Peer-to-Peer Networking and Applications (2021) 14:2826-2839
https://doi.org/10.1007/512083-021-01103-8

l‘)

Check for
updates

An Optimized Byzantine Fault Tolerance Algorithm for Consortium
Blockchain

Yuxi Li' - Liang Qiao’ - Zhihan Lv'

Received: 30 November 2020 / Accepted: 11 February 2021 / Published online: 16 March 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract

According to different application scenarios of blockchain system, it is generally divided into public chain, private chain
and consortium chain. Consortium chain is a typical multi-center blockchain, because it has better landing, it is supported
by more and more enterprises and governments. This paper analyzes the advantages and problems of Practical Byzantine
Fault Tolerance (PBFT) algorithm for the application scenarios of the consortium chain. In order to be more suitable for
consortium chains, this paper proposes a new optimized consensus algorithm based on PBFT. Aiming at the shortcomings
of PBFT, such as the inability to dynamically join nodes, low multi-node consensus efficiency, and primary master node
selection, our optimized algorithm has designed a hierarchical structure to increase scalability and improve consensus
efficiency. The simulation results show that compared with PBFT and RAFT, our new consensus algorithm increases the data
throughput while supporting more nodes, and effectively reducing the consensus delay and the number of communication
times between nodes.

Keywords Byzantine fault tolerance - PBFT - Consensus algorithm - Consortium blockchain

1 Introduction

Blockchain is an underlying technology that supports Bit-
coin operation proposed by Satoshi Nakamoto in 2008 [1].
In essence, it is a decentralized and multi-point maintenance
distributed database system by comprehensively using cryp-
tography, consensus algorithm and point-to-point commu-
nication [2]. It has the characteristics of unforgeability,

Yuxi Li and Liang Qiao contributes equally to this work, both are
the first authors.

This article is part of the Topical Collection: Special Issue on
Blockchain for Peer-to-Peer Computing

Guest Editors: Keping Yu, Chunming Rong, Yang Cao, and
Wenjuan Li

P4 Zhihan Lv
lvzhihan @gmail.com

Yuxi Li
7117139@163.com

Liang Qiao
leongiaoove @ gmail.com

School of Data Science and Software Engineering,
Qingdao University, Qingdao 266071, China

@ Springer

information traceability, anonymous protection, openness
and transparency [3]. According to different application sce-
narios of blockchain system, such as Artificial Intelligence
and Internet of Things [4, 5].it is generally divided into pub-
lic chain, private chain and consortium chain [6]. The public
chains, such as Bitcoin [1] and Ethereum [7], are com-
pletely decentralized and open to all nodes that can access
the Internet. All nodes can join, exit, access, and submit
transactions without restrictions [8]. Private chains are only
used by individuals and private organizations, generally not
open to the outside, and there is a certain degree of central-
ized control [9]. The consortium chain is a multi-centered
structure of the blockchain, which is jointly constructed
and maintained by agreed organizations [10]. Each node
usually has a corresponding entity organization. After the
node is authenticated and authorized, it can join, access and
submit transactions. Each consortium member also has dif-
ferent data permissions. Consortium chain is the current
mainstream direction, which allows multiple companies and
institutions to achieve substantial and powerful collabora-
tion, and can promote the healthy and orderly development
of the blockchain industry.

The consensus mechanism is a necessary element and
core part of the blockchain, and it is the key to ensuring the
efficient cooperation of the blockchain system [11]. In the

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-021-01103-8&domain=pdf
http://orcid.org/0000-0003-2525-3074
mailto: lvzhihan@gmail.com
mailto: 7117139@163.com
mailto: leonqiaoove@gmail.com

Peer-to-Peer Netw. Appl. (2021) 14:2826-2839

2827

blockchain system, how to make each node keep their data
consistent through a rule is a core issue. The solution to this
problem is to develop a consensus algorithm to achieve the
consistency and correctness of the ledger data on different
nodes. This requires learning from existing algorithms
for achieving state consensus in distributed systems [12],
determining the mechanism for selecting accounting nodes
in the network, and how to ensure that the ledger data forms
a correct consensus in the entire network. The existing
blockchain consensus algorithms can be roughly divided
into Proof-of-X (PoX) consensus algorithms and Byzantine
Agreement algorithms [13].

The PoX series of algorithms mainly include Proof-of-
work (PoW) [14], Proof-of-stake (PoS) [15] and Delegated-
proof-of-stake (DPoS) [16]. The PoX algorithm is mainly
applicable to public chains, which reach consensus by
investing tokens on the chain, increasing the cost of service
request proposals, and relaxing the need for final con-
sistency confirmation [17, 18]. The private chain mainly
uses the distributed consensus algorithm RAFT to complete
the consensus [19]. RAFT mainly faces node downtime,
without considering malicious nodes to tamper with data,
and cannot solve the byzantine fault tolerance problem. In
the consortium chain environment, it is not necessary to
add a token incentive mechanism on the chain. Most of
the consortium chains currently use the Byzantine Agree-
ment algorithms. The Byzantine Generals problem refers
to “it is impossible to try to achieve consistency through
message passing on an unreliable channel with message
loss.” In order to solve the Byzantine generals problem,
the method adopted by the Byzantine agreement is to
ensure that a consensus can be reached through a dis-
tributed method. Even if a Byzantine failure occurs, it
will not be affected. The “Byzantine failure” refers to the
execution of the algorithm in the distributed system. Any
mistake, including irrational behavior. PBFT is a Byzantine
consensus algorithm and a general solution to the consis-
tency problem of distributed systems with Byzantine error
nodes. In the PBFT algorithm, the service is deterministic,
that is, the results obtained by executing the operations in
the same state under each consensus node are the same, and
each consensus node must have the same when starting to
perform the operation. status. The brief operating steps of
the PBFT algorithm are: First, the client sends a request to
the leader node. Second, the leader broadcasts the request
to all backup nodes. Then, all nodes perform the requested
service and then send the reply back to the client. Finally,
when the client receives f+1 replies from different nodes in
the network and obtains the same result, the request will be
successfully processed, where m is the maximum allowed
number of failed nodes. PBFT [20] is a Byzantine Agree-
ment algorithm, which can reduce the operating complexity
of the byzantine agreement and completely separate the

blockchain from the token reward mechanism on the chain.
PBFT has a small number of startup nodes, a relatively
high consensus efficiency, and a fault tolerance rate close
to 1/3, which does not require a lot of computing power
to maintain. But PBFT also has some shortcomings. For
example, the PBFT algorithm uses a C/S architecture [21],
cannot adapt to P2P networks, cannot dynamically sense the
number of nodes, and its performance drops sharply as the
number of nodes increases [22, 23]. There is also the prob-
lem of low scalability, and the random selection of primary
node leads to the problem of selecting malicious node as
primary node [24].

The contribution of this paper is mainly to propose
Scalable Hierarchical Byzantine Fault Tolerance (SHBFT),
which is more suitable for multi-node participation in the
consortium chain. The SHBFT algorithm optimizes the PBFT
algorithm in many aspects. By improving the consensus node
partition structure and making it hierarchical, it reduces the
algorithm consensus delay and improves data throughput.
The selection and impeachment mechanism of the master
node is set in the SHBFT algorithm to optimize and improve
the consensus efficiency. And design a dynamic joining
mechanism of nodes to improve the scalability and dynam-
ics of the algorithm. Moreover, in the SHBFT algorithm, all
nodes participate in the consensus while ensuring the con-
sensus efficiency, and local consensus can reach a global
consensus.

2 Current status of BFT-type consensus
mechanism

Consortium chain has better landing, so it is supported by
a lot of enterprises and governments. At present, there are
few consensus algorithms that are really proposed for the
consortium chain. In 1999, Castro and Liskov proposed
Practical Byzantine Fault Tolerance [20], or PBFT for
short. This is the first time that the complexity of the
Byzantine agreement has been reduced from exponential
level to polynomial level, which is of great significance.
PBFT is not proposed for the consortium chain, but PBFT
can solve the byzantine problem and be applied without
token incentives [25]. However, its application is limited due
to its inability to dynamically join nodes, low multi-node
consensus efficiency, and primary master node selection.
Therefore, in terms of blockchain, many researchers have
made various improvements and innovations to the BFT
algorithm.

In terms of consensus strategy, [26] proposed Egalitar-
ian Practical Byzantine Fault Tolerance (ePBFT), which
optimizes the process of selecting the master node in
PBFT so that each node in the chain is equal and
efficient. This mechanism performs omission operations

@ Springer

2828

Peer-to-Peer Netw. Appl. (2021) 14:2826-2839

without affecting the overall operation, improves the effi-
ciency of data backup and verification, optimizes the con-
sensus process of the blockchain, and accelerates the con-
sensus process [26]. Wang et al. [24] applied the voting
algorithm and proposed VBFT, which divides the nodes
in the network into three categories. Nodes with differ-
ent identities have different responsibilities, which weakens
the centrality to a certain extent, and the algorithm is
dynamic. When the number of nodes in the vBFT algorithm
changes, there is no need to restart the system, nor waste or
occupy resources [27]. Based on the combination of POV
mechanism and PBFT algorithm, Zhu et al. (2019) intro-
duced random parameters into the node recommendation
algorithm, and the reputation value is no longer the only cri-
terion for node recommendation. The ISODATA algorithm
is used to solve the shortcomings of PBFT message com-
plexity and poor scalability. And it simplifies the consen-
sus processing process of the PBFT algorithm to improve
efficiency [28].

In terms of consensus agreements, the HoneyBadgerBFT
was proposed by [29], and its process consists of two
parts: atomic broadcast and asynchronous common subset.
HoneyBadgerBFT can carry out consensus under an
asynchronous network and does not rely on any time
assumptions about the network environment [29]. Gueta
et al. (2019) proposed a scalable decentralized trust
infrastructure for blockchains, which solves the two major
challenges of scalability and decentralization, and can
work on hundreds of backup nodes while supporting the
execution of Ethereum smart contracts [30]. Li et al. [31]
designed EPBFT for the problem that PBFT is not suitable
for dynamic networks, and different steps can be taken to
reach a consensus according to the network environment of
the system. This algorithm uses verifiable random function
(VRF) to elect consensus nodes. And it simplifies the
checkpoint protocol and view change protocol to reduce
communication overhead and time required [31]. The
DBFT proposed by [32] establishes the double-response
mechanism. Moreover, the establishment of a self-conflict
checking mechanism solves the related problems of view
changes, and realizes the graceful performance degradation
under normal conditions [32].

In terms of method innovation, [33] implemented the
Musch BFT algorithm, and improved the scalability and
stability of the PBFT algorithm. By using windows,
the algorithm adapts to the actual number of faulty
nodes f, thereby avoiding unnecessary messages. The
algorithm can tolerate more failures, ensure reliability, and
increase the complexity of the message without sacrificing
delay [33]. Gao et al. [34] proposed T-PBFT, which uses the
characteristic trust model to construct a credible consensus
group to reduce the number of consensus nodes and
communication complexity [34]. The G-PBFT designed by

@ Springer

Lao et al. (2019) is a location-based and scalable consensus
protocol. It is mainly aimed at IoT-blockchain, so the
problem of malicious nodes is basically not considered.
Through the location-based endorser election and era switch
mechanism, the network overhead is reduced, and the
consensus efficiency and scalability are improved [35].

It can be seen that how to design a consensus mechanism
with low latency, high efficiency, and high throughput is a
problem that researchers all hope to solve.

3 Scalable hierarchical Byzantine Fault
Tolerance

3.1 SHBFT consensus mechanism model

SHBFT hierarchizes all consensus nodes and divides the
layers into the primary net layer and several secondary
net layers. Such a hierarchical structure can significantly
improve consensus efficiency. SHBFT can achieve consen-
sus of multi-layer nodes. For the convenience of description,
this paper mainly takes the situation of two layers as an
example. As shown in Fig. 1, it briefly shows the struc-
ture of SHBFT consensus mechanism in the two layers
situation.

3.1.1 Roles for nodes

In the SHBFT mechanism, nodes are divided into three main
roles, namely primary node, secondary node and tertiary
node, which participate in and complete the consensus
process together. Among them, the primary node and
secondary nodes are collectively referred to as leaders, and
the nodes that are not leader of this layer are collectively
referred to as backups.

1. Tertiary node: The tertiary nodes are responsible for
generating and sending messages to their secondary
node, which mainly include request information and
time stamp. And hash the message into a digest message
and send it to other tertiary nodes in the secondary net
layer. Tertiary nodes also have the ability to impeach
their secondary node.

2. Secondary node: The secondary node is responsible
for receiving messages from tertiary nodes, and
summarizes all request messages and its own request
messages. After the secondary node obtains the consent
of the tertiary nodes, it needs to further send the
message set in the primary net layer, where consensus
is then made.

3. Primary node: The primary node needs to collect the
message sets from all the secondary nodes for the final
summary and sort, and after reaching a consensus with

Peer-to-Peer Netw. Appl. (2021) 14:2826-2839

2829

Fig.1 Structure of consensus
mechanism ¢

Secondary N ode

the nodes of the primary net layer, the summarized set
is packaged into blocks.

3.1.2 Running framework

The main process of the SHBFT consensus mechanism
consists of three stages, and the description of each stage is
as follows.

1. Secondary net layer submission stage: As shown in
Fig. 2, each tertiary node in the secondary net layer
submits the operation request and timestamp to the
secondary node to which it belongs, and sends a digest
message to other tertiary nodes of the secondary net
layer. After the secondary node receives the messages
submitted by each tertiary node within a period of time,
the secondary node sorts the messages in time and packs
them into a set, and sends a response containing the set
information to each tertiary node. After verification by
the tertiary nodes, the secondary node and each tertiary
node reach a similar PBFT consensus, and each tertiary
node feeds back “commit” message to the secondary
node to agree to the secondary node to submit and
consensus in the primary net layer. When the secondary
node receives “commit” messages from f+1 (f is the
maximum allowed number of failed nodes) tertiary
nodes, the secondary node submits the request set to the
primary node of the primary net layer.

2. Primary net layer consensus stage: As shown in Fig. 3,
each secondary node broadcasts the message set to
other secondary nodes and the primary node in the
primary net layer. After the primary node of the primary
net layer receives the message set for a period of time,
it merges and sorts its own request and the message set

Leader — Primary Node

/

Primary Net Layer

/\
(Y- 20D Tertiary N ode
® Q. / (Backups)

submitted by all the secondary nodes according to time,
and consensus with the secondary nodes. The primary
node then packs the final set into a block. And digitally

time stamp -

operation :

0:0:1 a=1
0:0:2 b=1
0:0:4 b+=1

Fig.2 Secondary net layer submission stage

@ Springer

2830

Peer-to-Peer Netw. Appl. (2021) 14:2826-2839

0:0:1 a=1
0:0:2 o=l
0:0:4 b+=1

Fig.3 Primary net layer consensus stage

sign the block, and then broadcast the “load” message
containing the signed block and the block itself to the
secondary node for verification.

3. Verification and execution stage: The secondary node
verifies the message. If the verification fails, the
impeachment mechanism against the primary node is
triggered. If the verification is successful, the requested
content of this block can be executed and the block
recorded on the chain. And after the verification is
successful, the secondary node needs to broadcast
the “load” message to its subordinate tertiary nodes,
and the tertiary nodes verify this message. If the
verification fails, the impeachment mechanism against
the secondary node is triggered.

@ Springer

submit

G
0:0:1 b=2
0:0:1 a=1
0:0:2 b=1
0:0:3 c=1
0:04 | b+=1

The data transmission process of the SHBFT mechanism
consensus process is shown in Fig. 4. In the period in which
the leaders receive the submission information of each
backup, unlike other consensus mechanisms with a fixed
consensus period, SHBFT realizes the dynamic adjustment
of the consensus window period. The leader calculates the
next period time according to the number of transactions
received in the current period and sends it to each backup
with the returned information. When the leader receives
more transactions in a unit period, the time of the next
period is shortened, so that the transactions submitted by the
node can be quickly responded. On the contrary, when there
are fewer transactions received, the time of the next period
is extended to save network resources.

Peer-to-Peer Netw. Appl. (2021) 14:2826-2839

2831

pre- prepare submit

response

commit pre- prepare prepare commit

Primary Node

Secondary Node 1
Secondary Node 2

Secondary Node 3

7

Secondary Node 4

Y

Tertiary Node 1

Tertiary Node 2

Tertiary Node 3

Tertiary Node 4 — X

Fig.4 SHBFT consensus process.

Algorithm 1 Dynamically adjust the consensus window
period.

Input: transNum, nodesNum
Output: curWinTime
1: preTransRate <— curTransRate
2: preWinTime <— curWinTime
3: curTransRate < trans Num/nodes Num
4: if curTransRate > 1 then
5: curTransRate < 1
6: end if
7. curWinTime <— preWinTimex(14+curTransRate-
preTransRate)
8: return curWinTime

3.2 SHBFT node management
3.2.1 Leader election

SHBFT adopts a leader election mechanism similar to RAFT
[36], adding the concept of term. The term is represented
by a continuous integer number and is monotonically
increasing, representing a period of time of any length. All
nodes record the term number of the leader of this layer and
the leader of the next layer. Normally, the term of the leader
of this layer stored by all nodes in this layer is the same.
When each node receives an election request in this layer,
the term stored by the nodes will automatically increase by
one, and then vote for election. Each node can only cast one
vote during a term, and vote for the first request to vote it
receives. Nodes will only vote for nodes whose term number
is greater than or equal to their stored current term number.
Leaders keep their heartbeat with their backups. When
a node finds that it has not received a heartbeat, that
is, when it loses connection with the leader and does
not have a leader, or thinks that the leader is negligent
and needs impeachment, it will send election requests to
other nodes to apply to become a new leader. Of course,

other nodes may also send election requests. Other nodes
judge and vote on the election request, and nodes that do
not want to change the leader can directly abstain. When
the node that initiates the election request counts that it
has more than half of the votes within a limited time, it
will default to becoming the new leader. The new leader
will then periodically send heartbeats to the backups. The
heartbeat contains the current term number of the node of
the successfully elected new leader. Figure 5 is an example
of the election process of the leader, in which the node A
did not receive the heartbeat of the leader E for a period of
time, and the node B discovers that the leader E is negligent
and triggers the impeachment mechanism. Node A and
node B initiate election applications at the same time. Then
node B is successfully elected as the new leader. Leader B
immediately broadcasts heartbeats, and exchanges positions
with the old leader E.

After receiving the heartbeat, the node checks whether
the term number in the heartbeat is greater than or equal to
the term number stored by itself. If this condition is met,
the node recognizes the new leader and submits subsequent
request messages to the new leader. If the term number is
less than the term number stored by the node itself, the node
does not agree with the new leader.

When a new leader is elected, the new leader exchanges
theoretical positions with the old leader, the old leader
moves down one layer, and both sides need to exchange
neighbor tables. The neighbor table includes the leader
of this node, other nodes in the same layer, the backups
that belong to it, and two term numbers. Attributes in
the neighbor table without parameters are represented as
0. Figure 6 illustrates the replacement process of the old
and new leaders including the exchange of neighbor tables,
where node H is the old leader and node E is the new leader.

The election mechanism can ensure the effectiveness and
efficiency of the leader, and also enable the backups to
get high-quality consensus services, thereby ensuring the
consensus efficiency of this layer.

@ Springer

2832

Peer-to-Peer Netw. Appl. (2021) 14:2826-2839

‘@

B C
apply | apply -
A apply D
) y
i
E _vote |

vote |B vote C

vote] -

Fig.5 Leader election process

3.2.2 Impeachment mechanism

The impeachment mechanism is designed in SHBFT. When
a node believes that its leader has lost contact or neglected

Fig.6 Replacement between
old and new leader

'®

heartbeat _{
E b C
A D
his duty, it can trigger the impeachment mechanism. The
impeachment mechanism and the election mechanism can

replace the leaders with problems in time to improve fault
tolerance and efficiency.

node | E node H [

H D F E F D

M G G M

E - 0 0 “~ H

F term1-5 term1-5 F

G term2-0 term2-0 G
term1-2 term1-2
term2-5 term2-5

@ Springer

Peer-to-Peer Netw. Appl. (2021) 14:2826-2839

2833

In the secondary and lower net layer submission stage,
after receiving the response message, the backups verifies
whether there is a problem with this message. If there is a
problem, it initiates impeachment and submits an election
request, and broadcast their last submitted complete message
to other backups. The other child nodes hash this message
and compare it with the digest message received last time.
If it proves that the message is a malicious request, the
impeachment mechanism is ignored. If it is proved that the
leader is negligent, a vote is taken to select a new leader.

In the primary net layer consensus stage, when the
secondary node discovers that the primary node is not acting
or has problems, that is, after the primary node is offline for
a period of time or the consensus content is incorrect, the
secondary node can trigger the impeachment mechanism.
The secondary node that finds the problem sends an election
request to impeach the existing leader and fight for a new
term leader.

And in SHBFT, in order to prevent nodes from initiating
malicious impeachment to submit election requests, each
node can only initiate impeachment once every 3 terms.
Although the impeached leader only moves down one
layer, if it continues to make malicious actions, it will
be impeached until the lowest layer, thus ensuring that
inefficient and malicious nodes do not affect the overall
consensus efficiency.

3.2.3 Node joining

In response to the problem that nodes cannot dynamically
join in PBFT, SHBFT has established a node joining
mechanism. The decision maker who approves or rejects
the node to join is actually the consortium participant to
which the node belongs, and the participant will decide
whether to approve the new node to join according to
their own interests and consortium rules. The node joining
mechanism can enable authorized nodes to dynamically
join the consensus network without affecting the overall
architecture.

The node joining process is shown in Fig. 7. When a
new node (the blue node in this figure) wants to join the
network, a join request is sent to the current primary node. In
order to ensure the consensus efficiency, when the number
of nodes in one layer reaches 8, the newly added nodes
need to be placed in the next layer. Therefore, the primary
node calculates the location of the next node based on the
current number of nodes, and forwards a certain secondary
node information to the new node, and the new node asks
the secondary node where the next layer should be. Repeat
this process until it becomes a leaf backup. The leader of
this layer needs to give the information of other nodes in
this layer to the new node, and the new node adds the node
information to its own neighbor table. After the new node

joins, it immediately maintains heartbeat with the leader to
obtain the current term information, and gets in touch with
other nodes in the same layer.

Algorithm 2 Transaction submission verification and
impeachment mechanism.

Input: transList[]

Output: bool

1: Package Signature, timeStamp, transList to Trans
object t1

2: Calculate Hash value h1 according to t1

3: for each ninneighbor Node[] do

4: remind(n, h1)

5: end for

6: submitTrans(curLeader, Trans)

7. if response() # hl then

8: for each ninneighbor Node[] do

9: recordW <— recordW + warning(n, hl)
10: end for
11: if recordW > count (neighbor Node)/2 then
12: for each ninneighbor Node[] do

13: recordl < recordl + impeach(n)
14: end for
15: if recordl > count(neighbor Node)/2 then
16: for each ninneighbor Node[] do
17: newLeader(n)
18: end for

19: end if
20: end if
21: end if

When a new node is allowed to join, if the number of
nodes in the layer becomes even, the new node does not have
the right to become the leader and vote on the leader until
the next node joins.

It should be noted that SHBFT currently does not have a
node exit mechanism, and inactive nodes will automatically
be impeached to the bottom. This ensures that the network
structure is always a complete n-ary tree, and also ensures
that active nodes are distributed in the upper layer of the
network to obtain better consensus resources.

3.2.4 Network construction

According to the changes in the consensus efficiency of the
consensus algorithm, in order to ensure a low consensus
delay, each layer has a maximum of 8 nodes. The network
construction process is to repeatedly operate the joining
mechanism of new nodes, and then start the consensus
process.

In the initial network and the new net layer, when
there are three or more odd-numbered nodes, the election

@ Springer

2834

Peer-to-Peer Netw. Appl. (2021) 14:2826-2839

Fig.7 Node joining process

begins. When a node is successfully elected as a leader,
it immediately starts to send heartbeats to each backup to
notify them that the leader has been elected, preventing the
nodes from initiating a new election to tamper with power.

Adopting this kind of network construction method will
also be helpful for the malicious situation of nodes. When a
malicious node attempts to forge the upper layer, the newly
joined node will be immediately identified.

Assuming that there are currently n nodes in the network,
and m nodes in each layer, the calculation formula for the
node communication times in the network is

Ta=m—-—1)x2 (1)
n—1

Tb:{ Jxmx(m—l) 2)
m

Tc=m—1)ymodm x [(n — 1) mod m — 1] 3

NCT =Ta+Tb+Tc “)

The relationship between the number of layers k and the
number of nodes is

k = |log,,[(m — 1 xn]] +1 (®)]
3.2.5 Malicious nodes

Even in a consortium chain that can only join with autho-
rization, it is unavoidable that a very small number of nodes

@ Springer

7 new node

have malicious behaviors. The following is an analysis of
some situations where some nodes may do evil.

Since the communication between the secondary net
layer and the primary node is all carried out by a secondary
node, this secondary node has higher power. The primary
node has its own digital signature in the “load” message
sent, so the secondary node cannot legally modify the data.
This ensures that the tertiary nodes can correctly verify this
message. However, when the secondary node is malicious,
that is, when all the upstream and downstream data are
intercepted by the secondary node, the tertiary nodes will
not know this situation. Therefore, a timer is set in the node,
and the impeachment mechanism against the secondary
node will be triggered after the child node has not received
a response message after the timeout.

When the old leader is impeached, it is possible for the
old leader to create a fake upper layer leader, allowing the
new leader to communicate with the fake upper layer leader.
But when they are exchanging, the old leader also needs to
exchange the neighbor table with the new leader, and the
new leader will obtain the information of nodes in the same
layer and can communicate with other nodes. The old leader
needs to create many fake nodes to deceive the new leader,
and the cost of fraud increases exponentially. Moreover,
if the new leader forges information during his term, the
previous leader will immediately notice it.

The situation of malicious nodes can be better handled in
the SHBFT consensus mechanism, and the cost of malicious

Peer-to-Peer Netw. Appl. (2021) 14:2826-2839

2835

nodes is high. The consensus algorithm can maintain good
disaster tolerance and stability.

3.3 Simulation experiment

In order to analyze the performance of SHBFT in practi-
cal applications, we compare it with the classic algorithm
RAFT of the private chain and the consensus algorithm
PBFT of the consortium chain in simulation experiments.
The simulation experiment mainly conducts performance
testing from the aspects of data throughput, consensus
latency, node communication times and number of nodes.
We developed a prototype system based on the SHBFT con-
sensus algorithm, and used 13 terminal devices to form
a wired and wireless hybrid LAN for distributed consen-
sus experiments to verify the feasibility and key perfor-
mance indicators of the consensus algorithm. The system
runs on the following two terminal devices in a distributed
manner.

1. Ubuntu 18.04 (64-bit) virtual machine, Intel®Core™
i5-9400F CPU @ 2.90 GHz and 8§ GB RAM

2. Android v10.0 mobile device, Qualcomm@®) Snapdragon™
865 CPU @ 2.84GHz and 8GB RAM

The experiment successively tested the network con-
struction phase, the election process, the impeachment
process, and the consensus process including backup trans-
action submission, leader consensus sorting response, and
verification execution. And set up monitoring points at
each network node and network link to test the net-
work performance. In addition, abnormal test points such
as offline nodes, error transactions, mutually exclusive
resource access, network attacks, etc. are set up to prove the
fault tolerance of the consensus algorithm to faulty nodes
and malicious nodes.

4 Results

We compared the SHBFT algorithm with the RAFT algo-
rithm and the PBFT algorithm in three directions: data
throughput, consensus latency, and number of node commu-
nications.

4.1 Data throughput

Data throughput is an important indicator to measure the

performance of the consensus algorithm. This is expressed

in the blockchain as the number of transactions packaged

per unit time, expressed as TPS (transactions per second):
transactions

TPS = ———— 6
AL Q)

Figure 8 shows the relationship between the time
of different algorithms and the number of packaged
transactions. The slope of the tangent line at a certain point
indicates the data throughput during that time. It can be seen
that as time increases, the average data throughput gap of
the three algorithms gradually increases.

Figure 9 shows how the data throughput changes with
the average transaction commit rate of the node. Obviously,
no matter how the request rate of the node changes, the
data throughput of PBFT and RAFT is a steadily rising
straight line and tends to be stable around 1500TPS. This is
because the SHBFT consensus algorithm we proposed will
automatically dynamically adjust the consensus window
period according to the number of transactions, shorten the
window period when the amount of data is large, and reduce
the consensus confirmation time.

4.2 Consensus latency

Consensus latency is another important indicator to measure
the consensus algorithm. In the blockchain, it represents the
time difference between transaction submission and writing.

Figure 10 shows the relationship between the number
of devices and the average consensus latency. When the
number of nodes is the same, the average delay and per-
formance of the SHBFT algorithm are close to the RAFT
algorithm. The same result can be seen in Fig. 11. Among
them, SHBFT performs better as the average transaction
commit rate of nodes increases. At the same time, it can
be found from these two figures that when the number of
devices increases and the request rate increases, the average
response time delay of these three algorithms will increase,
and the influence of these two factors on the algorithm is
basically the same.

—=— SHBFT
7000 —e— PBFT
1 —4— RAFT

6000 |

@ 5000
c

Kl 1

S 4000
[%2]

c 4
©

= 3000
-

o 4
5]

8 2000

£ |
>

Z 10004

0_

T T T T T T T T T T
0.0 0.5 1.0 15 2.0 25
Time (s)

Fig. 8 Comparison of the relationship between time and the number
of transactions

@ Springer

2836 Peer-to-Peer Netw. Appl. (2021) 14:2826-2839
25009 — —=— SHBFT
SHBFT 5000 — e PBFT
—e— PBFT _. A— RAFT
20004 | —A—RAFT 4500 -
| P S——
E 4000 - e
2 1500 @ 35007
3 > 3000
@) |
” & 2500
S 1000 5 |
o = 2000
c g]
'% 2 1500
S 500 @ 1
2 2 1000
© [e} 4
= O 500+
0 |
04
T T T T T T T T T T T 500 1
0 20 40 60 80 100 - T T 11

Average Transaction Commit Rate (%)

Fig. 9 Comparison of the relationship between average transaction
commit rate and data throughput

4.3 Node communication times

The node communication times represent the traffic gener-
ated by nodes in the process of consensus.

Figure 12 shows the relationship between the node com-
munication times and the number of nodes in different
algorithms. It can be seen that with the increase of the num-
ber of nodes, the communication times of PBFT algorithm
increase geometrically, while the curve representing RAFT
algorithm is linear. However, SHBFT’s traffic growth curve
is much smoother, and it rises slowly in a stepwise manner.
This is because the hierarchical structure of SHBFT makes
most nodes only need to reach a consensus with their own
related nodes (the leader of this node, other nodes in the
same layer and the backups that belong to it) without estab-
lishing communication with all nodes in the network, which

5500 5
1 [~=—SHBFT

T T T
0 20 40 60 80 100
Average Transaction Commit Rate (%)

Fig. 11 Comparison of the relationship between average transaction
commit rate and consensus latency

greatly reduces the amount of communication between
nodes and saves network resources.

Figure 13 is a comparison of the relationship between
the number of nodes and the node communication times
under different network structures. It can be found that the
greater the number of nodes in each subnet, the more node
communications are required to reach a consensus, but this
does not mean that three nodes in each subnet are the best.
Because the smaller the number of subnet nodes, the greater
the number of network layers, and the transaction requests
of most nodes need to be forwarded a lot, which increases
the difficulty of verification, increases the risk, and also
causes network congestion.

Figure 14 shows the relationship between the number
of nodes and the average waiting time under different
consensus window periods. Through the dynamic consensus

250
225

—=— SHBFT
—e— PBFT

5000 +
4500—-
4000—.
3500—-
3000—-
2500—-
2000—.

1500

Consensus Latency (ms)

1000

500

0

—e— PBFT
—a— RAFT

s

0

8 10 12 14

Number of Nodes

Fig. 10 Comparison of the relationship between the number of devices
and the average consensus latency

@ Springer

—4— RAFT

200—-
175—-
150—.
125—.
100—-

75—-

50

Node Communication Times

25
04

BT T T T T T T T
2 0 2 4 6 8 10 12 14 16

Number of Nodes

Fig. 12 Comparison of the number of nodes and the node communi-
cation times

Peer-to-Peer Netw. Appl. (2021) 14:2826-2839

2837

600
—— 3 Nodes per Subnet
—— 5 Nodes per Subnet
5009 | —— 7 Nodes per Subnet
3 —— 9 Nodes per Subnet
E 4004 |— 11 Nodes per Subnet
c
Qo
® 300
Q
o
3
E 200
o]
(&)
3 1004
o
pd
o_

0 10 20 30 40 50
Number of Nodes

Fig. 13 The relationship between the number of nodes and the node
communication times under different network structures

window period adjustment mechanism, the average waiting
time of nodes can be ensured to the minimum.

5 Discussion

In order to optimize the management of a large number
of nodes and the dynamic joining of nodes in the applica-
tion scenario of the consortium chain. Based on PBFT, a
hierarchical structure solution was proposed, the consensus
process was optimized, and the network construction and
node joining mechanism were redefined. The SHBFT con-
sensus algorithm is proposed and simulated, and the exper-
iment is compared with PBFT and RAFT. Under different
conditions, the consensus latency of SHBFT is lower than
that of PBFT and RAFT. SHBFT exhibits extremely high

3500 -

3000
m

E 2500+
(0]
€
'_

o, 2000
£
=
©

= 15004
(0]
()]
©

% 1000-
>
Z

500 -

T T T T T T T T T T T

. —— —— .
0 2 4 6 8 10 12 14 16 18 20 22 24
Number of Nodes

Fig. 14 The relationship between the number of nodes and the average
waiting time under different window periods

performance in data throughput. As the number of transac-
tions and node request rates increase per unit time, SHBFT’s
data throughput increases faster than PBFT and RAFT
algorithms. Especially when the bottleneck of 1000TPS
is reached, SHBFT can continue to rise when PBFT and
RAFT are both stable. Due to the advantages of SHBFT’s
hierarchical structure, nodes do not need to communicate
with all other nodes in the network during the consensus
process, which greatly reduces the node communication
times in the network. The overall simulation result has
reached the expected goal of the research. SHBFT realizes
the dynamic joining of nodes, and its multi-layer structure
ensures that after impeachment and election, active nodes
closer to the top can obtain a shorter consensus delay. The
hierarchical consensus structure not only achieves a global
consensus through local consensus, but also enhances dis-
aster tolerance, that is, some faulty nodes will not affect
the communication of most nodes. This mechanism changes
the information on the chain from transaction to database
access transaction, which has achieved a leap in capacity
expansion, thereby breaking the limitation of insufficient
storage capacity of blockchain technology and broaden-
ing the application scenarios. The results show that the
use of SHBFT mechanism can optimize a large number of
node management and consensus speed in the consortium
chain scene.

6 Conclusion

In this paper, we designed a brand-new and scalable hier-
archical Byzantine fault tolerant mechanism for the consor-
tium chain of many nodes. SHBFT optimizes many aspects
based on PBFT, designs a hierarchical structure to speed
up the consensus process, and achieves a global consensus
through local consensus. In addition, a leader election and
impeachment mechanism has been established in this mech-
anism to promptly replace inactive and problematic leaders
to improve byzantine fault tolerance. We have also imple-
mented a dynamic node joining mechanism in SHBFT,
which solves the cumbersome problem of joining PBFT
consensus nodes. We also conducted a theoretical analy-
sis of the malicious nodes. Simulation experiments show
that our SHBFT has different degrees of improvement in
increasing data throughput, reducing consensus latency, and
decreasing the node communication times. For future work,
we will continue to improve the construction of network
node initialization and increase the node exit mechanism to
further improve the SHBFT consensus mechanism.

Author Contributions Prof. Zhihan Lv conceived the work and
suggested the outline of the paper. Mr.Yuxi Li and Mr. Liang Qiao
carried out investigations and wrote the paper.

@ Springer

2838

Peer-to-Peer Netw. Appl. (2021) 14:2826-2839

Funding This work was supported in part by the National Natural
Science Foundation of China (NSFC) under Grant No. 61902203, Key
Research and Development Plan - Major Scientific and Technological
Innovation Projects of ShanDong Province (2019JZZY020101).

Declarations

Competing interests The authors declare no competing interests.

References

—

11.

12.

13.

14.

15.

16.

17.

. Nakamoto S (2008) Bitcoin: A peer-to-peer electronic cash system
. Peck ME (2017) Blockchain world-Do you need a blockchain?

This chart will tell you if the technology can solve your problem.
IEEE Spectrum 54(10):38-60

. Zheng Z, Xie S, Dai H, Chen X, Wang H (2017) An overview

of blockchain technology: Architecture, consensus, and future
trends. In: 2017 IEEE international congress on big data (BigData
congress). IEEE, pp 557-564

. Yang S, Deng B, Wang J, Li H, Lu M, Che Y, Wei X, Loparo KA

(2019) Scalable digital neuromorphic architecture for large-scale
biophysically meaningful neural network with multi-compartment
neurons. IEEE Trans Neural Netw Learn Sys 31(1):148-162

. Yang S, Wang J, Deng B, Liu C, Li H, Fietkiewicz C,

Loparo KA (2018) Real-time neuromorphic system for large-scale
conductance-based spiking neural networks. IEEE Trans Cybern
49(7):2490-2503

. Morabito V (2017) Business innovation through blockchain.

Springer International Publishing, Cham

. Buterin V (2014) A next-generation smart contract and decentral-

ized application platform. White Paper 3(37)

. Crosby M, Pattanayak P, Verma S, Kalyanaraman V (2016)

Blockchain technology: Beyond bitcoin. Applied Innovation 2(6-
10):71

. Mohan C (2019) State of public and private blockchains: Myths

and reality. In: Proceedings of the 2019 international conference
on management of data, pp 404-411

. Guo Y, Liang C (2016) Blockchain application and outlook in the

banking industry. Financial Innovation 2(1):24

Gramoli V (2020) From blockchain consensus back to byzantine
consensus. Future Gener Comput Syst 107:760-769

Xiao Y, Zhang N, Lou W, Hou YT (2020) A survey of distributed
consensus protocols for blockchain networks. IEEE Commun
Surv Tutor 22(2):1432-1465

Pahlajani S, Kshirsagar A, Pachghare V (2019) Survey on private
blockchain consensus algorithms. In: 2019 Ist International
conference on innovations in information and communication
technology (ICIICT). IEEE, pp 1-6

Jakobsson M, Juels A (1999) Proofs of work and bread pudding
protocols. In: Secure information networks. Springer, Boston,
pp 258-272

King S, Nadal S (2012) Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. Self-published paper, August, 19, 1

Larimer D (2017) Delegated proof-of-stake consensus. bit-
shares.org. https://bitshares.org/technology/delegating-proof-of-
stake-consensus. Accessed March 28th, 2017

Sankar LS, Sindhu M, Sethumadhavan M (2017) Survey of con-
sensus protocols on blockchain applications. In: 2017 4th inter-
national conference on advanced computing and communication
systems (ICACCS). IEEE, pp 1-5

. Mingxiao D, Xiaofeng M, Zhe Z, Xiangwei W, Qijun C (2017)

A review on consensus algorithm of blockchain. In: 2017 IEEE

Springer

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

International Conference on Systems, Man, and Cybernetics
(SMCQ). IEEE, pp 2567-2572

Huang D, Ma X, Zhang S (2019) Performance analysis of the raft
consensus algorithm for private blockchains. IEEE Trans Sys Man
Cybern Sys 50(1):172-181

Castro M, Liskov B (2002) Practical Byzantine fault tolerance and
proactive recovery. ACM Trans Comput Sys (TOCS) 20(4):398-
461

Khosravi A, Kavian YS (2016) Broadcast gossip ratio consen-
sus: Asynchronous distributed averaging in strongly connected
networks. IEEE Trans Signal Process 65(1):119-129

Sukhwani H, Martinez JM, Chang X, Trivedi KS, Rindos A
(2017) Performance modeling of PBFT consensus process for
permissioned blockchain network (hyperledger fabric). In: 2017
IEEE 36th Symposium on Reliable Distributed Systems (SRDS).
IEEE, pp 253-255

Zhang L, Li Q (2018) Research on consensus efficiency based
on practical byzantine fault tolerance. In: 2018 10th International
conference on modelling, identification and control (ICMIC).
IEEE, pp 1-6

Wang S (2019) Performance evaluation of hyperledger fabric with
malicious behavior. In: International conference on blockchain.
Springer, Cham, pp 211-219

Wang X, Weili J, Chai J (2018) The research on the
incentive method of consortium blockchain based on practical
byzantine fault tolerant. In: 2018 11th international symposium
on computational intelligence and design (ISCID), vol 2. IEEE,
pp 154-156

He L, Hou Z (2019) An improvement of consensus fault
tolerant algorithm applied to alliance chain. In: 2019 IEEE
9th international conference on electronics information and
emergency communication (ICEIEC). IEEE, pp 1-4

Wang H, Guo K (2019) Byzantine fault tolerant algorithm based
on vote. In: 2019 international conference on cyber-enabled
distributed computing and knowledge discovery (CyberC). IEEE,
pp 190-196

Zhu S, Zhang Z, Chen L, Chen H, Wang Y (2020) A PBFT
consensus scheme with reputation value voting based on dynamic
clustering. In: International conference on security and privacy in
digital economy. Springer, Singapore, pp 336-354

Miller A, Xia Y, Croman K, Shi E, Song D (2016) The honey
badger of BFT protocols. In: Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security,
pp 3142

Gueta GG, Abraham I, Grossman S, Malkhi D, Pinkas B, Reiter
M, Seredinschi D, Tamir O, Tomescu A (2018) Sbft: a scalable
decentralized trust infrastructure for blockchains (1804)

Li Y, Wang Z, Fan J, Zheng Y, Luo Y, Deng C, Ding J (2019)
An extensible consensus algorithm based on PBFT. In: 2019
international conference on cyber-enabled distributed computing
and knowledge discovery (CyberC). IEEE, pp 17-23

Zhang J, Rong Y, Cao J, Rong C, Bian J, Wu W (2019) DBFT:
A byzantine fault tolerant protocol with graceful performance
degradation. In: 2019 38th symposium on reliable distributed
systems (SRDS). IEEE, pp 123-12309

Jalalzai MM, Busch C (2018) Window based BFT blockchain
consensus. In: 2018 IEEE international conference on Internet of
Things (iThings) and IEEE green computing and communications
(GreenCom) and IEEE Cyber, physical and social computing
(CPSCom) and IEEE Smart Data (SmartData). IEEE, pp 971-979
Gao S, Yu T, Zhu J, Cai W (2019) T-PBFT: An EigenTrust-based
practical Byzantine fault tolerance consensus algorithm. China
Commun 16(12):111-123

Lao L, Dai X, Xiao B, Guo S (2020) G-PBFT: a location-based
and scalable consensus protocol for IOT-Blockchain applications.

https://bitshares.org/technology/delegating-proof-of-stake-consensus
https://bitshares.org/technology/delegating-proof-of-stake-consensus

Peer-to-Peer Netw. Appl. (2021) 14:2826-2839

2839

In: 2020 IEEE International parallel and distributed processing
symposium (IPDPS). IEEE, pp 664-673

36. Okusanya O (2019) Consensus in Distributed Systems: RAFT vs
CRDTs. https://repository.stcloudstate.edu/csitetds/29

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Yuxi Li is a graduate student
of Software Engineering in the
School of Data Science and
Software Engineering, Qing-
dao University. His research
direction is Blockchain. He
received a bachelor’s degree
from Qingdao University in
2020. And he has extensive
experience in software devel-
opment and algorithm design.

Liang Qiao is currently a
graduate student in the School
of Data Science and Soft-
ware Engineering at Qingdao
University. His research inter-
ests include Machine Learn-
ing, Blockchain and Virtual
Reality. In 2019, he obtained a
bachelor’s degree from Qing-
dao University. In 2018, he
won the second prize of the
National Software and Infor-
mation Technology Competi-
tion in China. In 2020, he
won the the third prize of the
China Collegiate Computing

Contest. He has rich experience in algorithm design.

Zhihan Lv is currently an
Associate Professor of Qing-
dao University, China. He
has been an assistant pro-
fessor at Shenzhen Institutes
of Advanced Technology,
Chinese Academy of Sci-
ences from 2012 to 2016.
He received his Ph.D. from
Ocean University of China
and Paris7 University in 2012.
He worked in CNRS (France)
as Research Engineer, Umea
University (Sweden) as
Postdoc Research Fellow,
Fundacion FIVAN (Spain)
as Experienced Researcher, University College London (UK) as
Research Associate, University of Barcelona(Spain) as Postdoctor. He
was a Marie Curie Fellow in European Union’s Seventh Framework
Program LANPERCEPT.

@ Springer

https://repository.stcloudstate.edu/csitetds/29

	An Optimized Byzantine Fault Tolerance Algorithm for Consortium Blockchain
	Abstract
	Introduction
	Current status of BFT-type consensus mechanism
	Scalable hierarchical Byzantine Fault Tolerance
	SHBFT consensus mechanism model
	Roles for nodes
	Running framework

	SHBFT node management
	Leader election
	Impeachment mechanism
	Node joining
	Network construction
	Malicious nodes

	Simulation experiment

	Results
	Data throughput
	Consensus latency
	Node communication times

	Discussion
	Conclusion
	Declarations
	References

