
Computing tasks assignment optimization among edge computing
servers via SDN

Chao Bu1,2
& Jinsong Wang2

Received: 27 September 2020 /Accepted: 19 January 2021
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
As an extension of cloud computing, the edge computing has become an important pattern to deal with novel service scenarios of
Internet of Everything (IoE) under 5G, especially for the delay sensitive computing tasks generated from edge equipment. The
edge computing provides the key support to meet the characteristics of delay sensitivity by deploying servers near network edges.
However, a great many uneven distributed computing tasks in different network edges usually lead to task processing delay
bottleneck for single Edge Computing Server (ECS). Tasks assignment is mainly based on the local ECS status without the global
network view considered, which also easily leads to unbalanced task loads among multiple ECSs. In this paper, the novel
networking idea of Software Defined Network (SDN) is introduced into the edge computing pattern. The logically highly
centralized control plane consists of multiple physically distributed ECSs, so as to collaboratively assign computing tasks in a
global view. In order to optimize the task assignment and minimize the task processing delay, three schemes are proposed in this
paper. The scheme of assessing the ECS’s task computing features is firstly proposed, then the scheme of predicting the ECS’s
future unit task processing time is presented. Thus, different types of computing tasks can be assigned to appropriate ECSs that
are better at dealing with them with processing delay minimized. Furthermore, the scheme of optimizing the delay of task
processing time estimation is devised, so as to further improve task assignment efficiency. Experimental results show that the
proposed mechanism is able to optimize the task assignment and minimize the task processing delay more efficiently than the
state of the art. Specifically, our mechanism is capable of improving the average unit task processing delay and the ECS load
balancing degree by about 14% and 23% respectively, compared with corresponding work.

Keywords Delay sensitivity . Edge computing . SDN . Task assignment efficiency

1 Introduction

With the rapid development of network communication tech-
nology, people’s demands for higher performance services are
becoming more and more urgent. The 5th Generation mobile
system (5G) is gradually integrating into people’s daily life. It
is committed to satisfy the features such as ultra-high traffic
density, ultra-high connection density, and ultra-high mobility
[1]. Thus, the requirements of the novel service scenarios have

changed significantly, which represent the characteristics of
delay sensitively including reliable control, fast moving, real-
time analysis and location awareness [2, 3]. Some research
(i.e., Section 2) have been done on optimizing scheduling
computing tasks among multiple servers in the cloud center,
which significantly improve task processing time. However,
the cloud computing servers usually locate far away from
network edges. Considering the fact that the number of com-
puting requests from mobile equipment is increasing rapidly
with the developing of service scenarios under 5G, the con-
ventional cloud computing may lead to much higher transmis-
sion delay and serious congestion. It is obvious that the clas-
sical cloud computing mode of centrally dealing with large-
scale computing tasks no longer adapts to this situation. As an
extension of cloud computing, the edge computing deploys
the capabilities such as computing, networking and storing
near to the data resource at the network edges [4]. Its distrib-
uted Edge Computing Servers (ECSs) are much closer to users
so as to provide real-time computing services nearby. In this

* Chao Bu
bc_0722@163.com

1 Key Laboratory of Computer Vision and System of Ministry of
Education, School of Computer Science and Engineering, Tianjin
University of Technology, Tianjin 300384, China

2 Tianjin Key Laboratory of Intelligence Computing and Novel
Software Technology, School of Computer Science and Engineering,
Tianjin University of Technology, Tianjin 300384, China

https://doi.org/10.1007/s12083-021-01081-x

/ Published online: 1 February 2021

Peer-to-Peer Networking and Applications (2021) 14:1190–1206

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-021-01081-x&domain=pdf
mailto:bc_0722@163.com

paper, we leverage the key support of edge computing pattern
to meet the special demands of the novel business scenarios
under 5G.

The 5G can support high-speed data-transmission, which
brings edge computing big advantages to significantly de-
crease the delivery delay of service data. However, facing
the era of “Internet of Everything (IoE)” coming with 5G,
there are some new challenges for the edge computing to deal
with [5]. A number of research (i.e., Section 2) have proposed
dealing with edge computing tasks by distributed ECSs, so as
to improve task processing efficiency in the 5G environment.
However, according to the edge computing pattern, distribut-
ed deployed ECSs locate in different Edge Network Domains
(ENDs). Each ECS mainly carries out computing tasks based
on its local network status.When a single ECS receives a large
number of uneven distributed computing requests from its
END,which frequently happens in the current network service
scenarios, the delay bottleneck of processing computing tasks
for the single ECS is easily caused [6]. While, the ECSs in
other ENDs maybe idle at the moment. In this paper, we
propose to collaboratively assign computing tasks that are
non-uniformly distributed in different ENDs among multiple
ECSs in a global view. In this approach, assigning tasks to
appropriate ECSs with both the ECS working status and the
network status considered, not only further optimizes the task
processing efficiency but also balances ECSs’ working loads.

As a novel networking idea, Software Defined Network
(SDN) [7] has the features of conciseness, agility and open-
ness that are naturally fit for the demand of 5G service scenar-
ios [8, 9]. By introducing the decoupling control and
forwarding of SDN into edge computing modelling, the log-
ically highly centralized control plane can be constituted by
multiple ECSs that are physically distributed [10]. Thus, the
task processing pattern of edge computing, which manages
services and resource based on each ECS’s local information
[11], can be well improved. In this paper, we introduce the
idea of SDN into globally task assignment. By leveraging the
advantages of SDN, some research (i.e., Section 2) have been
done on optimizing edge computing tasks assignment among
multiple ECSs in a global view. Thus, the ECSs’ working
loads are well balanced while improving the task processing
efficiency. In fact, however, the working scenes and comput-
ing modes of ECSs in different ENDs usually have regional
features. In other words, an ECS in a certain END may fre-
quently deal with some types of computing tasks, which en-
ables the ECS be better at processing these corresponding
tasks with less time than other ECSs. The task processing
efficiency can be further optimized by assigning tasks to the
suitable ECSs. In this paper, we devise a scheme to assess
each ECS’s task processing features (i.e., the frequency of
dealing with certain types of computing tasks) by mining
and analyzing the historical records of its past processed tasks.
In this approach, the candidate ECSs that are suitable to deal

with one type of computing tasks can be preliminarily obtain,
which enables tasks to be assigned to the more suitable ECSs
with their processing delay further reduced.

Among multiple candidate ECSs, how to select the current
most suitable one to deal with the task that is waiting to be
assigned is still a challenge. Although an ECS is assessed to be
suitable for one type of tasks, it may still bring serious delay
problem to the new assigned task. For example, the ECS’s
current available computing capacity cannot afford a new
task, thus this task will not be processed immediately after
being assigned until sufficient computing capacity is released.
In addition, a new assigned task may have a negative impact
on an ECS’s current computing efficiency. For example, the
increased processing time brought to the ECS by the new
assigned task may reduce the ECS’s future unit task process-
ing efficiency. In order to solve the challenges described
above, we then propose a scheme to assess the ECS’s unit
task processing time before a task being assigned to it. In this
scheme, the Future Unit task processing Time (FUT) of the
ECS is defined. It is used as the evaluation criteria to select the
ECS. By taking the past processing time of a type of comput-
ing tasks in an ECS into account, the method to predict the
candidate ECS’s FUT is presented. In this approach, the ECS
with the minimum FUT is selected as the most suitable one for
corresponding tasks in the current network status.

However, a taskmay last several estimation rounds without
being assigned. Before each new assignment round, its future
processing time needs to be estimated, which obviously brings
much extra re-estimation time overhead. In this paper, we
further devise an approach to solve the re-estimation time
overhead problem for the task that participates multiple as-
signment rounds. Thus, re-estimation operations are greatly
reduced before each assignment round, which further im-
proves the whole task assignment efficiency among multiple
ECSs.

In this paper, according to the devised schemes mentioned
above, the mechanism of collaboratively Assigning
Computing Tasks among multiple ECSs (ACTE) by the ad-
vantages of SDN is proposed. The major contributions are as
follows:

& The system framework of the ACTE mechanism is pre-
sented, so as to provide the detail working principles and
flows of the whole system.

& The scheme of assessing the ECS’s computing task pro-
cessing features is devised, so as to obtain the candidate
ECSs for different types of tasks waiting to be assigned.

& The method of predicting the ECS’s FUT is presented, so
as to select the most suitable ECS with the minimum FUT
for corresponding tasks.

& The approach of optimizing estimation time over-
head is designed, so as to further improve the tasks
assignment efficiency.

1191Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

The remainder of this paper is structured as follows.
Section 2 reviews the related work. Section 3 presents the
system framework of the proposed ACTE. Section 4 devises
the schemes of task assignment among multiple ECSs.
Section 5 shows simulation results. Finally, section 6 con-
cludes this paper.

2 Related work

Table 1 presents an overview of the related work. The detailed
description on the above research and the difference between
them and our work are shown in the following paragraphs.

The research of computing task scheduling problem have
firstly been studied and done in the cloud computing center, so
as to improve the task processing time. In [12], an optimiza-
tion model for task scheduling is presented, so as to minimize
task processing time and energy consumption for cloud com-
puting. It formulates an integer programming optimization
problem for task energy consumption, then devise a task
scheduling algorithm to achieve small task processing time
with energy consumption minimized. In [13], a new model
of resource allocation to optimize task scheduling in cloud
computing is proposed. By integrating the multi-objective op-
timization and the particle swarm optimization in the model,
the tasks are scheduled to the virtual machines with waiting
timeminimized and system throughput maximized. In [14], an
improved genetic algorithm for static task scheduling in the
cloud environment is proposed. It uses the advantages of evo-
lutionary genetic algorithm along with a heuristic-based
Heterogeneous Earliest Finish Time (HEFT) search to assign
subtasks to processors. In [15], based on the popular min-max
normalization technique, a task scheduling algorithm is pre-
sented. It keeps a trade-off between the two parameters of
makespan and resource utilization, so as to achieve multi-
objective optimization by task scheduling. In [16], an alterna-
tive method for cloud task scheduling is proposed, so as to
minimize the makspan that required to schedule a number of
tasks on different virtual machines. It is based on the improve-
ment of the moth search algorithm by using the differential
evolution. In the above work, by scheduling tasks among
multiple servers in the cloud computing center, the task
makespan and resource utilization is greatly improved.
However, the tasks are usually processed centrally, and the
task processing center always locates far away from network
edges where requests generate. This may lead to serious prob-
lems such as delay and congestion, especially when lots of
tasks that are delay-sensitive arrive in a short time slot in the
era of IoE.

Some research then have presented approaches of providing
computing services by leveraging edge computing pattern, and
devised schemes to schedule tasks to improve the task processing
efficiency in the 5G environment. In [17], the task scheduling

problem is formulated as mix-integer programming to minimize
computation, communication and violation costs. Two efficient
heuristic algorithms are proposed and evaluated for task sched-
uling, they significantly provide low makespan and decrease the
total computation cost. In [18], by studying a novel D2D-enabled
multi-helper mobile edge computing system, a time division
multiple access transmission scheme is proposed. It minimizes
the computation delay by optimizing the local user’s task assign-
ment jointly with the time and rate considered. In [19], the prob-
lems of long-term task assignment and resource coordination are
studied. It designs an online algorithm to adaptively decide the
task assignment, and an iterative wireless resource allocation
algorithm to improve the joint wireless transmit power and
sub-channel resource allocation. In [20], by studying the task
assignment algorithm in data shared mobile edge computing
systems, it proposes three algorithms to deal with holistic tasks
and divisible tasks. It devises an approximation algorithm based
on linear programming for holistic tasks, and two approximation
algorithms to solve divisible tasks. In [21], a framework for task
assignment is proposed, so as to offload the computationally
intensive. It allows the offloaded tasks to be served at appropriate
cloudlets, so that the latency in the network can be reduced and
meanwhile the quality of service experienced can be improved.
In [22], a distributed task unloading strategy to low load base
station group under mobile edge computing environment is pro-
posed. It models the communication resource, computing re-
source and task queue of low load base station group, and solves
the problem of distributed task unloading by using the potential
game model. These research supports task assignment among
multiple edge servers by the advantages of edge computing pat-
tern, so as to avoid computing latency and congestion problems.
However, the conventional edge computing pattern assigns and
deals with tasks mainly based on each distributed server’s local
resource and network status without a global view. Thus, some
edge computing servers may take on heavy workload in some
edge network domains due to lots of computing requests, while
other servers are relatively idle with part of their computing re-
sourcewasted. Therefore, how to collaboratively assign tasks in a
global view with further improving task processing efficiency
and balancing server working load is still a challenge.

By introducing the advantages of SDN, some research have
been done on computing tasks assignment among multiple
edge computing servers in a global view with the dynamic
network conditions considered. In [23], by leveraging the
global view of the network at the SDN controller, the dynamic
network load is taken into account when offloading tasks. It
formulates the multi-hop task offloading problem as an integer
linear program, then presents a greedy-heuristic-based ap-
proach to solve the problem, so as to efficiently reduce the
average delay and energy consumption. In [24], by taking the
load balancing of the computation resources at the edge
servers into account, the task processing delay minimization
problem is investigated. It proposes an SDN-based task

1192 Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

offloading architecture and three schemes to reduce the tasks’
processing delay and balance the servers’ load. In [25], a novel
SDN based framework for computation offloading in mobile
edge computing wireless networks is introduced. It proposes
the Q-learning and cooperative Q-learning approaches to
solve the task offloading and resource allocation problems.
In [26], based on SDN technologies, a framework for task
deadline-awareness balanced distribution of tasks is proposed.
It optimally manages the resources and balances an equitable
load across a network of Cloudlets. In [27], the task assign-
ment problem in a multi-cloudlet network connected via a
wireless SDN network is studied, and a novel task assignment
schemewhichmakes task assignment decisions is proposed. It
takes significant parameters that affect the latency in process-
ing tasks into account, and aims at reducing the network la-
tency in processing the offloaded tasks. By leveraging the
advantages of controlling and programming the entire net-
work as a unified network of SDN, the tasks from the network

edges can be assigned to multiple edge servers in a global
view with network load considered. Thus, the task processing
efficiency is improved with edge servers’ working load bal-
anced. In this paper, we further take the different task process-
ing features of servers into account when collaboratively
assigning tasks among multiple servers. In addition, the his-
torical records of each server are fully utilized to predict the
FUT of each server and estimate the task processing delay, so
as to optimize the task assignment and improve the task pro-
cessing efficiency.

3 System framework

Based on the decoupling control logic and data forwarding of
SDN, the ACTEmechanism is proposed. It is used to optimize
large-scale computing tasks assignment with each ECS’s
computing features and real-time working load considered.

Table 1 Overview of the related works

Subject Related
work

Main method used Key contributions

Cloud computing Ref. [12] Greedy Optimization Proposing the most-efficient-server first greedy task scheduling algorithm

Ref. [13] Particle Swarm Optimization Proposing a novel algorithm on multi-object PSO task-scheduling

Ref. [14] Genetic Algorithm Proposing an improved genetic algorithm for static task scheduling

Ref. [15] Min-Max Normalization Proposing the normalized multi-object min-min max-min scheduling for
tasks

Ref. [16] Moth Search Algorithm
Differential Evolution Algorithm

Proposing an alternative method for cloud task scheduling on different
virtual machines

Edge computing Ref. [17] Mixed Integer Linear
Programming

Proposing two efficient heuristic algorithms IoT task scheduling in volunteer
computing systems

Ref. [18] Convex Relaxation
Greedy Algorithm

Constructing a suboptimal task assignment solution approach, and
developing a heuristic scheme based on the greedy task assignment

Ref. [19] Stochastic Optimization
Lyapunov Optimization

Proposing a joint task assignment, wireless coordination and optimization,
and computation resource allocation strategy

Ref. [20] Linear Programming Proposing three algorithms on efficiently assigning holistic tasks and
divisible tasks

Ref. [21] Logic-based Benders
Decomposition

Defining and formulating the dynamic task offloading and scheduling
problem, and proposing an efficient approach to optimally solve the
problem

Ref. [22] Potential Game Model Proposing a distributed task offload strategy to the low-load base station
group, and Solving the problem off offloading distributed tasks by intro-
ducing the game theory

Edge computing and
SDN

Ref. [23] Greedy Algorithm Proposing a dynamic task offloading scheme in software-defined fog for IoT
applications

Ref. [24] Game Theory Proposing an SDN-based task offloading architecture, and devising two task
offloading schemes and a computing offloading scheme

Ref. [25] Reinforcement Learning Introducing a novel SDN-based computation offloading framework, and
Proposing two approaches for delay minimization problem

Ref. [26] Mixed Integer Linear
Programming

Proposing a framework for a task deadline-awareness balanced distribution
of tasks across the Cloudlets by leveraging SDN

Ref. [27] Poisson Process
Admission Control Policy

Proposing an optimal task assignment scheme for a multi-cloudlet
environment, and presenting an admission control approach for task as-
signment management

1193Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

However, it is a complex problem to optimally assignmultiple
tasks to multiple servers, for example, there may be n ! /m!
possibilities to assign n tasks to m servers. In this paper, we
consider the problem as minimizing computing task process-
ing delay under related constrains.

Involving the computing tasks collaboratively assignment
among multiple ENDs, the goal is to optimize the unit task
processing time under the limited processing capacity of each
ECS. In this paper, the ACTE mechanism is modelled by the
proposed empirical rules-based improved greedy strategy,
which supports the establishment of the system framework
and corresponding schemes. In detail, firstly, the historical
computing task processing records are leveraged offline to
assess each ECS’s task processing features based on the re-
gression analysis method. Then, according to the improved
greedy strategy based on unit task delay assessment, the tasks
waiting to be assigned are selected by the most suitable ECS at
each assignment round. Finally, estimation time is further op-
timized by analyzing the time increment of re-estimating. The
system framework of the proposed ACTE mechanism is
shown in Fig. 1.

3.1 System detailed description

The logically highly centralized control plane consists ofmultiple
ECSs that are physically distributed in different edge network
domains. Each ECS serves as the controller of its located net-
work domain. Computing requests from edge equipment are
received by the data plane then sent to the control plane. The
data plane contains a large number of interconnected switching
devices located much closer to users.When receiving computing
requests, the control plane collaboratively assigns the corre-
sponding computing tasks to appropriate ECSs. The task assign-
ment considers each ECS’s current working load and computing
features, so as tominimize the task processing time. For example,
an ECS located in the edge network domain where a lot of
financial institutions exist, is much better at dealingwith financial
computing requests. Because the ECS has plenty of such com-
puting instances of processing the similar computing tasks,
which enable it to complete these tasks with much short time
than other ECSs.

According to the proposed system framework in Fig. 1, we
devise three schemes to support computing task assignment
optimization, so as to minimize task processing delay. By
mining and analyzing each ECS’s historical computing task
processing records, the Computing Feature Assessment mod-
ule (CFA) assesses the frequencies of an ECS dealing with
different types of computing tasks. The candidate ECSs to be
assigned some certain types of tasks can be preliminarily ob-
tained. The Unit Task Delay Assessment module (UTDA)
takes charge of predicting the processing time overhead of
the tasks waiting to be assigned in each possible ECS. The
most suitable ECS with the lowest FUT is selected. In order to

further optimize the estimation time overhead in each task
assignment round, the Estimation Time Optimization module
(ETO) is in charge of improving the tasks assignment efficien-
cy by reducing unnecessary estimation delay.

3.2 Intersystem interaction

By the cooperation of the three modules (i.e., CFA, UTDA,
ETO) in the control plane, the computing tasks assignment
among multiple ECSs is achieved. Before each new time pe-
riod, the CFA have already offline assessed the ECS’s com-
puting features for different types of tasks. When the comput-
ing requests are received, according to the types of the corre-
sponding tasks, the UTDA selected the most suitable ECS
from the candidate ECSs that are obtained by the CFA.
Then, the tasks are assigned to their appropriate ECSs to be
dealt with. For the tasks that are not be assigned successfully
in an assignment round, the ETO reduces the estimation time
overhead of these re-assigned tasks, so as to further optimize
the delay. The detailed working interactions between these
modules of the system is shown in Fig. 2.

4 Tasks collaboratively assignment

In this section, the mathematical formulation is presented for
the proposed ACTE mechanism. Table 2 shows the main no-
tations used in this section. Specifically, three major schemes
are devised as follows. They are the ECS’s computing features
assessment, the unit task processing time minimum, and the
estimation time overhead optimization. Meanwhile, the meth-
od of task processing time estimation is also designed. By the
ECS’s computing features assessment, the candidate ECSs
that are appropriate to deal with different types of computing
tasks can be obtained. By the unit task processing time mini-
mum, the most suitable ECS for a certain task in the current
assignment round can be selected from multiple candidate
ECSs. By the estimation time overhead optimization, the task
assignment efficiency can be further improved with the total
delay reduced.

4.1 ECS’s computing features assessment

In practice, the computing task demands from a single user
may be incidental to an ECS, however, the demands from a
large number of user groups usually have certain regularity to
an ECS. According to the task processing records over several
time periods, we try to learn the regularity by combining the
frequencies of tasks processed in an ECS based on multivar-
iate linear regression, so as to predict the ECS’s task process-
ing features in the following time periods. In this section, we
propose assessing the task processing features of an ECS by
mining and analyzing the ECS’s historical records of tasks

1194 Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

processed by it in the past t time periods. For different types of
computing tasks, we firstly determine the preliminary appro-
priate ECSs that are better at dealing with which types of
tasks. In this approach, each ECS’s computing features (i.e.,
the frequency of dealing with certain types of tasks) in the (t +
1)th time period can be assessed.

Assume that SCTk denotes the k Service type of Computing
Task, and NTPi

k tð Þ is defined as the Number of this type of
Tasks Processed in the ECS i (i.e., ECSi) in the (t)th time
period. The Actual Processed Frequency of SCTk in ECSi in
the (t)th time period is defined as follows:

APFi
k tð Þ ¼ NTPi

k tð Þ
∑

SCTl∈SCTi tð Þ
NTPi

l tð Þ
ð1Þ

Here, SCTi(t) is the Set of Computing Tasks that have been
processed in ECSi in the (t)th time period.

According to the actual processed frequencies of SCTk in
ECSi in the last t time periods, the appropriate degree that
SCTk is assigned to ECSi in the (t + 1)th time period (i.e., the
current time period) can be assessed. APFi

k t þ 1ð Þ denotes the
appropriate degree that SCTk can be assigned to SCTk in the
(t + 1)th time period, shown as follows:

APFi
k t þ 1ð Þ ¼ ∑

t

z¼1
γz⋅APF

i
k zð Þ þ β ð2Þ

Here, γz is the regression coefficient of APFi
k zð Þ, β is a

constant. We use the typical least squares method to learn
the values of γ1, γ2,…, γt, and β. We define that X = [γ1, γ2,
…, γt, β], and the approach is devised to obtain the values of
its elements by mining and analyzing the historical processed
frequencies of SCTk in ECSi shown as follows.

The values of APFi
k uð Þ, APFi

k uþ 1ð Þ, APFi
k uþ 2ð Þ,…,

APFi
k uþ 2tð Þ (i.e., the actual processed frequencies of SCTk

in ECSi from the (u)th time period to the (u + 2t)th time

edge network
domain 1

. . .

Data

Plane

edge network
domain i

edge network
domain n

edge computing
server 1

computing tasks
control/
feedback

estimation time optimization

physically distributed but logically centralized service
principals

edge computing
server n

edge computing
server i . . .

unit task delay assessment

computing features assessment

Control

Plane

Fig. 1 CNF deployment
situations

assess ECSs
computing features CFA

ask for
candidate

ECSs

return
ECSs
records

return tasks
that do not
need to be
estimated

assign tasks to
appropriate ECSs

optimize the
estimation time

overhead

UTDA

ETO

Fig. 2 The working interactions between modules

1195Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

period) can be obtained from the historical records of ECSi.
We define a matrix G shown as follows:

G ¼
APFi

k uð Þ APFi
k uþ 1ð Þ … APFi

k uþ tð Þ 1
APFi

k uþ 1ð Þ APFi
k uþ 2ð Þ … APFi

k uþ t þ 1ð Þ 1
… … … … …
APFi

k uþ tð Þ APFi
k uþ t þ 1ð Þ … APFi

k uþ 2tð Þ 1

2
664

3
775

ð3Þ

Here, we use Gu, Gu + 1,…, Gu + t to replace the row ele-
ments of G:

Gu ¼ APFi
k uð Þ APFi

k uþ 1ð Þ … APFi
k uþ tð Þ 1

� �
Guþ1 ¼ APFi

k uþ 1ð Þ APFi
k uþ 2ð Þ … APFi

k uþ t þ 1ð Þ 1
� �

…
Guþt ¼ APFi

k uþ tð Þ APFi
k uþ t þ 1ð Þ … APFi

k uþ 2tð Þ 1
� �

8>><
>>:

ð4Þ

The Eq. (3) can be converted as follows:

G ¼ Gu;Guþ1;…;Guþt½ �T ð5Þ

Let Y ¼ APFi
k

�
uþ t þ 1ð Þ;APFi

k uþ t þ 2ð Þ;…;APFi
k

uþ 2t þ 1ð Þ� be the actual processed frequencies of SCTk in
ECSi in the (u + t + 1)th, (u + t + 2)th,…, and (u + 2t + 1)th
time periods. According to the Eq. (2), let [Gu ⋅ XT,Gu + 1 ⋅
XT,…,Gu + t ⋅ XT] be the assessed processed frequencies of
SCTk in ECSi. We define EX as follows:

EX ¼ Y−G⋅X T
� �T⋅ Y−G⋅X T

� � ð6Þ

When EX achieves the minimum, the X can be obtained shown
as follows:

∂EX

∂X
¼ ∂ Y−G⋅X T

� �T⋅ Y−G⋅X T
� �

∂X
¼ 0 ð7Þ

In this approach, the appropriate degree that SCTk should
be assigned to ECSi in the (t + 1)th time period has been
assessed. Here, let TS be the Threshold to judge that if an
ECS is Suitable to dealing with a type of tasks. The set of
preliminary appropriate ECSs (i.e., candidate ECSs) whose
computing features are suitable for SCTk in the (t + 1)th time
period is defined as ECSk(t + 1). Each ECSi (ECSi ∈ ECSk(t +
1)) must satisfy the condition APFk

i t þ 1ð Þ ≥TS. Because the
above assessment happens at the beginning of a new time
period, it does not bring extra delay in the real time.

4.2 Unit task processing time minimum

We assume that the task assignment happens in the (t + 1)th
time period (i.e., the current time period). In a practical sce-
nario, it is extremely rare to receive just a single computing
task at a moment from multiple edge network domains. The
usual scenario is that a large number of computing requests are
received by the control plane in a short time slot. The com-
puting tasks that are delay sensitive should be assigned appro-
priately as soon as possible. According to the above scheme,
the set of ECSs that are good at dealing with different types of
tasks have been obtained. How to assign the task to the most
suitable ECS from multiple candidate ECSs, we devise a

Table 2 Summary of the main notations

Symbol Description

SCTk the k Service type of Computing Task

ECSi the Edge Computing Server i

NTPi
k tð Þ the Number of Tasks (i.e., SCTk) Processed in ECSi in the (t)th time period

SCTi(t) the Set of Computing Tasks processed in ECSi in the (t)th time period

APFi
k tð Þ the Actual Processed Frequency of SCTk in ECSi in the (t)th time

STc
i the Set of Tasks assigned to ECSi but not yet completely processed

TCCi the Total Computing Capacity of ECSi
SCTc the Set of Computing Tasks currently waiting to be assigned

TPDk the Task Processing Deadline of SCTk
RCCk the Required Computing Capacity of SCTk
WDc

i the Waiting Duration

GECSi SCTkð Þ the function to estimate the processing time of SCTk in ECSi
STc

i ∪ SCTkf g�� �� the number of the elements in STc
i ∪ SCTkf g

PTi;t SCTkð Þ the average Processing Time of SCTk in ECSi in the past t time periods

APTm;p
i SCTkð Þ the (p)th Abnormal Processing Time of SCTk in ECSi in the m time period

PTm
i SCTkð Þ the average normal Processing Time of SCTk in ECSi in the m time period

ΔPTm
i SCTkð Þ the average difference between APTm;p

i SCTkð Þ and PTm
i SCTkð Þ

1196 Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

scheme to solve the problem by considering minimizing the
ECS’s unit task processing time.

Let STc
i be the Set of Tasks assigned to ECSi but not yet

completely processed, and TCCi be the Total Computing
Capacity of ECSi. Let SCT

c be the Set of Computing Tasks
that are waiting to be assigned currently. Let TPDk be the Task
Processing Deadline of SCTk (i.e., SCTk need to be completed
before TPDk), and RCCk be the Required Computing Capacity
of SCTk. The aim of selecting the most suitable ECS is to
minimize the ECS’s future unit task processing time if the task
is assigned to it. Meanwhile, the assigned task should be com-
pleted as soon as possible before its deadline. Therefore, for
ECSi, the task SCTk that tends to be assigned to ECSi needs to
satisfy the conditions shown as follows:

Minimize

GECSi SCTkð Þ þ ∑
SCTl∈STc

i

GECSi SCTlð Þ

STc
i ∪ SCTkf g�� ��

0
B@

1
CA ð8Þ

s.t.

∀ECSi∈ECSk t þ 1ð Þ : APFk
i t þ 1ð Þ≥TS ð9Þ

TPDk ≥WDc
i þ GECSi SCTkð Þ ð10Þ

RCCk ≤TCCi− ∑
SCTl∈SCTc

RCCl ð11Þ

Here, GECSi is the estimation function of the task process-
ing time in ECSi, and can be assessed according to the task’s
historical processed time records inECSi, which is designed in
the next part. STc

i ∪ SCTkf g�� �� is the number of the elements in

the set of STc
i ∪ SCTkf g, the set contains all already assigned

tasks in ECSi and SCTk that is supposed assigned to ECSi.
WDc

i is the Waiting Duration before a new assigned task start
being processed in ECSi currently. It can be calculated by the
sum of two estimated time overhead, shown as

WDc
i ¼ 1−δð ÞGECSi SCTcð Þ þ ∑GECSi SCTlð Þ, here, δ is the

percentage of processing progress of the currently running
task ECSi, and SCTl (SCTl∈ SCTcjSTc

i

� �
) is the task earlier

assigned toECSi but not yet processed. Eqs. (9), (10), and (11)
are the constraints on Eq. (8). If ECSi is selected as the most
suitable ECS to deal with SCTk, ECSi need to belong to

ECSk(t + 1) with APFk
i t þ 1ð Þ ≥TS satisfied (i.e., Eq. (9));

the estimated time of completing SCTk in ECSi should less
than or equal to the deadline of SCTk (i.e., Eq. (10)); the
current available capacity of SCTk is greater than or equal to
the required computing capacity of SCTk (i.e., Eq. (11)).

According to Eq. (8), if a task (i.e., SCTk) is assessed to
minimize just one ECS’s FUT, the task should be assigned to
this ECS. If multiple candidate ECSs satisfy Eq. (8), the task
should be assigned to the ECS that can complete the task
earliest, shown as follows:

Minimize TPDk− WDc
i þ GECSi SCTkð Þ� �� � ð12Þ

However, the situation may also exist that SCTk can-
not be assigned to any ECS in ECSk(t + 1) in the current
assignment round due to failing to satisfy the conditions
such as Eqs. (9), (10), or (11). By considering load
balancing among multiple ECSs in the control plane,
SCTk can be assigned to other ECS with the lowest
working load currently, and the ECS need to satisfy
both Eqs. (10) and (11). If none of the above is possi-
ble, SCTk participates in the next task assignment round.

4.3 Task processing time estimation

The processing time of a type of tasks in an ECS usually
remains stable due to the ECS’s computing features.
According to a task’s past processing time in an ECS, the
task’s usual processing time in this ECS is not hard to esti-
mate. However, it is impossible for an ECS to deal with only
one task at a time, other already assigned tasks should also be
considered at the same time. Because the actual processing
time of the being processed tasks that have already been
assigned in the ECS may lead to time fluctuation to the new
assigned task.

In this paper, we consider two factors to define the estima-
tion function of a task’s processing time in a candidate ECS.
One factor is the usual processing time of the task itself in the
last t time periods, the other is the possibility of time fluctua-
tion caused by the processing anomaly. In this approach, the
estimation function of the processing time of SCTk in ECSi is
defined as follows:

GECSi SCTkð Þ ¼ PTi;t SCTkð Þ þ C⋅ ∑
t

m¼1
ΔPTm

i SCTkð Þ ð13Þ

Here, PTi;t SCTkð Þ is the average Processing Time of SCTk
in ECSi in the past t time periods.C is the influence coefficient

of the possible processing anomaly. ΔPTm
i SCTkð Þ is the av-

erage difference between the average processing time and the
abnormal processing time of SCTk in ECSi in the m time pe-

riod. And ΔPTm
i SCTkð Þ is defined as follows:

ΔPTm
i SCTkð Þ ¼ q

n
⋅ ∑

q

p¼1
APTm;p

i SCTkð Þ−PTm
i SCTkð Þ

	

ð14Þ

Here, n is the total processed number of SCTk inECSi in the
m time period, and q is its abnormal processed number of
SCTk in ECSi in the m time period. APTm;p

i SCTkð Þ is its

(p)th Abnormal Processing Time, and PTm
i SCTkð Þ is its aver-

age normal Processing Time.

1197Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

4.4 Estimation time overhead optimization

In order to meet the demands of the delay sensitive comput-
ing tasks, the schemes are proposed above to assign differ-
ent types of tasks to appropriate ECSs that are better at
dealing with them. So the corresponding tasks’ processing
time will be well improved. On the other hand, the schemes
not only optimize each ECS’s following task processing
efficiency, but also improve the load balancing among mul-
tiple ECSs. Therefore, the processing time estimation of a
task in an ECS before the task having been assigned plays a
critical role.

The situation mentioned above that some tasks may not
have been successfully assigned to one ECS in the previous
assignment round. However, their processing time in ECSs
have already been estimated. It obviously leads to unnecessary
time overhead of re-estimating these tasks’ processing time in
a new assignment round.We design an approach to reduce the
estimation time overhead and further improve the assignment
efficiency, shown as follows:

∃ 1≤r < cð Þ : MinimizerSCTk

GECSi SCTkð Þ þ ∑
SCTv∈SCTr

GECSi SCTvð Þ
jSTr

i∪ SCTkf gj

−
∑

SCTv∈SCTr
GECSi SCTvð Þ
jSTr

i j

0
BBBBB@

1
CCCCCA

> MinimizecSCTe∈ SCTc=SCTkð Þ

GECSi SCTeð Þ þ ∑
SCTl∈SCTc

GECSi SCTlð Þ
jSTc

i ∪ SCTef gj

−
∑

SCTl∈SCTc
GECSi SCTlð Þ
jSTc

i j

0
BBBBB@

1
CCCCCA

ð15Þ

Here, the superscript r denotes the previous assignment
round, and the superscript c denotes the current assign-
ment round. If the future unit task processing time incre-
ment brought to ECSi by SCTk in a previous assignment
round, is higher than the future unit task processing time
increment brought to ECSi by one of other waiting to be
assigned tasks in the current assignment round, SCTk will
not be estimated for ECSi in the current assignment round.

4.5 Computational complexity analysis

According to the working interactions between modules in the
system shown in Fig. 2. The real-time computation of the
proposed ACTE mechanism is making task assignment deci-
sion, which mainly happens in the UTDA module. For exam-
ple, the ECS’s task computing features assessment have al-
ready been calculated offline (i.e., the part of 4.1) before each
new time period. Thus, the ECS’s suitability degrees of deal-
ing with different types of tasks have already been obtained
before making task assignment decisions in the current time
period. In addition, before each task assignment round, the
estimated processing time of tasks in different ECSs have also

already been calculated offline (i.e., the part of 4.3) according
to ECSs’ historical task processing records. Therefore, we
mainly analyze the computational complexity of real-timely
assigning tasks among multiple ECSs.

For the tasks waiting to be selected in each assignment
round, the ECS’s selection strategy for them is based on
the greedy optimization. For each ECS, the tasks waiting
to be assigned are sorted according to Eq. (8) and selected
with the ECS’s available computing capacity (i.e., Eq.
(11)) and the task’s processing deadline (i.e., Eq. (10))
satisfied. Assume that the number of the tasks (i.e., the
elements in SCTc) waiting to be assigned is n, it will take
O(n lg n) at most. In addition, considering the problem of
tasks being repeatedly selected by multiple ECSs, the task
should be assigned to the one with the earliest completed
time according to Eq. (12). In practice, the number of
ECSs is much smaller than the tasks waiting to be
assigned in each task assigned round. Assume that the
number of ECSs is n at most and the number of tasks
selected by each ECS is n at most, thus the time taken
by Eq. (12) is defined as O(f(n)). It will take another
O(nf(n)) at most. According to the analysis above, the
overall computation complexity of real-timely task assign-
ment is O(n lg n + nf(n)) at most.

5 Performance evaluation

In this section, we evaluate the performance of the proposed
ACTE mechanism and make an analysis to the computing
tasks collaboratively assignment. The schemes are imple-
mented in Python and all experiments are performed on a
computer with one Intel(R) Core(TM) i7–6700 CPU @
3.40 GHz and 16 GB of RAM. The network topologies used
in the simulation are Geant and Interroute obtained from the
Internet Topology Zoo [28], shown in Fig. 3. Specifically,
Geant is a network topology with 41 nodes and 65 links,
and Interroute is a network topology with 110 nodes and
148 links. We divide Geant and Interroute into 4 and 8 edge
network domains respectively. Each domain contains about
10 switching devices and one ECS that controls these
switching devices.

The simulation parameters refer to the existing works
[29, 30]. A type of task is set to take up 2 to 5 units of
computing capacity, and its normal computing time is ran-
domly set to be 10 to 20 units of time while just is half of the
above time (i.e., 5 to 10 units of time) in the ECS that is
better at dealing this type of tasks. An ECS is set to have
4000 units of computing capacity. We also assume that
computing tasks are divided into 10 types, each ECS is only
better at dealing with 2 or 3 types of them. We compare the
processed ACTE with two related recent schemes that are
Distributed Task Offloading Strategy (DTOS) and Latency

1198 Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

Aware Task Assignment (LATA). The DTOS is the ap-
proach on distributed task unloading to low load base sta-
tion group under mobile edge computing environment,
which is mainly simulated according to the related work
[22]. The LATA is the approach on making task assignment
decisions via SDN to reduce task processing latency, which
is mainly simulated according to the related work [27]. We
use the following performance metrics to compare the three
approaches and evaluate their performance, the perfor-
mance metrics used in the evaluation are the Unit Task
Processing Delay (UTPD), the Task Processing Time
Optimization Ratio (TPTOR), the ECS Load Balancing
Degree (ELBD), the Task Migrating Efficiency (TME)
and the Task Migrating Success Ratio (TMSR).

5.1 UTPD

The UTPD is defined as the time interval from the computing
request being received to its corresponding computing task
being successfully completed. It consists the task assignment
time and the task computing time. We compare the UTPD of
the three approaches, the results are shown in Fig. 4.

It can be seen that the average UTPD of ACTE is
lower than that of DTOS and LATA, especially when
the number of tasks increases rapidly. Although the task
assignment time of ACTE is higher, the task computing
time of it is always much lower than that of the two
compared approaches. In more detail, when the number
of tasks increases from 100 to 10,000, the average task

(a)

(b)

Fig. 3 The network topologies used in the simulation. a Geant Topology, b Interroute Topology

1199Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

computing time of ACTE just increases by less than 5 unit
time, while that of DTOS and LATA increase by more
than 14 unit time and 9 unit time respectively. Moreover,
under the peak load of tasks, the average time overhead to
deal with a task by ACTE is about 60% of that by DTOS
and 78% of that by LATA respectively. The reason is as
follows. Before each time period, according to the histor-
ical records of each ECS, ACTE has already identified the
ECS computing features for different types of computing
tasks. Thus, the tasks can be processed by the ECSs that
are good at dealing with them with less time. Although

the task assignment time overhead of ACTE is relatively
higher, once tasks have been assigned to suitable ECSs,
the task computing time of ACTE is much lower.

Although LATA also assigns tasks based on the
global view via the SDN controller, it mainly selects
the ECSs of lower loads without the ECS task process-
ing features considered. The unit task processing time
cannot be further optimized. On the contrary, the task
assignment time of DTOS is the lowest, because DTOS
mainly assigns tasks to the local ECSs. When the num-
ber of tasks increases rapidly, the unit task processing

100 1000 5000 10000

The number of tasks

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

U
n
it

ta
sk

p
ro

ce
ss

in
g

ti
m

e
(u

n
it

ti
m

e)

Task computing time of ACTE

Task assignment time of ACTE

Task computing time of DTOS

Task assignment time of DTOS

Task computing time of LATA

Task assignment time of LATA

(a)

(b)

100 1000 5000 10000

The number of tasks

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

U
n
it

ta
sk

p
ro

ce
ss

in
g

ti
m

e
(u

n
it

ti
m

e)

The task computing time of ACTE

The task assignment time of ACTE

The task computing time of DTOS

The task assignment time of DTOS

The task computing time of LATA

The task assignment time of LATA

Fig. 4 The average unit task processing delay. a The average unit task processing delay over Geant, b The average unit task processing delay over
Interroute

1200 Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

time of DTOS substantially increases due to the unbal-
anced ECS working loads.

5.2 TPTOR

The TPTOR is defined as the ratio of tasks with optimized pro-
cessing time to the total tasks. Obviously, themore the number of
tasks have been assigned to suitable ECSs to reduce their usual
processed time, the higher the TPTOR is. We compare the
TPTOR of the three mechanisms, the results are shown in Fig. 5.

The TPTOR of ACTE is always higher than that of DTOS
and LATA.When the number of tasks increases, the TPTORs
under the three approaches decreases. However, the decline

rate of TPTOR of ACTE is obviously lower than that of
DTOS and LATA, especially when the number of tasks
reaches the maximum. In more detail, when the task load over
the network is light, the TPTOR of ACTE can approach or
reach 1, while the highest values of TPTORs of DTOS and
LATA are just about 85% and 92% respectively. With the
number of tasks increasing from 100 to 10,000, the TPTOR
of ACTE still keeps beyond 84%, while the TPRORs of
DTOS and LATA are lower than 35% and 60% respectively.
The reason is as follows. ACTE not only assesses ECSs’ usual
computing features of dealing with different types of tasks, it
also predicts the future unit task processing time if the task is
assigned to an ECS before each assignment round. Thus, the

100 1000 5000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
ACTE

DTOS

LATA

(a)

(b)

100 1000 5000 10000

The number of tasks

The number of tasks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
h
e

ta
sk

 p
ro

ce
ss

in
g
 t

im
e

o
p
ti

m
iz

at
io

n
 r

at
io

T
h
e

ta
sk

 p
ro

ce
ss

in
g
 t

im
e

o
p
ti

m
iz

at
io

n
 r

at
io

ACTE

DTOS

LATA

Fig. 5 The task processing time optimization ratio. a The task processing time optimization ratio over Geant, b The task processing time optimization
ratio over Interroute

1201Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

ECS with the assessed minimum unit task processing time is
selected among multiple candidate ECSs, which usually deals
with the tasks assigned to it with less processing time. In
addition, ACTE considers the load balancing among multiple
ECSs in a global view, thus the ECS with more available
computing capacity has higher possibility to deal with a new
task, which also improves the TPTOR. On the contrary,
DTOS and LATA assign tasks mainly according to the
ECS’s real-time working load without taking the ECS’s com-
puting features into account. Thus, the task processing time
optimizationmainly depends on the ECS’s sufficient available
computing capability. However, the number of tasks with op-
timized processing time greatly decreases with the overall

ECSs’ working loads becoming heavy. Especially, The
TPTOR of DTOS is the lowest at the heaviest working load,
because it cannot collaboratively assign excessive tasks to
other ECSs with lighter working load in a global view.

5.3 ELBD

The ELBD is defined as the task load balancing degrees
among multiple ECSs. It reflects the balance of each ECS’s
computing resource utilization. We compare the TPTOR of
the three approaches, the results are shown in Fig. 6.

The ELBDs of ACTE and LATA are always higher than
that of DTOS. The ELBD of ACTE becomes higher with the

100 1000 5000 10000

The number of tasks

The number of tasks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

E
C

S
 l

o
ad

 b
al

an
ci

n
g
 d

eg
re

e

ACTE

DTOS

LATA

(a)

(b)

100 1000 5000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

E
C

S
 l

o
ad

 b
al

an
ci

n
g
 d

eg
re

e

ACTE

DTOS

LATA

Fig. 6 The ECS load balancing degree. a The ECS load balancing degree over Geant, b The ECS load balancing degree over Interroute

1202 Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

number of tasks increasing, while the ELBDs of DTOS and
LATA decrease dramatically especially when the number of
tasks increases rapidly. In more detail, when the number of
tasks increases from 100 to 10,000, the ELBD of ACTE is
always keeping beyond 75%, and its maximum value reaches
88%, while that of DTOS and LATA decline rapidly. The
ELBDs of DTOS and LATA are only about 35% and 65%
respectively at the highest task load. The reason is as follows.
ACTE and LATA both take the overall ECSs’ working loads
into account to assign tasks with the global network status
considered. While DTOS just considers the local network sta-
tus, the large number of non-uniformly distributed tasks leads
to lower ELBD of DTOS. Comparing with LATA, ACTE
focuses the unit task processing minimum and considers
ECSs’ working load balancing as a further delay optimization
method. Thus, when the number of tasks is low, the ELBDs of
ACTE is lower than that of LATA. However, ACTE also
takes the multiple possible scenarios for task assignment

among multiple suitable ECSs into account, thus, the assign-
ment is skewed toward the ECS with lower working load
especially when the number of tasks is large. Therefore, the
ELBD of ACTE is much higher than that of LATA when the
number of tasks processed in the network reaches the
maximum.

5.4 TME and TMSR

We also compare the TMEs and the TMSRs of ACTE,
DTOS and LATA. The being processing tasks may need
to be migrated to other ECSs to satisfy the changing de-
mands of services in the real time. The TME is defined as
1 minus the ratio of the task migrating time to the task
total processing time, and the TMSR is defined as the
ratio of the successfully migrated tasks to the total tasks
whose corresponding service demands are changed. In
this simulation, we randomly select 20% of the total being

100 1000 5000 10000

The number of tasks

The number of tasks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ACTE

DTOS

LATA

(a)

(b)

100 1000 5000 10000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
h
e

ta
sk

 m
ig

ra
ti

n
g
 e

ff
ic

ie
n
cy

T
h
e

ta
sk

 m
ig

ra
ti

n
g
 e

ff
ic

ie
n
cy

ACTE

DTOS

LATA

Fig. 7 The task migrating efficiency. a The task migrating efficiency over Geant, b The task migrating efficiency over Interroute

1203Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

processed tasks to change their corresponding demands,
and the results are shown in Figs. 7 and 8.

The TMEs and TMSRs of ACTE and LATA are always
much higher than that of DTOS. When the number of tasks
increases, the TMEs and TMSRs under the three approaches
decreases. The values of TME and TMSR under LATA are
very close to that under ACTE when the number of tasks is
low, however, these values under LATA drop much faster
than that under ACTE with the number of tasks increasing.
Meanwhile, the values of TME and TMSR under DTOS drops
dramatically by almost a half of their highest values. In more
detail, when the number of tasks is low, the TMEs of ACTE
and LATA are about 94% and 92% respectively, the TMSRs
of ACTE and LATA are almost approaching 1, while the
TME and TMSR of DTOS are about 81% and 96% respec-
tively. When the number of tasks researches the maximum,
the TME and TMSR of ACTE still keep beyond 80% and
85% respectively, while the TME and TMSR of LATA drop
to about 65% and 75% respectively. Meanwhile, the TME and

TMSR of DTOS are just about 33% and 53% respectively.
The reason is as follows. ACTE and LATA support migrating
tasks among multiple ECSs in a global view, and both tend to
migrate tasks to the ECSs with lower working loads. Thus, the
TME and TMSR of the two approaches can be well improved
when the network task load is becoming heavy. However,
LATA spends extra time re-analyzing reducing latency issues
when re-assigning tasks, which affects its TME. In addition,
the more the number of tasks there is, the less number of ECSs
with low working loads there will be, which reduces the
TMSR of LATA. ACTE supports quickly re-confirming suit-
able ECSs to re-assign tasks according to the changing de-
mands, because the computing features of different ECSs have
already been obtained, which enables tasks to be accurately
migrated to appropriate ECSs. Thus, the TME of ACTE is
improved. Furthermore, the re-estimation time can be saved
if the task with the similar demands have ever been assessed
due to the method devised in ACTE, which significantly op-
timize the TMSR of ACTE. On the contrary, DTOS has to

100 1000 5000 10000

The number of tasks

The number of tasks

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

T
h
e

ta
sk

 m
ig

ra
ti

n
g
 s

u
cc

es
s

ra
ti

o
T

h
e

ta
sk

 m
ig

ra
ti

n
g
 s

u
cc

es
s

ra
ti

o

ACTE

DTOS

LATA

(a)

(b)

100 1000 5000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ACTE

DTOS

LATA

Fig. 8 The task migrating success ratio. a The task migrating success ratio over Geant, b The task migrating success ratio over Interroute

1204 Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

real-timely re-analysis potential gamemodel, its TME reduces
rapidly with the number of tasks increasing. Moreover, there
are few choices to re-assign tasks to other ECSs in the same
local network domain due to the local view of DTOS, which
significantly affects the TMSR of DTOS.

6 Conclusions

In this paper, by leveraging the advantages of SDN, the
mechanism called ACTE is proposed, it collaboratively
assigns computing tasks among multiple ECSs in a global
view. Three schemes are presented in the mechanism to
optimize the task assignment and minimize the task pro-
cessing delay. By mining the historical task processing
data, the scheme to assess each ECS’s task processing
features is devised. Then, by estimating task processing
time in different ECSs, the scheme to predict the ECS’s
future unit task processing delay is devised. Thus, each
ECS’s unit task processing time can be minimized by
collaboratively assigning tasks among suitable ECSs at
the current assignment round. In addition, in order to fur-
ther improve the task assignment efficiency, an approach
to optimize the task processing time estimation time over-
head is designed. Simulation results have shown that the
proposed mechanism is able to optimize the task process-
ing delay more efficiently than the state of the art.

In this work, we mainly consider the static network
topology, for example, the locations of switching devices
and servers (i.e., the network nodes) are considered fixed.
However, with the developing of IoE under 5G, the net-
work nodes of dealing with tasks may be mobile. As a
future research direction, we plan to extend the proposed
mechanism in the scenario with a dynamic network topol-
ogy, and consider the influence on the SDN-based task
assigning brought by the mobile nodes.

Acknowledgments This work is supported by the National Natural
Science Foundation of China under Grant no. 62002261 and 61802281,
the TianjinMunicipal Education Commission Scientific Research Project
under Grant No. 2018KJ145.

References

1. Hsieh HC, Chen JL, Benslimane A (2018) 5G virtualized multi-
access edge computing platform for IoT applications. J Netw
Comput Appl 115(1):94–102

2. Hassan N, Yau KLA, Wu C et al (2019) Edge computing in 5G: a
review. IEEE Access 7:127276–127289

3. Taleb T, Samdanis K, Mada B, Flinck H (2017) On multi-access
edge computing: a survey of the emerging 5G network edge cloud
architecture and orchestration. IEEE Commun Surv Tut 19(3):
1657–1681

4. Pan J,McElhannon J (2018) Future edge cloud and edge computing
for internet of things applications. IEEE Internet Things 5(1):439–
449

5. Alvarez F, Breitgand D, Griffin D, Andriani P, Rizou S, Zioulis N,
Moscatelli F, Serrano J, Keltsch M, Trakadas P, Phan TK, Weit A,
Acar U, Prieto O, Iadanza F, Carrozzo G, Koumaras H, Zarpalas D,
Jimenez D (2019) An edge-to-cloud virtualized multimedia service
platform for 5G networks. IEEE T Broadcast 65(2):369–380

6. Zhao Y, Wang W, Li Y, Meixner CC et al (2019) Edge computing
and networking: a survey on infrastructures and applications. IEEE
Access 7:101213–101230

7. Salman O, Elhajj I, Chehab A, Kayssi A (2018) IoT survey: an
SDN and fog computing perspective. Comput Netw 143(9):221–
246

8. Schiller E, Nikaein N, Kalogeiton E, GasparyanM, Braun T (2018)
CDS-MEC NFV SDN-based application management for MEC in
5G. Comput Netw 135(22):96–107

9. Blanco B, Fajardo JO, Giannoulakis I, Kafetzakis E, Peng S, Pérez-
Romero J, Trajkovska I, Khodashenas PS, Goratti L, Paolino M,
Sfakianakis E, Liberal F, Xilouris G (2017) Technology pillars in
the architecture of future 5Gmobile networks NFVMEC and SDN.
Comput Stand Inter 54(4):216–228

10. Barakabitze AA, Ahmad A, Mijumbi R, Hines A (2020) 5G net-
work slicing using SDN and NFV: a survey of taxonomy, architec-
tures and future challenges. Comput Netw 167(11):106984

11. Zaman FA, Jarray A, Karmouch A (2019) Software defined
network-based edge cloud resource allocation framework. IEEE
Access 7:10672–10690

12. Liu N, Dong Z, Roberto RC (2012) Task and server assignment for
reduction of energy consumption in datacenters. In: IEEE interna-
tional symposium on network computing and applications. USA,
Cambridge, pp 171–174

13. Alkayal ES, Jennings NR, Abulkhair MF (2016) Efficient task
scheduling multi-objective particle swarm optimization in cloud
computing. In: IEEE conference on local computer networks work-
shops. Dubai, United Arab Emirates, pp 17–24

14. Keshanchi B, Souri A, Navimipour NJ (2017) An improved genetic
algorithm for task scheduling in the cloud environments using the
priority queues: formal verification, simulation, and statistical test-
ing. J Syst Software 124:1–21

15. Gajera V, Shubham GR, Jana PK (2016) An effective multi-
objective task scheduling algorithm using min-max normalization
in cloud computing. In: IEEE international conference on applied
and theoretical computing and communication technology.
Bangalore, India, pp 812–816

16. Elaziz MA, Xiong S, Jayasena KPN, Li L (2019) Task scheduling
in cloud computing based on hybrid moth search algorithm and
differential evolution. Knowl-Based Syst 169:39–52

17. Farooq H, Sadoon A, Mohammad S, Tafazolli R (2020) Joint QoS-
aware and cost-efficient task scheduling for fog-cloud resources in a
volunteer computing system. ACM T Internet Techn, August:
Article 05

18. Xing H, Liu L, Xu J, Nallanathan A (2019) Joint task assignment
and resource allocation for D2D-enabled mobile-edge computing.
IEEE T Commun 67(6):4193–4207

19. Sun Y, Wei T, Li H, Zhang Y, Wu W (2020) Energy-efficient
multimedia task assignment and computing offloading for mobile
edge computing networks. IEEE Access 8:36702–36713

20. Cheng S, Chen Z, Li J, Gao H (2019) Task assignment algorithms
in data shared mobile edge computing systems. In: IEEE interna-
tional conference on distributed computing systems. Dallas, USA,
pp 997–1006

21. Alameddine HA, Sharafeddine S, Sebbah S, Ayoubi S, Assi C
(2019) Dynamic task offloading and scheduling for low-latency
IoT services in multi-access edge computing. IEEE J Sel Area
Comm 37(3):668–682

1205Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

22. Li Y, Jiang C (2020) Distributed task offloading strategy to low
load base stations in mobile edge computing environment. Comput
Commun 164:240–248

23. Misra S, Saha N (2019) Detour: dynamic task offloading in soft-
ware defined fog for IoT applications. IEEE J Sel Area Comm
37(5):1159–1166

24. Zhang J, GuoH, Liu j, ZhangY (2020) Task offloading in vehicular
edge computing networks: a load-balancing solution. IEEE T Veh
Technol, 69(2): 2092–2104

25. Kiran N, Pan S, Yin C (2020) Joint resource allocation and compu-
tation offloading in mobile edge computing for SDN based wireless
networks. J Commun Netw-S Kor 22(1):1–11

26. Shahryari S, Hosseini SA, Tashtarian F (2020) An SDN based
framework for maximizing throughput and balanced load distribu-
tion in a cloudlet network. Future Gener Comp Sy 110:18–32

27. Chalapathi GSS, Chamola V, Tham CK, Gurunarayanan S, Ansari
N (2020) An optimal delay aware task assignment scheme for wire-
less SDN networked edge cloudlets. Future Gener Comp Sy 102:
862–875

28. The Internet Topology Zoo. URL< http://www.topology-zoo.org/>
29. Yang S, Li F, Shen M, Chen X, Fu X, Wang Y (2019) Cloudlet

placement and task allocation in mobile edge computing. IEEE
Internet Things 6(3):5853–5863

30. Li D, Hong P, Xue K, Pei J (2018) Virtual network function place-
ment considering resource optimization and SFC requests in cloud
datacenter. IEEE T Parall Distr 29(7):1664–1677

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Chao Bu received the B.S. degree
in information security, and the
M.S. and Ph.D degrees in software
engineering from the Northeastern
University, Shenyang, China. He is
currently working at the School of
C o m p u t e r S c i e n c e a n d
Engineering, Tianjin University of
Technology. His research interests
include future Internet and service
c om p u t i n g , e t c . Em a i l :
bc_0722@163.com

Jinsong Wang received the B.Sc.
degree from the Department of
Computer Science, Tianjin
University of Technology, Tianjin,
China, and the M.Sc. and Ph.D. de-
grees from Nankai University,
Tianjin. He is currently a Professor
with the School of Computer
Science and Engineering, Tianjin
University of Technology. His re-
search interests include computer
networks, distributed computation,
and evolutionary computation.
Email: jswang@tjut.edu.cn

1206 Peer-to-Peer Netw. Appl. (2021) 14:1190–1206

http://www.topology-zoo.org/%3e

	Computing tasks assignment optimization among edge computing servers via SDN
	Abstract
	Introduction
	Related work
	System framework
	System detailed description
	Intersystem interaction

	Tasks collaboratively assignment
	ECS’s computing features assessment
	Unit task processing time minimum
	Task processing time estimation
	Estimation time overhead optimization
	Computational complexity analysis

	Performance evaluation
	UTPD
	TPTOR
	ELBD
	TME and TMSR

	Conclusions
	References

