
https://doi.org/10.1007/s12083-021-01074-w

ASFGNN: Automated separated-federated graph neural network

Longfei Zheng1 · Jun Zhou1 · Chaochao Chen2 · BingzheWu1 · Li Wang3 · Benyu Zhang3

Received: 31 August 2020 / Accepted: 13 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Graph Neural Networks (GNNs) have achieved remarkable performance by taking advantage of graph data. The success
of GNN models always depends on rich features and adjacent relationships. However, in practice, such data are usually
isolated by different data owners (clients) and thus are likely to be Non-Independent and Identically Distributed (Non-
IID). Meanwhile, considering the limited network status of data owners, hyper-parameters optimization for collaborative
learning approaches is time-consuming in data isolation scenarios. To address these problems, we propose an Automated
Separated-Federated Graph Neural Network (ASFGNN) learning paradigm. ASFGNN consists of two main components,
i.e., the training of GNN and the tuning of hyper-parameters. Specifically, to solve the data Non-IID problem, we first
propose a separated-federated GNN learning model, which decouples the training of GNN into two parts: the message
passing part that is done by clients separately, and the loss computing part that is learnt by clients federally. To handle the
time-consuming parameter tuning problem, we leverage Bayesian optimization technique to automatically tune the hyper-
parameters of all the clients. We conduct experiments on benchmark datasets and the results demonstrate that ASFGNN
significantly outperforms the naive federated GNN, in terms of both accuracy and parameter-tuning efficiency.

Keywords Graph neural network · Federated learning · Bayesian optimization · Privacy preserving

This article belongs to the Topical Collection: Special Issue on
Privacy-Preserving Computing
Guest Editors: Kaiping Xue, Zhe Liu, Haojin Zhu, Miao Pan and
David S.L. Wei

� Chaochao Chen
chaochao.ccc@antgroup.com

Longfei Zheng
zlf206411@antgroup.com

Jun Zhou
jun.zhoujun@antgroup.com

Bingzhe Wu
fengyuan.wbz@antgroup.com

Li Wang
raymond.wangl@antgroup.com

Benyu Zhang
benyu.z@antgroup.com

1 Ant Group, Beijing, China

2 Ant Group, Hangzhou, China

3 Ant Group, Sunnyvale, CA, US

1 Introduction

Graph Neural Networks (GNNs) have achieved superior
performance by taking advantage of embedding features via
aggregating representations of nodes and their neighbors
[25]. GNNs benefit a lot of applications across different
tasks, such as computer vision [31], traffic prediction [14],
recommend system [33] and risk control [19].

1.1 Existing problem

The factor that drives the success of GNN is the rapid
growth of high-dimensional data and their adjacent informa-
tion. However, existing GNN methods face two main chal-
lenges. First of all, with the increasing awareness of secu-
rity and privacy, data-isolation problem is serious, which
limits the data size of a single party (client) and further
damage the performance of GNN. Furthermore, the isolated
datasets in different clients are usually Non-Independent
and Identically Distributed (Non-IID), due to the reasons
that clients belong to diverse geographic locations or have
different time windows of data collection. Therefore, it
becomes more and more difficult to train a global GNN
model with the Non-IID data in data isolation scenario.

/ Published online: 5 February 2021

Peer-to-Peer Networking and Applications (2021) 14:1692–1704

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-021-01074-w&domain=pdf
http://orcid.org/0000-0003-1419-964X
mailto: chaochao.ccc@antgroup.com
mailto: zlf206411@antgroup.com
mailto: jun.zhoujun@antgroup.com
mailto: fengyuan.wbz@antgroup.com
mailto: raymond.wangl@antgroup.com
mailto: benyu.z@antgroup.com

Figure 1 shows a typical example of the Non-IID graph
data, where we assume there are I separated clients. These
clients collect graph data from different sources with the
same format. In other words, clients share the same feature
domain, e.g., {f1, f2, f3}, but differ in sample space, which
are represented by colorful nodes. Meanwhile, clients may
have diverse graph structures of nodes, i.e., heterogeneous
graphs. Furthermore, data distributions are likely to be
Non-IID , as is shown in Fig. 1.

Moreover, hyper-parameters are important for GNN
learning algorithms. For example, activation function
determines the output of layers, regularization parameter
impacts the calculation of loss functions, and learning
rate influences the update of model weights in the back-
propagation process [20]. These hyper-parameters directly
affect the training process of GNN models.

Intuitively, in order to achieve the best model perfor-
mance, clients with Non-IID graph data are likely to have
individual hyper-parameter sets rather than a global hyper-
parameter set [13]. Due to the huge search space and limited
network status among clients, tuning of hyper-parameters is
quite time-consuming. Therefore, it is important to design
a proper distributed GNN model on Non-IID dataset with
hyper-parameter optimization power.

Unfortunately, there is few literature on solving the
above problem. Although directly applying federated
learning to GNN seems a good choice, it has two main
shortcomings [13]. Firstly, federated learning faces the
statistical challenge. The original goal of federated learning,
i.e., training a single global model on the union of clients’
datasets, is no longer suitable for Non-IID graph data [35].
Secondly, communication of federated GNN learning is
time-consuming. This is because, in order to achieve the
best performance, models and hyper-parameters of clients

are likely to be different. Comparing with the traditional
neural network, GNN has extra individual hyper-parameters
to represent graph information, which further increases the
unbearable training time.

1.2 Our solution

In order to bridge these gaps, we propose an Auto
Separated-Federated GNN (ASFGNN) learning paradigm.
As graph data is often owned by companies and govern-
ments, we focus on the cross-silo federated learning in
which the clients are a limited number of organizations
with powerful computing ability and reliable communica-
tions [13]. Our proposed ASFGNN consists of two steps,
i.e., GNN training and hyper-parameters optimization.

In the first step, the Separated-Federated GNN learning
framework decouples a GNN model into two parts: mes-
sage passing sub-model that is conducted by clients sepa-
rately and loss computing sub-model which is performed by
clients federally. Specifically, clients first perform message
passing, i.e., neighbor information aggregation, individu-
ally, and get node embeddings. In the following step, clients
take the embeddings as the input of the discrimination
model to compute loss, then update both message passing
sub-model and loss computing sub-model using backward
propagation for the first time. After it, the server securely
aggregates the local discrimination models using federated
learning method and gets the global discrimination model.
Finally, the global discrimination model is broadcast to
clients to update the local discrimination models with the
help of Jensen–Shannon divergence.

In the second step, we propose a Bayesian optimization
algorithm to automatically optimize the hyper-parameters
of Separated-Federated GNN model. That is, Bayesian

Fig. 1 The data isolation
problem with Non-IID graph
data, assuming I clients with
four nodes, three features and
different label distributions

1693Peer-to-Peer Netw. Appl. (2021) 14:1692–1704

optimization algorithm takes hyper-parameters as input and
regards the average value of clients’ evaluation metrics
(e.g., precision) as output [7, 34], where these metrics are
uploaded by clients and averaged by server in a secure
manner. To this end, we get the hyper-parameters that
achieve the best metric.

To verify the performance of our proposed ASFGNN,
we empirically compare the accuracy of SFGNN and
traditional federated GNN model, and analyze the efficiency
of Bayesian optimization method and the traditional grid
search method.

We summarize our main contributions as follows:

– We propose a novel Separated-Federated Graph Neural
Network (SFGNN) learning framework, which can be
used to learn any existing GNN models under privacy
consideration.

– We propose to adopt Bayesian optimization to tune
model parameters automatically, which significantly
improves the efficiency of the SFGNN model.

– We conduct experiments on three benchmark datasets
and the results demonstrate that our proposed SFGNN
outperforms federated GNN in terms of accuracy, and
ASFGNN significantly reduces the hyper-parameter
tuning time of SFGNN comparing with grid search.

2 Related work

In this section, we briefly review the literature on federated
learning and hyper-parameters optimization.

2.1 Federated learning

Federated learning model is prevailing privacy-preserving
approach via model or gradient aggregation rather than data
aggregation [21]. However, the accuracy of federated learn-
ing would drop significantly with Non-IID datasets[13].
Existing works propose different strategies to resolve the
statistical challenge of federated learning. One natural
approach is to create a small shared dataset which makes
the data across clients more similar [30]. For some appli-
cations, the contributions of clients to the global model
are bounded according to the dataset characteristics [28].
Furthermore, model-agnostic meta-learning has been devel-
oped to meta-learn a global model, which can be used as
a starting point for learning a good model of Non-IID data
in each client [8]. These methods modify federated learn-
ing model with Non-IID datasets, which can not be applied
in GNN model directly. As GNN model includes two parts
as shown in preliminary, among which the message pass-
ing part owns personal information which should be learned
individually.

Besides the federated learning, Split Learning (SL) is
another decentralized method which trains the local models
separately and sends hidden layers to server [11]. The
separated local models represent the personality of clients
with Non-IID datasets [9]. However, it is obviously that the
hidden layers leak privacy information and the deep local
layers decrease the accuracy seriously [3]. In this paper,
we combine the advantages of federated learning and split
learning, and propose a novel Separated-Federated Graph
Neural Network learning framework.

2.2 Hyper-parameters optimization

Recently, there has been an increasing literature on
hyper-parameters optimization [34]. Grid search is the
most traditional way of hyper-parameters tuning, which
enumerates every possible configuration in the search space.
Random search is better than naive grid search, which
samples configurations randomly. Moreover, Evolutionary
Algorithm (EA) and Reinforcement Learning (RL) methods
are used to generate a new population (a bunch of
configurations). Another conventional solution resorts
to formalizing machine learning process as a black-
box optimization task, reference [27] finds the optimal
of black-box objectives with the method of Bayesian
Optimization (BO). Comparing with EA and RL, BO is
more efficient than these methods and shows promising
results in hyper-parameters optimization [34]. In this paper,
we propose to apply BO as a prevailing approach to find the
proper hyper-parameters in our proposed model.

3 Preliminaries

In this section, we present some preliminary techniques
and methods of our proposal, including Graph Neural
Network (GNN), federated learning, secret sharing, Jensen-
Shannon divergence, and Bayesian optimization.

3.1 Graph neural network

GNN learns node embeddings by aggregating features
of node and its neighbors. The node embeddings are
regarded as the new node representations which are fed
to downstream machine learning tasks. The process of
GNN training includes two steps: message passing and
loss computing. The first step is the difference between
GNN and other neural network models, which uses a
generation function to infer node embeddings. Numbers
of message passing functions have been proposed, e.g.,
random walk statistics based, attention based, similarity
based, and convolution based [14, 23, 24, 29]. In this
work, we select GraphSAGE as the node embeddings

1694 Peer-to-Peer Netw. Appl. (2021) 14:1692–1704

generation function, which aggregates the embeddings from
a node’s local neighborhood in a inductive way [12]. The
message passing process is described in Eq. 1, where
k ∈ {1, 2, ..., K} denotes the depth of neighborhood
aggregation, hv,k denotes the embedding of node v during k-
th aggregation step, xv denotes features of node v and N (v)

denotes the neighbors of node v in the graph [2].

hN (v),k ← AGGk({hu,k−1, ∀u ∈ N (v)}),
hv,k ← (

Wk · CONCAT
(
hv,k−1, hN (v),k

))
.

(1)

where AGGk is the aggregation function in k-th step, such
as Mean, LSTM, and Pooling methods [12].

3.2 Federated learning

Federated Learning (FL) was first proposed by Google [22],
which builds distributed machine learning models while
keeping personal data on clients. In other words, federated
learning models are trained via model aggregation rather
than data aggregation. We suppose that I clients have
their own datasets {D1, D2, ..., DI } which are collected
from different sources with the same feature domain.
Private raw dataset Di is preserved locally, client i uses
forward and backward propagations to update its own model
Mi individually, which has the identical neural network
architecture with other clients. Then clients upload the
encrypted weights to the server with the help of secret
sharing or homomorphic encryption [4, 6, 26, 36]. The
server averages the uploaded model parameters to update
the global federated model Ms , which will be sent back to
client i to replace the local model Mi .

3.3 Jensen-Shannon divergence

The Jensen–Shannon divergence (JS) is popularly used
to evaluate the dissimilarity between two probability
distributions [16]. JS has a finite value range from 0 to 1
for two probability distributions. Motivated by [5], JS can
be used to indicate the dissimilarity between two None-IID
datasets. Considering two probability distributions P and
Q, the JS between P and Q is defined in Eq. 2.

JS (P ||Q) ← 1

2
KL

(
P ||P +Q

2

)
+ 1

2
KL

(
Q||P +Q

2

)
,

KL (P1||P2) ←
∑

x∈X

P1(x) log
P1(x)

P2(x)
. (2)

As the machine learning model is built to represents
the trained dataset, the difference between the aggregated
model in server and the local model in client can
be simulated by the distribution similarity between the
participated data and the client data.

3.4 Secret sharing

Our proposal depends on Shamir’s t-out-of-n threshold
secret sharing algorithm [26]. Typically, we use n-out-of-n
additive secret sharing to recover the privacy in this paper.
For example, we suppose that there is an �-bit value a of
client i, i ∈ P with P = {1, ..., I }, which will be shared
among all the participant clients. Firstly, in order to encrypt
(Shr(·)) the value a of client i, client i generates a random
number aj , {aj ∈ Z2� , j ∈ P, j �= i}, which will be
distributed to client j, {j ∈ P, j �= i}. Then client i
calculates ai = a − ∑

j aj mod 2� which will be kept
locally. For simplification, We use 〈a〉k to denote the share
of a in client k, ∀k ∈ P . To decrypt (Rec(·)) the shared
value a, client k (∀k ∈ P) sends the encrypted value 〈a〉k to
the server. The server aggregates

∑
k〈a〉k mod 2�, k ∈ P ,

and gets the value a of client i.

3.5 Bayesian optimization

Bayesian Optimization (BO) is an effective method to solve
the black-box parameter optimization problem [34]. In our
paper, we care about the hyper-parameter optimization in
the training of GNN model, where we try to find the optimal
hyper-parameter setting that maximizes the utility function:

θ∗ = arg max
θ∈�

f (θ), (3)

where θ denotes the hyper-parameters, such as learning rate
and dimension of hidden units. The � denotes the search
space and f is the utility function which is measured by
certain model metrics, such as model accuracy and the Area
Under Curve (AUC) score. Typically, the evaluation of f

is expensive and we cannot obtain its closed-form solution.
Therefore, we treat Eq. 3 as a black-box optimization and
adopt BO to solve this problem. The key ingredients of BO
include a surrogate model to “imitate” f and an acquisition
function to decide the next trial based on historical trails
(i.e., hyper-parameters). In our paper, we use Gaussian
process (GP) as our surrogate model and use the Expected
Improvement (EI) function as the acquisition function [32].

4 The proposedmethod

In this section, we first give an overview of the pro-
posed Automated Separated-Federated Graph Neural Net-
work (ASFGNN) learning paradigm. We then present its
three main components, i.e., separated learning for message
passing on clients, federated learning for loss comput-
ing with Jensen–Shannon divergence, and hyper-parameters
optimization with Bayesian optimization. Finally, we sum-
marize the whole algorithm.

1695Peer-to-Peer Netw. Appl. (2021) 14:1692–1704

Fig. 2 Our proposed automated separated-federated graph neural network model

4.1 Overview

We first give an overview of the proposed ASFGNN
learning framework. We focus on horizontally split datasets
in this paper.

Our design of ASFGNN consists of two steps. First,
we need to design a privacy preserving GNN learning
model, which can solve the Non-IID problem and reduce
the communication cost as much as possible. Second,
since GNN has many hyper-parameters, we need to design
a strategy to automatically optimize hyper-parameters to
reduce the training time.

The first step is to design a practical GNN learn-
ing paradigm without leaking the private plaintext data
of clients. Inspired by existing works [10], we propose
a Separated-Federated GNN (SFGNN) learning frame-
work. The main idea is decoupling the computation module
of GNN into two sub-modules, i.e., the Separated GNN
learning (SGNN) model and the Federated GNN learn-
ing (FGNN) model, as shown in Fig. 2a. The former
performs message passing and obtains the node embeddings
as inputs of the latter one. As clients have Non-IID datasets,
node embeddings are generated separately with individual
network architecture and hyper-parameters. After the gen-
eration of node embeddings with SGNN, FGNN trains the
discrimination neural network taking advantage of federated
learning algorithm.

Secondly, hyper-parameters of SFGNN, such as learning
rate, regularization factor, network structures etc., explode
with the increasing number of clients. We adopt Bayesian
Optimization method to solve this black-box optimization
problem, in which we regard the hyper-parameters of model

as inputs and the average of clients’ metrics as outputs, as
shown in Fig. 2b. The metrics of SFGNN model in clients
are securely aggregated in server. Then the server optimizes
the hyper-parameters and sends the hyper-parameters back
to clients to finish another training epoch of SFGNN.
To the end, the whole parameter-tuning time is greatly
decreased, as the searching round of hyper-parameters is
highly reduced.

In summary, we leverage Bayesian optimization tech-
nique to automatically tune the hyper-parameters of SFGNN
model, combining SGNN with FGNN.

Notations Before presenting our model in details, we
first describe the notations. Considering there are many
notations, for clarity, we summarize the notations used in
this paper in Table 1.

4.2 Separated GNN learning (SGNN)

We summarize how to generate initial node embeddings
for client i(i ∈ P) using GraphSAGE method [12]
in SGNN Algorithm 1, where the entire graph Gi =
(V i, Ei), features for all nodes xi

v

(∀v ∈ V i
)

are pro-
vided as inputs. The weight matrix Wi

k, ∀k ∈ {1, ..., K}
are used to propagate information of message passing
layers. The first step is generating initial node embed-
dings using nodes’ private features, e.g., user features in
social networks (line 2). In the next step, clients gen-
erate local node embeddings by aggregating multi-hop
neighbors’ information using GraphSAGE method [12]
for the FGNN computations as shown in line 4-15 in
Algorithm 1.

1696 Peer-to-Peer Netw. Appl. (2021) 14:1692–1704

4.3 Federated GNN learning (FGNN)

First of all, client i (∀i ∈ P) randomly initializes weights of

Federated GNN Learning model W
i

l,0, l ∈ {1, ..., L} with L

denoting the max layer. Client i gets the label distribution

Qi
t

(
Qi

t =
{
qi
t,1, q

i
t,2, ..., qi

t,J

})
in the current batch during

training epoch t with ni
t samples, where J denotes the

label classification as shown in FGNN Algorithm 2. Then
client i counts sample numbers of different categories
Ni

t = {ni
t,1, n

i
t,2, ..., ni

t,J }, where
∑J

j=1 ni
t,j = ni

t (line 4).
Meanwhile client i updates local FGNN model’s weights
Wi

k,t and Wi
l,t using forward and backward propagation with

their own embeddings Hi
v,t generated by Algorithm 1 (lines

5-11). Loss function L(ŷt
i
, yi

t)) is defined by different
tasks, e.g., cross entropy loss for classification task and
mean absolute loss for regression task. In this paper, we
choose classification task for example, the loss of which is
defined in Eq. 4.

L(ŷt
i
, yi

t)=− 1

ni
t

J∑

j=1

ŷi
j,t logyi

j,t +l2
i
n ·

(
K∑

k=0

||Wi
k,t ||2+

L∑

l=1

||Wi

l,t ||2
)

.

(4) Ta
bl
e
1

N
ot

at
io

ns
an

d
de

sc
ri

pt
io

ns

N
ot

at
io

n
D

es
cr

ip
tio

n
N

ot
at

io
n

D
es

cr
ip

tio
n

I
to

ta
ln

um
be

r
of

cl
ie

nt
s

P
un

io
n

se
to

f
I

cl
ie

nt
s

G
i

gr
ap

h
da

ta
of

cl
ie

nt
i

V
i

no
de

s
da

ta
of

cl
ie

nt
i

E
i

ed
ge

s
da

ta
of

cl
ie

nt
i

N
i (

v
)

ne
ig

hb
ou

r
fu

nc
tio

n
of

cl
ie

nt
i

xi v
fe

at
ur

es
of

no
de

v
in

cl
ie

nt
i

J
to

ta
ln

um
be

r
of

ca
te

go
ri

es
W

i k
,t

w
ei

gh
ts

of
k

-t
h

st
ep

in
SG

N
N

fo
r

cl
ie

nt
i

du
ri

ng
t-

th
ep

oc
h

K
de

pt
h

of
ne

ig
hb

or
ag

gr
eg

at
io

n
in

SG
N

N
h

i v
,k

in
te

rm
ed

ia
te

no
de

em
be

dd
in

gs
of

no
de

v
in

cl
ie

nt
i

du
ri

ng
k

-t
h

st
ep

H
i v
,t

th
e

fi
na

ln
od

e
em

be
dd

in
gs

of
no

de
v

in
cl

ie
nt

i
du

ri
ng

t-
th

ep
oc

h
Q

i t
pr

ob
ab

ili
ty

de
ns

ity
of

la
be

li
n

cl
ie

nt
i

du
ri

ng
t-

th
ep

oc
h

Q
s t

pr
ob

ab
ili

ty
de

ns
ity

of
la

be
li

n
se

rv
er

du
ri

ng
t-

th
ep

oc
h

N
i t

sa
m

pl
e

nu
m

be
rs

of
di

ff
er

en
tc

at
eg

or
ie

s
in

cl
ie

nt
i

du
ri

ng
t-

th
ep

oc
h

N
s t

sa
m

pl
e

nu
m

be
rs

of
di

ff
er

en
tc

at
eg

or
ie

s
in

se
rv

er
du

ri
ng

t-
th

ep
oc

h
n

i j
,t

sa
m

pl
e

nu
m

be
rs

of
ca

te
go

ry
j

in
cl

ie
nt

i
du

ri
ng

t-
th

ep
oc

h
n

i t
to

ta
ln

um
be

r
of

sa
m

pl
es

in
cl

ie
nt

i
du

ri
ng

t-
th

ep
oc

h
y

i t
la

be
ls

in
cl

ie
nt

i
ŷ
ti

la
be

ls
pr

ed
ic

tio
n

in
cl

ie
nt

i

W
i l,
t

in
te

rm
ed

ia
te

w
ei

gh
ts

of
l-

th
la

ye
r

in
FG

N
N

of
cl

ie
nt

i
du

ri
ng

t-
th

ep
oc

h
W

i l,
t

w
ei

gh
ts

of
l-

th
la

ye
r

in
FG

N
N

of
cl

ie
nt

i
du

ri
ng

t-
th

ep
oc

h
W

s l,
t

w
ei

gh
ts

of
l-

th
la

ye
r

in
FG

N
N

m
od

el
of

se
rv

er
du

ri
ng

t-
th

ep
oc

h
j
s
i t

JS
di

ve
rg

en
ce

be
tw

ee
n

da
ta

se
to

f
cl

ie
nt

i
an

d
da

ta
se

to
f

se
rv

er
du

ri
ng

t-
th

ep
oc

h
Sh

r(
·)

ad
di

tiv
el

y
se

cr
et

sh
ar

in
g

en
cr

yp
t

R
ec

(·)
ad

di
tiv

el
y

se
cr

et
sh

ar
in

g
de

cr
yp

t
〈·〉

en
cr

yp
tio

n
us

in
g

se
cr

et
sh

ar
in

g
L

nu
m

be
r

of
la

ye
rs

in
FG

N
N

m
od

el
M

t
av

er
ag

e
of

m
et

ri
cs

du
ri

ng
t-

th
ep

oc
h

M
i t

m
et

ri
c

of
cl

ie
nt

i
du

ri
ng

t-
th

ep
oc

h
lr

i n
le

ar
ni

ng
ra

te
of

cl
ie

nt
i

in
n

-t
h

B
O

ro
un

d
l 2

i n
L

2
re

gu
la

ri
za

tio
n

of
cl

ie
nt

i
in

n
-t

h
B

O
ro

un
d

θ n
hy

pe
r-

pa
ra

m
et

er
s

se
ti

n
n

-t
h

B
O

ro
un

d
M

(·)
bl

ac
k-

bo
x

fu
nc

tio
n

of
hy

pe
r-

pa
ra

m
et

er
s

op
tim

iz
at

io
n

1697Peer-to-Peer Netw. Appl. (2021) 14:1692–1704

After it, Wi
l,t , Ni

t , and Mi
t (i ∈ P, l ∈ {1, ..., L}) of clients

are uploaded to server with the help of secret sharing
(Shr(·)), supposing all clients participate in the federated
learning, as shown in line 13. The server aggregates the
global FGNN model W

s

l,t by averaging the sum of Wi
l,t , and

gets the global label distribution Qs
t , sample numbers Ns

t of
a training batch and average of metrics Mt , all of which are
regarded as outputs of FGNN model, as shown in Algorithm
2 line 16-19. Then W

s

l,t and Qs
t are sent back to clients. To

the end, client i calculates jsi
t with the help of Qi

t and Qs
t ,

then the local FGNN model is updated by combining W
s

l,t

and Wi
l,t (line 24). jsi

t controls the percent of the client local
model in update process. The more Non-IID clients datasets
are, the bigger priority of client model is. In a world, the
addition of JS contributes to the accuracy of client model in
Non-IID federated learning.

4.4 Hyper-parameters optimization

We employ Bayesian optimization in tuning hyper-
parameters, where we treat the hyper-parameter search
process as a black-box optimization, as shown in Eq. 3.
Specifically, the hyper-parameter set θn includes dropout
rate, L2 regularization, propagation depth, learning rate, and
dimension of hidden units. The utility function f is set to
be the average of clients’ accuracy. The high-level optimiza-
tion process is shown in Algorithm 3. Firstly, we update the
posterior probability distribution on f using all the hyper-
parameters sets(line 5). Then we calculate the maximize
point of the EI acquisition function as the next hyper-
parameters groups and observe the value of utility function
(line 6 - line 7). The hyper-parameter tuning time is mea-
sured by T = n ∗ t , where t denotes the running time of
one set of hyper-parameters, n denotes the number of hyper-
parameter combinations, and T is the total hyper-parameter
tuning time. Bayesian optimization optimizes the hyper-
parameter tuning time by narrowing down the number of
combinations n greatly.

4.5 Putting all together

To sum up, we conclude the ASFGNN framework in the
Algorithm 4. Before the training process, we initialize the
hyper-parameters set of clients and server as θ0. First of all,
we get the node embeddings Hi

v,t for each client i using
Algorithm 1 (SGNN) with the relevant hyper-parameters set
θn (line 5). Secondly, we start the training of FGNN model
using node embeddings as the inputs and get the average
of accuracy (Mt) in each training round (line 7). The max
of Mt is marked as M(θn) (line 9), which is regarded as
outputs of black-box. Then, the following input θn+1 is
updated by Bayesian optimization. Finally, we get the best
hyper-parameters set θN and the relevant M(θN).

5 Experiment

In this section, we empirically compare the performance
of our proposed ASFGNN model with the GraphSAGE
of Centralized Model (CM) which is trained using all the
data, the traditional Federated Learning model (FL) and the
Separated model (SP) in which clients can only use their
own data without any communications. We aim to answer
the following questions.

– Q1: whether our model (SFGNN) outperforms the CM
model, FL model and SP model that is trained on the

1698 Peer-to-Peer Netw. Appl. (2021) 14:1692–1704

isolated Non-IID data, including Non-IID label and
Non-IID graph?

– Q2: how the distribution parameter influences the
performance of our model?

– Q3: how the number of clients influences the perfor-
mance of our model?

– Q4: how the JS divergence influences the performance
of our model?

– Q5: how does Bayesian optimization affect the
efficiency of parameter tuning comparing with grid
search?

5.1 Experimental settings

5.1.1 Framework

We construct our experiment on the popular TensorFlow
framework [1]. All the experiments were performed on
a Macbook Pro laptop with 2.3GHz 4-core Intel Core i5
processor. For simplification, we ignore the communication

cost and focus on the performance and computation
efficiency.

5.1.2 Datasets

To test the effectiveness of our proposed model, we choose
three benchmark citation datasets, i.e., Cora, Pubmed, and
Citeseer. For simplification, we assume there are only two
clients (A and B) who split datasets according to label
classes and number of neighbours in graph. We use N1

and N2 to denote the number of samples in each part. We
divide Cora dataset into Co1 and Co2. The first part Co1

has four label categories (theory, reinforcement learning,
genetic algorithms, and probabilistic methods) with 1,412
nodes. The second part Co2 contains the rest three label
categories (possessing neural networks, case based and rule
learning labels) with 1,296 nodes. We also divide Citeseer
and Pubmed datasets into two parts (Ci1 and Ci2, Pu1 and
Pu2) in a similar way. We report the data split result in
Table 2. In order to study the influence of data Non-IID on
our method, we use α to denote the label distribution ratio.
The data of client A is made up of α · N1 samples from the
first part and (1 − α) · N1 samples from the second part.
Similarly, the data of client B is made up of (1 − α) · N2

samples from the first part and α · N2 samples from the
second part. In other words, the hyper-parameters α implies
the non-iid level. We assume that α ranges from 0.5 to 1.0
due to the symmetry. We use exactly the same dataset split
of training, validate, and test following the prior work [15].
Apparently, our proposal can be applied into the scenario
where there are multiple clients.

5.1.3 Metrics

Following the existing work [15], we use accuracy as the
evaluation metric. To compare the performance of different
strategies in decentralized scenario, we choose the average
of metrics in all clients as the optimization target.

5.1.4 Hyper-parameters

Following recent research [18], we use hyperbolic tan-
gent (TanH) as the active function of hidden layers and

Table 2 Statistic analysis of subsets

Subset #Nodes #Edges #Features #Classes

Co1 1,412 2,657 1,433 4
Co2 1,296 1,961 1,433 3
Ci1 1,507 2,024 3,703 3
Ci2 1,805 2,005 3,703 3
Pu1 9,791 16,585 500 2
Pu2 9,926 19,020 500 2

1699Peer-to-Peer Netw. Appl. (2021) 14:1692–1704

Table 3 Performance comparison on three datasets in terms of
accuracy

Dataset CM FL SP SFGNN

Cora 0.8150 0.8833 0.9101 0.9264
Citeseer 0.7001 0.7500 0.7823 0.8055
Pubmed 0.7910 0.8889 0.9174 0.9340
Average 0.7687 0.8407 0.8699 0.8886

set the max layer of the fully-connected deep neural net-
work in the discrimination model (L = 2). We tune
other hyper-parameters by using Bayesian optimization.
The hyper-parameters include dropout rate d ∈ {0.0, 0.5},
L2 regularization l2 ∈ {0.0, 5e−4, 1e−3, 5e−3, 1e−2}, prop-
agation depth K ∈ {1, 2, 3, 4, 5}, learning rate lr ∈
{5e−4, 1e−3, 5e−3, 1e−2}, and dimension of hidden units
l ∈ {64, 128, 256, 512}. As clients train the discrimination
model federated, the dimension of embeddings should be
aligned, which means that all clients have the same hid-
den units dimension. The experiment are conducted in a
stand-alone PC to simulate the communication in federated
learning. We tune parameters based on the validate dataset
and evaluate model performance on the test dataset.

5.2 Accuracy comparison

5.2.1 Accuracy comparison of different models with Non-IID
label

To answer the proposed question Q1, we first set the
label distribution ratio α = 1.0, which implies the labels
between client A and client B are totally different. In
general, we take advantage of grid search method to find
the highest accuracy with the proper hyper-parameters. We
summarize the comparison results in Table 3, and report the
corresponding best hyper-parameters set in Table 4.

From the Table 3, we can conclude that SFGNN outper-
forms the other three models in all the datasets. Besides,
comparing with the traditional FL model, the improve-
ment of accuracy is about 5.70% percent in average, which

Table 4 Hyper-parameters of the SFGNN model and FL model with
the best accuracy

Model K lr l2 d

FL of Cora 4 0.01 0.005 0.0
SFGNN of A on Cora 4 0.01 0.005 0.5
SFGNN of B on Cora 2 0.01 0.005 0.5
FL on Citeseer 4 0.005 0.005 0.0
SFGNN of A on Citeseer 4 0.005 0.01 0.5
SFGNN of B on Citeseer 4 0.01 0.01 0.0
FL on Pubmed 5 0.005 0.001 0.5
SFGNN of A on Pubmed 3 0.01 0.001 0.0
SFGNN of B on Pubmed 2 0.01 0.005 0.5

means the SFGNN model is more effective for data Non-
IID scenarios. Because our proposed SFGNN generates
embeddings separately with individual hyper-parameters
and aggregates discrimination layers of clients, the SFGNN
model can balance the inference and contributions from
samples with different labels. From Table 3, we can also
find an interesting result. That is, the Centralized GNN
Model (CM) achieves the worst performance. This is
because clients have absolutely different label classes when
the α = 1.0, and the models with relatively pure label
classes will naturally achieve better performance. When
different label classes are combined together in CM, it intro-
duces distractions to the model learning target, which makes
CM behave the worst.

From Table 4, we can also observe that clients
generally have different hyper-parameters to achieve the
best accuracy, and these parameters are also different from
the hyper-parameters of FL model. The individual hyper-
parameters describe the diversity of Non-IID datasets.

5.2.2 Accuracy comparison of different models with both
Non-IID label and Non-IID graph

he GNN model benefits a lot from adjacent information,
which is different from the traditional neural network
model, the distribution of graph data also has an important
influence on model accuracy. As median of edges in Cora
dataset is 3.8, we firstly split the Cora dataset into two
sub-datasets, i.e., Co3 and Co4, according to the average
edges. The Co3 has the samples with equal or lesser than 3
edges, while Co4 containts the rest samples. Furthermore,
we combine the Non-IID graph data with the Non-IID label
data, which means the datasets have different graph and
label distributions. Similar as the setting in Table 2, we
build a subset of Co3 as Co5, which only has label classes
of ‘theory’, ‘reinforcement learning’, ‘genetic algorithms’,
and ‘probabilistic methods’, and a subset of Co4 as Co6,
which only has labels of ‘possessing neural networks’, ‘case
based’ and ‘rule learning’. Similarly, we get the subsets
of Citeseer dataset (Ci3, Ci4, Ci5, Ci6). After the data
being preprocessed, client A owns the Co5 subset and
client B owns the Co6 subset of Cora dataset, and client
A owns the Ci5 subset and client B owns the Ci6 subset
of Citeseer dataset. We train the SFGNN model and FL
model respectively and compare their accuracy in Table 5.

Table 5 Performance comparison on both Non-IID label and Non-IID
graph

Dataset FL SFGNN Improvement

Cora 0.7525 0.7986 6.13%
Citeseer 0.7020 0.7583 8.02%
Average 0.7273 0.7785 7.04%

1700 Peer-to-Peer Netw. Appl. (2021) 14:1692–1704

We can conclude that the SFGNN model performs better
than FL model when both label and graph are Non-IID, and
the improvement percent average increases from 5.70% to
7.04%. The experiment results indicate that SFGNN model
is more appropriate for the scenarios where both graph and
label have different distributions.

5.2.3 Accuracy comparison with different label distribution

To answer the proposed question Q2, we vary α from 0.6
to 1.0 on Cora dataset and report the accuracy of different
models in Fig. 3. We compare our model with the SP model
in which client A and client B can only use their own
data without any communications. The bigger ratio means
the less similar distributions of clients’ datasets. From the
results, we can conclude that (1) SFGNN performs better
than both SP model and FL model when data distribution is
more asymmetrical (α > 0.75), which is a quite common
situation in real-world applications, (2) FL model is more
suitable for training a single global model when all the
clients tend to have IID data (0.5 <= α < 0.75), and (3) SP
model even works better than FL when clients have severely
heterogeneous label distributions (0.88 < α <= 1.0).

5.2.4 Accuracy comparison of different clients’ number with
Non-IID label

The CM model is trained by the whole dataset, which can
be regarded as the ASFGNN model with only one client. To
answer the proposed question Q3, we vary the number of
clients from 2 to 5 on Cora dataset. The labels of clients’
data are different from each other. We report the average
accuracy of ASFGNN in Fig. 4. From it, we can find that
the average accuracy of ASFGNN first increases with the
number of clients, and then tends to be stable. This is
because, when the number of clients first increases, each
client has fewer kinds of labels, which makes the Non-IID
problem more serious. Therefore, our proposed ASFGNN

Fig. 3 Average accuracy comparison of three models with different α

Fig. 4 Average accuracy comparison of different clients’ number with
Non-IID label

achieves better performance with the increase of client
number.

5.2.5 Accuracy comparison of JS divergence

To answer the proposed question Q4, we execute the
FGNN model in Algorithm 2 in an another way. That
is, clients update the local discrimination models using
global discrimination model directly. Then we compare the
accuracy with different α on Cora dataset, the results are
shown in Table 6. From it, we find that SFGNN with JS
consistently outperforms SFGNN without JS, which shows
the effectiveness of the proposed JS method. Besides, we
also find that the promotion of JS on SFGNN increases
with the raise of α. The contribution of JS method becomes
negligible when clients tend to have IID data, e.g., α = 0.6.

5.3 Efficiency comparison

To answer the proposed question Q4, we compare the
parameters tuning time of grid search and Bayesian
optimization on the three datasets. We perform the Bayesian
optimization of hyper-parameters with the help of the open
source framework SMAC3 [17]. The domains of lr , l2, d in
SMAC3 are continuous, and the domains of K, l are discrete
with the interval of 1. Both grid search method and Bayesian
optimization method are implemented under the same
computation and communication environment. We report

Table 6 Performance comparison of JS in SFGNN model

Ratio α Without JS With JS Improvement

1.0 0.9081 0.9264 3.66%

0.9 0.8226 0.8494 3.26%

0.8 0.7692 0.7931 3.10%

0.7 0.7120 0.7338 3.06%

0.6 0.7018 0.7138 1.72%

1701Peer-to-Peer Netw. Appl. (2021) 14:1692–1704

Table 7 Training time comparison between BO and grid search on
three datasets

Datasets Grid Search BO Speedup

Cora 6.67h 0.39h 17.10
Citeseer 40.85h 0.42h 97.26
Pubmed 427.67h 4.17h 102.56

the parameter tuning time in Table 7. Note that both methods
achieve comparable accuracy on these three datasets. From
Table 7, we can observe that, (1) the Bayesian optimization
method greatly reduces the hyper-parameters tuning time
on all the three datasets, comparing with the traditional
grid search method, and (2) the speedup of Bayesian
optimization against grid search becomes higher when
dataset gets larger. For example, the speedup on Pubmed
dataset is 102.56 while it is 10.10 on Cora dataset. This is
because Bayesian optimization reduce the parameter tuning
time of grid search by decreasing the parameter search
space. In real-world applications, the network bandwidth
is always limited between clients and server, and the
model training procedure under data isolated setting usually
takes much longer time then traditional centralized model
training. Therefore, decreasing the parameter search space
becomes the key of reducing the tuning time. The results
demonstrate that our proposal is good at doing this.

6 Conclusion and future network

In this paper, we proposed a Automated Separated-
Federated GNN learning paradigm in the Non-IID isolated
scenario. We first proposed a separated-federated GNN
learning model, which decoupled the training of GNN into
two parts: the message passing part was done by clients
separately, and the loss computing part was learnt by
clients federally. To handle the time-consuming problem,
we leveraged the Bayesian optimization technique to
automatically tune the hyper-parameters of all the clients.
Experiments on real world datasets demonstrated that
our model significantly outperformed the federated GNN
learning on the isolated Non-IID data.

In the future, we would like to verify our proposal
with more existing GNN models. We are also interested in
deploying our proposal into real-world applications.

References

1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro
C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S,
Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz
R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R,

Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B,
Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V,
Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu
Y, Zheng X (2015) TensorFlow: Large-scale machine learning
on heterogeneous systems. https://www.tensorflow.org/. Software
available from tensorflow.org

2. Abril PS, Plant R (2007) A comprehensive survey on graph neural
networks. Commun ACM 50(1), 36–44. https://doi.org/10.1145/
1188913.1188915

3. Abuadbba S, Kim K, Kim M, Thapa C, Camtepe SA, Gao Y, Kim
H, Nepal S (2020) Can we use split learning on 1d cnn models for
privacy preserving training? arXiv:2003.12365

4. Aono Y, Hayashi T, Trieu Phong L, Wang L (2016) Scalable
and secure logistic regression via homomorphic encryption. In:
CODASPY. ACM, pp 142–144

5. Bojchevski A, Günnemann S (2017) Deep gaussian embedding
of attributed graphs: Unsupervised inductive learning via ranking.
arXiv:1707.03815

6. Chen C, Zhou J, Wang L, Wu X, Fang W, Tan J, Wang L, Ji X,
Liu A, Wang H (2020) When homomorphic encryption marries
secret sharing: Secure large-scale sparse logistic regression and
applications in risk control. arXiv:2008.08753

7. Chen YW, Song Q, Hu X (2019) Techniques for automated
machine learning

8. Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning
for fast adaptation of deep networks

9. Gao Y, Kim M, Abuadbba S, Kim Y, Thapa C, Kim K, Camtepe
SA, Kim H, Nepal S (2020) End-to-end evaluation of federated
learning and split learning for internet of things. arXiv:2003.13376

10. Gu Z, Huang H, Zhang J, Su D, Lamba A, Pendarakis D, Molloy I
(2019) Securing input data of deep learning inference systems via
partitioned enclave execution. CoRR arXiv:1807.00969

11. Gupta O, Raskar R (2018) Distributed learning of deep neural
network over multiple agents. J Netw Comput Appl 116:1–8

12. Hamilton W, Ying Z, Leskovec J (2017) Inductive representation
learning on large graphs. In: NeurIPS, pp 1024–1034

13. Kairouz P, McMahan H.B, Avent B, Bellet A, Bennis M,
Bhagoji A.N, Bonawitz K, Charles Z, Cormode G, Cummings R,
D’Oliveira RGL, Rouayheb SE, Evans D, Gardner J, Garrett Z,
Gascón A, Ghazi B, Gibbons PB, Gruteser M, Harchaoui Z, He
C, He L, Huo Z, Hutchinson B, Hsu J, Jaggi M, Javidi T, Joshi
G, Khodak M, Konečný J, Korolova A, Koushanfar F, Koyejo S,
Lepoint T, Liu Y, Mittal P, Mohri M, Nock R, Özgür A, Pagh R,
Raykova M, Qi H, Ramage D, Raskar R, Song D, Song W, Stich
SU, Sun Z, Suresh AT, Tramèr F, Vepakomma P, Wang J, Xiong L,
Xu Z, Yang Q, Yu FX, Yu H, Zhao S (2019) Advances and open
problems in federated learning

14. Kipf TN, Welling M (2016) Semi-supervised classification with
graph convolutional networks. CoRR arXiv:1609.02907

15. Kipf TN, Welling M (2016) Semi-supervised classification with
graph convolutional networks. arXiv:1609.02907

16. Lin J, Wong SKM (1990) A new directed divergence measure and
its characterization. Int J Gen Syst 17(1)L73–81.

17. Lindauer M, Eggensperger K, Feurer M, Falkner S, Biedenkapp
A, Hutter F (2017) Smac v3: Algorithm configuration in python.
https://github.com/automl/SMAC3

18. Liu Z, Chen C, Li L, Zhou J, Li X, Song L, Qi Y (2018) Geniepath:
Graph neural networks with adaptive receptive paths

19. Liu Z, Chen C, Yang X, Zhou J, Li X, Song L (2018)
Heterogeneous graph neural networks for malicious account
detection. In: Proceedings of the 27th ACM International
Conference on Information and Knowledge Management, CIKM
’18. Association for Computing Machinery, New York, pp 2077–
2085. https://doi.org/10.1145/3269206.3272010

1702 Peer-to-Peer Netw. Appl. (2021) 14:1692–1704

https://www.tensorflow.org/
https://doi.org/10.1145/1188913.1188915
https://doi.org/10.1145/1188913.1188915
http://arxiv.org/abs/2003.12365
http://arxiv.org/abs/1707.03815
http://arxiv.org/abs/2008.08753
http://arxiv.org/abs/2003.13376
http://arxiv.org/abs/1807.00969
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
https://github.com/automl/SMAC3
https://doi.org/10.1145/3269206.3272010

20. Lorenzo PR, Nalepa J, Ramos LS, Pastor JR (2017) Hyper-
parameter selection in deep neural networks using parallel
particle swarm optimization. In: Proceedings of the Genetic and
Evolutionary Computation Conference Companion, GECCO ’17.
Association for Computing Machinery, New York, pp 1864–1871.
https://doi.org/10.1145/3067695.3084211

21. McMahan HB, Moore E, Ramage D, y Arcas BA (2016)
Federated learning of deep networks using model averaging.
ArXiv:1602.05629

22. McMahan HB, Moore E, Ramage D, Hampson S, y Arcas BA
(2017) Communication-efficient learning of deep networks from
decentralized data. In: AISTATS

23. Mei G, Guo Z, Liu S, Pan L (2019) Sgnn: A graph neural network
based federated learning approach by hiding structure. In: 2019
IEEE International Conference on Big Data (Big Data). IEEE, pp
2560–2568

24. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning
of social representations. In: Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’14. Association for Computing Machinery,
New York, pp 701–710. https://doi.org/10.1145/2623330.2623732

25. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G
(2009) The graph neural network model. IEEE Trans Neural Netw
20(1):61–80

26. Shamir A (1979) How to share a secret. Commun ACM
22(11):612–613

27. Swersky K, Snoek J, Adams RP (2013) Multi-task bayesian
optimization. In: Proceedings of the 26th International Conference
on Neural Information Processing Systems - Volume 2, NIPS’13.
Curran Associates Inc, Red Hook, pp 2004–2012

28. Thakkar O, Andrew G, McMahan HB (2019) Differentially
private learning with adaptive clipping

29. Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio
Y (2017) Graph attention networks

30. Wang T, Zhu JY, Torralba A, Efros AA (2018) Dataset distillation
31. Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon

JM (2018) Dynamic graph cnn for learning on point clouds.
arXiv:1801.07829

32. Wu J, Chen XY, Zhang H, Xiong LD, Lei H, Deng SH (2019)
Hyperparameter optimization for machine learning models based
on bayesian optimizationb. J Electron Sci Technol 17(1):26–40.
https://doi.org/10.11989/JEST.1674-862X.80904120, http://www.
sciencedirect.com/science/article/pii/S1674862X19300047

33. Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec
J (2018) Graph convolutional neural networks for web-scale
recommender systems. In: SIGKDD. ACM, pp 974–983

34. Yu T, Zhu H (2020) Hyper-parameter optimization: A review of
algorithms and applications. arXiv:2003.05689

35. Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V (2018)
Federated learning with non-iid data

36. Zhou J, Chen C, Zheng L, Zheng X, Wu B, Liu Z, Wang L (2020)
Privacy-preserving graph neural network for node classification.
arXiv:2005.11903

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Longfei Zheng obtained his
bachelor degree in mathe-
matics from Jilin University
in 2012, and got the mas-
ter degree in aerospace design
from Chinese Academy of
Sciences in 2015. He is cur-
rently a Senior Algorithm
Engineer at Ant Financial.
His research mainly focuses
on privacy preserving machine
learning, graph representation,
federated learning, and dis-
tributed machine learning. He
has published several papers in
international conferences.

Jun Zhou is currently a
Senior Staff Engineer at Ant
Financial. His research mainly
focuses on machine learning
and data mining. He has par-
ticipated in the development
of several distributed systems
and machine learning plat-
forms in Alibaba and Ant
Financial, such as Apsaras
(Distributed Operating Sys-
tem) and KunPeng (Parameter
Server). He has published
more than 40 papers in top-
tier machine learning and data
mining conferences.

Chaochao Chen obtained
his PhD degree in computer
science from Zhejiang Uni-
versity, China, in 2016, and
he was a visiting scholar
in University of Illinois at
Urbana-Champaign, during
2014-2015. He is currently
a Staff Algorithm Engineer
at Ant Group. His research
mainly focuses on recom-
mender system, privacy
preserving machine learning,
transfer learning, graph rep-
resentation, and distributed
machine learning. He has

published more than 30 papers in peer reviewed journals and
conferences.

1703Peer-to-Peer Netw. Appl. (2021) 14:1692–1704

https://doi.org/10.1145/3067695.3084211
http://arxiv.org/abs/1602.05629
https://doi.org/10.1145/2623330.2623732
http://arxiv.org/abs/1801.07829
https://doi.org/10.11989/JEST.1674-862X.80904120
http://www.sciencedirect.com/science/article/pii/S1674862X19300047
http://www.sciencedirect.com/science/article/pii/S1674862X19300047
http://arxiv.org/abs/2003.05689
http://arxiv.org/abs/2005.11903

Bingzhe Wu is currently a
Ph.D. student at Peking Uni-
versity. His research interests
lie in secure machine learn-
ing, efficient deep learning,
and medical image analysis.
He pays particular attention to
secure machine learning. He
has published more than 10
papers in peer-reviewed jour-
nals and conferences. He also
servers as a reviewer for dif-
ferent academic conferences,
such as ICLR and NeurlPS.

Li Wang is currently a Senior
Algorithm Expert at AI
Department, Ant Financial.
He got his master degree in
Computer Science and Tech-
nology from Shanghai Jiao
Tong University in 2010. His
research mainly focuses on
privacy preserving machine
learning, transfer learning,
graph representation, and
distributed machine learning.

Benyu Zhang is the Chief
Scitenst at Secure Collabo-
rative Intelligence Lab, Ant
Group. His work spans graph
embedding, machine learning,
online monetization, recom-
mendation, web search, and
more recently, privacy pre-
serving machine learning, and
privacy preserving data min-
ing. He has more than 50 peer
reviewed publications with
more than 12,000 citations in
Google Scholar.

1704 Peer-to-Peer Netw. Appl. (2021) 14:1692–1704

	ASFGNN: Automated separated-federated graph neural network
	Abstract
	Introduction
	Existing problem
	Our solution

	Related work
	Federated learning
	Hyper-parameters optimization

	Preliminaries
	Graph neural network
	Federated learning
	Jensen-Shannon divergence
	Secret sharing
	Bayesian optimization

	The proposed method
	Overview
	Notations

	Separated GNN learning (SGNN)
	Federated GNN learning (FGNN)
	Hyper-parameters optimization
	Putting all together

	Experiment
	Experimental settings
	Framework
	Datasets
	Metrics
	Hyper-parameters

	Accuracy comparison
	Accuracy comparison of different models with Non-IID label
	Accuracy comparison of different models with both Non-IID label and Non-IID graph
	Accuracy comparison with different label distribution
	Accuracy comparison of different clients' number with Non-IID label
	Accuracy comparison of JS divergence

	Efficiency comparison

	Conclusion and future network
	References

