
A mathematical model to describe resource discovery failure
in distributed exascale computing systems

Elham Adibi1 & Ehsan Mousavi Khaneghah1

Received: 8 September 2019 /Accepted: 29 December 2020
The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
In this paper, a mathematical model is presented to identify the impacts of events with dynamic and interactive nature on the
functionality of resource discovery. This mathematical model can recognize those events with the dynamic and interactive nature
having an impact on the functionality of resource discovery and thus failure of resource discovery. To extract the mathematical
model by which to recognize the failure of resource discovery due to the occurrence of events with the dynamic and interactive
nature, a mathematical function that describes the functionality of resource discovery should be determined. To this end, in
addition to the description of this function in traditional computing systems, a function describing the functionality of resource
discovery is redefined based on the events with dynamic and interactive nature. The functionality of resource discovery during
the occurrence of events with the dynamic and interactive nature as well as different ways for the failure of resource discovery due
to the impacts of the dynamic and interactive events in distributed exascale computing systems are examined. Determining the
type of failure and describing the cause of failure, as well as recognizing an event with the dynamic and interactive nature that
leads to failure of resource discovery helps the resource management to prevent failure of resource discovery by changing those
features that may cause the failure of resource discovery. The obtained mathematical model is analyzed in two frameworks
named PMamut and Cactus. The capability of each framework to recognize events with dynamic and interactive nature based on
the usage of the mathematical model are examined. Overall, the model can recognize 52 to 75% of the events that cause a failure
of resource discovery.

Keywords Mathematical model . Resource discovery . Events with the dynamic and interactive nature . Failure . Distributed
exascale computing systems

1 Introduction

Resource discovery (RD) in distributed computing systems is
responsible for searching and finding a resource. Resource
discovery is also responsible to have an access to a resource
needed by a process that does not exist in the local computing
system [1]. Resource discovery tries to find a resource outside
the limitations of a system, through which a requester can be
able to continue running of the computational process [2].
Generally, RD is used in open computational systems in

which the designer of the system has an accurate general over-
view regarding the events of the scientific application and the
necessities of computational processes. However, at the time
of the designing of the system, it is not possible to allocate all
the required resources to processes. In such computational
systems, if a process wants to have an access to resources that
cannot be responded to, a load balancer calls RD. Based on a
specified mechanism, RD tries to find the resource outside the
computational system. Indeed, this mechanism uses a pattern
that has not been designed to respond to the requests of the
process (i.e. the resource is not in the system) [3, 4].

Open computing systems use meta web as a platform to
provide connections between machines [5]. The events of
global activity in these systems are uncertain. The behavior
and functionality of computing elements of the web and thus
the open computing system has an uncertain pattern. The un-
certain events of computing systems and RD outside the range
of management of the computing systemmay cause the failure
of RD [6].

* Ehsan Mousavi Khaneghah
EMousavi@Shahed.ac.ir

Elham Adibi
Elham.adibi@Shahed.ac.ir

1 Department of Computer Engineering, Faculty of Engineering,
Shahed University, Tehran, Iran

https://doi.org/10.1007/s12083-020-01067-1

/ Published online: 15 February 2021

Peer-to-Peer Networking and Applications (2021) 14:1021–1043

http://crossmark.crossref.org/dialog/?doi=10.1007/s12083-020-01067-1&domain=pdf
http://orcid.org/0000-0002-4692-8010
mailto:EMousavi@Shahed.ac.ir

In traditional computing systems such as grid computing
systems, the request that leads to calling of RD is not changing
from activation of RD in response to the request of the pro-
cess, meaning that the state of the request is not changing. If a
factor in the system has a specified impact, this will have
remained unchanged during the execution activities related
to RD. In other words, the state of the request and factors
influencing the request has remained constant during activities
related to RD. As a result, RD mechanisms focus on the way
to find a resource and give permission to the process to have
access to the resource. The mechanism of RD reveals the
pattern of the designer of the system to effectively respond
to the requests of the processes that cannot be responded to by
the local computing system. In such computing systems, RD
tries to find a resource that is compatible with the request of
the process. Thus, the main task of RD in these computing
systems is based on finding and matching the resource [7].

The definition of RD based on finding and matching the
resource may lead to failure of RD by any factor that influ-
ences finding and matching the resource. Thus, in distributed
exascale computing systems, by examination of factors that
influence the execution of activities related to resource discov-
ery, those factors that cause the failure of resource discovery
can be defined.

As the states of computing elements that are influencing the
requestor are influenced by the request are constant and the
fact that constraints governed on the request are not changing,
factors have defined that lead to failure of RD outside of
distributed computing system [7].

Due to the occurrence of the events with the dynamic and
interactive nature in distributed exascale computing systems,
it is possible to change the state of the system and thus the
state of the requester at any time during the execution of a
scientific application. Events with the dynamic and interactive
nature may lead to changes in the state of computing elements
of the system and thus changes in factors influencing the re-
quest of the processes or are influenced by the request. These
changes may cause the computing system would be able to
respond to the initial request. As the state of distributed
exascale computing systems may change, failure of RD and
the reasons behind that are more complex than the failure of
RD in traditional computing systems [8]. In distributed
exascale computing systems, in addition to the responsibility
of resource discovery for finding the resource, it should create
a responding structure. This means that matching the discov-
ered request and the resource is not the only responsibility of
resource discovery.

Based on the necessities of the process, RD may define a
global activity to respond to the request of the process. Thus,
the pivotal element is changing from finding a resource to the
creation of a responding structure. The created responding
structure is a dynamic structure, which is caused by events
with dynamic and interactive nature. As a result, the failure

of activities related to RD is defined as a failure in the
responding structure [9, 10].

In traditional computing systems, in most cases, the con-
cept of failure of activities of resource discovery is related to
the reversal of the spatial/temporal constraints of the response
to the request. In such systems, if the resource cannot be found
in the specified time, the functionality of resource discovery
management is failed. Nevertheless, in distributed exascale
computing systems, due to different functionality of resource
discovery management, the occurrence of events with the dy-
namic and interactive nature might create conditions in the
system that make it impossible to continue the execution of
activities related to resource discovery management with the
spatial/temporal constraints.

In this paper, the functionality of RD is presented by ex-
amining a mathematical model introduced here. Besides, it
will be discussed in which states the failure of RD in tradi-
tional computing systems may occur. Based on those states,
failure of RD in distributed exascale computing systems is
examined. The impact of the events with the dynamic and
interactive nature on the functionality of RD and the definition
of the pattern of failure of RD in distributed exascale comput-
ing systems are also discussed. Based on the definitions pre-
sented in this study, a mathematical pattern for a description of
the failure of RD in distributed exascale computing systems is
introduced.

2 Related work

In this section, activities related to the failure of activities of
resource discovery management are discussed. For each activ-
ity, individual characteristics of that activity and the possibil-
ity of its application in distributed exascale computing sys-
tems are also discussed.

Scalability characteristic in peer-to-peer distributed sys-
tems causes computing elements to be added to or removed
from the computing system. In [11], the application of blind
mechanisms for resource discovery is described as an ineffi-
cient method. This is since blind searching requires higher
bandwidth and causes network traffic. Resource discovery
might not be able to find the resource is the searching space.
In [11], a searching mechanism for resource discovery is in-
troduced that estimates the responding state of computing el-
ements to the received requests. In this mechanism, each com-
puting element has a table to store information of adjacent
resources and in case of any changes, the stored information
is updated.

Due to the occurrence of the events in scientific applica-
tions, the rate of failure is high in distributed exascale com-
puting systems. The rate of failure can be described by the
dynamic information of resources and membership of nodes
in the system. The impacts of failure can be discussed in two

1022 Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

areas: (1) resources; and (2) nodes. If resources fail, those
nodes that release their description might be needed to update
their local information. Thus, failure of resources is consid-
ered as changes in characteristics of resources that are caused
by the dynamic events of the information of resources. If
nodes fail, not only these resources become unavailable, but
also the impact on the requests of other nodes. Thus, the fail-
ure of nodes is considered as exits of the node from member-
ship of the system. This is unpredictable and leads to failure of
RD [3, 8]. In [12], changes in functionality of RD due to the
occurrence of events with the dynamic and interactive events,
as well as changes in the state of the system and resources are
discussed. In [12], conditions that lead to the failure of RD are
discussed, and a mathematical model for RD before and after
the failure of RD is introduced.

In [2], challenges of the functionality of resources discov-
ery management are described. In [2], communication be-
tween processes in and out of the computing system is intro-
duced as a factor for the creation of changes in the necessities
of the process activating resource discovery management.
Following any change in the state of the request, the system
or the process can change constraints of the request or
can create a new requirement for the process. The
abovementioned changes can influence the functionality
of resource discovery and activities of resource discovery
might fail.

By increasing the necessity of communication with other
systems, some mechanisms are required for configuration and
re-configuration of these communications. Applications that
require the HPC are such that they are required to re-organize
communications with other systems during the execution of
the program. The nature of these applications is in a way that
unpredictable events might create during the execution of the
program and if there is nomechanism to find new systems, the
functionality of the system fails. In [13], a framework based
on mathematical rules is introduced to re-configure commu-
nication between systems. In [13], a distributed system is con-
sidered as an organization and it is examined how this orga-
nization can communicate with other organizations without a
problem in the functionality of the system. In [13], the concept
of events with dynamic and interactive nature is examined.
The impacts of such events on different elements of the system
and possible changes are also described. The mathematical
model presented in [13] is based on a non-Euclidean space.

Today, the development of software systems is based on
the build-up of services executed on distributed platforms.
The necessities of processes are changing during the execution
of the program. Thus, during the design of the system and
applications, the dynamic necessities of processes should be
considered. Using the process pattern is an efficient method
for the development of the dynamic system. In [14], a process
pattern is introduced to improve the efficiency of the function-
ality of the system.

In [7], a mathematical model based on the derivative of a
matrix is introduced to analyze the functionality of resource
discovery in distributed exascale computing systems. It is stat-
ed in [7] that the concept of the process should be considered
as part of the global activity in distributed exascale computing
systems. It is also stated in [7] that resource discovery can only
manage dynamic characteristics of distributed exascale com-
puting systems if it contains mechanisms to analyze changes
in the request during the execution of the program. Besides,
resource discovery should have mechanisms to analyze the
type of the request, such that it can establish the best match
between the requester and the responder at each time. For
supporting mechanisms specified in this article, by computing
the instant derivative of the effective variables on the func-
tionality of resource discovery, it should acquire capability for
the management of events with the dynamic and interactive
nature.

If RD is conducted by floodingmechanism for propagating
searching messages to other machines, traffic may be in-
creased in the network. To prevent that, an index called time
to live is used which indicates the maximum number of ma-
chines that can be released from the requester. The passage
from each of the computational elements leads to a one-unit
reduction of this index. If the index becomes zero or the re-
quested resource cannot be found, RD ends, leading to failure
of RD [15, 16].

In [2, 7, 12], conditions for failure of activities related to
resource discovery in distributed exascale computing systems
are defined. In these studies, it is tried to introduce mecha-
nisms to empower resource discovery for supporting the dy-
namic system and for creating changes in the state of process-
es. In none of [2, 7, 12], a mathematical model was presented
to describe different forms of failure in the functionality of
resource discovery. In this article, in comparison to the
abovementioned articles, in addition to analysis and examina-
tion of the concept of events with the dynamic and interactive
nature inside the system based on the vector algebra, the con-
cept of failure, reasons of failure, and the pattern to deal with
the factors that influence the functionality of resource discov-
ery are examined.

3 Basic concept

Due to the functionality of RD outside of the system, a pattern
should be defined whose activities are outside of the system.
As a result, basic concepts that define RD are different from
those of other active units for resource management. In what
follows, the definition of RD and its functionality, as well as
failure of RD are discussed. Besides, the impact of events with
the dynamic and interactive events on the functionality of RD
and the reason behind the failure of RD are explained. As a

1023Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

result, a better understanding of the concept of failure of RD in
distributed exascale computing systems will be obtained.

3.1 Resource discovery in traditional computing
systems

In this section, different definitions of RD in traditional com-
puting systems are discussed. In distributed exascale comput-
ing systems, any factor that affects the functionality of RD
while considering constraints and limitations of the request,
such that the resource cannot be found, is considered as the
failure of RD. Thus, the presented definition can deal with the
failure of RD if it contains a mechanism for that.

A) In a distributed network of computers, it is usual for a
subset of machines to cooperate to perform a common
task. The first step in such cooperation is for machines to
learn about the existence of each other. Harchol-Balter
et al. call this first step the resource discovery [17].

Definition A contains the functionality of RD. Based on
this definition, machines of a system should be aware of the
resources of other machines of the system. In this definition,
the main task of RD should be gathering information. The
main advantage of this definition is its simplicity, such that
only collecting information is emphasized, which itself is a
branch of finding that is related to RD. Thus, the failure of
RD means that gathering information has not been successful.
In definition A, a mechanism by which to face this kind of
failure is not considered.

B) The ability to locate resources that satisfy a set of require-
ments mentioned in a query (request) [18, 19].

Definition B describes RD given the requesting process.
After activation of RD, it tries to search and find the requested
resource outside of the computational system. The time and
location constraints and limitations and the type of the request-
ed resources are determined in the requesting process.
Resource discovery should find a machine that can satisfy
all constraints, otherwise, RD fails. In this definition, a mech-
anism by which to face this kind of failure is not considered.

C) Resource discovery is the process of an entity in a net-
work (i.e. a client) is automatically made aware of acces-
sibility to services or desired devices (resources). More
exactly, resource discovery is a mechanism for dynamic
referencing to resources in the network. These references
are handles or information with which a client can use to
contact a resource further [20].

Similar to definition A, definition C contains the function-
ality of RD. In this definition, RD is based on gathering

information about the resources of computational elements.
The most important feature of definition C is the dynamic
relationship between the resource and the requesting process.
Based on this definition, gathering information about states of
existing resources is done by resource management. This in-
formation is then analyzed to respond to the request. The
information is gathered in twoways: (1) resourcemanagement
gathers information in a specific period; (2) based on the oc-
currence of an event in the system, the existent information is
being updated. Thus, RD is done based on the last state of
resources. If the frequency of changes in the state of resources
is low, these two methods can be used effectively and rela-
tively fast. Considering the dynamic events of resources and
providing conditions of the requesting process may cause the
failure of RD. In this definition, no mechanism is provided to
prevent the failure of RD.

D) Resource discovery is one of the essential challenges in
Grid, which discovers appropriate resources based on the
requested task. Certain factors make the resource discov-
ery problem difficult to solve. These factors are the huge
number of resources, distributed ownership, heterogene-
ity of resources, resource failure, reliability, dynamicity,
and resource evolution [2, 21].

Definition D states that RD is conducted in a dynamic
environment based on constraints of the request. The dy-
namic events of the environment and variability of com-
puting elements outside of the system can lead to failure
of RD. In this definition, one of the factors that compli-
cate RD is the unavailability of resources. In this defini-
tion, no mechanism is presented for the management of
the failure of RD.

E) Searching and locating candidate resources considered
which are suitable for a job. It must be noticed that pro-
cessing environments’ constraints are specified in each
task. On the other hand, resource discovery must be per-
formed in a reasonable time regarding the high
dynamicity and scalability of the environment [22].

Similar to definition B, this definition represents the re-
sponsibility of RD because of the requesting process and the
machine containing the resource. In this definition, the dy-
namic events of machines are emphasized. The frequency of
the occurrence of changes in the state of machines containing
distributed peer to peer systems is higher than those of tradi-
tional systems. This can be one of the reasons for the failure of
RD. In this definition, a mechanism dealing with the failure of
RD is not considered.

F) Important issue in resource management is the efficient
assignment of resources to clients [23].

1024 Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

Definition G implies that resource management conducts
the allocation of a resource to the requesting process. In dis-
tributed systems, after sending a request by a process, resource
management processes the request and tries to allocate an
appropriate resource. A load balancer in traditional computing
systems and resource management in distributed exascale
computing systems do this activity. If any event causes
unsuccessfulness of the resource allocation, RD fails. In this
definition, nomechanism is introduced for the management of
failure of RD.

G) One of the main tasks of RD is providing a consistency
between the request and the resource. The “Match
Algorithm” which is a flexible mechanism for resource
management can do this. This mechanism is useful dur-
ing the design, deployment, and improvement of the dis-
tributed system [24].

This definition describes a matching operator in resource
management. Resource management should be able to identi-
fy any of the constraints of the request. Resource management
is searching for the resource based on characteristics of the
request. If resource management cannot match the request and
the resource that is found, failure due to inconsistency occurs.
In definition H, it is not discussed how to manage this type of
failure.

H) To prevent a high number of requests to grid nodes, an
index called time to live is used. Resource discovery
continues as long as this index is not zero or the requested
resource is not found [25].

A definition I represent the functionality of RD in terms of
the time constraint of the request. Time constraint can be de-
fined by an index called the time of live. The value of this
index indicates a range of the propagating request from the
requesting machine. If this index becomes zero, RD stops or
fails. In this definition, the management of failure of RD is not
considered.

Each of the definitions presented above describes condi-
tions that disturb activities related to RD. Based on the above
definitions, it can be concluded that the possibility of failure
increases when the dynamic events of the system and changes
in the system increase. The events of practical programs in
distributed exascale computing systems are in such a way that
the state of the request and the process are changing during the
execution of a program. Thus, RD needs to apply more com-
plex mechanisms to manage these conditions. As it is known,
failure of RD leads to less performance of the computational
system and an increase in the response time to requests. Thus,
knowing the way that failure of RD occurs can provide a better
view or management. Definitions A to I have described the
failure of RD in traditional systems, while conditions lead to

failure of RD in distributed exascale computing systems are
not considered in these definitions.

3.2 The functionality of resource discovery in
traditional computing systems

In this section, the functionality function of resource discovery
management in traditional computing systems and those fac-
tors that influence this function are introduced. In contrast to
closed traditional computing systems, in open traditional com-
puting systems not all necessary resources at the time of de-
signing the system and the start of the scientific application are
available for the load balancer. In such computing systems,
after the start of the scientific application, if a resource is
required that is not existent in the system, the load balancer
calls RD. The required resources for the continuation of the
scientific application are found by RD and will be available
for the load balancer. The load balancer allocates the resource
to the requester. The designer of the system defines character-
istics of the required resources for the continuation of the
scientific application. Based on these characteristics and the
request of the load balancer, RD finds the resource [9]. The
pivotal element for RD is consistency between the character-
istics of the resource and the request. The consistency function
can be described as follow:

y ¼ F resource Discoveryð Þ
¼ Resource→Processrequirment
� �

¼ ∑
k

i¼1
βiαi− ∑

n

j¼kþ1
c jα j≈0 ð1Þ

As Eq. 1 shows, the consistency that has taken place by RD
can be defined as mapping space characteristics of the re-
source on space characteristics of the process, as well as in
vector form. In vector form, if V denotes the space of the
resource, W denotes the space of the request and T denotes
the functionality of RD, T is a map from V to W. In this case,
{α1,α2,…, ak} can be regarded as constituent elements of the
request. All constituent elements of this space contain the
requested resource. Vectors such as {αk + 1,…, αn} should
be existed in the space of the resource to define the function-
ality of the resource.

In Eq. 1, the consistency is taken place by RD when
Alphacost ¼ ∑n

j¼kþ1c jα j and AlphaTime ¼ ∑n
j¼kþ1β jα j are

equal in the same direction. In traditional computing
systems, the functionality of RD is not acceptable when
either the cost or the time has taken for RD is high and
failure of RD occurs. If based on Eq. 1, two vectors
Alphacost and AlphaTime become equal, consistency by
RD has been successful.

1025Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

4 The functionality of resource discovery
in distributed exascale computing systems

In this section, the functionality function of resource discovery
management in distributed exascale computing systems is
examined.

If at the time of t = Alpha, the request Beta is created by the
computing process for which the load balancer cannot respond
to that, RD is being called. One of the main differences be-
tween the request in traditional and distributed exascale com-
puting systems is the nature of the Beta request. In traditional
computing systems, the beta request is one-dimensional.
Given RD, one-dimensionality of the beta request implies that
the request is only about one specific type of resource. In this
case, RD should find a resource, which is 100% consistent
with the requesting resource by the process [12].

In traditional computing systems, the state of the beta re-
quest is constant during the execution of activities related to
RD, meaning that the type, nature, and functionality of the
request remains constant. On the other hand, in distributed
exascale computing systems, there is no constraint regarding
the constant state of the beta request. The occurrence of any
event with the dynamic and interactive nature in the process
may change the state of the requests in a way that it influences
the type, nature, and functionality of the request in global
activity. The state of the global activity in which the beta
request is part of it when the request cannot be responded is
shown in Fig. 1.

In Fig. 1 it is assumed that the responding structure is
created based on the necessities of the processes and ability
of computing elements. During responding to the necessities
of the global activity, the event with the dynamic and interac-
tive nature causes the beta request to be created, which cannot
be responded by the local computing system [2, 12]. As
shown in Fig. 1, in this situation RD should create a new
responding structure for the bet request. Part of the global
activity, which is not dependent on the beta request, is

managed by the load balancer and continues at the local com-
puting system.

As the beta request is part of the global activity, the space of
the beta request is two-dimensional (i.e. global activity, local
state). The global activity dimension indicates interaction and
communication of the beta request and the global request, as
well as their impact and influence on each other [8]. The local
state dimension also indicates interaction and communication
of the beta request and the process of sending the request, as
well as their impact and influence on each other. Given RD,
failure of the beta request is the outcome of not responding to
the request in any of the two spaces. Given RD, the beta
request can be described as follows

Requestbeta ¼ L Request;RequestSpace;RequestVector
� � ð2Þ

As can be seen in Eq. 2, the beta request is in the form of a
vector function with two spaces of the Request and
Requestspace, as well as Requestvector. The vector space of
request indicates the pattern governs on the request, which is
in the form of (time, location, dependency), in which time
indicates time constraints and necessities of the request, loca-
tion indicates location limitations and necessities of the re-
quest and dependency indicate limitations of the request rela-
tive to the global activity. The conditions under which the
response is performed are defined in the dependency space.

The Requestspace indicates generating space of the request.
In distributed exascale computing systems, this space is two
dimensional considering two space generator of the global
activity and local machine. In distributed exascale computing
systems, the two-dimensional space (global activity, local
state) is considered as the vector space Requestspace. The glob-
al activity and local state spaces are defined at the space gen-
erator of the answer. The space generator of the answer con-
tains all elements and spaces that can respond to one of the
requests or part of the one request. Given RD in a distributed
exascale computing system, each computing element is used

Global Activity

Preliminary Responding

Structure

Outside SystemInside System

Dynamic &

Interactive

Event

(LB, RD

Activation)

New Global Activity
Con�nues Responding

Structure

Fig. 1 The impact of an event
with the dynamic and interactive
nature on a distributed exascale
computing system

1026 Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

based on the fact that whether or not it can respond based on
the space generator of the answer.

The generating space of Requestvector indicates a break-
down of the request to sub-requests, which should be
responded by the Requestspace. Members of Requestvector are
elements that cannot be broken down. In distributed exascale
computing systems, resource management of each element
has its independent operating system. As such, the space gen-
erator of Requestvector can be regarded equivalent to the clas-
sification of resources because of the operating system. In
such conditions, the space generator of Requestvector is
regarded with four characteristics (IO, process, file, memory).

According to Eq. 2 and considering events with the dynam-
ic and interactive nature in the computing element of the beta
request, a concept called the degree of consistency of the re-
quest and the response is defined. This concept causes RD to
be able to determine its functionality at a specific time. Eq. 2
describes the definition of the beta request based on vectors of
the request and consideration of the degree of consistency. In
Eq. 3, the function of RD at a certain time is specified:

f Resource Discoveryð Þ ¼ ∑m
k¼1 ResourceVectorjAttributevectorkð Þ= Attributevectorkk k2
� �

*

Attributevectork

ð3Þ

As can be seen in Eq. 3, the RD function is a vector. Given
RD, each resource of the system as well as the request of the
process can be described based on a set of vector characteris-
tics. The nature of the request of in distributed exascale com-
puting systems follows a discrete pattern. If the request is in
such a way that all its parts cannot be responded by a machine,
the RD function in Eq. 3 is presented as sigma.

Based on the classification of resources because of the op-
erating system as a local manager, the same classification can
be applied for RD. Thus, RD considers each resource as an
orthogonal sequence of four vectors IOVector, FileVector,
MemoryVector, and ProcessVector. Each request vector can be
described as an orthogonal sequence of the four vectors.

If in Eq. 3 k = 1, the traditional RD pattern has been used.
In this pattern, RD tries to find a resource for the request of the
process by which all the necessities of the requester can be
responded to or the request of the process follows the pattern
of traditional requests. If in Eq. 3, k > 1, RD has been con-
ducted a global activity. Based on what is governed on dis-
tributed exascale computing systems, the global activity cycle
might be considered as part of the system. In Eq. 3, instead of
ResourceVector|Attributevectork, Eq. 4 can be used.

ResourceVectorjAttributevectorkð Þ ¼ 1

4
∑
4

n¼1
in ResourceVectorjinAttributevectorð Þj jj j

ð4Þ

Equation 4 is rewriting of the ResourceVectorjAttributevectork
based on the consideration of characteristics of the scalar
product. Vector i depicts a unit vector for each resource and
thus for each requesting process. The direction of the vector is
in line to respond to the request of the process and its magni-
tude is 1. At the beginning of the formation of the request, the
direction of the vector is not known. At the first computational
element that part of the request is responded to, the direction
of the unit vector of a resource is similar to the direction of the
corresponding resource in the cubic of the responding ma-
chine. By replacing Eq. 4 in Eq. 3, Eq. 5 is obtained which
describes RD functional vector.

f Resource Discoveryð Þ ¼ ∑m
k¼1

1

4
∑4

n¼1i
n ResourceVectorjinAttributevectorð Þj jj j= Attributevectorkk k2

� �
*Attributevectork
���������!	

Request
ð5Þ

As can be seen in Eq. 5, the first part of the vector shows
the functionality of RD. This vector is described based on the
space of the scalar product. The ResourceVector ∣
inAttributevector the vector represents the capability or incapa-
bility of the computational element in responding to the re-
source request. The power of i in this vector represents the
dimension of the vector in the Tesseract cubic [30]. Quadratic
form of Attributevectorkk k indicates the importance of the type
of resource for the requesting process. This coefficient leads to
modification of the vector magnitude obtained from
ResourceVector ∣ inAttributevector and fits in with the impor-
tance of the resource for the process. Multiplication of ∑m

k¼1
1
4∑

4
n¼1i

n ResourceVectorjinAttributevectorð Þj jj j= Attributek�
vectork

k2Þ at Attributevectork
���������!

causes the state of the requesting process

to be specified after the response by the computing element.
This vector shows changes that have been taken place in the

vector (Attributevectork
���������!

) related to the request of the process
about the specific computing element k. Multiplication of the
two vectors causes the state of the request to be expressed after
the response by the computing element k.

Given RD, each resource can be defined as a sum of four-
vectors describing states of resources: I/O, Memory, File, and
Process [26]. For a description of each resource, RD creates a
Tesseract [27]. Each side of the 4-dimensional cubic repre-
sents one of the vectors. During the formation of the system,
each vector doesn’t have to be located on which side of the
Tesseract. If the resource regarding any of the four resources
of I/O, Memory, File, and Process responds to the request of
the process, its value increases in a positive direction. If the

1027Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

resource cannot respond to the request of the process regard-
ing each of the four resources I/O, Memory, File, and Process,
its value increases in the negative direction. When the re-
source receives a request, this request is separated into four
vectors, and the response depends on the directions and mag-
nitudes of these vectors.

If the resource can respond to one or more than one type of
the resources I/O, Memory, File, and Process, vector magni-
tudes corresponding to I/OVector, MemoryVector, FileVector, and
ProcessVector represent the period that the resource can be in
the access of the requesting process. If the resource does not
respond to the request for one or more than one type of re-
source I/O, Memory, File, and Process, vector magnitudes
corresponding to I/OVector, MemoryVector, FileVector, and
ProcessVector represent the time has been taken by RD to find
a resource.

In traditional computing systems, the request is one dimen-
sional [28]. Given the machine containing the resource, when
RDwants to find a resource, only in one of the abovementioned
four dimensions requests to use a resource. Thus, in traditional
computing systems when a resource responds to the request
regarding one of the resources I/O, Memory, File, and
Process, the state of the corresponding vector in the other three
resources is constant. If a resource is requested in traditional
computing systems, only a vector related to that resource will
change, while magnitudes of other vectors do not change. In
contrast, in distributed exascale computing systems, the other
three vectors are changing in the negative direction for the
period has taken by RD to find a resource.

Based on Eq. 6, the sum of four-vectors I/OVector,
MemoryVector, FileVector, and ProcessVector is represented by
ResourceVector.

ResourceVector ¼ ProcessVector⨁MemoryVector⨁FileVector⨁IOVector

¼ πRpþRmþR f þRio ProcessVector⨂MemoryVector⨂FileVector⨂IOVectorð Þ
ð6Þ

As can be seen in Eq. 6, considering a compound form of
these vectors, ResourceVector is the cross product of the vectors
that constitute the resource. The resulting vector (ResourceVector)
is the describer of the state of the resource. In distributed exascale
computing systems, each request can be about one type of re-
source or a combination of four types of resources. The machine
that owns the resource can respond to the request of the process
for each of the four resources or a combination of them based on
the concept of changing functionality [26, 29]. If the request is
about more than one type of resource, RD should be able to
consider challenges related to compound states of different types
of resources. Changing the compound state of the request might
lead to the inability of the resource to respond to the request.
Given RD, for each resource, a 4-dimensional cubic can be
described. In each time, the 4-dimensional cubic of each resource
has four vectors corresponding to four types of resources.
ResourceVector in each time is created by RD. Given RD, this

vector indicates the capability of each resource in responding to
the requests of the processes activating RD. Attributevectork rep-
resents the necessities of the request for each of the four defined
resources. This vector can be described as:

Attributevectork ¼ ProcessVector⨁MemoryVector⨁FileVector⨁IOVector

¼ ProcessVector⨂MemoryVector⨂FileVector⨂IOVectorð Þ
ð7Þ

As can be seen in Eq. 7, for each request that RD is called,
Tesseract cubic is created. This compound space is the result
of compounds of cross products of I/O, Memory, File, and
Process.

In Eq. 7, space of the characteristics of the request is as the
compounds of cross products of the necessities of the process
k. Each vector results from a cross-product that represents the
necessities of the request for each type of the defined resource
in a distributed exascale computing system. In Eq. 7, if the
dynamic and interactive events do not occur in the requesting
process, it is not required to consider all state’s results from
cross products of vectors. In this condition, there is only one
state that can be responded to by RD. Due to the occurrence of
events with the dynamic and interactive nature in distributed
exascale computing systems, all states of cross products are
considered. Thus, Eq. 7 represents the state of Attributevectork
in the distributed exascale computing system.

4.1 The functionality of resource discovery for events
with dynamic and interactive nature

In this section, the impacts of events with the dynamic and
interactive nature of the functionality of resource discovery
management in distributed exascale computing systems are
discussed.

Equations 2 to 7 describe states of the request, resource,
and functionality of RD at a specific time before the occur-
rence of events with the dynamic and interactive nature. Given
RD, events with dynamic and interactive nature lead to chang-
es in the state of the requesting process. Changing the state of
the request affects the characteristics of the request and func-
tionality of RD. The impact of events with the dynamic and
interactive nature on the request causes Eq. 2 changes to Eq. 8:

RequestBetaTimeD&I ¼ T RequestBetað Þ ¼ ∑
n

p¼1
XpYp ð8Þ

In Eq. 8, T is a linear map that takes place from RequestBeta
on RequestBetaTimeD&I . This linear map is the impact of events
with the dynamic and interactive nature of the space of the
RequestBeta. In Eq. 8, Xj is the space coordinates of Reques
tBetaTimeD&I after the occurrence of events with dynamic and in-
teractive nature. Yi is the space coordinates of RequestBeta
before the occurrence of events with dynamic and interactive
nature.

1028 Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

To examine the impact of events with the dynamic and
interactive nature on the space of the characteristics of the
request, T can be regarded as a linear operator on the space
of Attributevectork with the finite dimension. Characteristics of
the request under the T mapping changes from what shown in
Eq. 7 to Eq. 9:

Attributevectork
Time
D&I ¼ T Attributevectorkð Þ ¼

πRpþRmþR f þRio ProcessVector;Attributevectorkð Þ� �
⨁ πRpþRmþR f þRio MemoryVector;Attributevectorkð Þ� �
⨁ πRpþRmþR f þRio FileVector;Attributevectorkð Þ� �
⨁ πRpþRmþR f þRio IOVector;Attributevectorkð Þ� �

ð9Þ

Characteristics of the request are part of the space of the
request in Eq. 2 which should be responded to during execu-
tion of activities related to RD. Considering the definition of
the space of the request based on Eq. 7, T can be regarded as N
vector operator. The vector operator for responding in a space
with finite dimension is Attributevectork . As stated in Eq. 7,
each resource has four types of characteristics. Thus, with
four-vectors I/OVector, MemoryVector, FileVector, and
ProcessVector in Attributevectork and N vector operators accord-
ing to Eq. 9, the state of the request can be examined. N is a
function of sub-requests that responding to them leads to the
response to the beta request. Eq. 9 indicates that an event with
the dynamic and interactive nature causes the space of the
request changes from space with four vectors to one vector
with πRpþRmþR f þRio dimensional space. Changing in the state

is due to the definition of N vector operators. If N = 1, the
request can be responded by a traditional RD, and if N > 1,
the request should be responded by ExaRD [12]. ExaRD is a
framework for the empowerment of RD to manage events

with dynamic and interactive nature. It is executed in distrib-
uted exascale computing systems by maintaining consistency
with RD in traditional computing systems.

After the occurrence of an event with the dynamic and
interactive nature in the process, RD redefines requests of
each four resource types based on the new states of resources.
To this end, one of the resources is considered as resource X
(X in each redefining can be one of the four types of resources
of IO, process, file, memory). The state of resource X is con-
sidered constant by RD. Resource discovery redefines the
requests. This redefinition is conducted considering the im-
pacts of the state of the requests on other resources except for
resource X, as well as considering the impacts of
πRpþRmþR f þRio . Equation 9 indicates that an event with the

dynamic and interactive nature for the characteristics vector
of the request may influence on every four types of the re-
source. Thus, vectors describing characteristics of the request
for each four-type resources should be redefined. Changing
the state of the resource causes cross product is changed to the
sum of the vectors, which is due to the definition of N vector
operators on the 4-dimensional space of the characteristics of
the request. This definition causes four vectors of the charac-
teristics of the request to be changed to the responding vector
to the beta request. Operators with N members cause all parts
of the request to be responded. For each event with the dy-
namic and interactive nature, RD in distributed exascale com-
puting systems considers it as a factor for changing the state of
the requests and changing characteristics of the requests.
Thus, based on Eq. 9, RD redefines characteristics of the re-
quest and the response. Similarly, Eq. 10 can be defined using
Eq. 5:

ResourceVectorTimeD&I ¼ T ResourceVectorð Þ

¼ πRpþRmþR f þRio ProcessVector;ResourceVectorð Þ� �
t

πRpþRmþR f þRio FileVector;ResourceVectorð Þ� �
t

πRpþRmþR f þRio MemoryVector;ResourceVectorð Þ� �
t

πRpþRmþR f þRio IOVector;ResourceVectorð Þ� �
t

	

ð10Þ

As can be seen in Eq. 10, after the occurrence of events
with the dynamic and interactive nature, the function describ-
ing the space of the resource is changing from the cross prod-
uct under the linear map T to the matrix form. Resource dis-
covery under the occurrence of an event with the dynamic and
interactive nature tries to respond to the request. Thus, it cre-
ates a matrix of capabilities of each resource based on the time
vector. Matrix elements represent the empower vector of re-
sources for every four types of resources. These vectors are in
a way that the impacts of use or disuse of each type of four
resources are considered. In contrast to the vector describing
characteristics of the request, each empowers vector is needed

separately by RD. Each vector is a function of time and may
change over time.

According to Eq. 9 and Eq. 10, Eq. 5 can be rewritten based
on Eq. 11. Equation 11 represents RD function after the oc-
currence of an event with the dynamic and interactive nature
in the distributed exascale computing system. The impact of
an event with the dynamic and interactive natures on RD
function causes Eq. 5 to be changed to Eq. 11:

As can be seen in Eq. 11, the first part of the vector or
part A indicates that the resource vector can respond to
which parts of the characteristics vector of the request. An

1029Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

event with a dynamic and interactive nature may cause
changes in the functionality of the resource, characteris-
tics of the resource, and capabilities of the resource that
can be presented to the requesting process. On the other
hand, an event with a dynamic and interactive nature can
influence the functionality of the process, as well as on
the functionality of the global activity of which the pro-
cess is part of it. The occurrence of each of the above
mentioned five states (or a combination of them) is con-
sidered by part A. By because the state of the resource
and the process are changing after the occurrence of an
event with the dynamic and interactive nature, Part A
redefines resource capabilities, necessities of the process,
and the responding pattern to the request. Part A deter-
mines whether, after the occurrence of an event with the
dynamic and interactive nature, the founded resource is
still able to respond to the request of the process. The
power of I vector represents the dimension of a vector
in cubic Tesseract after the occurrence of an event with
the dynamic and interactive nature.

In Eq. 11, quadratic form of

πRpþRmþR f þRio ProcessVector;Attributevectorkð Þ� �
⨁ πRpþRmþR fþRio MemoryVector;Attributevectorkð Þ� �
⨁ πRpþRmþR f þRio FileVector;Attributevectorkð Þ� �
⨁ πRpþRmþR f þRio IOVector;Attributevectorkð Þ� �

2

indicates that the resource is influenced by the events with
dynamic and interactive nature. Indeed, following the oc-
currence of events with the dynamic and interactive na-
ture, the quadratic form describes how the functionality of
the resource is changed in terms of different capabilities
that can be presented to the process and the resource in

which dimension (I/O, Memory, File, and Process) is af-
fected by the dynamic and interactive events. This de-
scription causes changing the priority of the selection of
the resource because of RD. Depending on the necessities
of the requesting process, changing incapability of the
resource in each dimension can decrease or increase the
priority of the usage of the resource.

In Eq. 11, vector B represents a set of activities that
take place in the computational element of the requester
before the occurrence of an event with the dynamic and
interactive nature. In distributed exascale computing sys-
tems, each process is part of global activity. Each process
influences (is influenced) from (by) processes executing
on the requesting computing element. Thus, vector B
represents (a) a set of activities taken place in the re-
quester before the occurrence of an event with the dy-
namic and interactive nature in the responding process to
the beta request, and (b) a set of activities related to
processes that have interaction with the responding
process.

The product of vector B and A divided by the quadratic
form can be examined by two approaches. The first ap-
proach examines the impacts of changes in the state of the
request on the responder. This cross-product leads to
modification incapability of the resource after it is used
by the requesting process. If it is assumed that both the
states of responding resource and the requesting process
have changed, the impact of events with the dynamic and
interactive nature of the process should be applied to the
resource too. In the second approach, the cross product of
vectors causes the state of the request is specified after the
response by the computing element k.

(11)

1030 Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

4.2 Resource discovery failure in distributed exascale
computing systems

In this section, the concept of failure of RD due to the occur-
rence of events with the dynamic and interactive nature in
distributed exascale computing systems is discussed.

In traditional computing systems, RD is responsible to es-
tablish consistency between the request and the resource. In
such computing systems, a function such as Eq. 1 can be
introduced, which contains the concept of consistency.
Based on Eq. 1, RD should be able to find a resource that is
at 100% consistent with the request of the process. Also, from
the activation of RD to the allocation of the resource to the
requesting process, function 1 does not change. Thus, in con-
trast to RD function in distributed exascale computing sys-
tems, function 1 is not a function of time. In distributed
exascale computing systems, the nature of the scientific appli-
cation is in such a way that at the time of the design of the
system, it is not possible to have access to all information
related to the responding structure of processes [3]. To
Recognize and explore the unknown parameters, a system is
needed that would be able to create the responding structure
during the execution of the program. This is because, at the
beginning of the execution of the program, all variables par-
ticipating in the global activity and all their necessities cannot
be predicted.

In distributed exascale computing systems, if the comput-
ing system cannot respond to the request of the process, RD is
responsible to create a responding structure outside of the
local computing system [27]. Resource discovery in distribut-
ed exascale computing systems should be able to manage and
control events with dynamic and interactive nature, which
may have an impact on the functionality of RD. Making
changes in processes that are effective on the functionality
of RD increases the possibility of failure of the activities re-
lated to RD.

Because of the occurrence of events with the dynamic and
interactive nature in computing processes, there is a possibility
for creating changes in the space of the requesting process and
the process owns the resource [12]. The space of the
requesting process is defined based on limitations and con-
straints governed on the request, while that of the responding
space is defined based on limitations and constraints governed
on the responding process. To respond to the request, the
variables of these two spaces should be appropriately mapped.
In distributed exascale computing systems, due to the defini-
tion of the dynamic and interactive nature and the possibility
of the definition of global activity and a responding structure,
a computational element may not be able to respond to all
parts of the request. In such a condition, the responding struc-
ture responds to the request [28]. As a result, similar to the
consistency concept as the functionality of traditional comput-
ing systems, the concept of the degree of consistency between

the request and the response is defined. Thus, a mapping for
RD is acceptable if relative or absolute homomorphism can be
created between part or all of the requests and capabilities of
the discovered resource.

Resource discovery is active outside the system. Thus, in
addition to factors contributing to the failure of RD including
traditional factors or factors caused by the events with the
dynamic and interactive nature, environmental factors also
may cause the failure of activities of this unit. One of the most
important environmental factors is the nonexistence of a re-
sponder. If RD finds a computing element that can respond to
the request, there is no obligation that this element to provide
services until the end of the usage of the resource by the
requester. The other factor is the scalability of the system
and its connection with other systems [30]. This is due to the
implementation of resource management in a distributed form
that leads the system to be dynamic. The dynamic nature of
the system causes failure of RD; thus another machine should
be found to respond to the request. Thus, the failure of RD can
lead to several executions of activities related to RD.

During the execution of activities related to RD, events
with the dynamic and interactive nature in computing process-
es cause functional dependency of processes to time. Thus, for
the requesting process four states can be considered:

(1) After the occurrence of events with the dynamic and
interactive nature in the process, the request for the pro-
cess remains unchanged. In this condition, RD conducts
related activities based on the previous routine. In this
condition, because of RD Eq. 1 and Eq. 11 are the same.
Unchanging the space of the characteristics of the re-
quest causes the constraints governed on the request do
not change. In this study, only failures caused by chang-
ing the state of the requesting process during the execu-
tion of activities related to RD are considered. Thus,
there is no change in the definition of the resource. As
a result, Eq. 3 to Eq. 7 are equivalent to Eq. 8 to Eq. 11.

(2) After the occurrence of the dynamic and interactive na-
ture in the process, the space of the request changes. In
this condition, each or all of the time and location con-
straints and the type of resource may change. Besides, a
request with new constraints can be created. In these two
cases, even if RD can find the machine containing the
resource, the machine may not be able to respond to the
request of the process. If the time constraints of the re-
quest are not violated, RD should find another machine
for the response to the request; otherwise, RD fails.
Besides of failure of RD, the occurrence of events with
the dynamic and interactive nature in the process chang-
es the space of the request and RD function. Changing
the space of the request leads to changing the space de-
scribing the request, meaning that Eqs. 8 and 9 and RD
function are based on Eq. 11.

1031Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

(3) Due to the dynamic and interactive nature in the process,
the system is changing in a way that the local computing
system can respond to the request of the process. In this
condition, RD that has been activated before creating
changes in the state of the system should be stopped
and RD fails. This failure cannot be described by Eqs.
8 to 11. In this failure, the reason for the activation of RD
is violated. In this condition, given resource manage-
ment, RD is not required to be activated. Given RD in
Eq. 9, the request is eliminated. Thus, in Eq. 11, RD
functionality is a zero vector.

In addition to the abovementioned items, [2] defined four
types of RD failure due to the occurrence of events with dy-
namic and interactive nature. In View influence state, con-
straints governed on the request are changing in a way that
the request cannot be responded. In this state, the request
vector is instead of the request vector described in Eq. 7, and
RequestD&I is instead of the request vector described in Eq. 8.

Thus, RequestD&I
�������!−Request����!

which shows the subtraction of
the abovementioned vectors can be defined. If until the
View Influence, RD is examined n number of comput-
ing elements and has access to n computing elements of

the global activity that can respond to the beta request,
{Resource Discovery1,…, Resource Discoveryn} can be
defined.

Each element of Resource Discoveryi represents a set of
activities that RD conducts in the computing element I to
respond to the beta request. The space of resource discovery
defined in Eq. 11 represents the functionality of RD after the
occurrence of the dynamic and interactive nature in the pro-
cess. The space of resource discovery is defined based on the
scalar product of ResourceVector Attributevectork and

RequestBeta. RequestD&I
�������!−Request

����!h i
k
represents subtraction of

the vector describing the state of the request after the occur-
rence of the event with dynamic and interactive nature from
the same vector before the occurrence of the dynamic and
interactive nature. This vector represents a set of activities
and necessities that have been created or eliminated due to
the occurrence of the event with dynamic and interactive na-
ture. Resource discovery should compute this vector in n com-
puting elements members of its global activity. Resource dis-
covery calculates Extender based on Eq. 12. If the size of the
Extender is lower than a specific amount, the failure of View
Influence has occurred.

Extender ¼ ∑k Resource Discoveryð j RequestD&I
�������!−Request

����!h i
k

�
: RequestD&I
�������!−Request

����!h i
k

ð12Þ

As can be seen in Eq. 12, in each computing element
that is a member of the global activity for responding to

the beta request, RD computes Resource Discovery j
RequestD&I
�������!−Request

�����!h i
k. The resulting vector indicates after

the occurrence of an event with the dynamic and interactive
nature of each of the processes of the global activity, whether
or not RD can respond to the beta request. Scalar product of

RequestD&I
�������!−Request

����!h i
k
the mentioned vector is indicative of

the impact and importance of this vector.
If RD cannot calculate the size of the Extender vector, or

there is not a value for the Extender vector, the global activity
for responding to the beta request is failed. This is caused by
the fact that due to the occurrence of events with the dynamic
and interactive nature either the request is violated or interac-
tion of the requesting process with other processes that are
members of the global activity caused violation of the global
activity for responding to the beta request. Resource discovery
determines the value and direction of the Extender vector.
This value is determined based on the history of the conducted

activities. The direction of the Extender vector is always per-
pendicular to the direction of the RD vector.

If the Extender vector cannot be defined, the View
Influence is caused by the failure of RD. In this condition,
the state of the request that is responding by RD is different
from the state of the request in the requesting process. The
result of the responses to the beta request should be in a way
that to be different from the necessities of the beta request. In
the distributed exascale computing systems, RD tries to find
part of the response to the beta request in each computing
element. The resulting responses may not satisfy the bet
request.

In the state of the Backward Influence, due to the occur-
rence of events with the dynamic and interactive nature in the
process, the state governed on the responding resource chang-
es following the find of the resource and its addition to global
activity. If changes in a resource or several types of resources
are in a way that cannot respond to the beta request, activities
related to RD are failed. Similar to the argument presented for
the View Influence, Eq. 13 can be defined for the Backward
Influence:

1032 Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

Extenderresource ¼ ∑k Resource Discoveryð j ResourceD&I
��������!−Resource

�����!h i
k

�
: ResourceD&I
��������!−Resource

�����!h i
kk

ð13Þ

As can be seen in Eq. 13, RD in each computing element
that is a member of the global activity related to responding to
the beta request calculates

Resource Discoveryð j ResourceD&I
��������!−Resource

�����!h i
k

�

. The resulting vector indicates the capability of RD for
responding to the request. If by using the created and elimi-
nated resource, RD cannot respond to the beta request after the
occurrence of an event with the dynamic and interactive na-
ture, RD is failed. The scalar product of

ResourceD&I
��������!−Resource

�����!h i
k
the mentioned vector indicates the

impact and importance of the change that has taken place.
This also obeys the rules of the Extender vector. The value
and direction of the Extenderresource is determined by resource
management. If the Extenderresource vector cannot be defined,
the Backward Influence caused the failure of RD.

Conditions governed on the request may change in a way
that impossibility of the usage of the discovered resource and
necessity for the rediscovery of a new resource for the formed
request cause inability to respond to the beta request with its
constraints and limitations. In this case, RD is failed. In the
View and Backward states, global activity is running. The aim

of examining activities related to RD is to find the possibility
of the continuation of these activities. In the Time Influence
state, the activity related to RD ends, and RD allocates re-
sources to the beta request. In this condition, the occurrence
of events with the dynamic and interactive nature in the pro-
cess may cause a specific resource not to be used by a chain of
resources or the requesting process. Thus, the aim is to exam-
ine the possibility of re-beginning of activities related to RD
considering the time constraints. In this type of failure, the aim
is to find whether the time constrains governed on the request
are in a way that activities related to RD can be continued. To
this end, (1) β = {α1,…,αn} indicates activities that should be
done in the requesting process to finish RD; (2) αs indicates
activities that should be occurred at the time of the occurrence
of events with the dynamic and interactive nature if no chang-
es occur in the process of RD; (3) αr indicates the occurrence
of the event at the time of the occurrence of the dynamic and
interactive nature.

If matrix f exists, by considering time constraints, this
matrix tries to do RD. Using Eq. 14, it is possible to
decide the possibility of management of the failure due
to Time Influence, as well as the occurrence of the failure
of RD.

if Exist
δf
δt

∑sX s αs;∑sY r αR½ � THEN Timeinfluence ¼ Acceptable
� �� δf

δt
∑sX s αs;∑sY r αR½ � ¼ δf

δt
∑r;s Y r ArsX S

h i
ð14Þ

In Eq. 14, matrix f is defined in the form of

πRpþRmþR f þRio
δProcessVector =

δt
;δResourceVector =

ϑt

�
δt
t

δFilevector =

δt
;δResourceVector =

ϑt

δt
t

" ""

πRpþRmþR f þRio
δMemoryvector =

δt
;δResourceVector =

ϑt

�
δt
t

 "

πRpþRmþR f þRio
δIOvector =

δt
;δResourceVector =

ϑt

�
δt
t

 #"
. In this matrix,

the derivative of the capability of each resource (or resources)
relative to time is based on consideration of the impacts of the
capabilities of other resources. Matrix f represents the capa-
bilities of each resource concerning time. Given RD, a re-
sponse to the request is more important. Based on this, RD
examines each resource to find which activities are possible
and these activities respond to which parts of the request of the

process. Thus, given RD, the definition of a resource is de-
fined based on activities of an ordered basic member β. Thus,
Eq. 14 is used to calculate matrix f.

In Eq. 14, Xs represent Eq. 3 for the event S, and Yr repre-
sents Eq. 11 for the event R. αs and αr are defined based on
Eqs. 3 and 11, respectively. In Eq. 14, Ars represents the scalar
product of two parts of A in Eqs. 3 and 11 for events S and R.
In this equation, Xrs indicates that the vector characterizes the
resource can respond to which parts of the requesting vector
when the impacts of the dynamic and interactive nature in the
event R are considered. This definition is based on the fact that
if the S event has not occurred, which responding structure has
existed, and after the R event, which parts of the responding
structure can be executed.

In the Global Influence state, because of RD, changes of
the global activity in which the requesting process is part of it,

1033Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

cause changes in the nature of the request and constraints
governed on the request. As was shown in Fig. 1, because of
RD, activities related to RD are global activities that are part of
the initial global activity. The requesting process is a member
of this global activity. Thus, in the Global Influence state,
changing part of the global activity causes the functionality
of RD to be affected.

In the View Influence state, the reason for failure is that the
state of the request is not the same as the necessities of the
process. In this condition, due to the occurrence of events with
the dynamic and interactive nature in the process, the View
Influence may occur which leads to failure of RD. In the
Backward Influence, the reason for failure is changing the
state of the machine containing the resource. In this state, a
new global activity is created after finding a resource, by
which a connection between the requesting process and the
resource is established. In Time Influence, global activity is
stopped, and changing time constraints may fail RD. In the
Global Influence, the dynamic and interactive nature does not
occur in the computing element containing the requesting pro-
cess or in the element containing the responding resource.
Constraints and limitations governed on the procedure of
RD also do not change direction due to the occurrence of
events with dynamic and interactive nature. This is due to
the functional nature of the process in distributed exascale
computing systems. Each process is part of global activity
and RD is part of the global activity in which the process is
a member of it. The occurrence of events with the dynamic
and interactive nature in other parts of the global activity may
lead to failure of RD.

In failure caused by the Global Influence, we are trying to
find whether the occurrence of an event with the dynamic and
interactive nature in each part of the global activity can lead to
failure of RD. To this end, each process of global activity can
be considered as a vector. The size of this vector, the impor-
tance of the process during the execution of the global activity,
and its direction is obtained from the sum of vectors file, I/O,
Process, and Memory. In this condition, each global activity
can be considered as the cross product of these vectors. To
examine the impact of the occurrence of an event with the
dynamic and interactive nature, in one (or more than one)
vector of the global activity on the sum vector of the effective
process for RD, the linear operator D&I_Mapping can be
used. D&I_Mapping is a normal operator that is applied to
the finite cross product of the global activity. For the occur-
rence of an event with a dynamic and interactive nature, this
operator examines the impact of the dynamic and interactive
nature of activities related to RD. To this end, it is assumed
that c1 to ck represent values of vectors that have a dynamic
and interactive nature. In this condition, Wj represents charac-
teristics of vectors related to cj based on the sum vector of
activities related to RD. Ej represents the orthogonal projec-
tion of the Global Activity vector over Wj. If i and j are

different, Wi is perpendicular to Wj and D&I_Mapping can
be represented based on Eq. 15:

D&IMapping ¼ ∑
K
ciEi ð15Þ

As can be seen in Eq. 15, the linear operator D&I_Mapping
is defined as the sum of the product of characteristic of vectors
with the dynamic and interactive nature at the analyzer oper-
ator Ej. The D&I_Mapping operator represents the impact of
vectors with the dynamic and interactive nature of the vector’s
constituent activities related to RD. After the occurrence of an
event with the dynamic and interactive nature in global activ-
ity, this operator analyzes the states of vectors related to RD.
Thus, this operator creates a mapping between the space of
vectors with the dynamic and interactive nature and vectors
related to RD, after which by considering constraints and lim-
itations of the requesting process, this operator examines the
states of vectors constituent RD. It can be proved that if Eq. 16
is valid, states of vectors related to RD do not fail if the impact
of D&I_Mapping is being considered.

e j D&I Mappingð Þ ¼ E j j e j ¼ ∏i≠ j
x−ci
c j−ci

� �
ð16Þ

As can be seen in Eq. 16, the state of each process related to
RD is the same as the state of the process before the occur-
rence of an event with the dynamic and interactive nature.
Given RD, this means that the vector corresponding to RD
is independent ofWi and thus is independent of the occurrence
of an event with the dynamic and interactive nature. This
independency from processes that are members of global ac-
tivity implies that there is no correlation between these two
vectors.

5 Evaluation

To evaluate the presented pattern for evaluation of failure due
to the dynamic and interactive nature in activities related to
RD in distributed exascale computing systems, peer-to-peer
distributed computing systems (PMamut) [29], and the Cactus
framework are used [31]. In Cactus, the characteristics of re-
sources are changing over time. It is a multipurpose frame-
work and an open-source for solving scientific and engineer-
ing problems that need parallel computing. Considering the
variability of characteristics of resources, this framework has
provided a flexible framework to be used in distributed sys-
tems. In the Cactus framework, a mechanism is used to choose
resources that in case of a reduction of the performance of the
system, allows changing allocation of the resources. In this
framework, RD, process migration, and resource allocation
are conducting their activities. The approach for the selection
of the resource in this framework follows the matchmaking

1034 Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

algorithm, which can find the best resource. Requests of pro-
cesses in this algorithm are selected based on the type of the
operating system, a minimum memory, and minimum
bandwidth.

In both Cactus and PMamut [29] systems, because of RD,
the dynamic and interactive nature means that a situation is
created that has not been considered in the executing pattern of
RD. In [29], to analyze the failure of RD caused by the for-
mation of the event with the dynamic and interactive nature,
the resource manager uses the region to manage the system
[26]. As a result, in this type of PMamut [29], four regions
corresponding to four types of the main resource defined by
the operating system are considered. As such, global activities
can be defined in the PMamut [29] in which the occurrence of
an event with the dynamic and interactive nature is possible.
As different global activities can be defined and the possibility
of changing the state of each computing element in the system,
failure of RD is possible. In PMamut [29], the mechanism of
ExaRD is used to respond to requests for which the local
computing system cannot respond to them. Each part of the
global activity (each process under execution in each comput-
ing system) can have access to each of the four types of the
main resource that may not exist in the local computing sys-
tem. Given the resource management, this request means the
necessity to call RD.

If the matchmaking algorithm fails in the Cactus frame-
work, another resource is allocated to the process based on
the migration algorithm. In the Cactus framework, failure of
activities related to RD occurs when the allocated resource to
the process cannot satisfy constraints governed on the request
of the process. By extension of the framework introduced in
[29] for supporting events with dynamic and interactive na-
ture, four types of failure can be considered in the execution of
activities related to RD. The first one is the state in which RD
cannot find the resource considering constraints and limita-
tions governed on the request. This state is equivalent to the
failure of Time influence and Global Activity influence. In the
second state, as RD in the framework of Cactus tries to find
the best resource for the requesting process, finding the best
resource may take some time. Thus, the failure of Time influ-
ence occurs. In the third state, changes in the functionality of
the resource cause failure of RD, and RD should be called
again. This is equivalent to Backward influence failure. Due
to the occurrence of events with the dynamic and interactive
nature and changing necessities of the process during execu-
tion, failure of the View influence is also possible. Thus, fail-
ure with the type of View can be regarded as a failure due to
the occurrence of an event with a dynamic and interactive
nature.

To find out whether or not the pattern presented in this
paper presents a logical description of the failure caused by
the dynamic and interactive nature during the execution of
RD, in systems [27, 30] two global activities are executed.

Charm [32] and WRF [33] models need systems with high
computing and processing power. Each of these models uses
the computing resources of the system based on global activ-
ity. Thus, two global activities are executing in the computing
system. In each time, each computing element of the system
can contribute to the execution of one or two activities of the
global activity.

The number of computing elements is 180 in the system.
Creating a computing system using 180 computing elements
makes it possible to consider the selected computing system as
an extensive system for each of the twomodels. Generally, the
abovementioned models are being executed on fewer comput-
ing elements. Thus, their execution of over 180 computing
elements makes it possible to analyze the state of models
when they are over an extensive system.

Considering the nature of the distributed exascale comput-
ing systems and the necessity to define the initial computing
system, 70 computing elements were considered for the initial
computing element. 70 computing elements are coincident
with the initial necessities of the computing processes related
to the scientific applications. During the execution of the
models, if the computing process needs new resources to con-
tinue the execution, RD [26, 29] extend the system and adds
new resources to the system.

To create events with the dynamic and interactive nature of
machine 48, a specific version of the resource management is
used. In RD of this system, in addition to execution of activ-
ities related to RD and creation of global activity to respond to
the request of the process, based on the equations introduced
in this study failure due to the formation of the dynamic and
interactive nature during RD is analyzed. Based on Eq. 11,
resource management [29] decides about the functionality of
RD, whether the current functionality of RD leads to failure
and the type of failure.

The reason for selecting machine number 48 is since this
computing element participates in the global activities of both
models most of the time during the execution of scientific
applications. The Hardware configuration of this computing
machine is equivalent to all other computing machines in the
system. For each global activity, one page based on what is
mentioned in [28] is considered. Most of the time during the
execution of the abovementioned models, computing element
number 48 is the intersection point of two planes correspond-
ing to global activities [28]. Each other computing element
can also be selected to be examined.

In the computing element number 48, resource manage-
ment describes the state of the RD in each time and for each
event. In this computing element, by activation of RD, the
functionality of RD is described based on Eqs. 2 to 7, partic-
ularly Eq. 7. For analysis of the failure, the resource manage-
ment in the computing element number 48 analyzes the state
of RD and processes own both the resource and the requester.
The functionality of RD is also redefined based on Eqs. 8 to

1035Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

10, particularly Eq. 10. The uncertainty nature of global activ-
ities under execution in computing element 48 and the possi-
bility of the dynamic and interactive nature in each of the
global activities cause the occurrence of an event with the
dynamic and interactive nature to be possible during execu-
tion of RD based on the classification presented in [2]. The
occurrence of the event with the dynamic and interactive na-
ture may lead to a stop of execution of activities related to RD.
Based on Eq. 11, resource management of the processes of the
system in the computing element number 48 decides whether
it is not possible to execute RD due to the occurrence of an
event with the dynamic and interactive nature in processes.
Besides, based on Eqs. 12 to 16, resource management of the
processes decides regarding the created impact on the execu-
tion of RD and the type of failure based on what is specified in
[2]. Equations. 12 to 16 that are introduced in this study cause
the resource management to be able to distinguish between
events with the dynamic and interactive nature effective in the
execution of activities related to RD, as well as the occurrence
of events with the dynamic and interactive nature that lead to
failure of RD. As stated earlier, Eq. 11 describes the function-
ality of RD. Based on this Eq., resource management can
decide whether or not to execute activities for RD. Besides,
by extending Eq. 11, the resource management examines how
activities related to RD stop and what is the type of failure in
this element.

ExaRD that is executed in computing element number 48
can manage an event with the dynamic and interactive nature
caused by the creation of new processes. It is also able to
manage inter-processors communications and interactions be-
tween the environment and the system. The functionality of
RD in computing element number 48 is in a way that can
execute requests with a dynamic and interactive nature. It is
configured in a way that can respond to normal requests in
traditional computing systems. Besides, it examines situations
in which events with dynamic and interactive nature may dis-
turb RD. The system and thus the computing element number
48 in distributed exascale computing systems [29] and also
[26] are examined in 100 executions. To this end, first,

experiments are executed in the systemwith the resourceman-
agement of [29] and then [31]. As conditions of both experi-
ments are similar, some results of the experiment are specified
in which the resource management [29] has been executed.
The results can be extended to the state for which the resource
management is [31]. In Fig. 2 the numbers of RD and call for
ExaRD are shown.

As can be seen in Fig. 2, in each execution of scientific
applications, RD is called on average 24 times in the comput-
ing element number 48. This means that on average in the
execution of scientific applications in each computing ele-
ment, 24 requests are created that lead to call of RD by the
load balancer due to its inability to respond to the request.
Among these 24 requests, the type of 17 requests is in a way
that within which event with the dynamic and interactive na-
ture occurs during the activity of RD; thus, ExaRD should be
called to respond to them. Based on Fig. 2, it can be concluded
that 72% of RD calls lead to the call of ExaRD. Based on that
and with the repetition of the experiment, it can be concluded
that if calls of RD that lead to activation of ExaRD are 60 to
80%, the results of this study can be used. In Table 1, the
correlation coefficient between the number of calls for RD
and ExaRD is shown.

As can be seen in Table 1, the correlation between the
number of calls for RD and ExaRD is moderate to weak.
This implies that events that lead to the call of ExaRD are
independent of events that lead to the calling of RD. Thus,
the presented Eqs. can be extended for each exascale distrib-
uted computing system. The results of this experiment can
also be extended to other computing systems. The pattern used
in this study to call ExaRD is based on calling by the RD. If in
activities related to RD an event with the dynamic and inter-
active nature occurs, RD calls ExaRD. If there exists a mean-
ingful high relation between RD and ExaRD, ExaRD is a
specific state of RD. However, in Eqs. 8 to 11 of this study,
an event with the dynamic and interactive nature is considered
as a factor to change the basic structure of RD from finding a
resource to the creation of a responding structure. Results of
Table 1 in terms of independence of the two mentioned

0

5

10

15

20

25

30

35

40

45

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

N
u
m

b
er

Execution Number

Number of RD and ExaRD

Number of RD Request

Number of ExaRD

Request

Fig. 2 The numbers of RD and call for ExaRD in distributed computing systems

1036 Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

management elements cause the necessity to RD by which in
case of the occurrence of activities with the dynamic and in-
teractive nature, changes can be managed.

The number of calls for ExaRD and the number of failures
related to each execution of scientific applications in distrib-
uted computing systems is shown in Fig. 2.

As can be seen in Fig. 3, on average in each execution, 14
calls of ExaRD are failed (based on a description of the
functionality of ExaRD specified in Eq. 11). Given resource
management, this means that during the execution of activities
related to ExaRD, the dynamic and interactive nature has oc-
curred among 14 calls of the total 18 calls. The occurrence of
an event with the dynamic and interactive nature leads to
failure of ExaRD. Based on what is presented in Fig. 3, in
distributed computing systems [29], in 76% of the events with
the dynamic and interactive nature that affect the functionality
of RD, activities related to RD fail. Based on Fig. 3, if the
number of execution of the experiment increases the number
of events that affect RD that may lead to the failure of its
activities also slightly increases. ExaRD recognizes these
types of failures. On the other hand, the number of events with
the dynamic and interactive nature that cause failure in activ-
ities of RD also slightly increases in case of an increase in the
number of experiments. This is due to the functionality nature
of RD. Other constituent elements of the resource manage-
ment either remain constant or decrease with a constant slope

under the increase in the number of execution of experiments.
As the activity of RD is outside of the computing system, its
slope is not declining. Due to the occurrence of new events in
the environment of the system, either this pattern has a con-
stant slope or its slope is increasing. As can be seen in Fig. 3,
in case of a high repetition of the experiment, the occurrence
of events with the dynamic and interactive nature leads to
failure of RD with a slight increasing slope. By examining
the type of failure of RD, it can be seen that most of the
failures follow the Backward influence and the Global
Activity influence. The nature of these failures is outside of
the computing system. Creating changes in the state of the
computing system cause this type of failure outside of the
system. One of the most important reasons for changes in
the number of events with the dynamic and interactive nature
that lead to the failure of ExaRD implemented in the PMamut
framework [29] is the pattern of RD concerning global activity
and lack ofmaintenance of the information of the environment
of the system.

Correlation between the number of events lead to the call of
ExaRD and the number of failures due to the occurrence of an
event with the dynamic and interactive nature during the exe-
cution of activities related to ExaRD is shown in Table 2.

As can be seen in Table 2, the correlation between the
number of calls of ExaRD and failure of ExaRD is 0.468,
implying a moderate to a weak correlation between the two
variables. This is caused by the occurrence of events with a
dynamic and interactive nature. The pattern of the dynamic
and interactive nature is completely independent of distributed
exascale computing systems including [29, 31]. The indepen-
dency of the number of events with the dynamic and interac-
tive nature from the number of failures of ExaRD implies that
failure depends on other factors in the computing system.
Table 2 indicates that only 40% of failures related to activities
of RD are due to the occurrence of events with dynamic and
interactive nature. The remaining 60% is due to other defined
factors in the system and environment. By examining the con-
ducted experiments, it can be concluded that the impacts of the

Table 1 The correlation coefficient between the number of calls for RD
and ExaRD

Model Summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1
.-
6-
4-
8a

.421 .415
7.02063

a Predictors: (Constant), Call ExaRD

0

5

10

15

20

25

30

35

40

45

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

N
u
m

b
er

Number Execution

ExaRD call and ExaRD Fail

Number of failures ExaRD

Number of ExaRD Request

Linear (Number of failures

ExaRD)

Linear (Number of ExaRD

Request)

Fig. 3 The number of calls for
ExaRD and the number of failures
in each execution in the PMamut
framework

1037Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

system on the global activity that lead to the calling of RD, the
state of the requesting process, and the impacts of the envi-
ronment on the computing element are among the most im-
portant factors contributing in failure. As a result, in 40% of
experiments there exists consistency between the pattern of
the request that leads to activation of ExaRD and the occur-
rence of events with the dynamic and interactive nature that
leads to failure of RD (Fig. 3). On the other hand, in the
remaining 60%, due to other factors, this consistency does
not exist.

In Fig. 4, the number of calls of ExaRD in which
events with the dynamic and interactive nature have oc-
curred and the number of failures of activities related to
RD is shown. On average in each execution, 7 events with
the dynamic and interactive nature are recognized by the
Cactus framework during activities of RD. This implies
that in the case of implementation of Eq. 11 in the Cactus
framework, the resource management is only able to de-
tect 7 events with the dynamic and interactive nature that
affect the functionality of RD, 4 of which cause the failure
of RD. Thus, in the Cactus framework, on average 52% of
events that are effective on the functionality of RD cause
failure of RD. ExaRD implemented in the Cactus frame-
work can manage 50% of 7 events with the dynamic and
interactive nature with which functionality of the system
is changed in a way that has led to the one (or more than

one) state of failure. There is no strategy for other events
that are not detected.

As can be seen in Fig. 4, the number of events with the
dynamic and interactive nature that affects the functionality of
RD is decreasing when the number of experiments increases,
implying that for the infinite number of experiments, it nearly
becomes zero. Resource discovery has the required mecha-
nisms to confront events with the dynamic and interactive
nature that are discovered by it and may result in failure of
RD. This is due to differences between two frameworks of
[29, 31] in identifying events with the dynamic and interactive
nature and thus management of these events. On the other
hand, a significant difference between the slope of the number
of discovered events and the number of failures due to the
occurrence of events with the dynamic and interactive nature
in two frameworks indicates that when the gathered informa-
tion in the environment increases by the resource manage-
ment, the ability of RD in discovering events with the dynam-
ic and interactive nature increases. This means that RD not
only finds resources outside the system but also creates a new
responding structure outside of the system. The creation of the
new responding structure implies having information about
the environment and changes caused by the impact of the
system on the environment and vice versa.

As can be seen in Table 3, the correlation between the
number of events with the dynamic and interactive nature that
leads to failure of RD and the number of calls for RD is
moderate to strong. By examining Tables 2 and 3, it can be
concluded that failure in activities of ExaRD and the number
of calls for ExaRD in the Cactus framework has the same and
related pattern in 60% of cases. However, in the framework
[29], only 40% of cases have the same or related pattern. This
is due to other environmental factors that lead to the failure of
RD in the [29] framework.

The number of failures related to Eqs. 12 to 16 are shown in
Fig. 5. On average for each execution, from all failures of RD
due to the occurrence of an event with the dynamic and inter-
active nature, 6.68 Backward failures have occurred. By

Table 2 Correlation between the number of ExaRD and failure of
ExaRD

Model summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1
.-
6-
8-
4a

.468 .463
5.36784

a Predictors: (Constant), Number of ExaRD failures

0

5

10

15

20

25

30

1 5 9
1

3
1

7
2

1
2

5
2

9
3

3
3

7
4

1
4

5
4

9
5

3
5

7
6

1
6

5
6

9
7

3
7

7
8

1
8

5
8

9
9

3
9

7

N
u
m

b
er

Execution Number

Cactus ExaRD Call and Failure

Pesudo ExaRD Request

Number of failures Cactus

Linear (Pesudo ExaRD Request)

Linear (Number of failures

Cactus)

Fig. 4 The number of calls of
ExaRD and failures in each
execution in the Cactus
framework

1038 Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

considering the information of ExaRD in the [29] framework,
it can be concluded that 50% of failures are Backward, indi-
cating the uncertain impact of the environment on the func-
tionality of RD. The existence of uncertain functional patterns
for RD increases the possibility of the occurrence of events
with dynamic and interactive nature. On the other hand, due to
the absence of certain guarantees regarding the continuation of
the response to the created global activities in the environment
by RD, events with the dynamic and interactive nature caused
by environmental changes may occur. Besides, as can be seen
in Fig. 5, if the number of repetition of the experiment in-
creases, the nature of events with the dynamic and interactive
nature that lead to the Backward failure is in the way that
ExaRD cannot recognize the exact pattern of the event and
thus cannot prevent failure. One of the most important reasons
that 50% of failures are Backward is related to the fact that
events with dynamic and interactive nature are undetectable
by ExaRD.

As can be seen in Fig. 5, on average in each execution, from
all failures of RD caused by the occurrence of events with the
dynamic and interactive nature, 3.39 of them have the type of
Global Activity influence. Considering the information of
ExaRD in the [29] framework, 25.39% of failures have the
type of Global Activity, indicating the functionality concept of
Global Activity. The occurrence of this type of failure is due to

the interaction between global activity and other computing
elements effective on the functionality of global activity in the
system. The occurrence of 3.39 failure of the type of Global
Activity indicates that on average 25% of failures are related to
the occurrence of an event with the dynamic and interactive
nature that occurs in the system. If the number of experiments
related to the examination of Global Activity increases, the
number of failures with the Global Activity slightly decreases.
This is due to the capability of RD in recognizing the pattern
of events with dynamic and interactive nature.

As depicted in Fig. 5, on average in each execution, from
all failures of RD caused by the occurrence of events with the
dynamic and interactive nature, 1.57 of them have the type of
Time influence. Considering the information of ExaRD in the
[29] framework, it can be concluded that 11.76% of failures
have the type of Time. Thus, on average, in 12% of cases,
events with the dynamic and interactive nature cause changes
in the time constraints governed on the request. This change is
in a way that violates the request. If the number of experiments
related to Time failure increases, the slope of the number of
Time failures is decreasing. This is due to the pattern of the
functionality of RD and recognition of the type of requests, as
well as constraints governed on different requests and areas in
the [29] framework.

On average in each execution, from all failures of RD
caused by the occurrence of events with the dynamic and
interactive nature, 0.89 (6.6%) of them have the type of
View influence (Fig. 5). When examining the system for a
long time, the occurrence of this type of failure is decreasing,
implying that the nature of the request has not changed during
activities related to RD.

The nature of the executed scientific applications is such
that after the passage of time intervals and the occurrence of
specific events, Charm and WRF models are repeated. Thus,
in addition to the Backward failure that occurs due to the
impact of factors outside the system, the number of other types
of failures is also decreasing after several repetitions.

Table 3 Correlation between the numbers of ExaRD and failures of
ExaRD in the Cactus framework

Model summary

Model R R Square Adjusted R Square Std. Error of the Estimate

1
.-
8-
0-
3a

.645 .641
2.68098

a Predictors: (Constant), Number of Cactus failure

y = 0.0076x + 1.1879

0

5

10

15

20

25

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

N
u
m

b
er

 o
f

F
ai

lu
re

Number of Execution

Failure Type Backward Influence #

Gloal Influence #

Time Influence #

View Influence

Linear (Backward

Influence #)

Linear (Gloal

Influence #)

Linear (Time

Influence #)

Linear (View

Influence)

Fig. 5 The number of different
failures of RD.

1039Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

6 Discussion

Traditional RD and ExaRD are responsible to respond to a
request by finding a resource and making it consistent with
the necessities of the request. However, these two units are
different in terms of the way that they are doing these tasks
and the governing conditions in these two tasks. In traditional
RD, finding a resource takes place without changing effective
factors for finding a resource. This implies that the generator
of the space of RD, elements that are influenced by RD, and
elements influences on RD do not change. Considering the
definition of the global activity, the global activity that has
led to call RD, as well as constraints governed on this global
activity, do not change during activities of RD. Thus, the
failure of RD is only defined in terms of finding the requested
resource. If the requested resource cannot be found, RD fails.
This type of failure is due to functionality failure of RD. In
functionality failure, the requested resource cannot be found
in the space searching by RD. As mentioned in Eq. 1, func-
tionality failure of activities related to traditional RD is due to
inconsistency between the request and the requested resource
considering the constraints of the request. Failure of tradition-
al RD leads to non-execution of the request of the process;
thus execution of the global activity stops. In this condition,
constraints of the request of the process should be changed in a
way that the resource management would be able to recall RD
to find the resource in another environment. Eq. 1 introduced
in this study describes the functionality of RD based on vector
concept. Considering the state of cost vectors and the time is
taken to find the requested resource, Eq. 1 can decide regard-
ing the possibility of the failure. Generally, in computing sys-
tems, scientific applications with high reputational frequen-
cies are executing. Repetition causes the resource manage-
ment would be able to decide based on results of Eq. 1 and
the history of execution of similar activities whether or not to
continue the execution of activities of RD. Besides, by calcu-
lating Eq. 1, the new RD in the new environment under the
remaining time and cost constraints can be examined. Thus,
by examining the functionality of RD, it can be decided re-
garding the possibility of failure. If the possibility is not larger
than a specific number, RD stops. In this way, under an ac-
ceptable cost and time interval, by the repetition of RD, the
requested resource is discovered.

Given RD, adaptation means finding an element that pro-
vides all necessities of the requester. In Eq. 1, this means that
adaptation between the two introduced vectors. The function-
ality of RD is correct if linear map T or RD can do adaptation
based on Eq. 1 considering characteristics and the space of the
defined request. In Eq. 1, RD should be aware of the space of
the defined resources and their characteristics. This awareness
in traditional systems causes the necessity for the existence of
structures to gather information on resources based on history.
In Eq. 1, extraction of elements comprising the space of the

request based on the definition of the requesting process in the
local system and the possibility of extraction of the character-
istics of the request is the pivotal element for calling RD.
Thus, the reason that the linear map T cannot be executed
under the time and cost constraints is that RD extracts the
capabilities of resources by the violation of the constraints
governed on the request. In this situation, the failure that has
taken place is constrained failure, which is different from
functionality failure.

In ExaRD, RD is influenced by the impact of dynamic and
interactive nature. The dynamic and interactive nature can
influence each element that is important for finding the re-
source. In ExaRD, the impact of the dynamic and interactive
nature causes the total adaptation to be converted to the partial
adaptation. The most important consequence of this conver-
sion is replacing a responding structure instead of finding a
resource. Thus, the functional space of RD is changing from
the total adaptation space to the creation of the responding
structure. As a result, the occurrence of an event with the
dynamic and interactive nature in global activity causes failure
of RD in distributed exascale computing systems compared to
traditional systems. Thus, the functional space of the RD
should be redefined based on the failure caused by the occur-
rence of an event with a dynamic and interactive nature. The
dynamic and interactive nature may influence RD but does not
lead to the failure of RD. Thus, between the dynamic and
interactive nature that influences RD and that leads to failure
of RD should be distinguished.

The uncertainty nature of events with the dynamic and
interactive nature is in a way that in each time they can influ-
ence the space generator related to RD and the spaces that are
affected by them or influence them. In RD, parts of these
spaces are defined outside of the management area of resource
management. Thus, in addition to the dynamic and interactive
nature that is effective on activities of RD inside the system,
the functionality of this unit under the influence of the dynam-
ic and interactive nature outside the system may be also af-
fected. In RD, spaces that are effective on the activity of RD
and events with dynamic and interactive nature are both de-
fined in the inside of the system and environment. As a result,
the impacts of events with the dynamic and interactive nature
of the functionality of these elements and the failure of their
activities are more effective. Changing RD from Eq. 5 to Eq.
11 causes RD to consider events with the dynamic and inter-
active nature that influence the functionality of the element.
Thus, (1) changing functionality function from Eq. 5 to 11; (2)
definition of the space of the request based on changing Eq. 5
to 8 and creating a responding space to the request; and (3)
definition of a vector characterizing the request based on Eq. 9
make RD decide whether or not a specific event violates con-
straints governed on the request.

Eq. 11 introduced in this study causes RD would be able to
decide how to manage the requests based on structures of the

1040 Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

operating system and the vectors characterizing the request, as
well as based on the space of the request and the response
related to the number of events with the dynamic and interac-
tive nature that influencing the functionality of RD. Based on
Eq. 11, the occurrence of events with the dynamic and inter-
active nature effective on the functionality of RD means the
occurrence of a state that causes constraints of the request and
conditions governed on the responding environment to
change in a way that has not been considered in the initial
responding structure. According to this Eq., based on the
way that Eqs. 7 to 10 are created, the RD is informed about
the number of events that lead to the specified state. To deter-
mine the type of failure, Eqs. 12 to 16 are used. As stated in the
results of experiments 3 and 4, in each experiment RD imple-
mented in the Cactus framework can discover 7 events with
the dynamic and interactive nature that are effective on the
functionality of RD. However, in the same experimental con-
ditions, RD implemented in the [27] distributed system can
discover 17 events with the dynamic and interactive nature
that are effective on the functionality of RD. This is due to
the pattern of the functionality of RD in both systems. In the
implementation of RD in the [30] system those events that
lead to changing the state of the responding resource to the
request are considered as events that may lead to changing the
functionality of RD. Changing the state of the resource is
considered in three dimensions of memory, bandwidth, and
the version of the operating system. On the other hand, in
implementation of RD in the [27], any event that is occurred
in the requesting process under the constraints governed on
the request, as well as the occurrence of those activities that
lead to finding a resource under conditions governed on the
responding structure are considered as the effective event on
the functionality of RD. As a result, RD in the [33] would be
able to consider events that are effective on the request, the
response, and the functionality of RD. By defining an appro-
priate classification for states that lead to failure, specific ap-
proaches can be used to prevent failure. In this study, Eqs. 12
to 16 are used to classify failures in 4 groups.

Mechanisms of ExaRD implemented in frameworks of [29,
31] are similar. However, these mechanisms in these frame-
works discover the different number of events with the dy-
namic and interactive nature that may lead to failure of RD.
Thus, the management of failure in a distributed exascale
computing system is not completely dependent on the dynam-
ic and interactive nature. In such systems, the dynamic and
interactive nature is only partly responsible for the failure,
while the pattern of management of processes in computing
elements, the structure of global activity, the pattern of phys-
ical changes in the computing element, and the way that in-
formation is held are also important. The difference between
the numbers of discovered events by the ExaRD in the
abovementioned frameworks indicates the existence of the
abovementioned factors that are not related to the dynamic

and interactive nature, but influence management of the fail-
ure of RD.

As more complex factors are considered by ExaRD imple-
mented in the [29] framework compared to that of [30] frame-
work to detect events with the dynamic and interactive nature,
the time of activity related to RD in [29] is higher than in the
[31] framework. One of the most important reasons lies in the
definition of functionality of RD based on states of the request
and global activity, as well as the impacts of the system and
environment on the activity. In the [29] framework, each ac-
tivity is defined based on three indices and becomes available
to RD. As a result, RD would be able to better analyze the
effective events; however, the time for execution of RD
increases.

The functionality nature of RD and the pattern governed on
the environment causes this element would not be able to
discover all dynamic and interactive events that lead to the
failure of its functionality. The most important reasons lie in
changing the activity of RD from the system to the environ-
ment and interaction between the system and the environment.
Resource discovery is active in two different spaces in which
event may form that influence functionality of this element
and may lead to failure of RD. In this study, by presenting a
mathematical pattern for different failures of the functionality
of RD, it is discussed that events with the dynamic and inter-
active nature that leads to the failure might not be recognized,
but based on a set of mathematical relations different forms of
failures of the functionality of RD and reasons behind them
can be described.

7 Conclusion

Failure of resource discovery in distributed exascale com-
puting systems due to the difference in the functionality of
resource discovery can be due to both traditional condi-
tions and the occurrence of events with dynamic and inter-
active nature. As stated in this paper, it is essential to re-
define the functionality function of resource discovery in
distributed exascale computing systems to analyze in
which state, the occurrence of events with the dynamic
and interactive nature leads to failure. By introducing and
re-defining the functionality function of resource discovery
based on linear converters, it has become possible in this
paper that resource discovery to decide based on its capa-
bility about using structures of the operating system and to
decide how to define vectors of the characteristics of the
request, as well as to decide about the number of events
with the dynamic and interactive nature in the request and
the response that are effective on the functionality of re-
source discovery. This makes it possible for resource dis-
covery to decide based on the type of failure in the func-
tionality function by the event. The results of this study

1041Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

indicate that due to functional characteristics of resource
discovery and execution of part of its activity outside the
system, the system cannot extract all events with the dy-
namic and interactive nature that leads to failure of its
functionality. The main advantage of the introduced math-
ematical function in this paper is defining different forms
of failure of resource discovery. This mathematical model
makes it possible to describe forms of failure and reasons
for failure based on a set of mathematical rules even when
the nature of dynamic and interactive events cannot be
recognized.

References

1. Khethavath P et al (2013) Introducing a distributed cloud architec-
ture with efficient resource discovery and optimal resource alloca-
tion. 2013 IEEE Ninth World Congress on Services IEEE

2. Adibi E, Khaneghah EM (2018) Challenges of resource discovery
to support distributed exascale computing environment. Azerbaijan
Journal of High Performance Computing 1(2):168–178

3. Mirtaheri SL, Sharifi M (2014) An efficient resource discovery
framework for pure unstructured peer-to-peer systems. Computer
Network 59:213–226

4. Werner H, Bornhoevd C (2020) Metadata-based general re-
quest translator for distributed computer systems. U.S. Patent
No. 10,706,046

5. Dongarra J et al. (2014) Applied mathematics research for exascale
computing. No. LLNL-TR-651000. Lawrence Livermore National
Lab.(LLNL), Livermore,

6. Souri A, Navimipour NJ (2014) Behavioral modeling and formal
verification of a resource discovery approach in grid computing.
Expert Systems with Applications 41(8):3831–3849

7. Khaneghah EM, Aliev AR, Bakhishoff U, Adibi E (2018) The influ-
ence of Exascale on resource discovery and defining an indicator.
Azerbaijan Journal of High Performance Computing 1(1):3–19

8. Khaneghah EM et al. (2018) Challenges of load balancing to sup-
port distributed exascale computing environment. Proceedings of
the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA). The Steering Committee
of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp)

9. Messina P (2017) Update on the exascale computing project (ECP).
HPC User Forum

10. Khatibi E, Sharifi M, Mirtaheri SL (2020) DPAS: a dynamic
popularity-aware search mechanism for unstructured P2P systems.
Peer-to-Peer Networking and Applications 13(3):825–849

11. Noghabi HB, Ismail AS, Ahmed AA, Khodaei M (2012)
Optimized query forwarding for resource discovery in unstructured
peer-to-peer grids. Cybernetics and Systems:687–703

12. Adibi E, Khaneghah EM (2020) ExaRD: introducing a framework
for empowerment of resource discovery to support distributed
exascale computing systems with high consistency. Cluster
Computing:1–21

13. Saleh R, Saeidi et al (2018) A mathematical framework for manag-
ing interactive communication distortions in exascale organiza-
tions. Cogent Business & Management 5(1):1545356

14. Fahmideh M, et al. (2020) Process patterns for service oriented
development. arXiv preprint arXiv:2004.09381

15. Djamaa B, Yachir A, Richardson M (2017) Hybrid CoAP-based
resource discovery for the internet of things. Journal of Ambient
Intelligence and Humanized Computing 8(3):357–372

16. Navimipour NJ, Milani FS (2015) A comprehensive study of the
resource discovery techniques in peer-to-peer networks. Peer-to-
Peer Networking and Applications 8(3):474–492

17. Harchol-BalterM, Leighton T, Lewin D (1999) Resource discovery
in distributed networks. ACM, Proceedings of the eighteenth annu-
al ACM symposium on Principles of distributed computing

18. Navimipour NJ et al (2014) Resource discovery mechanisms in grid
systems: a survey. Journal of Network and Computer Applications
41:389–410

19. Chen W (2011) Distributed device discovery framework for a net-
work. U.S. Patent No. 7,962,605. 14 Jun

20. Trunfio P et al (2007) Peer-to-peer resource discovery in grids:
models and systems. Future Generation Computer Systems Syst
23(7):864–878

21. Basu S et al (2005) Nodewiz: peer-to-peer resource discovery for
grids. CCGrid 2005. IEEE International Symposium on Cluster
Computing and the Grid 1. IEEE

22. Cokuslu D, Hameurlain A, Erciyes K (2010) Grid resource discov-
ery based on centralized and hierarchical architectures. International
journal for Infonomics 3(1):227–233

23. Frey J, Tannenbaum T, Livny M, Foster I, Tuecke S (2002)
Condor-G: a computation management agent for multi-
institutional grids. Cluster Computing 5(3):237–246

24. Yousif A et al (2011) A taxonomy of grid resource selection mech-
anisms. International Journal of Grid and Distributed Computing
4(3):107–117

25. Dakkak O, Nor SA, Arif S (2016) Proposed algorithm for schedul-
ing in computational grid using backfilling and optimization tech-
niques. Journal of Telecommunication, Electronic and Computer
Engineering (JTEC) 8(10):133–138

26. Sharifi M, Mirtaheri SL, Khaneghah EM (2010) A dynamic frame-
work for integrated management of all types of resources in P2P
systems. Journal of Supercomputing 52(2):149–170

27. Camp DR (2006) Escape to a new dimension: a journey through
space with a square, a cube, and a tesseract. Mathematics Teacher
100(3):180–183

28. Mirtaheri SL et al (2013) Four-dimensional model for describing
the status of peers in peer-to-peer distributed systems. Turkish
Journal of Electrical Engineering & Computer Sciences 21(6):
1646–1664

29. Khaneghah EM (2017) PMamut: runtime flexible resource
management framework in scalable distributed system based
on nature of request, demand and supply and federalism. U.S.
Patent No. 9,613,312. 4 Apr.

30. Khaluf Y, Pinciroli C, Valentini G, Hamann H (2017) The
impact of agent density on scalability in collective systems:
noise-induced versus majority-based bistability. Swarm
Intelligence 11(2):155–179

31. Allen G, AnguloD, Foster I, Lanfermann G, Liu C, Radke T, Seidel
E, Shalf J (2001) The cactus worm: experiments with dynamic
resource discovery and allocation in a grid environment. The
International Journal of High Performance Computing
Applications 15(4):345–358

32. Lofgren BM (2014) Simulation of atmospheric and lake conditions
in the Laurentian Great Lakes region using the Coupled
Hydrosphere-Atmosphere Research Model (CHARM)

33. Coniglio MC, Elmore KL, Kain JS, Weiss SJ, Xue M, Weisman
ML (2010) Evaluation of WRF model output for severe weather
forecasting from the 2008 NOAA hazardous weather testbed spring
experiment. Weather Forecast 25(2):408–427

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

1042 Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

Elham Adibi has a Masters of
Computer Science from Shahed
University and currently is a
member of the operating system
and network laboratory at this
university. She is interested in
t h e H i g h P e r f o r m a n c e
Computing Systems (HPC) and
has been involved in several relat-
ed research activities over the past
few years, including in resource
discovery of the HPC such as
grid, P2P, and exascale computing
systems. Since 2015, she has been
involved in a research project to

improve the performance of resource discovery in distributed peer-to-
peer computing systems based on mathematical mechanisms. She is also
interested to design and develop a non-failure resource discovery for
exascale computing systems. Elham.Adibi@Shahed.ac.ir

Ehsan Mousavi Khaneghah is a
faculty member of the Computer
Engineering Department of
Shahed University. His research
interest is the design and develop-
ment of distributed computing
systems. He is researching the de-
velopment of a distr ibuted
Exascale computing system. He
had a patent called “PMamut:
runtime flexible resourcemanage-
ment framework in a scalable dis-
tributed system based on nature of
the request, demand and supply,
and federalism.” U.S. Patent No.

9,613,312. 4 Apr. 2017.”Which proposes a framework for managing the
Distributed Exascale System. His favorite research fields are an operating
system, Exascale systems, parallel and distributed systems, Cluster sys-
tems, Grid systems, P2P computing systems, applied mathematics, opti-
mization, and e-commerce. He has successful experience in running the
industrial designs in high-performance computing systems. He is also a
consultant of Master Plan designs in industrial areas like banks and in-
dustries, which need high-performance computing systems. Now, he is a
member of the operating system and network laboratories of Shahed
University. Emousavi@Shahed.ac.ir

1043Peer-to-Peer Netw. Appl. (2021) 14:1021–1043

	A mathematical model to describe resource discovery failure in distributed exascale computing systems
	Abstract
	Introduction
	Related work
	Basic concept
	Resource discovery in traditional computing systems
	The functionality of resource discovery in traditional computing systems

	The functionality of resource discovery in distributed exascale computing systems
	The functionality of resource discovery for events with dynamic and interactive nature
	Resource discovery failure in distributed exascale computing systems

	Evaluation
	Discussion
	Conclusion
	References

