the channel, the
Cumulative Distribution Function (CDF) of Ds is evaluated as
Eqn (17):

Fig. 9 Pf versus Pm

Fig. 10 ROC Curve for single SU
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Fd ¼ 1− 1−dð ÞM−1; 0≤d≤1 ð17Þ
Where Pf is represented as Eqn (18):

P f ¼ Pr d≥DsjHo½ � ¼ 1−Fd ð18Þ

Where Ho represents the absence of PU.
By substituting the value of Fd into Eqn (19), it has been

proved the relationship between a false alarm and decision
threshold. So, the threshold can be computed as:

Ds ¼ P
1

M−1
f ð19Þ

5.2 Relation Pm and Pd

Theorem 2 For t cyclostationary detection, the Probability of
misdetection (Pm) is calculated as in Eqn (20):

Pm ¼ 1−Pd ð20Þ

Proof: Probability of detection (Pd) is calculated as in Eqn
(21):

Pd ¼ Pr

h
d≥DsjH1½ � ð21Þ

Where,
Q(.) = q-function.
d = signal-to-noise ratio (SNR) at the receiver and H1 rep-

resents the presence of PU.
The probability of misdetection(Pm) is calculated as in Eqn

(22):

Pm ¼ 1−Pd ð22Þ

Figure 7 represents the graph of Probability of detection
(Pd) concerning SNR whereas Fig. 8 represents the graph of
Pf concerning the probability of detection Pd. The figure
shows that with an increasing number of samples (NoS) the
Pd increases. Similarly, Fig. 9 represents the probability of
misdetection (Pm) with respect Pf. The figure concludes that
with increasing samples the Pm decreases.

Fig. 11 ROC Curve varying SNR for single SU

Fig. 12 ROC Curve varying NoS for single SU
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5.3 Performance parameters

While simulating the proposed ECRNN model, the perfor-
mance parameters used here are Receiver Operating
Characteristics (ROC) for Pd against Pf for single and multiple
PU. The ROC curve represents the area to show the relation-
ship between Pd and Pf. The area increases with increased
model performance. Three scenarios are created 1st is to ob-
serve at fixed SNR, the second with variable SNR, and the
third is variable NoS. The performance of ECRNN is com-
pared with CNN [19] and ED. Another parameter used to
evaluate the performance of the proposed ECRNN are com-
putational time and error rate. The time represents the total
execution time for performing training as well as testing sim-
ulation. The error rate represents the mean square error (MSE)
that occurred during training. This is evaluated by finding the
mean of the squared difference between target and recon-
structed value. MSE is calculated as in Eqn (23).

lossmse ¼
∑N

i¼1

�
xt−xrð Þ2

N
ð23Þ

Where, xt = target value, Xr = reconstructed value, N =
Number of samples.

5.4 Result analysis

Figure 10 illustrates the comparative ROC curve for dif-
ferent spectrum sensing methods. The figure is plotted for
SNR = -15 dB. For comparison, the NoS taken is 20. In
the comparison of ECRNN with other techniques such as
ED [7] and CNN [30] the training data and scenario are
kept the same. This simulation was performed for single
PU and single SU and trained accordingly. As each mod-
ule contains different features and input to CNN is single
column so, we have taken a 1-D CNN network. The mod-
el was created, trained, and tested on the MATLAB plat-
form using the deep learning library. We can analyze from
the graph plot that ECRNN gives a better result as com-
pared to other sensing techniques even at SNR of −15 dB.
Due to the ensembled architecture of ECRNN, it gives
better performance because it combines the combined re-
sults from different features while other existing

Fig. 13 ROC Curve for multiple SUs

Fig. 14 ROC Curve varying SNR for multiple SUs
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techniques give results on a single feature such as energy
correlation. Figure 9 represents the ROC for the probabil-
ity of detection (Pd) concerning false alarm (Pf) as well as
ROC for the probability of misdetection (Pm) concerning
Pf. Figure 11 represents the ROC curve for the Pd

concerning Pf as well as the ROC curve of Pm concerning
Pf. In this scenario, a comparison was performed with
varying SNR values from 0 dB to -15db. The graph illus-
trates that with increasing SNR the Pd decreases and Pm
increases. Figure 12 represents the ROC curve for the Pd
concerning Pf as well as the ROC curve of Pm concerning
Pf. In this scenario, the comparison was performed with
varying data samples with -15 dB SNR. The graph illus-
trates that with an increasing sample the Pd increases and
Pm decreases. Figure 13 illustrates the comparative receiv-
er operating characteristics (ROC) curve for different
spectrum sensing methods. The figure is plotted for
SNR = -15 dB for multiple SUs scenarios and the NoS
taken is 20. The graph represents the ROC for the prob-
ability of detection (Pd) concerning false alarm (Pf) as
well as ROC for the probability of misdetection (Pm)
concerning Pf. Figure 14 represents the ROC curve for
the Pd concerning Pf as well as the ROC curve of Pm
concerning Pf. In this scenario, a comparison was per-
formed with a varying number of SU, and the values of
SNR are -15db. The graph illustrates that with an increas-
ing number of SU the Pd decreases and Pm increases.
Figure 15 represents the ROC curve for the Pd concerning

Pf as well as the ROC curve of Pm concerning Pf. In this
scenario, a comparison was performed with varying data
samples with -15 dB SNR under multiple SUs scenario.
The graph illustrates that with an increasing sample the Pd
increases and Pm decreases.

Similarly, Table 1 represents the computational time eval-
uated in seconds for training and testing samples using the
ECRNN algorithm. The algorithm is implemented in
MATLAB and executed on a PC with an Intel Core i5
3.71GHz CPU and 2 GB Nvidia graphics with 8GB RAM.
In summary of existing work, the proposed method achieves
the optimal solution concerning detection. Even though the
ECRNN had achieved optimal solution but still there is need-
ed to reduce the computational complexities. If this model is
parallelly executed on GPU, then it would be very much help-
ful to reduce computational complexity. Similarly, in Table 2
error rate is evaluated for the detection process and it can be
inferred that ECRNN achieved less training error as compared
to the CNN model.

6 Conclusion

This paper is dedicated to spectrum sensing problems using
the application of CNN models. For this ensemble, CNN and
RNN technique is developed and termed as ECRNN and pre-
sented over single and multiple user scenarios. In the first

Fig. 15 ROC Curve varying NoS for multiple SUs

Table 1 Computational
Time Analysis (in
seconds)

Algorithms ECRNN

For Single SU 85.97 s

For Multiple SUs 166.14 s

For Varying SNR 314.26 s

For Varying Samples 297.011 s

Table 2 Error Evaluation

Algorithms ECRNN CNN [15]

For Single SU 0.0004320 0.0094

For Multiple SUs 0.000220 0.0125

For Varying SNR 0.000275 0.0115

For Varying Samples 0.0004378 0.0098
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scenario, a single SU is considered under a varying NoS and
varying SNR. Whereas in the second scenario, multiple SUs
was considered with varying number of samples, SU and
SNR. For training energy, correlation and time-shifted corre-
lation was considered to be as a feature vector and individual
DLmodel was trained and their results are ensembled together
to give the final result. The detection of test data samples was
performed using an ensemble approach which results in the
optimal solution. The simulation results were performed and
performance was evaluated by ROC curve analysis as well as
time complexity and error rate. The result analysis showed
better performance concerning the CNN model as well as
the traditional ED model.

In this paper, we provide a theoretical analysis of the ad-
vantages of ECRNN over other methods. Then simulation
experiments are performed for the probability of detection
concerning variable SNR and showed up its robustness as well
as scalability. The results have shown that the proposed CM-
CNN method could achieve almost the same performance as
that of the optimal E-C detector whether the PU signals are
independent or correlated.

The limitation of this work is that with increasing SU there
is a decrease in detection performance which needed to be
optimized. These limitations can be improved in the future
by deciding the optimal number of SU that can be handled.
In the future, this work will also be enhanced with a path
fading channel scenario along with noise.
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